
Zoë MigicovskyDalhousie University | Dal · Faculty of Agriculture
Zoë Migicovsky
BScH, MSc, PhD
About
61
Publications
16,163
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,429
Citations
Citations since 2017
Introduction
My research focuses on two main topics:
1) understanding graft-transmissible effects of rootstocks in grapevine, by examining a transect of commercial vineyards in California across multiple years using methods such as RNA-seq, vine physiology and ionomics.
2) linking phenotype to genotype in apple to perform genetic mapping for the purpose of marker-assisted selection, making use of a collection of over 1000+ varieties of apple, located in Nova Scotia, Canada.
Additional affiliations
April 2017 - present
Education
September 2012 - June 2017
May 2010 - May 2012
September 2006 - May 2010
Publications
Publications (61)
Softening is a hallmark of ripening in fleshy fruits, and has both desirable and undesirable implications for texture and postharvest stability. Accordingly, the timing and extent of pre-harvest ripening and associated textural changes following harvest are key targets for improving fruit quality through breeding. Previously, we identified a large...
Grape growers use rootstocks to provide protection against pests and pathogens and to modulate viticulture performance such as shoot growth. Our study examined two grapevine scion varieties (‘Chardonnay’ and ‘Cabernet Sauvignon’) grafted to 15 different rootstocks and determined the effect of rootstocks on eight traits important to viticulture. We...
The apple ( Malus domestica ) is one of the world’s most commercially important perennial crops and its improvement has been the focus of human effort for thousands of years. Here, we genetically characterise over 1000 apple accessions from the United States Department of Agriculture (USDA) germplasm collection using over 30,000 single-nucleotide p...
Understanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these...
Annual rings from 30 year old vines in a California rootstock trial were measured to determine the effects of 15 different rootstocks on Chardonnay and Cabernet Sauvignon scions. Viticultural traits measuring vegetative growth, yield, berry quality, and nutrient uptake were collected at the beginning (1995 to 1999) and end (2017 to 2020) of the lif...
Apples are affordable and accessible fruit with tremendous biodiversity. Among over 10,000 identified apple cultivars, only a few are commercially available. Habitual fruit consumption is correlated with the prevention of Type 2 diabetes and related complications. Particularly, (poly)phenols found in apples are major contributors to their antidiabe...
Societal impact statement Plant biodiversity is fundamental to the future of food security and agriculture. Berries are the most economically important fruit crops in Canada. Within this article, we explore the nutritional, cultural, and botanical importance of berries, including crop wild relatives (plant species that are closely related to domest...
Plants take up elements through their roots and transport them to their shoot systems for use in numerous biochemical, physiological, and structural functions. Elemental composition of above‐ground plant tissues, such as leaves, reflects both above‐ and below‐ground activities of the plant, as well the local environment. Perennial, grafted plants,...
Premise:
Leaf lobing and leaf size vary considerably across and within species, including among grapevines (Vitis spp.), some of the best-studied leaves. We examined the relationship between leaf lobing and leaf area across grapevine populations that varied in extent of leaf lobing.
Methods:
We used homologous landmarking techniques to measure 2...
Premise
Grapevine leaves have diverse shapes and sizes. Their shape and size is known to be influenced by many factors including genetics, vine phytosanitary status, environment, leaf and vine age, and node position on the shoot. In order to determine the importance of grapevine leaf shape and size to canopy temperature, we examined the relationshi...
Color patterning contributes to important plant traits that influence ecological interactions, horticultural breeding, and agricultural performance. High-throughput phenotyping of color is valuable for understanding plant biology and selecting for traits related to color during plant breeding. Here we present ColourQuant, an automated high-throughp...
Apples are among the most widely consumed fruits in the world, with a third of all apples being pressed into apple juice or fermented into cider. Cider has grown in popularity in Canada and the United States, and North American cider makers are increasingly interested in using traditional European ‘cider apples’ rather than using commonly grown ‘de...
Annual rings from 30 year old vines in a California rootstock trial were measured to determine the effects of 15 different rootstocks on Chardonnay and Cabernet Sauvignon scions. Viticultural traits measuring vegetative growth, yield, berry quality, and nutrient uptake were collected at the beginning and end of the lifetime of the vineyard.
X-ray C...
An understanding of the relationship between the cultivated apple ( Malus domestica ) and its primary wild progenitor species ( M . sieversii ) not only provides an understanding of how apples have been improved in the past, but may be useful for apple improvement in the future. We measured 10 phenotypes in over 1000 unique apple accessions belongi...
Premise
There is considerable variation in leaf lobing and leaf size, including among grapevines, some of the most well-studied leaves. We examined the relationship between leaf lobing and leaf size across grapevine populations which varied in extent of leaf lobing.
Methods
We used homologous landmarking techniques to measure 2,632 leaves across t...
Plants take up elements through their roots and transport them to their shoot systems for use in numerous biochemical, physiological, and structural functions. Elemental composition of above-ground plant tissues, such as leaves, reflects both above- and below-ground activities of the plant genotype, as well the local environment. Perennial, grafted...
