Project

ASHRAE Great Energy Predictor III Kaggle Competition

Goal: Crowdsource the most accurate long-term energy prediction models for buildings

Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
17
Reads
1 new
113

Project log

Clayton Miller
added a research item
Research is needed to explore the limitations and potential for improvement of machine learning for building energy prediction. With this aim, the ASHRAE Great Energy Predictor III (GEPIII) Kaggle competition was launched in 2019. This effort was the largest building energy meter machine learning competition of its kind, with 4,370 participants who submitted 39,403 predictions. The test data set included two years of hourly whole building readings from 2,380 meters in 1,448 buildings at 16 locations. This paper analyzes the various sources and types of residual model error from an aggregation of the competition's top 50 solutions. This analysis reveals the limitations for machine learning using the standard model inputs of historical meter, weather, and basic building metadata. The errors are classified according to timeframe, behavior, magnitude, and incidence in single buildings or across a campus. The results show machine learning models have errors within a range of acceptability (RMSLE_scaled =< 0.1) on 79.1% of the test data. Lower magnitude (in-range) model errors (0.1 < RMSLE_scaled =< 0.3) occur in 16.1% of the test data. These errors could be remedied using innovative training data from onsite and web-based sources. Higher magnitude (out-of-range) errors (RMSLE_scaled > 0.3) occur in 4.8% of the test data and are unlikely to be accurately predicted.
Clayton Miller
added a research item
In recent years, the availability of larger amounts of energy data and advanced machine learning algorithms has created a surge in building energy prediction research. However, one of the variables in energy prediction models, occupant behavior, is crucial for prediction performance but hard-to-measure or time-consuming to collect from each building. This study proposes an approach that utilizes the search volume of topics (e.g., education or Microsoft Excel) on the Google Trends platform as a proxy of occupant behavior and use of buildings. Linear correlations were first examined to explore the relationship between energy meter data and Google Trends search terms to infer building occupancy. Prediction errors before and after the inclusion of the trends of these terms were compared and analyzed based on the ASHRAE Great Energy Predictor III (GEPIII) competition dataset. The results show that highly correlated Google Trends data can effectively reduce the overall RMSLE error for a subset of the buildings to the level of the GEPIII competition’s top five winning teams’ performance. In particular, the RMSLE error reduction during public holidays and days with site-specific schedules are respectively reduced by 20–30% and 2–5%. These results show the potential of using Google Trends to improve energy prediction for a portion of the building stock by automatically identifying site-specific and holiday schedules.
Clayton Miller
added 2 research items
In late 2019, ASHRAE hosted the Great Energy Predictor III (GEPIII) machine learning competition on the Kaggle platform. This launch marked the third energy prediction competition from ASHRAE and the first since the mid-1990s. In this updated version, the competitors were provided with over 20 million points of training data from 2,380 energy meters collected for 1,448 buildings from 16 sources. This competition’s overall objective was to find the most accurate modeling solutions for the prediction of over 41 million private and public test data points. The competition had 4,370 participants, split across 3,614 teams from 94 countries who submitted 39,403 predictions. In addition to the top five winning workflows, the competitors publicly shared 415 reproducible online machine learning workflow examples (notebooks), including over 40 additional, full solutions. This paper gives a high-level overview of the competition preparation and dataset, competitors and their discussions, machine learning workflows and models generated, winners and their submissions, discussion of lessons learned, and competition outputs and next steps. The most popular and accurate machine learning workflows used large ensembles of mostly gradient boosting tree models, such as LightGBM. Similar to the first predictor competition, preprocessing of the data sets emerged as a key differentiator.
This paper describes an open data set of 3,053 energy meters from 1,636 non-residential buildings with a range of two full years (2016 and 2017) at an hourly frequency (17,544 measurements per meter resulting in approximately 53.6 million measurements). These meters were collected from 19 sites across North America and Europe, with one or more meters per building measuring whole building electrical, heating and cooling water, steam, and solar energy as well as water and irrigation meters. Part of these data was used in the Great Energy Predictor III (GEPIII) competition hosted by the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) in October-December 2019. GEPIII was a machine learning competition for long-term prediction with an application to measurement and verification. This paper describes the process of data collection, cleaning, and convergence of time-series meter data, the meta-data about the buildings, and complementary weather data. This data set can be used for further prediction benchmarking and prototyping as well as anomaly detection, energy analysis, and building type classification.
Clayton Miller
added a project goal
Crowdsource the most accurate long-term energy prediction models for buildings