
Ziyi Yin- Doctor of Philosophy
- PhD at Georgia Institute of Technology
Ziyi Yin
- Doctor of Philosophy
- PhD at Georgia Institute of Technology
AI-accelerated numerical simulation and inference
About
37
Publications
5,077
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
188
Citations
Introduction
I am currently a Founding Member of Technical Staff at KronosAI, focusing on building foundation models for physics simulations.
Skills and Expertise
Current institution
Additional affiliations
February 2025 - present
KronosAI
Position
- Founding Member of Technical Staff
Publications
Publications (37)
Geological Carbon Storage (GCS) is one of the most viable climate-change mitigating net-negative CO2-emission technologies for large-scale CO2 sequestration. However, subsurface complexities and reservoir heterogeneity demand a systematic approach to uncertainty quantification to ensure both containment and conformance, as well as to optimize opera...
This paper describes how to propagate wavefields for arbitrary numbers of traditional time steps in a single step, called a superstep. We show how to construct operators that accomplish this task for finite-difference time domain schemes, including temporal first-order schemes in isotropic, anisotropic and elastic media, as well as temporal second-...
We present a semi-amortized variational inference framework designed for computationally feasible uncertainty quantification in full-waveform inversion to explore the multimodal posterior distribution without dimensionality reduction. The framework is called WISER, short for full-lt;bgt;Wlt;/bgt;aveform variational Inference via Subsurface Extensio...
Geological Carbon Storage GCS is arguably the only scalable net-negative CO2 emission technology available While promising subsurface complexities and heterogeneity of reservoir properties demand a systematic approach to quantify uncertainty when optimizing production and mitigating storage risks which include assurances of Containment and Conforma...
We present a semi-amortized variational inference framework designed for computationally feasible uncertainty quantification in 2D full-waveform inversion to explore the multimodal posterior distribution without dimensionality reduction. The framework is called WISER, short for full-Waveform variational Inference via Subsurface Extensions with Refi...
Time-lapse seismic monitoring necessitates integrated workflows that combine seismic and reservoir modeling to enhance reservoir property estimation. We present a feasibility study of an end-to-end inversion framework that directly inverts for permeability from multiple prestack time-lapse seismic data sets. To assess the method's robustness, we de...
Geophysical inverse problems are ubiquitous in many areas of geoscience, including geophysical imaging, exploration, and monitoring. Solving these inverse problems is often challenging because the unknown Earth parameters of interest are highly dimensional, and their observations are indirect and corrupted by noise, while the creation of parameter-...
PhD dissertation defense presentation
Solving inverse problems involves estimating unknown parameters of interest from indirect measurements. Specifically, geophysical inverse problems seek to determine various Earth properties critical for geophysical exploration, carbon control, monitoring, and earthquake detection. These problems pose unique challenges: the parameters of interest ar...
This paper describes how to propagate wavefields for arbitrary numbers of traditional time steps in a single step, called a superstep. We show how to construct operators that accomplish this task for finite-difference time domain schemes, including temporal first-order schemes in isotropic, anisotropic and elastic media, as well as temporal second-...
We present a semi-amortized variational inference framework designed for computationally feasible uncertainty quantification in 2D full-waveform inversion to explore the multimodal posterior distribution without dimensionality reduction. The framework is called WISER, short for full-Waveform variational Inference via Subsurface Extensions with Refi...
We introduce a probabilistic technique for full-waveform inversion, employing variational inference and conditional normalizing flows to quantify uncertainty in migration-velocity models and its impact on imaging. Our approach integrates generative artificial intelligence with physics-informed common-image gathers, reducing reliance on accurate ini...
We present an uncertainty-aware Digital Twin (DT) for geologic carbon storage (GCS), capable of handling multimodal time-lapse data and controlling CO 2 injectivity to mitigate reservoir fracturing risks. In GCS, DT represents virtual replicas of subsurface systems that incorporate real-time data and advanced generative Artificial Intelligence (gen...
