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Text S1: AOD data calibration 

To improve the data coverage of satellite AOD, we fused Terra MODIS, Aqua MODIS, and MISR AOD 

retrievals. First, we calibrated Terra MODIS, Aqua MODIS, and MISR AOD data against AERONET AOD 

data separately. We compared the overall relationships of MODIS Terra AOD~AERONET AOD, MODIS 

Aqua AOD~AERONET AOD, and MISR AOD~AERONET AOD with previous studies. The regression 

slope and intercept by satellite AOD against AERONET AOD are as follows: MODIS Terra AOD, 1.00 

and 0.05, respectively (N=4,928, R2=0.83); MODIS Aqua, 1.04 and 0.07, respectively (N=3,693, 

R2=0.80); and MISR AOD, 0.58 and 0.07, respectively (N=1,124, R2=0.81). These results are very 

similar to previous studies1-3. The seasonal, linear regression relationships for Terra, Aqua, and MISR 

AOD calibrations are shown in Table S1. The relationships vary by season and AOD dataset. Then, 

Terra MODIS, Aqua MODIS, and MISR data were calibrated using the established relationships in 

Table S1, respectively. We also considered regional satellite AOD and AERONET AOD relationships. 

However, the AERONET AOD data are scarce in some areas (e.g., bright desert areas), making it 

difficult to establish a robust relationship between the two types of AOD. Thus, we use a single 

relation across China instead. 

Table S1 Linear regression results for MODIS and MISR AOD Calibration 

Seasons 
𝜏̂AERO = 𝛽1 ∗ 𝜏Terra + 𝛼1 

 
𝜏̂AERO = 𝛽1 ∗ 𝜏Aqua + 𝛼1 

 
𝜏̂AERO = 𝛽1 ∗ 𝜏MISR + 𝛼1 

𝛼1 𝛽1 R2 𝛼2 𝛽2 R2 𝛼2 𝛽2 R2 

Winter 0.04 0.88 0.76  0.05 0.80 0.72  -0.03 1.50 0.78 

Spring 0.03 0.79 0.82  0.04 0.74 0.77  -0.07 1.45 0.77 

Summer 0.02 0.81 0.81  0.00 0.77 0.80  -0.03 1.34 0.87 

Autumn 0.00 0.96 0.87  0.02 0.86 0.83  -0.02 1.46 0.83 

𝜏̂- Aerosol Optical Depth  
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Text S2: AOD data fusion 

For the AOD data fusion, we first averaged the calibrated Terra MODIS, Aqua MODIS, and MISR AOD 

over the 50 km grid cells. Due to the different satellite overpass times, we first applied simple linear 

regression between Terra MODIS and Aqua MODIS AOD data in those 50km grid cells where both 

these two kinds of MODIS products are present for each day. We first considered the local- or 

regional-scale relationships between Aqua and Terra MODIS AOD, which are more reasonable. 

However, due to variation in cloud coverage or bright surfaces such as snow and desert, spatial AOD 

coverage differs on different days. Uncertainty in the data fusion may be elevated in some regions 

where there are too few data points to build a robust relationship between Aqua and Terra. Thus we 

assumed that the relationship between Aqua and Terra was the same across the study area on each 

day. The results show that the number of daily matched Terra and Aqua AOD grid cells ranges from 

35 to 1,883, with mean, standard deviation, and median values of 662, 363, and 624, respectively. 

The daily Terra-Aqua MODIS AOD regression R2 values range from 0.49 to 0.95, with the mean, 

standard deviation, and median values of 0.81, 0.09, and 0.83, respectively. The results show that 

the Terra MODIS AOD is highly correlated with the Aqua MODIS AOD for each day, and it is feasible 

to predict the missing Terra MODIS AOD values using the Aqua MODIS AOD values. The daily 

regression coefficients were applied to each grid cell to predict the missing Terra MODIS AOD using 

the available Aqua MODIS AOD. For those grid cells where both MODIS AOD values are missing, we 

used MISR AOD data instead. 

The coverages of fused AOD, MODIS AOD, and MISR AOD are shown in Figure S1, Figure S2, and 

Figure S3, respectively. MODIS collection 5.1 aerosol products over land are retrieved by Dark Target 



S4 

(DT) algorithms 4, by which AOD values cannot be retrieved over bright surfaces, such as desert and 

snow. Thus the MODIS AOD coverage over Xinjiang, Tibet, and Qinghai during the winter and spring 

are relatively low, and may even approach zero. Unlike MODIS, MISR aerosol products are retrieved 

by Empirical Orthogonal Functions EOFs) 5, which has the capacity to retrieve AOD values over bright 

surfaces. Comparing Figure S1 with Figure S2 and Figure S3, most of the AOD retrievals in Tibet, 

Xinjiang, and Qinghai are from MISR, especially in the winter and spring.  

