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Abstract
This study presents a method with high accuracy performance that aims to automatically detect schizophrenia (SZ) from 
electroencephalography (EEG) records. Unlike related literature studies using traditional machine learning algorithms, the 
features required for the training of the network are automatically extracted from the EEG records in our method. In order 
to obtain the time frequency features of the EEG signals, the signal was converted into 2D by using the Continuous Wavelet 
Transform method. This study has the highest accuracy performance in the relevant literature by using 2D time frequency 
features in automatic detection of SZ disease. It is trained with Visual Geometry Group-16 (VGG16), an advanced convo-
lutional neural networks (CNN) deep learning network architecture, to extract key features found on scalogram images and 
train the network. The study shows a high success in classifying SZ patients and healthy individuals with a very satisfactory 
accuracy of 98% and 99.5%, respectively, using two different datasets consisting of individuals from different age groups. 
Using different techniques [Activization Maximization, Saliency Map, and Gradient-weighted Class Activation Mapping 
(Grad-CAM)] to visualize the learning outcomes of the CNN network, the relationship of frequency components between 
SZ and the healthy individual is clearly shown. Moreover, with these interpretable outcomes, the difference between SZ 
patients and healthy individuals can be distinguished very easily help for expert opinion.
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Introduction

Schizophrenia (SZ) is a mental disorder that has chronic and 
severe effects and affects approximately 20 million people 
worldwide [1, 2]. It is a long-term brain disorder with symp-
toms such as strange fixed beliefs (delusions) that are not 
correct, hearing or seeing things that do not exist (hallucina-
tions), irregular emotions, perception or speech [3]. Com-
pared to normal healthy people, SZ patients have a higher 
mortality rate due to preventable physical illnesses [4].

Detection of SZ disease is usually carried out by a quali-
fied psychiatrist based on patient interviews and monitoring 

patient behavior [5]. Since SZ shows symptoms that can be 
confused with different psychological disorders, the detec-
tion phase is not completely reliable, as it is possible for 
the expert to make mistakes in some cases. Although SZ is 
usually detected by a specialist, it has recently been used to 
detect automatically with tools such as electroencephalog-
raphy (EEG) and neuroimaging techniques such as MRI, 
CT, FMRI, and PET. Neuroimaging techniques are disad-
vantageous in that they require high cost, high computation 
time, and extra recording compared to EEG recordings [3, 
6–9]. Since EEG is less costly and more practical, the use 
of EEG in SZ detection is more widely preferred. The use of 
EEG data in detecting SZ is a less costly and more practical 
method.

EEGs are devices that allow the activity of electrical sig-
nals in the brain to be recorded. EEG recordings contain data 
of the signals received from electrodes placed on the scalp 
that vary depending on periodic or non-stationary time [10, 
11]. EEG data are used as an important material that enables 
the study and analysis of brain activities.
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Many linear and nonlinear analysis methods are used in 
the processing of EEG signals [12–16]. In addition, there 
are many literature studies presenting signal analysis meth-
ods for the removal of EEG artifacts that occur during the 
recording phase of EEG signals [17–22]. Early detection 
of SZ disease can help reduce brain impairments, although 
detection of the disease is difficult, even for a specialist [23]. 
For these reasons, the development of computer-aided soft-
ware has been an important research topic to assist the expert 
in decision making. In the literature, there are many CAD 
studies using traditional machine learning algorithms [24, 
25]. The recent developments in Deep Learning (DL), which 
gives quite satisfactory results especially in two-dimensional 
data compared to traditional machine learning algorithms, 
have been an important reason for researchers to focus on 
this field.

The signals of EEG data are usually digitized and ana-
lyzed with computer software. Thus, this information, which 
is difficult to interpret directly by any expert, becomes more 
understandable. For this purpose, there are CAD (Computer 
Aided Diagnosis) systems developed to assist the expert in 
the evaluation of disorders that cause brain damage such as 
SZ or any disease-related abnormality. EEG data are used 
as input data to the CAD system developed to detect many 
diseases such as SZ disease [3]. Therefore, CAD systems 
using EEG signals developed to detect SZ are widely used 
in the relevant literature. In most of the literature studies 
in this field, the disease has been tried to be detected with 
traditional machine learning algorithms by using the features 
obtained from EEG signals. High accuracy detection of the 
disease depends on the features obtained from the signal.