Background
Modern biological approaches generate volumes of multi-dimensional data, offering unprecedented opportunities to address biological questions previously beyond reach owing to small or subtle effects. A fundamental question in plant biology is the extent to which below-ground activity in the root system influences above-ground phenotypes...
Analysis of over 100 Cannabis samples quantified for terpene and cannabinoid content and genotyped for over 100,000 single nucleotide polymorphisms indicated that Sativa- and Indica-labelled samples were genetically indistinct on a genome-wide scale. Instead, we found that Cannabis labelling was associated with variation in a small number of terpen...
The microbiome, an influential factor affecting plant health and growth, is attracting increasing interest with respect to wine grape production. The purpose of this study was to characterize the microbiome (fungi and bacteria) of the soil, cover crop roots and grape (Vitis spp.) roots across rootstock and depth in a cool climate, organic vineyard....
Indirect defenses are plant phenotypes that reduce damage by attracting natural enemies of plant pests and pathogens to leaves. Despite their economic and ecological importance, few studies have investigated the genetic underpinnings of indirect defense phenotypes. Here, we present a genome-wide association study of five phenotypes previously deter...
A future with a secure and safe food supply requires humanity to preserve and exploit the vast variation available across agricultural plant species. Apples are one of the most widely consumed fruits and provide significant nutritional value worldwide. Here, we characterize key agricultural traits in a diverse collection of apples to provide a foun...
An understanding of the relationship between the cultivated apple (Malus domestica) and its primary wild progenitor species (M. sieversii) not only provides an understanding of how apples have been improved in the past, but may be useful for apple improvement in the future. We measured 10 phenotypes in over 1000 unique apple accessions belonging to...
Premise:
As a leaf expands, its shape dynamically changes. Previously, we documented an allometric relationship between vein and blade area in grapevine leaves. Larger leaves have a smaller ratio of primary and secondary vein area relative to blade area compared to smaller leaves. We sought to use allometry as an indicator of leaf size and plastic...
Crocanthemum canadense (L.) Britt. (Cistaceae) is critically imperiled in Nova Scotia. The decline of Nova Scotian C. canadense is largely due to the loss of the Annapolis Valley sand barrens habitat. Fungal symbionts may aid in nutrient and water acquisition as well as plant defenses. The role of fungal associations with C. canadense is unknown; o...
Premise:
Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitis spp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot...
We surveyed Spartina saltmarsh sediment rhizosphere fungal communities at three salt marshes and two timepoints in coastal Nova Scotia. Based on ITS2 Illumina miSeq rDNA data and multivariate analysis, neither sediment zone nor collection period correlated with fungal ASV richness, but collection site did. However, Shannon diversity indicated that...
In many perennial crops, grafting the root system of one individual to the shoot system of another individual has become an integral part of propagation performed at industrial scales to enhance pest, disease, and stress tolerance and to regulate yield and vigor. Grafted plants offer important experimental systems for understanding the extent and s...
In this contribution, we use field-based hyperspectral imaging (HSI) and partial least squares regression (PLSR) to estimate early indicators of grapevine physiological indicators, and analyze identified significant spectral regions for fast and accurate plant health monitoring. HSI and physiological measurements were carried out at two commercial...
Premise of study: Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. We measured leaf morphology from over 200 vines over four years, and modeled changes in leaf shape along the shoot to determine if a composite shape of shapes can better capture variation and predict species identity compared...
Premise
As a leaf expands, its shape dynamically changes. Previously, we documented an allometric relationship between vein and blade area in grapevine leaves. Larger leaves have a smaller ratio of primary and secondary vein area relative to blade area compared to smaller leaves. We sought to use allometry as an indicator of leaf size to measure th...
This article is a Commentary on Ferrão et al., 226: 1725–1737.
Grape growers use rootstocks to provide protection against pests and pathogens and to modulate viticulture performance such as shoot growth. Our study examined two grapevine varieties (‘Chardonnay’ and ‘Cabernet Sauvignon’) grafted to 15 different rootstocks and determined the effect of rootstocks on eight traits important to viticulture. We assess...
Apples are a nutritious food source with significant amounts of polyphenols that contribute to human health and wellbeing, primarily as dietary antioxidants. Although numerous pre- and post-harvest factors can affect the composition of polyphenols in apples, genetics is presumed to play a major role because polyphenol concentration varies dramatica...
Softening is a hallmark of ripening in fleshy fruits, and has both desirable and undesirable implications for texture and postharvest stability. Accordingly, the timing and extent of ripening and associated textural changes are key targets for improving fruit quality through breeding. Previously, we identified a large effect locus associated with h...
Understanding the genetic architecture of fruit quality traits is crucial to target breeding of apple ( L.) cultivars. We linked genotype and phenotype information by combining genotyping-by-sequencing (GBS) generated single nucleotide polymorphism (SNP) markers with fruit flavor volatile data, sugar and acid content, and historical trait data from...