MODIS Collection 5.1 aerosol products contain the AOD data retrieved by the Deep Blue (DB) 

algorithm. The DB algorithm was developed for retrieving aerosol properties over bright-reflecting 

surfaces 6. However, previous validation of DB AOD in China reveals a serious underestimation over 

desert areas 7. Besides, at the time of this study, DB product was only available for Aqua MODIS for 

the years 2008 through 2013. Due to the different satellite overpass times, the DB product cannot 

be merged with Terra MODIS AOD, and MISR AOD, and thus was not included in this study. The next 

version of MODIS aerosol products (Collection 6, C6) has been developed 8. The MODIS C6 products 

include the second-generation DB algorithm 9, which is expected to improve the accuracy of DB AOD. 

The MODIS C6 products have a combined product that merges DT and DB AOD data to improve the 

data coverage 8. At the time of this study, MODIS C6 data were only available in Aqua MODIS 

products for the years of 2002 through 2008. 
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Figure S1. The spatial distribution of percent coverage of fused AOD. The percent coverage denotes 

the percentage of the AOD available days of each season or the whole year for each grid cell. 
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Figure S2. The spatial distribution of percent coverage of MODIS AOD. 
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Figure S3. The spatial distribution of percent coverage of MISR AOD. 
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Text S3: Selection of meteorological and land use parameters. 

First, we selected meteorological and land use parameters based on previous studies. Previous 

studies showed that meteorological parameters (e.g., boundary level height, temperature, relative 

humidity, and wind speed) and land use information (e.g., elevation, population, road length, 

emission source, and forest cover) are powerful predictors for ground PM2.5 concentrations10-14. 

Given the data availability, we selected planetary boundary layer height (PBLH), temperature, wind 

speed, humidity, elevation, population (POP), and normalized difference vegetation index (NDVI) as 

the covariates in our GWR model. Elevation data were collected from Global Multi-resolution Terrain 

Elevation Data 2010 (GMTED2010) 30-arc-second product15. The meteorological data, population, 

and NDVI were collected from GEOS-FP, NEO, and LandScan, which are described in “MATERIALS 

AND METHODS” section, respectively.  

We first evaluated potentially correlated parameters (i.e., temperature at 2 m above displacement 

height (T2M) vs. boundary-layer average temperature (T_PBLH), wind speed at 10 m above 

displacement height (WS) vs. boundary-layer average wind speed (WS_PBLH), elevation vs. surface 

pressure (PS)). These parameters are highly correlated (R2 > 0.9). The results show that T2M, WS, 

and PS have better performance than other ones. Thus we selected PBLH, T2M, WS, RH_PBLH, PS, 

POP, and NDVI in our model. Our preliminary evaluation shows that those parameters are all 

statistically significant predictors. 

We then compared the model performance of different combinations of AOD, meteorology, and 

land use parameters as predictors. Such comparison has been applied in a previous study 16. 

Compared to the AOD-only model, despite a slight over-fitting in the “AOD plus LU” and “AOD plus 
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MET” model, the overall cross validation R2, MPE, and RMSE are significantly improved (Table S2). 

Our results show that the meteorological and land use valuables included in our full model are 

powerful predictors for PM2.5 in China.  

Table S2 Results of model performance of different combinations of AOD, meteorology (MET), and 
land use (LU) parameters as predictors. 

model 
Model fitting Model cross validation 

R2 MPE RMSE R2 MPE RMSE 

Full  0.71 19.04 29.58 0.64 21.25 32.98 

AOD-only  0.54 24.30 37.40 0.52 24.90 38.34 

AOD plus LU  0.59 23.41 35.95 0.55 24.20 36.75 

AOD plus MET 0.68 20.54 31.40 0.60 22.31 34.25 

MET plus LU (non-AOD) 0.66 21.47 32.42 0.58 23.68 35.67 

MPE: mean prediction error (µg/m3). RMSE: root mean squared prediction error (µg/m3). 
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Text S4: The selection of bandwidth 

Studies have shown that the selection of bandwidth can greatly influence the performance of the 

Geographically Weighted Regression (GWR) model 17-19. The bandwidth can be fixed or adaptive. 