It is known that the Wavelet method extracts the impor-
tant features of the time frequency components of the sig-
nal in more detail. For this reason, there are many studies 
using this method together with traditional machine learning 
algorithms. It is used extensively in the analysis of many 
different biomedical signals in the literature and produces 
satisfactory results. In our study in this direction, we propose 
a method that tries to detect SZ with much higher classifica-
tion performance, simple pipeline and interpretable results 
help for expert opinion. The outputs obtained can be inter-
preted very easily help for any expert opinion. The proposed 
study is also important in evaluating the time frequency fea-
tures of an EEG. There is no need for any processing or 
material other than EEG recordings to detect SZ.

2D scalogram images are created by applying Continu-
ous Wavelet Transform (CWT) to the raw EEG data. Time 
frequency features are obtained from the scalogram images. 
In the relevant literature, scalogram images used as input 
data to the CNN network for the detection of SZ disease are 
used for the first time. Important features on the scalogram 
images that are input to the CNN model are automatically 
extracted from the next layers of the CNN network. In the 

method we propose, it is more advantageous than many lit-
erature methods that require extensive knowledge in the field 
since important features are automatically extracted from 
CNN layers. In addition, the method we propose has advan-
tages such as more easily interpretable results and learn-
ing process when compared to the literature methods using 
CNN. The proposed method has also verified its success in 
detecting SZ by using two different datasets, each contain-
ing patients from different age groups and healthy controls. 
The fact that the proposed method reaches high performance 
values (98% and 99.5%) in both children and adult data in 
automatic detection of SZ shows that it is a reliable method. 
Moreover, the classification performance achieved has a 
higher performance value than most of the literature meth-
ods. Another advantage of the method compared to other 
studies is that since it uses scalogram images as input, the 
model produces more easily interpretable outputs without 
requiring expert opinion, with images such as Activization 
Maximization, Saliency Map and Grad-CAM, which reveal 
the relationship between disease and frequency components.

To summarize the main contributions of the proposed 
method:

1. A deep learning-based approach is presented for the 
detection of schizophrenia with scalogram images 
obtained from EEG signals.

2. The proposed method distinguishes schizophrenic and 
healthy individuals with high classification performance.

3. Interpretable outputs that are thought to support expert 
opinion in the detection of schizophrenia have been 
obtained.

Literature review

There are many studies presented for the detection of SZ 
disease by using different feature extraction methods and 
using different machine learning algorithms.

Kim et al. [26] selected 5 frequency bands for record-
ings from a 21-electrode EEG device. By applying the Fast 
Fourier Transform (FFT) to these 5 selected frequency 
bands, they calculated the spectral power of these bands 
with EEGLAB software [27]. Using the delta frequency, 
they classified SZ and healthy controls with 62.2% accu-
racy. Additionally, Dvey-Aharon et al. [28] preprocessed the 
EEG signals and performed feature extraction by Stockwell 
transform [29]. Using the TFFO (Time–Frequency conver-
sion and then Feature Optimization) method, they achieved 
a classification performance between 92 and 93.9%. Johan-
nesen et  al. [11] Support vector machines (SVM) were 
used to extract the most important features [23] from EEG 
recordings to predict the working memory performance of 
subjects. Using the features, they obtained, they classified 
them with Support Vector Machines (SVM) and obtained an 
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accuracy of 87%. Besides, Santos-Mayo et al. [30] studied 
different machine learning techniques (electrode grouping, 
feature selection algorithms, and filtering). They performed 
the classification process with the SVM and Multi-Layer 
Perceptron (MLP) algorithms with 92.23% and 93.42% 
accuracy, respectively. Finally, they classified the features 
they obtained by applying the J5 feature selection algorithm 
[31] and observed that they showed higher performance. 
In the study of Aslan and Akın [32], feature extraction 
from EEG signals was performed using the relative wavelet 
energy (RWE) method. They trained these features using the 
KNN (K-Nearest Neighbors) algorithm and reported that 
they obtained approximately 90% accuracy with this method. 
Thilakvathi et al. [33] tried to distinguish SZ patients using 
the Support Vector Machines (SVM) algorithm. They used 
different methods (such as Higuchi’s Fractal Dimension, 
Spectral Entropy, Hannon Entropy, Information Entropy, and 
Kolmogorov Complexity values) to obtain the features. By 
classifying these features with SVM, they obtained 88.5% 
accuracy. Devia et al. [5] compared ERP (event-related 
potentials) between healthy and sick individuals. Then 
they examined the classifier design and performance. In 
their work, they presented LDA classifiers, then rule-based 
classifiers and finally, combined approach methods. The 
best classifier has an overall accuracy of 71%, a sensitiv-
ity of 81% for detecting patients and a specificity of 59% 
for detecting controls. Piryatinska et al. [34] performed the 
classification of 16-channel EEG recordings of 84 adoles-
cent individuals (39 healthy-45 SZ). Random forest classifier 
and SVM classifiers were used. Using the obtained features 
with RF algorithm, the highest accuracy performance was 
achieved as 83.6%. Shim et al. [24] performed the feature 
extraction process on the EEG channels of 34 healthy and 
34 SZ patients at the sensor level and at the source level, and 
classified the characteristics they obtained with SVM and 
identified SZ patients with an accuracy of 88.24%. Sui et al. 
[35] performed the feature extraction procedure on the EEG 
records of 48 SZ patients and 53 healthy individuals using 
the Multiple set canonical correlation analysis method, and 
classified the obtained features with SVM with an accuracy 
of 74% and distinguished SZ patients from healthy indi-
viduals. Boostani et al. [36] applied autoregressive (AR) 
model parameters, band power and fractal dimension meth-
ods to EEG recordings and classified the feature values they 
obtained with LDA and achieved 87.5% success. Siuly et al. 
[37] obtained empirical mode decomposition (EMD) based 
features from EEG records of 49 SZ patients and 32 healthy 
individuals, and were classified with Decision Tree (DT), 
k-NN, SVM and ensemble bagged tree (EBT) classifiers. 
EBT achieved 89.59% better performance compared to other 
reported classifiers.

