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ABSTRACT

Bluetooth Low Energy (BLE) is one of the key technologies em-
powering the Internet of Things (IoT) for indoor positioning. In this
regard, Angle of Arrival (AoA) localization is one of the most reli-
able techniques because of its low estimation error. BLE-based AoA
localization, however, is in its infancy as only recently direction-
finding feature is introduced to the BLE specification. Furthermore,
AoA-based approaches are prone to noise, multi-path, and path-loss
effects. The paper proposes an efficient Convolutional Neural Net-
work (CNN)-based indoor localization framework to tackle these is-
sues specific to BLE-based settings. We consider indoor environ-
ments without presence of Line of Sight (LoS) links affected by Ad-
ditive White Gaussian Noise (AWGN) with different Signal to Noise
Ratios (SNRs) and Rayleigh fading channel. Moreover, by assum-
ing a 3-D indoor environment, the destructive effect of the elevation
angle of the incident signal is considered on the position estimation.
The effectiveness of the proposed CNN-AoA framework is evaluated
via an experimental testbed, where In-phase/Quadrature (I/Q) sam-
ples, modulated by Gaussian Frequency Shift Keying (GFSK), are
collected by four BLE beacons. Simulation results corroborate ef-
fectiveness of the proposed CNN-based AoA technique to track mo-
bile agents with high accuracy in the presence of noise and Rayleigh
fading channel.

Index Terms— Angle of Arrival (AoA), Bluetooth Low Energy
(BLE), Convolutional Neural Network (CNN), Indoor Localization,
Internet of Things (IoT).

1. INTRODUCTION
Bluetooth Low Energy (BLE), as one of the most reliable and low
power consuming Radio Frequency (RF) technologies, offers the
ability to continuously monitor mobile users in indoor environments.
Given its unique characteristics, BLE has been widely utilized in
different Internet of Things (IoT) applications for localization and
positioning tasks [1]. Existing BLE-based indoor localization solu-
tions are, typically, developed based on trilateration [2, 3], triangu-
lation [4, 5], fingerprinting [6], and/or Pedestrian Dead Reckoning
(PDR) [7] techniques. One of the most efficient triangulation meth-
ods to measure the location of mobile devices is to calculate the An-
gle of Arrival (AoA). BLE-based AoA estimation, however, was not
possible until recently that direction finding feature is introduced to
the Bluetooth 5.1 Core specification. Consequently, research works
in this area is still in its infancy. The paper aims to further advance
this emerging field.
Literature Review: AoA-based localization, as an active research
field for several decades, is a nonlinear triangulation approach to
measure the position of mobile agents based on the direction of the
incident radio frequency signal, received by an antenna array such

as Linear Antenna Array (LAA) [8, 14]. Subspace-based angle esti-
mation algorithms [15, 16], such as MUltiple Signal CLassification
(MUSIC) and its extensions, are among the early research efforts
for AoA estimation. Despite the benefits that can be obtained by
using subspace-based angle estimation techniques, such localization
methods suffer from some drawbacks. A key limitation is the un-
reliability of the subspace-based algorithms in the presence of the
multi-path effect, which is an unavoidable factor in indoor environ-
ments [17]. Multi-path fading channel in indoor environments is
commonly modeled by statistical models mainly Rayleigh [18, 19]
and Rician [20]. By assuming that there is a strong Line of Sight
(LoS) path between the transmitter and the receiver, there are a wide
range of approaches to address the multi-path propagation, includ-
ing channel classification [21], Kalman filter-based techniques [22],
and subsample interpolation methods [23]. Presence of different ob-
jects within indoor environments, however, leads to receiving the
reflected, refracted, diffracted, and scattered versions of the trans-
mitted wireless signal. Consequently, the assumption of existing
a strong LoS path is not practical in most indoor localization sce-
narios. The most important novelty of this paper is that we con-
sider the worst-case scenario, i.e., a dense indoor environment that
it is not possible to establish LoS link. On the other hand, due to
the complexity of analytical modelling of the multi-path and path-
loss effects in indoor environments, the focus has shifted to data-
driven approaches such as those based on Deep Neural Networks
(DNNs) [24]. Therefore, by considering the effects of multi-path and
path-loss on the train dataset, one can eliminate the need for complex
and precise analytical models. Capitalizing on these advantages, we
focus on the data AoA estimation with the emphasis on the Convo-
lutional Neural Networks (CNNs). In this regard, for instance Ref-
erence [25] introduced a CNN-based localization approach for the
2-D AoA estimation in the presence of noise. Authors in [26] investi-
gated the effect of noise in a 3-D environment on the angle estimated
by employing DNNs. Authors in [27,28] proposed a DNN-based lo-
calization framework, where the input of the DNN is the Channel
Impulse Response (CSI)-AoA images. CSI, however, is prone to the
noise, shadowing, and small scale fading, leading to a considerable
localization error. For this reason, we consider angle images as the
input of the CNN, where angle images are constructed based on the
3-D subspace-based method, which is robust against noise.

