
Ziyi YinGeorgia Institute of Technology | GT · School of Computational Science & Engineering
Ziyi Yin
Master of Science
Time-lapse seismic
About
21
Publications
2,150
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
50
Citations
Introduction
I am a PhD student in School of Computational Science and Engineering at Georgia Tech, advised by Prof. Felix J. Herrmann. I work in the SLIM (Seismic Laboratory for Imaging and Modeling) group on time-lapse seismic monitoring of geological carbon storage.
Skills and Expertise
Publications
Publications (21)
Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastl...
Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastl...
We present the Seismic Laboratory for Imaging and Modeling/Monitoring open-source software framework for computational geophysics and, more generally, inverse problems involving the wave equation (e.g., seismic and medical ultrasound), regularization with learned priors, and learned neural surrogates for multiphase flow simulations. By integrating...
Modern-day reservoir management and monitoring of geological carbon storage increasingly call for costly time-lapse seismic data collection. In this letter, we show how techniques from graph theory can be used to optimize acquisition geometries for low-cost sparse 4D seismic. Based on midpoint-offset domain connectivity arguments, the proposed algo...
We present the Seismic Laboratory for Imaging and Modeling/Monitoring (SLIM) open-source software framework for computational geophysics and, more generally, inverse problems involving the wave-equation (e.g., seismic and medical ultrasound), regularization with learned priors, and learned neural surrogates for multiphase flow simulations. By integ...
Modern-day reservoir management and monitoring of geological carbon storage increasingly call for costly time-lapse seismic data collection. In this letter, we show how techniques from graph theory can be used to optimize acquisition geometries for low-cost sparse 4D seismic. Based on midpoint-offset domain connectivity arguments, the proposed algo...
Geologic carbon storage represents one of the few truly scalable technologies capable of reducing the CO 2 concentration in the atmosphere. While this technology has the potential to scale, its success hinges on our ability to mitigate its risks. An important aspect of risk mitigation concerns assurances that the injected CO 2 remains within the st...
With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising r...
Geological carbon storage represents one of the few truly scalable technologies capable of reducing the CO2 concentration in the atmosphere. While this technology has the potential to scale, its success hinges on our ability to mitigate its risks. An important aspect of risk mitigation concerns assurances that the injected CO2 remains within the st...
Due to the tremendous cost of seismic data acquisition, methods have been developed to reduce the amount of data acquired by designing optimal missing trace reconstruction algorithms. These technologies are designed to record as little data as possible in the field, while providing accurate wavefield reconstruction in the areas of the survey that a...
Fourier neural operators (FNOs) are a recently introduced neural network architecture for learning solution operators of partial differential equations (PDEs), which have been shown to perform significantly better than comparable approaches based on convolutional networks. Once trained, FNOs can achieve speed-ups of multiple orders of magnitude ove...
We present the SLIM (https://github.com/slimgroup) open-source software framework for computational geophysics, and more generally, inverse problems based on the wave-equation (e.g., medical ultrasound). We developed a software environment aimed at scalable research and development by designing multiple layers of abstractions. This environment allo...
Seismic monitoring of carbon storage sequestration is a challenging problem involving both fluid-flow physics and wave physics. Additionally, monitoring usually requires the solvers for these physics to be coupled and differentiable to effectively invert for the subsurface properties of interest. To drastically reduce the computational cost, we int...
Time-lapse seismic monitoring of carbon storage and sequestration is often challenging because the time-lapse signature of the growth of CO2 plumes is weak in amplitude and therefore difficult to detect seismically. This situation is compounded by the fact that the surveys are often coarsely sampled and not replicated to reduce costs. As a result,...
Time-lapse seismic monitoring of carbon storage and sequestration is often challenging because the time-lapse signature of the growth of CO2 plumes is weak in amplitude and therefore difficult to detect seismically. This situation is compounded by the fact that the surveys are often coarsely sampled and not replicated to reduce costs. As a result,...
We present three imaging modalities that live on the crossroads of seismic and medical imaging. Through the lens of extended source imaging, we can draw deep connections among the fields of wave-equation based seismic and medical imaging, despite first appearances. From the seismic perspective, we underline the importance to work with the correct p...
We present three imaging modalities that live on the crossroads of seismic and medical imaging. Through the lens of extended source imaging, we can draw deep connections among the fields of wave-equation based seismic and medical imaging, despite first appearances. From the seismic perspective, we underline the importance to work with the correct p...