In the literature studies of the related field mentioned 
above, the features obtained by extracting features from 

the EEG records were classified with traditional machine 
learning algorithms. Although this feature extraction tech-
nique has advantages such as successful estimation, it is an 
important disadvantage that it requires experts with exten-
sive knowledge in this field. With new developments, DL is 
being investigated as a new alternative to traditional machine 
learning algorithms. Due to the fact that DL does not require 
any preprocessing and feature extraction, this area has been 
intensely studied recently. Convolutional neural network 
(CNN) is a kind of DL network and the features of an input 
data are obtained automatically from the relevant layers of 
the CNN. There are only a few literature studies that classify 
with CNN using EEG records of SZ patients.

In a study, Phang et al. [38] used brain functional con-
nectivity information as a feature in their method and tested 
these features with several methods. They obtained the 
features using methods such as partial directed coherence, 
vector autoregressive model, and complex network measure-
ments of the network topology. Then, using these features, 
they fed them into two CNN models. Finally, there is the 
Fully Connected Neural Network (FCN) that can classify 
healthy controls and SZ patients. As a result of the classifi-
cation, they achieved 93.06% performance. They report that 
their method has reached satisfactory accuracy. However, 
their methods require additional data such as brain con-
nection features. Oh et al. [3] classified 19-channel EEG 
recordings of 28 individuals (14 healthy—14 SZ) using a 
CNN model. The CNN model they use in their work con-
sists of 11 layers in total. They did not preprocess, and fed 
the CNN model directly with data from raw EEG channels. 
It is reported that their methods achieved a performance 
of 98.07% for non-subject based tests and 81.26% for sub-
ject based tests. Both methods using DL to detect SZ lack 
interpretable results. In another study, Aslan and Akın [39] 
converted 5-s segments they obtained from EEG channels 
into spectrogram images. CNN, which they trained with the 
features they obtained, achieved very successful results with 
95% and 97% success for two different datasets.

Methodology

Dataset A

The first dataset used in this study was, by the Mental Health 
Research Center (MHRC), the eldest of SZ patients was 
14, the youngest was 10 and 8 months old while the eldest 
healthy controls were 13 years old, 9 months old, and the 
youngest was 11 years old. It consists of 60-s EEG record-
ings of 45 children with SZ and 39 healthy children. All 
SZ patients in the dataset were reviewed by Mental Health 
Research Center (MHRC) experts, and none of the controls 
in the dataset received chemical treatment. The mean age of 
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the SZ patient and healthy controls is 12 years and 3 months 
[40]. EEG data were taken from 16 channels and sampling 
frequency was recorded as 128 Hz. During the recording, 
the subjects was awake and closed eyes. The EEG electrode 
array is positioned as O1, O2, P3, P4, Pz, T5, T6, C3, C4, 
Cz, T3, T4, F3, F4, F7, and F8 in accordance with the inter-
national standard 10–20.