Contributions: Although AoA estimation is one of the most re-
liable localization techniques, research on data driven BLE-based
AoA localization is very limited [26] as only recently direction-
finding feature is introduced to the BLE specification. In particular,
the challenge of modeling the wireless channel as a combination of
Rayleigh fading and noise without presence of the LoS link between
the transmitter and the receiver in a 3-D indoor environment has not



Fig. 1. Block diagram of the BLE transceiver, wireless channel model, and the proposed CNN-based AoA localization framework.

yet been considered. The paper addresses this gap. In this regard,
the paper proposes an efficient CNN-based AoA localization frame-
work for BLE-based indoor tracking within an indoor environment
affected by Additive White Gaussian Noise (AWGN) with different
Signal to Noise Ratios (SNRs) and Rayleigh fading channel. In such
real indoor environments, mobile agents and BLE beacons are not al-
ways located along the same line, which in turn leads to elevation an-
gle. Although the azimuth angle of the incident signal is utilized for
location estimation, the destructive effect of elevation angle should
be considered. Therefore, we generate AoA measurements in a 3-D
indoor environment based on the subspace-based angle estimation
framework. The raw AoA measurement data, which is obtained in
the previous phase, is directly used by the CNN. The input of the
CNN architecture is an angle image, where each pixel indicates the
spatial spectrum of the AoA measurement.

The rest of the paper is organized as follows: In Section 2, the
BLE wireless signal model is described. Section 3 presents the pro-
posed CNN-based AoA localization framework. Section 4 presents
experimental results. Finally, Section 5 concludes the paper.

2. BLE WIRELESS SIGNAL MODEL
The overall structure of the proposed CNN-based AoA framework
is depicted in Fig. 1. In order to calculate the angle of the incident
signal, first, a Gaussian Frequency Shift Keying (GFSK) transceiver,
including the transmitter, the wireless channel model, and the re-
ceiver in the BLE standard, is formulated below.
2.1. BLE Transmitter
BLE has played a crucial role in the development of IoT applica-
tions because of its robustness, low-power consumption and cost ef-
ficient. BLE technology, like Wireless LAN and IEEE 802.15.4/Zig-
Bee uses the same spectrum of Industrial, Scientific, and Medical
(ISM) band in 2.4 to 2.48 GHz frequency range, which is divided
into 40 channels with 2 MHz bandwidth. To decrease the interfer-
ence from other technologies in the sharing ISM band, BLE employs
Frequency Hopping (FH) method, to jump on the carrier frequency
across all data channels. Among all 40 available channels, supported
by BLEs, there are 37 data channels for data transmission and 3 ad-
vertisement channels [29]. After connection initialization, BLE de-
vices transmit data packets over 37 data channels, where ith packet is
sent over fi = fi−1 + fhop mod 37 BLE’s channel. Note that fhop
is the frequency hop value to diminish the interference within BLE

channels. The baseband version of the transmitted signal, denoted
by sb(t), is expressed as

sb(t) = sbi (t) + jsbq(t)

