Project
ALGORITMOS DE CLASIFICACION ORDINAL Y PREDICCION EN ENERGIAS RENOVABLES (ORDINAL CLASSIFICATION AND PREDICTION ALGORITHMS IN RENAWABLE ENERGY, ORCA-RE) TIN2014-54583-C2-1-R Financial Entity: Ministerio de Economía y Competitividad.MINECO
Updates
0 new
0
Recommendations
0 new
0
Followers
0 new
33
Reads
0 new
189
Project log
This work proposes a hybrid methodology for the detection and prediction of Extreme Significant Wave Height (ESWH) periods in oceans. In a first step, wave height time series is approximated by a labeled sequence of segments, which is obtained using a genetic algorithm in combination with a likelihood-based segmentation (GA+LS). Then, an artificial neural network classifier with hybrid basis functions is trained with a multiobjetive evolutionary algorithm (MOEA) in order to predict the occurrence of future ESWH segments based on past values. The methodology is applied to a buoy in the Gulf of Alaska and another one in Puerto Rico. The results show that the GA+LS is able to segment and group the ESWH values, and the neural network models, obtained by the MOEA, make good predictions maintaining a balance between global accuracy and minimum sensitivity for the detection of ESWH events. Moreover, hybrid neural networks are shown to lead to better results than pure models.
In this paper, the performance of different ordinal and nominal multi-class classifiers is evaluated, in a problem of wave energy range prediction using meteorological variables from numerical models. This prediction could be used in problems of wave energy conversion in renewable and sustainable systems for energy supply. Specifically, the work is focused on ordinal classifiers, that have provided excellent performance in previous applications. The proposed techniques are novel with respect to alternative classification and regression techniques used up to date, the former not considering the order relation between classes in a multi-class problem and the latter needing, in general, more complex models. Another important novelty of the paper is to consider meteorological variables from numerical models as inputs of the classifiers, which has not been done before, to our knowledge, in this context. For this, a data matching is carried out between meteorological data, obtained from NCEP/NCAR Reanalysis Project in four points around the two buoys subjected to study (a buoy in the Gulf of Alaska and another one in the Southeast of United States), and the wave height or wave period collected by sensors in each buoy. Using this matching, the problem is tackled as an ordinal multi-class classification problem and the objective is to predict the range of height of the wave produced in each buoy and the range of energy flux generated. The classifiers to be compared and the model proposed are fully evaluated in both buoys. The results obtained are promising, showing an acceptable reconstruction by ordinal methods with respect to nominal ones in terms of wave height and energy flux.