Dataset B

The other dataset used in this study consists of 19-channel 
EEG recordings of a total of 14 SZ patients and 14 healthy 
controls by the Institute of Psychiatry and Neurology in 
Warsaw, Poland. EEG recordings are between 12 and 15 min 
belonging to 14 men and 14 women with a mean age of 
27.3 ± 3.3 and 28.3 ± 4.1. EEG data were recorded with a 
sampling frequency of 250 Hz, with subject’s eyes closed. 
The recordings were taken from 19 electrodes and arranged 
as Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, 
Pz, P4, T6, O1, and O2. [41].

Deep learning

Deep learning (DL) is a new machine learning method that 
enables the features of a data to be learned hierarchically and 
includes deeper neural networks. The most important fea-
ture that makes DL networks superior to traditional machine 
learning algorithms is that the extraction process does not 
need to be done in advance. While feature values need to be 
extracted in advance in traditional machine learning, impor-
tant features in DL networks are learned automatically.

DL algorithms require large-scale data and costly hard-
ware for processing data. As such needs become more acces-
sible, the use of DL instead of traditional machine learning 
algorithms is increasingly common. As access to the needs 
required for DL has recently increased, it has become widely 
used as an alternative method for processing, analysis and 
evaluation of medical images, often with deep learning net-
works such as CNN [42]. In this study, scalogram images are 
classified using VGG16 architecture, which has CNN deep 
networks structure.

Convolutional neural networks

CNN are a kind of deep learning network consisting of net-
work layers from which features can be extracted hierar-
chically. It is widely used in multimedia data types such 
as images [43]. A CNN model is DL networks designed 
in a structure where multimedia data types (for example 
images) can be extracted automatically in a hierarchical 
fashion through network layers [43]. The structure of a 
CNN model generally consists of two important parts. The 
first section contains the convolution and pooling layers for 

feature extraction. The second part includes the Fully Con-
nected Network layers (FCN) that work like the Traditional 
Multi-Layer Perceptron (MLP) for the classification stage. A 
common CNN model consists of several successive convolu-
tion layers and pooling layers, each of which is done from 
the output of the previous layer.

Simple features (such as simple lines on the image) are 
extracted from the first layers of the network. In the next lay-
ers, more complex features (such as an object in an image) 
are extracted by using these simple features. This kind of 
hierarchical learning of traits has been carried out, inspired 
by the human cortex, where cells respond in a hierarchical 
fashion to visual elements [44].

There are many filters in a convolutional layer. In the 
convolutional layer, the input image, each used to compute 
a feature map  Xk of the image, is returned using these filters, 
W =  W1,  W2,  Wk. Therefore, the number of feature maps 
and filters in the convolution layer are the same. Each fea-
ture map is calculated using the formula in Eq. 1. (1) in the 
formula σ (·) is a nonlinear transfer function and b bias [45]:

The selected pooling function of feature maps is maxi-
mum, minimum or average. The Select function is applied 
to each pixel group in the feature map, and the result of the 
function (for example, the maximum value in that group) is 
selected to describe the group in the new subsampled feature 
map. Generally, a normal CNN deep learning network con-
sists of convolutional layers, pool layers and an FCN [46].

VGG16 CNN architecture

The VGG16 CNN architecture is a CNN deep network 
model consisting of 16 layers and designed by the Oxford 
University Visual Geometry Group for the ILSVRC-2014 
competition. Having a deeper learning architecture is the 
biggest difference from previous deep learning architectures. 
The VGG16 network is fed with images up to 224 × 224 × 3 
(RGB). Each image is passed through 5 convolutional layers 
with 3 × 3 filter size. Each block terminates with the maxi-
mum pooling layer where input values are down sampled 2 
times [47]. The property values obtained in the last step are 
transferred to an FCN for classification process [34]. The 
VGG16 deep learning architecture used as a classifier in 
this study is a state-of-the-art deep learning architecture. It 
has been observed that this architecture exhibits high clas-
sification performance in the classification of many different 
images. Considering that a good classification performance 
was obtained as a result of the experimental studies carried 
out in this aspect, VGG16 deep network architecture was 
preferred in our study. In this study, the scalogram images 
were classified using the VGG16 deep learning architecture.
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Creating scalogram images by using CWT method

Continuous Wavelet Transform (CWT) is a method for a 
time frequency analysis that transforms the signal into 2D 
by allowing scales to change continuously, with the help of 
a wavelet function. CWT offers very good frequency and 
time localization to create a 2D image of the time frequency 
information of a signal. CWT is a very useful method for 
mapping the features of the variation of variable signals. 
CWT is an important time frequency analysis method used 
to determine whether a signal is constant or variable. If a 
signal is variable, it can be used to determine fixed parts of 
the signal [48].