=

√
2E

T

{
cos(φ(t) + φ0) + j sin(φ(t) + φ0)

}
. (1)

By considering the fact that the GFSK modulation only affects the
phase of the signal, E and T , denoting the energy and period of the
transmitted symbol, are constant. φ0 illustrates the initial phase of
the incident signal, and φ(t) is expressed as follows

φ(t) =
πι

T

∫ t

−∞

+∞∑
n=−∞

s[n]g(τ − nT )dτ, (2)

where ι, known as the modulation index, is between 0.45 to 0.55 in
the BLE standard. s[n] = ±1 denotes the baseband pulse sequence.
g[k] as the Gaussian Filter (GF), implemented in discrete-time do-
main with a sample period of Ts, is obtained as

g(t) =
ιTs

2σ
√

2π
e

−t2

2σ2 ~ rect(T, t), (3)

where ~ is the convolution operator. Term σ is equal to 0.13T/(BT ),
where B, known as the GF 3 dB bandwidth, is equivalent to 0.5 in
the BLE standard. Moreover, rect(T, t) is obtained as

rect(T, t) =

{
1

T
,
−T
2

6 t 6
T

2
0, otherwise

. (4)

Considering that the transmitted signal is s(t) = Re{sb(t)ej2πfct},
we have

s(t) =

√
2E

T
cos (2πfct+ φ(t) + φ0) , (5)

where 2.4 ≤ fc ≤ 2.48 GHz denotes the carrier frequency.
2.2. BLE Channel Model
In an indoor environment,N(t) number of phase delayed and power
attenuated versions of the transmitted signal s(t) are provided in
the receiver side, which is known as the wireless multipath fading



channel. In addition, by traveling a distance, the transmitted signal
becomes weaker as a result of the path loss effect. The baseband
channel impulse response, denoted by hb(t, τ), as a Complex Finite
Impulse Response (FIR) filter illustrates both multi-path and path
loss effects on the transmitted signal as follows

hb(t, τ) =

N(t)∑
k=1

ρk(t, τ)e−jθk(t)δ(t− τk(t)), (6)

where τk(t), θk(t) = 2πfcτk(t), and ρk(t, τ) denote the kth path
delay, phase shift, and path attenuation, respectively.
2.3. BLE Receiver
AoA measurement can be performed by determining the direction
of the propagation signal on an antenna array, including two or more
antennas. For this reason, it is assumed that all the BLE beacons
possess a LAA (see Fig. 1). The continuous-time signal r(t), which
is a distorted version of the transmitted signal, is received by each
element with a phase difference. In addition to the wireless multipath
fading channel, noise has a destructive impact on the transmitted
signal, as well. Considering all these aspects to define rb(t) as the
baseband received signal, we have

rb(t) =
(
sb(t) ∗ hb(t, τ)

)1

2
ej2πfe(t)t+ϕe(t) + n(t), (7)

whereϕe(t) and fe(t) denote the phase and frequency shifts, respec-
tively. Note that the frequency shift happens because of the trans-
mitter’s carrier frequency asynchronicity. Based on the narrowband
assumption, the frequency response can be considered flat, which
means the delay spread is small compared to the symbol duration.
Therefore, we have s(t − τk(t)) ' s(t) [29]. Consequently, the
received signal r(t) by a BLE beacon is expressed as follows

r(t) = α(t)s(t) + n(t) = s
′
(t) + n(t), (8)

where n(t) ∼ N (0, σ2) denotes the AWGN, and α(t), as the chan-
nel model, is obtained based on Eqs. (6) and (7) as follows

α(t) =

N(t)∑
k=1

ρk(t, τ)e−jθk(t)+j2πfct+ϕc(t). (9)