Adaptive bandwidth is the optimal bandwidth selected by the Cross Validation (CV) method or 

Akaike’s Information Criterion (AIC) 20, 21. In this study, we examined model performance when using 

adaptive bandwidths selected by CV and AIC. Compared to a fixed bandwidth, our results show that 

adaptive bandwidths greatly increase over-fitting in the GWR models. For example, when the CV 

method is applied for adaptive bandwidth selection, the model fitting R2 for the full model is 0.79. 

However, the model cross-validation R2 decreases to 0.59. The root mean squared prediction error 

(RMSE) is 20.32 µg/m3 for the model fitting. And the model cross-validation RMSE increases to 29.30 

µg/m3. Using AIC to obtain bandwidth for the full model also gives similar results. For these reasons, 

we selected a fixed bandwidth for our models. 

Due to the uneven spatial distribution of ground PM2.5 monitoring sites, the matched data records in 

Tibet and Xinjiang are important for modeling. We selected a fixed bandwidth of 800km. The 

distances between the PM2.5 monitoring sites from both Tibet and Xinjiang to the border of the 

Tibetan Plateau are approximately 800 km. By using a fixed bandwidth of 800km, we can decrease 

the impact of Taklamakan Desert on the local relationship of Tibet and the impact of Tibetan Plateau 

on the local relationship of Xinjiang. 
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Text S5: Using Kriging to fill the AOD gaps. 

As shown in Figure S1, AOD coverage in Western China (including Xinjiang and Tibet Autonomous 

Regions, and Qinghai Province) are relatively low, especially in winter. The density of ground PM2.5 

monitoring sites of this region is also relatively low. Thus, for many days, there are no matched data 

records in Xinjiang, Tibet, or Qinghai for GWR modeling. For example, Tibet has the following 

number of matched data records for GWR modeling: 1 day in winter, 11 days in spring, 25 days in 

summer, and 23 days in autumn. We cannot ascertain the local relationship between the dependent 

and independent variables for Tibet for the days missing matched data. To obtain the necessary 

matched data records for GWR modeling, we used the Ordinary Kriging method to interpolate AOD 

values in the grid cells that had ground-measured PM2.5, but lacked AOD values. To make sure we 

only filled the missing AOD values that are spatially correlated with satellite-retrieved AOD values, 

we first obtained the range values by variogram analysis 22 for each day. We then created buffer 

zones for the grid cells that lack AOD values using the range values. If there were five or more grid 

cells with satellite-derived AOD values in the buffer zones, we obtained the interpolated AOD values 

of those AOD-missed grid cells. 

To conduct the 10-fold cross-validation, at least 10 data points for GWR modeling are needed for 

each day. A previous study showed that model prediction becomes relatively stable when the 

number of matched data points is greater than 10 12. In this study, all days meet this condition after 

applying the Kriging method to fill the missing AOD values.  

Here, we present the prediction maps using the model without interpolated the AOD values (Figure 

S4). Figure S4 shows the predicted concentrations in Tibet are relatively high, especially in winter 
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and spring; this does not agree with the ground monitoring results (Figure 4). We observed the true 

color images of MODIS from “NASA Worldview” (https://earthdata.nasa.gov/labs/worldview/) and 

found that the air in Tibet is clean where there are no clouds. Therefore, the predicted PM2.5 values 

of Figure S4 are extremely overestimated in Tibet. There is more noise in model predictions for 

places like Xinjiang and Qinghai. However, the spatial patterns of predicted PM2.5 are similar in areas 

with many of PM2.5 ground monitoring sites, including North China Plain, Yangtze Delta, Taiwan, 

Southeast China, and Pearl River Delta, between Figure 4 and Figure S4. The results show that using 

the Kriging method to fill the AOD gaps can greatly improve the prediction accuracy in areas with a 

low density of PM2.5 ground monitoring sites, without affecting the prediction accuracy in other 

areas. 

We excluded days for which Tibet lacked ground PM2.5 measurements in Figure 4. For those days, 

the matched data records could not be obtained, even though the Kriging method was applied to fill 

the AOD gaps. In total, 22 days of 344 were excluded, 12 of which were in winter and 10 were in the 

spring. When adding these days back to the prediction maps (Figure S5), we can see that PM2.5 

predictions in Tibet increase in the winter and spring. The matched data points in areas where 

ground monitoring sites are scarce are important for the prediction accuracy. 
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Figure S4. Predicted PM2.5 concentrations by GWR without using Ordinary Kriging method to 
interpolate the missing AOD values in the grid cells with ground-measured PM2.5 values. 
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Figure S5. Predicted PM2.5 concentrations by GWR using Ordinary Kriging method to interpolate the 
missing AOD values in the grid cells with ground-measured PM2.5 values, but including the days when 
Tibet had no ground PM2.5 measurements. In those days, the matched data records could not be 
obtained, even though the Kriging method was applied to fill the AOD gaps. 
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Other tables and figures: 

Table S3 Descriptive statistics of the model datasets for each season 

 
Variable Min Max Mean Median Std. Dev. 