In this study, in order to access the frequency information 
of different time points of our EEG signal data, the EEG sig-
nal is divided into 5-s segments and the vector obtained by 
combining each segment from all channels has been trans-
formed into a scalogram with the CWT method. These vec-
tors were created using Matlab software. Morlet wavelet was 
used as the main wavelet while creating scalogram images. 
Figure 1 shows a sample scalogram image taken from the 
images we have obtained using the morlet wavelet with the 
CWT method.

General architecture of the proposed CAD method 
for automatic schizophrenia detection

The CAD method we propose does not require any steps 
such as preprocessing and feature extraction. Figure 2 con-
tains the flowchart of the method we used in our study. Each 
input data to be trained by the CNN network includes seg-
mentation and then the scalogram stages. Input data trained 
by the CNN network are classified and finalized by being 
included in a class as a patient or healthy control.

Results

The success of the method was tested by applying the pro-
posed method to two datasets that include different age 
groups, including SZ patients and healthy controls.

In the first dataset (A), it consists of 60-s EEG records 
of 45 children with SZ disease and 39 healthy children. 
EEG recordings include recordings from 16 electrodes. 
Each channel is divided into segments of 5 s length, by 
combining the segments corresponding to each channel, a 
single-dimensional vector, each of which is 10240 long, has 
been obtained. The sampling frequency of EEG records is 
128 Hz. The length of a vector is calculated as (5 s × 128 
sampling frequency × 16 channels). The vectors obtained are 
transformed into scalogram images (224 × 224) using CWT 
method and morlet wavelet. In this dataset, 1008 scalogram 
images were obtained as a result of the segmentation pro-
cess mentioned above. In Fig. 3, sample scalogram images 
taken from different segments belonging to different people 
obtained from dataset A are shown.

The scalogram images obtained were divided into 
80% training and 20% test datasets. By using the VGG16 
deep learning network architecture, the scalogram images 
obtained to distinguish between SZ patients and healthy 
controls are given to the network, and the classification pro-
cess is performed. For the VGG16 deep learning network, 
hyper parameters were determined such that the image size 
given as input data was 112 × 112, learning ratio 1.0e − 4, 
batch size 128 and optimizer Adam [49]. In the experiments 
conducted in this study, it was determined that the value of 
100 epochs is sufficient to train the network. At the end of 
the training of the network, an average accuracy of 98% was 
obtained at the 78th epoch.

The second dataset consists of EEG records of 14 healthy 
controls and 28 adults with 14 SZ patients. EEG recordings 
consist of recordings taken from 19 electrodes. The EEG 

Fig. 1  A sample scalogram 
image created using Morlet 
wavelet with the help of Matlab 
software
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data in dataset B consists of recordings made for periods 
ranging from 12 to 15 min. Therefore, while performing 
the segmentation process, the length of the shortest record 
was taken into consideration. EEG recordings taken from 
each channel are divided into 5-s segments. Considering the 
different lengths of EEG recordings as a result of this seg-
mentation, 148 segments were obtained for each SZ patient 
and 173 segments for each healthy control. In Fig. 4, sample 
scalogram images taken from different segments belonging 
to different people obtained from Dataset B are shown. The 
hyper parameters used to train the VGG16 deep learning 
network in the data set A were also used in the dataset B. 
By applying the same method used in dataset A to dataset 

B, a total of 4494 scalogram images were obtained. After 
training the network, an accuracy of 99.5% was achieved at 
the 25th epoch.

Accuracy values obtained with both of these two datasets 
achieved higher performance in the literature than studies 
conducted with these datasets. Figure 5 shows the change 
of accuracy and error value for dataset A and B according 
to the epoch training time. Adequate training of the network 
is an important factor that seriously affects the classification 
performance of the model. In literature studies, there are no 
specific values required for how much the network should 
be trained. Obtaining the best performance values can be 
determined based on experimental studies.

Fig. 2  Flow chart of the proposed method

Fig. 3  Sample scalogram images taken from different segments belonging to different people from dataset A
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The fact that both the Recall and Sensitivity measure-
ments of the classifier are simultaneously high means that it 
distinguishes the diseased individuals as well as the healthy 
controls as disease-free. Performing the classification pro-
cess in this way shows that it is an ideal classifier. High 
Sensitivity and Recall measurements are expected in an ideal 
classification process, and as a result of these two measure-
ment values, the F1 score results in a high value. Evalua-
tion metrics obtained by the proposed method are shown in 
Table 1 for dataset A and in Table 2 for dataset B.

It is shown in the confusion matrices that the accuracy 
rate of the classification is higher than 0.97 for the sick and 
healthy controls and the incorrect evaluation rate of the clas-
sification is lower than 0.03 for both datasets (See Fig. 6). 
In the ROC curves shown in Fig. 7, the AUC value is quite 
high as 0.98 for dataset A and 0.995 for dataset B, and as 
shown in the graph, a very successful classification has been 
performed.

The data in dataset A were studied by Phang et al. [38]. 
They stated that they achieved 93.06% classification perfor-
mance in their study. In the method they used, they used a 
CNN deep learning network where raw EEG signals were 
given directly. On the other hand, Oh et al. tested the per-
formance of their method with a CNN model fed directly 
with EEG signals without preprocessing using dataset B 
[3]. As a result of the method they suggested, they achieved 
98.07% success in their work. Aslan and Akın [39], on the 
other hand, trained the spectrogram images they obtained 
from both data sets with CNN deep learning network and 
performed the classification process with 95% accuracy for 
dataset A and 97% accuracy for dataset B.

In our study, when compared with the literature studies in 
this field, quite high performance and accuracy values were 
obtained. In order to prove the accuracy of the method we 
use, it was evaluated by working with two different datasets 

consisting of different age groups. The method we used in 
our study obtained very high accuracy values in both data-
sets, proving the reliability of the method. According to 
other literature studies, one of the most important elements 
of our study is that it creates images that can be interpreted 
more easily without the need for any expert opinion.

Discussion

While there are only temporal relationships in the raw EEG 
signal, the scalogram images we obtain contain more feature 
information. Scalogram images make a better classification 
with the CNN network than raw EEG signals, as CNN deep 
learning networks use spatial features to classify an object 
that has spatial relationships between pixels. This is because 
the CNN deep learning network enables the network to learn 
with higher performance by extracting much more features 
from the scalogram images.

CWT performs time frequency analysis by using different 
scales and shifting along the signal during transformation 
with a master wavelet. This provides long time lapse win-
dowing at low frequencies and short time lapse windowing 
at high frequencies. By using different sized windows with 
CWT, high and low frequency information in time series are 
analyzed in the best way. Scalogram, on the other hand, is a 
2D representation of a CWT result signal. Hence, Scalogram 
images contain more information about the high and low fre-
quency characteristics of the signal. The scalogram is widely 
used in situations where better frequency localization for low 
frequency, long duration events and better time localization 
for short duration, high frequency events are desired.

It is not directly understood from a scalogram image 
whether the image belongs to the patient or a healthy indi-
vidual. When the images of scalogram of the healthy and SZ 

Fig. 4  Sample scalogram images taken from different segments of different people from dataset B
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patients shown in Figs. 3 and 4 are examined, it can be seen 
that there are changes at different times and frequencies, but 
it is not clearly interpretable. It is not possible to generalize 
and formulate for all data in a dataset. We try to demonstrate 
a clearer interpretation of the differences between the SZ 
patient and healthy controls using a method called Activa-
tion Maximization (AC) [50] of images of the CNN deep 
learning network output.

Since it creates a synthetic image that is synthesized by 
finding these values recursively by maximizing the output 
of the network belonging to a class, the AC image can be 
considered as an input describing a class. Although there 
are obvious differences in the AC image of the SZ patient 
and the healthy control in Fig. 8, the AC images show that 
the network responds very differently to different scalogram 
images. It does not indicate the actual scalogram images, as 
the features specified in the AC images are artificially gener-
ated to maximize filter activation.

The literature studies in Table 3 use traditional machine 
learning algorithms to detect schizophrenia from EEG 

signals. Table 3 shows by which feature extraction methods 
the features were obtained for each study and the classifica-
tion accuracies obtained by classifying these features with 
which classifier.