This completes presentation of the BLE wireless signal model. Next,
we present the proposed CNN-based AoA localization framework.
3. THE CNN-BASED AOA LOCALIZATION FRAMEWORK
The proposed CNN-based AoA framework is performed in two
phases, i.e., AoA measurement in a 3-D indoor environment, and
location estimation based on the CNN algorithm, described below.
3.1. AoA measurement in a 3-D Indoor Environment
We consider a subspace-based angle estimation in a 3-D environ-
ment, where the incident signal has both azimuth θ and elevation φ
angles. There are Ne elements in the LAA, receiving the same sig-
nal with different phases. By assuming λ = c

fc
, where c = 3× 108

m/s is the speed of light, the discrete received signal by element e,
which is sampled at the discrete time slot m, denoted by re[m], is
obtained as follows

re[m] = s
′
[m]Θ(θ, φ)[m] + n[m], (10)

where Θ(θ, φ) denotes the array vector, defined as follows

Θ(θ, φ) =

[
exp(−j 2πd

λ
cos θ cosφ),

exp(−j 2πd

λ
sin θ cosφ), exp(−j 2πd

λ
sinφ)

]T
, (11)

where d indicates the space between two consecutive elements of the
LAA, which is equal to λ

2
. By assumingM samples in each received

signal, we have

r = [r1[m] . . . rNe [m]]T , (12)

and s
′

= [s
′
1[m] . . . s

′
Ne

[m]]T . (13)

Therefore, we can express the received signal in a compact form as

r = Θs
′

+ n. (14)

The spatial spectrum function, denoted by P (θ, φ), is defined as

P(θ, φ) =
1

ΘH(θ, φ)ENEHNΘ(θ, φ)
, (15)

where EN indicates the noise eigenvectors of the covariance matrix
R = E[r, rH ]. Consequently, the minimum peak of P(θ, φ) illus-
trates the direction of the incident signal. Given the angle of the
signal from at least two BLE beacons with known positions, the lo-
cation of the mobile agent can be calculated. The coordinate of the
BLE beacon b is denoted by (xb, yb), and θb,n indicates the angle
between x-axis and the line between the BLE beacon and the mobile
agent. Then, the estimated location of the mobile agent, denoted by
L̂n(t) = (xn, yn), can be estimated as

xn =
dk,l tan θl,n

tan θl,n − tan θk,n
, (16)

and yn =
dk,l tan θk,n tan θl,n
tan θl,n − tan θk,n

, (17)

where dk,l is the distance between the lth and kth BLE beacons.
3.2. CNN-based Location Estimation
Given the angle of the incident signal, a data-driven approach, which
is a combination of a CNN architecture and a subspace-based angle
estimation algorithm, is designed to track mobile agents during their
movements. The proposed architecture, as shown in Fig. 1, con-
sists of a series of convolutional layers, pooling layers, fully con-
nected layers, and normalization layers. Each convolutional layer,
which applies a convolution operation to the input to extract spa-
tial features, is followed by a pooling layer to down-sample the
data to reduce the spatial dimension and the computation time. In
each time slot/location, an angle image is provided as the input to
the CNN, which is generated by feature matrices constructed based
on Eq. (15), i.e., P(θ, φ, t) = [P1(θ, φ, t), . . . ,P4(θ, φ, t)]. Term
Pi(θ, φ, t), for (i ∈ {1, . . . , 4}) indicates the spatial spectrum of
the received signal by the ith BLE beacon. This spatial spectrum
is reshaped to be an square angle image (see Fig. 1). Each an-
gle image is then labeled by the respective ground truth position
Ln(t) = (xn, yn). By considering the fact that the angle of the
incident signal θ could be valued between 0◦ and 180◦, there are
181 samples in Pi(θ, φ, t), where Pi(θ, φ, t) peak in the correspond-
ing θ. Due to the effects of noise, multi-path, and elevation angle,
however, the peak of the spatial spectrum is likely to mismatch the
real value θ. Therefore, the goal is to use CNN as a function ap-
proximation to estimate the location of the mobile agent from the
angle image captured in each time slot. The overall structure of the
proposed CNN-based AoA framework is shown in Fig. 1. To train
the CNN-based AoA framework, the Mean-Squared Error (MSE) is
used as the loss function L(t) calculated as

L(t) =
1

2

(
Ln(t)− L̂n(t)

)2
, (18)

where the estimated location of the mobile agent L̂n(t) is defined in
Eqs. (16) and (17).