As the global deployment of carbon capture and sequestration (CCS) technology intensifies in the fight against climate change, it becomes increasingly imperative to establish robust monitoring and detection mechanisms for potential underground CO2 leakage, particularly through pre-existing or induced faults in the storage reservoir's seals. While t...
Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastl...
Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastl...
We present the Seismic Laboratory for Imaging and Modeling/Monitoring open-source software framework for computational geophysics and, more generally, inverse problems involving the wave equation (e.g., seismic and medical ultrasound), regularization with learned priors, and learned neural surrogates for multiphase flow simulations. By integrating...
Modern-day reservoir management and monitoring of geological carbon storage increasingly call for costly time-lapse seismic data collection. In this letter, we show how techniques from graph theory can be used to optimize acquisition geometries for low-cost sparse 4D seismic. Based on midpoint-offset domain connectivity arguments, the proposed algo...
We present the Seismic Laboratory for Imaging and Modeling/Monitoring (SLIM) open-source software framework for computational geophysics and, more generally, inverse problems involving the wave-equation (e.g., seismic and medical ultrasound), regularization with learned priors, and learned neural surrogates for multiphase flow simulations. By integ...
Modern-day reservoir management and monitoring of geological carbon storage increasingly call for costly time-lapse seismic data collection. In this letter, we show how techniques from graph theory can be used to optimize acquisition geometries for low-cost sparse 4D seismic. Based on midpoint-offset domain connectivity arguments, the proposed algo...
Geologic carbon storage represents one of the few truly scalable technologies capable of reducing the CO 2 concentration in the atmosphere. While this technology has the potential to scale, its success hinges on our ability to mitigate its risks. An important aspect of risk mitigation concerns assurances that the injected CO 2 remains within the st...
With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising r...
Geological carbon storage represents one of the few truly scalable technologies capable of reducing the CO2 concentration in the atmosphere. While this technology has the potential to scale, its success hinges on our ability to mitigate its risks. An important aspect of risk mitigation concerns assurances that the injected CO2 remains within the st...
Due to the tremendous cost of seismic data acquisition, methods have been developed to reduce the amount of data acquired by designing optimal missing trace reconstruction algorithms. These technologies are designed to record as little data as possible in the field, while providing accurate wavefield reconstruction in the areas of the survey that a...
Fourier neural operators (FNOs) are a recently introduced neural network architecture for learning solution operators of partial differential equations (PDEs), which have been shown to perform significantly better than comparable approaches based on convolutional networks. Once trained, FNOs can achieve speed-ups of multiple orders of magnitude ove...
We present the SLIM (https://github.com/slimgroup) open-source software framework for computational geophysics, and more generally, inverse problems based on the wave-equation (e.g., medical ultrasound). We developed a software environment aimed at scalable research and development by designing multiple layers of abstractions. This environment allo...
Seismic monitoring of carbon storage sequestration is a challenging problem involving both fluid-flow physics and wave physics. Additionally, monitoring usually requires the solvers for these physics to be coupled and differentiable to effectively invert for the subsurface properties of interest. To drastically reduce the computational cost, we int...
Time-lapse seismic monitoring of carbon storage and sequestration is often challenging because the time-lapse signature of the growth of CO2 plumes is weak in amplitude and therefore difficult to detect seismically. This situation is compounded by the fact that the surveys are often coarsely sampled and not replicated to reduce costs. As a result,...
Time-lapse seismic monitoring of carbon storage and sequestration is often challenging because the time-lapse signature of the growth of CO2 plumes is weak in amplitude and therefore difficult to detect seismically. This situation is compounded by the fact that the surveys are often coarsely sampled and not replicated to reduce costs. As a result,...
We present three imaging modalities that live on the crossroads of seismic and medical imaging. Through the lens of extended source imaging, we can draw deep connections among the fields of wave-equation based seismic and medical imaging, despite first appearances. From the seismic perspective, we underline the importance to work with the correct p...
We present three imaging modalities that live on the crossroads of seismic and medical imaging. Through the lens of extended source imaging, we can draw deep connections among the fields of wave-equation based seismic and medical imaging, despite first appearances. From the seismic perspective, we underline the importance to work with the correct p...