Due to the aforementioned disadvantage of AC images, 
we used Grad-CAM (Gradient Weighted Activation Maps) 
[52] and Saliency Map [53] techniques to more clearly reveal 
the differences of the SZ patient. Grad-CAM is a technique 
used to obtain images in which the important and relevant 

Fig. 5  The change of accuracy 
and error value versus epoch 
values during network training: 
(I) For dataset A (II) For dataset 
B

Table 1  Accuracy evaluation criteria obtained with dataset A, using 
the proposed method

Dataset A Precision Recall F1-score Support

Healthy 0.98 0.98 0.98 94
SZ 0.98 0.98 0.98 108
Accuracy 0.98 202
 Macro average 0.98 0.98 0.98 202
 Weighted average 0.98 0.98 0.98 202
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features of a particular class on the image are shown as a 
color map. The important spatial features of the estimated 
class are displayed in colors close to red in the grad-CAM 
image. In Fig. 9, Grad-CAM images obtained from scalo-
gram images belonging to different segments taken from dif-
ferent individuals are shown. When the Grad-CAM images 
of individuals with SZ are examined, a distinct high density 
extending from the upper part to the middle is seen, while 
images of healthy controllers never show such intensity 
colors.

Another technique we use to make scalogram images 
interpretable is Saliency Map technique. Saliency Map is 
an image where the brightness of a pixel represents how 
prominent the pixel is, that is, the brightness of a pixel is 
directly proportional to its salience. Saliency maps are also 
referred to as a heat map in which the temperature refers 
to the regions of the image that have a major influence on 

predicting the class to which the object belongs. The purpose 
of the Saliency Map is to find the areas that stand out in 
every location in the visual field and to guide the selection 
of the destinations according to the spatial distribution of 
the projection [54]. Saliency Map images of healthy and 
SZ patients taken from different individuals and shown in 
Fig. 10 are shown. As seen in Fig. 10, Saliency Maps of 
healthy and SZ patients can be distinguished by obvious dif-
ferences. When Saliency Maps of SZ patients are examined, 
it is observed that they create a more intense heat map.

It should be noted that the Grad-CAM and Saliency Map 
methods shown in Fig. 9 and Fig. 10 are common to others 
not shown in the figure. As can be clearly seen with these 
two methods, the frequency components on the scalogram 
images contain important spatial features in distinguishing 
SZ patients and healthy controls. In Tables 3 and 4, the lit-
erature studies conducted in the relevant field are summa-
rized in terms of the method used and the accuracy values 
achieved. When these studies in Tables 3 and 4 are exam-
ined, it is seen that the proposed method achieves higher 
accuracy and performance than all studies and has a perfor-
mance comparable to the proposed method.

This study is superior to the studies mentioned in Tables 3 
and 4 with its simple operation process and producing inter-
pretable outputs help for expert opinion. As far as we know, 
the highest accuracy value achieved so far has been achieved 
in SZ determination. Our proposed study has important 
advantages over previous literature methods beyond its high 

Table 2  Accuracy evaluation criteria obtained with dataset B, using 
the proposed method

Dataset B Precision Recall F1-score Support

Healthy 0.99 1.00 0.99 484
SZ 1.00 0.99 0.99 414
Accuracy 0.99 898
 Macro average 0.99 0.99 0.99 898
 Weighted average 0.99 0.99 0.99 898

Fig. 6  Confusion matrix: (I) for dataset A (II) for dataset B
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performance. First of all, it does not require feature extrac-
tion and preprocessing compared to traditional machine 
learning algorithms. It also includes a very simple but high-
performance process. Another advantage is that it offers 3 
different techniques to create clearly interpretable images of 
SZ disease. It makes it possible to distinguish the SZ patient 
and healthy control very easily from AC, Grad-CAM and 
Saliency Map images help for expert opinion.

Recently, with the new developments in deep learn-
ing networks, there has been an increasing interest in 
the analysis of biomedical images and signals. There are 

some limitations in our study that we think can be com-
pensated in future studies. First of all, it is necessary to 
select the appropriate values of these parameters for the 
optimization of the hyper parameters used in deep learn-
ing and for the best classification performance. In the next 
stage, a CNN deep learning network architecture with less 
computational complexity and high classification perfor-
mance should be designed instead of a state-of-the-art, 
pre-trained, multi-layered and high computational deep 
learning network.

Fig. 7  ROC curves: (I) for dataset A (II) for dataset B

Fig. 8  Activation maximization images of the healthy control (left) and the SZ patient (right) obtained from the CNN network
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Conclusion

This study proposes a CAD method to automatically distin-
guish between an SZ patient and a healthy control. The fact 
that the proposed method has been evaluated with two dif-
ferent datasets containing different age groups clearly reveals 
the classification success of the method. With the proposed 
method, the highest accuracy values obtained in this field 
in the literature were obtained with the VGG16 deep learn-
ing algorithm, the highest classification accuracy of 99.5% 
for dataset B and 98% for dataset A. In addition to its high 
classification performance, the proposed method has been 
shown to be successful in terms of computational efficiency 
by calculating at low epoch values.

This study shows that the analysis of frequency compo-
nents in EEG data is a robust method for detecting SZ dis-
ease, a type of brain deformation. In the proposed method, 

images in which SZ patients and healthy controls can be 
clearly distinguished were created by using 3 different CNN 
network visualization methods (AC, Grad-CAM, and Sali-
ency Map). The reason why the images obtained by these 
techniques show obvious differences is that the input scalo-
gram images have important spatial features at the time fre-
quency level. It is thought that the images obtained by CNN 
network visualization methods can support expert opinion.

The method proposed in this study can serve as an exam-
ple for CAD studies that can also be used to detect diseases 
other than EEG recordings. The use of new CNN models is 
thought to significantly benefit classification performance. In 
addition, for network training, models with a simpler struc-
ture consisting of fewer layers and requiring less computa-
tion time can be preferred instead of complex models.

Table 3  Relevant literature studies detecting schizophrenia using traditional machine learning algorithms

Authors Classifiers EEG Dataset Features extraction Overall Accuracy

Johannesen et al. [51] SVM 40 SZ- 12 healthy Alpha, beta, theta1, theta2, gamma 
frequency components

87.0%

Devia et al. [5] LDA 11 SZ- 9 healthy ERPs (Event-related potentials) 
features

71.0%

Kim et al. [26] ROC analysis 90 SZ- 90 healthy Spectral analysis using frequency 
bands

62.20%

Piryatinska et al. [34] RF 45 SZ- 39 healthy ϵ-complexity coefficients 83.60%
Shim et al. [24] SVM 34 SZ- 34 healthy Source- level features And sensor-

level features
88.24%

Sui et al. [35] SVM 48 SZ- 53 healthy Multi-set canonical correlation 
analysis

74.0%

Boostani et al. [36] LDA 13 SZ- 18 healthy Band power, fractal dimension 
and autoregressive (AR) model 
parameters

87.50%

Thilakvathi et al. [33] SVM 55 SZ- 23 healthy Dimension, Approximate Entro-
pies, Shannon entropy, Infor-
mation entropy, Kolmogorov 
complexity, Spectral entropy, 
Higuchi’s Fractal

88.50%

Siuly et al. [37] EBT 49 SZ- 32 healthy EMD (Empirical Mode Decom-
position)

89.59%

Aslan and Akın [32] KNN 45 SZ- 39 healthy RWT (Relative Wavelet Energy) 90%
Santos-Mayo et al. [30] SVM

MLP
16 SZ- 31 healthy J5 feature extraction and

EEGLAB feature extraction,
MLP: 93.42%
SVM: 92.23%

Dvey-Aharon et al. [28] Time- Frequency transformation 
followed by Feature Optimization 
(TFFO)

50 SZ- 25 healthy Stockwell transformation Between 92% and 93.9%
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Data availability The datasets used in this study are publicly accessible 
data including EEG data of healthy and SZ patient individuals. The 
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brain. bio. msu. ru/ eeg_ schiz ophre nia. htm; (dataset B) https:// repod. 
icm. edu. pl/ datas et. xhtml? persi stent Id= doi: 10. 18150/ repod. 01074 41 
web addresses.
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Fig. 9  Grad-CAM images taken from different individuals and different segments: (I) taken from healthy controls (II) SZ patients

Fig. 10  Saliency Map images taken from different individuals and different segments: (I) taken from healthy controls (II) SZ patients

Table 4  Relevant literature studies detecting schizophrenia using 
deep learning methods

Bold font indicates the prominent aspects of the proposed method 
when compared to other methods

Authors Deep learn-
ing method

Overall 
accuracy 
(%)

EEG Dataset

Phang et al. [38] CNN 93.06 45 SZ–39 healthy
Shu Lih Oh et al. [3] CNN 98.07 14 SZ–14 healthy
Aslan et al. [39] CNN 95 45 SZ–39 healthy

97 14 SZ–14 healthy
This study CNN 98 45 SZ–39 healthy

99.5 14 SZ–14 healthy

http://brain.bio.msu.ru/eeg_schizophrenia.htm
http://brain.bio.msu.ru/eeg_schizophrenia.htm
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
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