Winter PM2.5 (μg/m3) a 2.75 795.00 101.65 76.50 83.89 
(Dec-Feb, N=10 161) AOD (Unitless) b 0.00 2.10 0.45 0.39 0.26 

 
PBLH (m) c 54.14 3469.02 785.99 764.16 419.80 

 
T2M (K) d 243.70 302.36 278.82 277.65 9.42 

 
WS (m/s) e 0.05 17.61 4.24 3.94 2.22 

 
RH_PBLH (%) f 7.17 99.27 67.71 72.47 20.65 

 
PS (hPa) g 585.74 1045.59 985.95 1014.54 71.05 

 
POP (People) h 1.79E+04 1.03E+07 2.01E+06 1.56E+06 1.78E+06 

 
NDVI (Unitless) i -0.06 0.84 0.29 0.25 0.17 

Spring PM2.5 (μg/m3) 1.20 396.95 58.20 49.00 40.09 
(Mar-May, N=14 742) AOD (Unitless) -0.01 3.99 0.59 0.53 0.36 

 
PBLH (m) 59.80 4021.07 1198.59 1151.26 561.02 

 
T2M (K) 259.60 313.29 291.73 293.02 7.85 

 
WS (m/s) 0.13 16.00 4.69 4.40 2.34 

 
RH_PBLH (%) 6.71 99.80 60.90 63.32 23.97 

 
PS (hPa) 587.73 1035.08 975.10 1002.84 68.12 

 
POP (People) 1.79E+04 1.03E+07 2.00E+06 1.53E+06 1.79E+06 

 
NDVI (Unitless) -0.06 0.78 0.39 0.40 0.18 

Summer PM2.5 (μg/m3)  1.00 417.00 44.28 34.63 34.01 
(Jun-Aug, N=16 293) AOD (Unitless) -0.04 3.83 0.45 0.36 0.37 

 
PBLH (m) 63.99 4005.77 1247.50 1241.21 467.30 

 
T2M (K) 281.64 313.14 301.97 302.51 4.28 

 
WS (m/s) 0.12 39.40 4.07 3.73 2.18 

 
RH_PBLH (%) 14.76 99.90 73.44 75.91 14.88 

 
PS (hPa) 593.49 1015.45 966.27 995.51 66.45 

 
POP (People) 1.79E+04 1.03E+07 1.98E+06 1.53E+06 1.76E+06 

 
NDVI (Unitless) -0.04 0.83 0.57 0.60 0.16 

Autumn PM2.5 (μg/m3)  3.00 753.00 66.49 53.40 49.52 
(Sep-Nov, N=16 968) AOD (Unitless) -0.05 4.76 0.49 0.40 0.38 

 
PBLH (m) 58.27 3460.49 1132.62 1142.08 410.23 

 
T2M (K) 257.46 308.03 292.41 293.82 7.88 

 
WS (m/s) 0.12 25.06 4.26 3.81 2.40 

 
RH_PBLH (%) 9.80 99.90 62.41 64.87 20.80 

 
PS (hPa) 594.93 1032.60 978.41 1006.61 67.90 

 
POP (People) 1.79E+04 1.03E+07 1.94E+06 1.48E+06 1.72E+06 

 
NDVI (Unitless) -0.02 0.83 0.44 0.43 0.17 

a Daily ground-level PM2.5 concentrations. b Aerosol optical depth. c Planetary boundary layer height 
above surface. d Temperature at 2m above displacement height. e Wind speed at 10m above 
displacement height. f average relative humidity in PBLH layer. g Surface pressure. h Population. i 

Standard normalized difference vegetation index. 
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Figure S6. Spatial distributions of seasonal and annual mean fused AOD values and ground PM2.5 
measurements from all available days. 
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Figure S7. Spatial distributions of the grid cell mean local R2 of the full model. 
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Figure S8. AOD-derived PM2.5 maps from previous studies, which are re-plotted using the 
same color scale as Figure 4. (a) Mean estimated PM2.5 of 2001-2006, from the study of van 
Donkelaar et al. 23. (b) Mean estimated PM2.5 of 2010, from the Center for International 
Earth Science Information Network (CIESIN) at Columbia University 
(http://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5-2001-2010) 24 
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