Long-term agricultural sustainability is dependent in part on our capacity to provide productive, nutritious crops that minimize the negative impacts of agriculture on the landscape. Perennial grains within an agroforestry context offers one solution: These plants produce large root systems that reduce soil erosion and simultaneously have the poten...
Malnutrition is a global public health concern and identifying mechanisms to elevate the nutrient output of crops may minimize nutrient deficiencies. Perennial grains within an agroforestry context offers one solution. The development and integration of perennial crops for food has critically influenced dialogue on the ecological intensification of...
Almost 10 years since the first draft of the apple genome was published, the insights it has afforded are being used to improve crops, while next generation DNA sequencing is enabling the breeding value of individual plants to be more rapidly assessed. In this review, Cameron Peace at Washington State University in Pullman, US, and colleagues descr...
Colour patterning contributes to important plant traits that influence ecological interactions, horticultural breeding, and agricultural performance. High-throughput phenotyping of colour is valuable for understanding plant biology and selecting for traits related to colour during plant breeding. Here we present ColourQuant, an automated high-throu...
Understanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these...
In recent years, new genome-wide marker systems have provided highly informative alternatives to low density marker systems for evaluating plant populations. To date, most apple germplasm collections have been genotyped using low-density markers such as simple sequence repeats (SSRs), whereas only a few have been explored using high-density genome-...
Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spac...
Cacao (Theobroma cacao) is a globally important crop, and its yield is severely restricted by disease. Two of the most damaging diseases, witches’ broom disease (WBD) and frosty pod rot disease (FPRD), are caused by a pair of related fungi: Moniliophthora perniciosa and Moniliophthora roreri, respectively. Resistant cultivars are the most effective...
Apple (Malus spp.) is a widely grown and valuable fruit crop. Leaf shape is important for flowering in apple and may also be an early indicator for other agriculturally valuable traits. We examined 9,000 leaves from 869 unique apple accessions using linear measurements and comprehensive morphometric techniques. We identified allometric variation as...
Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one of the world’s largest grape gene banks, the grap...
Background
Genomic studies such as genome-wide association and genomic selection require genome-wide genotype data. All existing technologies used to create these data result in missing genotypes, which are often then inferred using genotype imputation software. However, existing imputation methods most often make use only of genotypes that are suc...
Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied across the scales of a function, to overcome these limitations. The described method isolates subsets of shap...
Apple ( Malus spp .) is a widely grown and valuable fruit crop. Leaf shape and size are important for flowering in apple and may also be early indicators for other agriculturally valuable traits. We examined 9,000 leaves from 869 unique apple accessions using linear measurements and comprehensive morphometric techniques. We identified allometric va...
Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of...
Background
Grapes are one of the world’s most valuable crops and most are made into wine. Grapes belong to the genus Vitis, which includes over 60 inter-fertile species. The most common grape cultivars derive their entire ancestry from the species Vitis vinifera, but wild relatives have also been exploited to create hybrid cultivars, often with in...
Apple (Malus X. domestica Borkh.) is one of the world’s most valuable fruit crops. Its large size and long juvenile phase make it a particularly promising candidate for marker-assisted selection (MAS). However, advances in MAS in apple have been limited by a lack of phenotype and genotype data from sufficiently large samples. To establish genotype-...
Obtaining genome-wide genotype data from a set of individuals is the first step in many genomic studies, including genome-wide association and genomic selection. All genotyping methods suffer from some level of missing data and genotype imputation can be used to fill in the missing data and improve the power of downstream analyses. Model organisms...
Abstract Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in two consecutive generations of Arabidopsis thaliana plants ex...
Exposure to stresses such as temperature fluctuations, drought and UV can cause physiological and epigenetic changes in plants. Such changes may be inherited by progeny of stressed plants and may alter their response to stress. To understand the ability of plants to inherit an epigenetic memory of exposure to cold stress and to analyze physiologica...
Exposure to heat stress causes physiological and epigenetic changes in plants, which may also be altered in the progeny. We compared the progeny of stressed and control Arabidopsis thaliana wild type and Dicer-like mutant dcl2, dcl3, and dcl4 plants for variations in physiology and molecular profile, including global genome methylation, mRNA levels...
Plants undergo changes in response to biotic and abiotic stresses that help them adjust and survive. Some of these changes may even be passed on to progeny and eventually lead to adaptive evolution. Transgenerational changes in response to stress include alterations in DNA methylation and changes in homologous recombination frequency (HRF). The pro...
Angiosperms do not contain a distinct germline, but rather develop gametes from gametophyte initials that undergo cell division. These gametes contain cells that give rise to an endosperm and the embryo. DNA methylation is decreased in the vegetative nucleus (VN) and central cell nuclei (CCN) resulting in expression of transposable elements (TEs)....
Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance, and methylation. Here we analyzed whether exposure to Ni(2+), Cd(2+), and Cu(2+) salts leads to transgenerational change...
Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications, and changes in small RNAs, a process called epigenetic memory. During a mammal's lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ...