Archived project

Affordance learning for humanoid robots

Goal: Learn affordances for handling real-world objects by a robot.

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
0
Reads
0 new
26

Project log

Koen V. Hindriks
added a research item
Learning to perform household tasks is a key step towards developing cognitive service robots. This requires that robots are capable of discovering how to use human-designed products. In this paper, we propose an active learning approach for acquiring object affordances and manipulation skills in a bottom-up manner. We address affordance learning in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action space, the robot learns a forward model to predict action effects. It simultaneously updates the active exploration policy through reinforcement learning, whereby the prediction error serves as the intrinsic reward. By using the learned forward model, motor skills are obtained to achieve goal states of an object. We demonstrate through real-world experiments that a humanoid robot NAO is able to autonomously learn how to manipulate two types of garbage cans with lids that need to be opened and closed by different motor skills.
Koen V. Hindriks
added a project goal
Learn affordances for handling real-world objects by a robot.
 
Chang Wang
added 4 research items
An affordance is a relation between an object, an action, and the effect of that action in a given environmental context. One key benefit of the concept of affordance is that it provides information about the consequence of an action which can be stored and reused in a range of tasks that a robot needs to learn and perform. In this paper, we address the challenge of the on-line learning and use of affordances simultaneously while performing goal-directed tasks. This requires efficient online performance to ensure the robot is able to achieve its goal fast. By providing conceptual knowledge of action possibilities and desired effects, we show that a humanoid robot NAO can learn and use affordances in two different task settings. We demonstrate the effectiveness of this approach by integrating affordances into an Extended Classifier System for learning general rules in a reinforcement learning framework. Our experimental results show significant speedups in learning how a robot solves a given task.
We present a modified version of Extended Classifier System (XCS) on a humanoid NAO robot. The robot is capable of learning a complete, accurate, and maximally general map of an environment through evolutionary search and reinforcement learning. The standard alternation between explore and exploit trials is revised so that the robot relearns only when necessary. This modification makes the learning more effective and provides the XCS with external memory to evaluate the environmental change. Furthermore, it overcomes the drawbacks of learning rate settings in traditional XCS. A simple object seeking task is presented which demonstrates the desirable adaptivity of LCS for a sequential task on a real robot in dynamic environments.
Learning to perform household tasks is a key step towards developing cognitive service robots. This requires that robots are capable of discovering how to use human-designed products. In this paper, we propose an active learning approach for acquiring object affordances and manipulation skills in a bottom-up manner. We address affordance learning in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action space, the robot learns a forward model to predict action effects. It simultaneously updates the active exploration policy through reinforcement learning, whereby the prediction error serves as the intrinsic reward. By using the learned forward model, motor skills are obtained to achieve goal states of an object. We demonstrate through real-world experiments that a humanoid robot NAO is able to autonomously learn how to manipulate two types of garbage cans with lids that need to be opened and closed by different motor skills.