Fig. 2. (a) Experimental data collection of the CNN-based AoA localization framework. (b) An angle image, used as the input of the CNN-based framework.

Fig. 3. Accuracy and loss of the proposed CNN-based AoA scheme.
4. SIMULATION RESULTS

To evaluate the proposed data driven and BLE-based AoA localiza-
tion, we used a real experimental testbed consisting of four BLE
beacons and Vicon cameras, positioned at the corner of a rectan-
gular indoor area (5 × 5) m2 to track a mobile agent and provide
ground truth, respectively (see Fig. 2(a)). Without loss of generality
and for simplicity, we consider a small environment [30] to generate
more data for each location, and it is believed that this would not
have a negative effect on the performance of the proposed algorithm
from the accuracy perspective. We generated a dataset in three dif-
ferent channel models: (i) AWGN model, where SNR is altered be-
tween 10 dB and 20 dB; (ii) Rayleigh fading channel, implemented
in MATLAB (R2020a) by the comm.RayleighChannel function, and;
(iii) A combination of AWGN and Rayleigh fading channel in a 3-D
indoor environment, divided into 81 square zones with dimension of
(0.5× 0.5) m2. Although elevation angle is not considered for loca-
tion estimation, it has a destructive impact on the special spectrum of
the AoA measurement, leading to a specific error in the users’ track-
ing. For this reason, it is assumed that the incident signal is received
by different elevation angles. In the training phase, 76, 545 (angle
image, location) training points are utilized corresponding to 81 ran-
dom locations within the area. As it can be seen from Fig. 2(b),
angle images contain 724 sets of AoA measurements generated by
the subspace-based algorithm. This original angle image is of size
4× 181 and is reshaped to be an square angle image of size 28× 28
(zero padding is performed to fit the CNN model preventing data
loss). In the next phase, we use 15, 309 images as the validation
set and 10, 206 for our test set, which are all previously unseen and
randomly chosen. For the CNN model, we feed our data to three
2-D convolution layers, each with 196 filters with 4 kernel size. We

Fig. 4. Estimated rectangular and random trajectories in a 3-D indoor envi-
ronment with the presence of Rayleigh fading and noise.
added maximum pooling layer and utilized sigmoid as an activation
function. Finally, within the dense layers, we used linear function as
the activation function.

Fig. 3 illustrates the accuracy and the loss of the proposed
CNN-based AoA framework, respectively. As it can be seen from
Fig. 3, increasing the number of epoches increases the model ac-
curacy and decreases the model loss, which shows that the model
is well trained. The proposed CNN-based AoA framework tracks
mobile agents with 87% accuracy in the presence of noise, Rayleigh
fading, and elevation angle. While the accuracy of Capon and phase
difference-based frameworks are 74% and 59%, respectively. Fig. 4
compares the rectangular and random trajectories, estimated by our
proposed CNN-based AoA framework, the 3-D MUSIC and the true
flight position, obtained by Vicon cameras. In both scenarios, the
estimated paths by the proposed CNN-based AoA framework in the
most points closely follows that of the true flight positions.

5. CONCLUSION
We proposed an efficient CNN-based AoA localization framework
for a 3-D indoor environment with the application to BLE standard.
Although AoA estimation is one of the most reliable localization
techniques, research on data driven BLE-based AoA localization is
very limited given its recent introduction to the BLE specification.
The paper addressed this gap. In particular, the proposed approach
addresses the challenge of modeling the BLE wireless channel as a
combination of Rayleigh fading and noise in a 3-D indoor environ-
ment. The experimental results illustrate that the proposed frame-
work provides accurate results even in the presence of AWGN with
different SNRs, Rayleigh fading channel, and elevation angle.
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