About
122
Publications
32,189
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,469
Citations
Introduction
I am currently working as a principal expert scientist at UII America. I received my Ph.D. degree in Computer and Systems Engineering from Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute in May 2014. My research interests are computer vision and machine learning, with special focus on object detection and tracking, anomaly detection, augmented reality, scene understanding, human re-identification and camera and calibration.
Education
August 2009 - May 2014
Publications
Publications (122)
Pan-tilt-zoom (PTZ) cameras are pervasive in modern surveillance systems. However, we demonstrate that the (pan, tilt) coordinates reported by PTZ cameras become inaccurate after many hours of operation, endangering tracking and 3D localization algorithms that rely on the accuracy of such values. To solve this problem, we propose a complete model f...
We introduce two novel methods to improve the perfor-mance of wide area video surveillance applications by us-ing scene features. First, we evaluate the drift in intrin-sic and extrinsic parameters for typical pan-tilt-zoom (PTZ) cameras, which stems from accumulated mechanical and random errors after many hours of operation. When the PTZ camera is...
We introduce an airport security checkpoint surveillance system using a camera network. The system tracks the movement of each passenger and carry-on bag, continuously maintains the association between bags and passengers, and verifies that passengers leave the checkpoint with the correct bags. We present methods for calibrating the camera network...
Photocopies of the ballots challenged in the 2008 Minnesota elections, which constitute a public record, were scanned on a high-speed scanner and made available on a public radio website. The PDF files were downloaded, converted to TIF images, and posted on the PERFECT website. Based on a review of relevant image-processing aspects of paper-based e...
Resources are presented for fostering paper-based election technology. They comprise a diverse collection of real and simulated ballot and survey images, and software tools for ballot synthesis, registration, segmentation, and ground truthing. The grids underlying the designated location of voter marks are extracted from 13,315 degraded ballot imag...
Surgical phase recognition is essential for analyzing procedure-specific surgical videos. While recent transformer-based architectures have advanced sequence processing capabilities, they struggle with maintaining consistency across lengthy surgical procedures. Drawing inspiration from classical hidden Markov models' finite-state interpretations, w...
Temporal awareness is essential for video large language models (LLMs) to understand and reason about events within long videos, enabling applications like dense video captioning and temporal video grounding in a unified system. However, the scarcity of long videos with detailed captions and precise temporal annotations limits their temporal awaren...
Numerous recent approaches to modeling and re-rendering dynamic scenes leverage plane-based explicit representations, addressing slow training times associated with models like neural radiance fields (NeRF) and Gaussian splatting (GS). However, merely decomposing 4D dynamic scenes into multiple 2D plane-based representations is insufficient for hig...
Interactive segmentation aims to accurately segment target objects with minimal user interactions. However, current methods often fail to accurately separate target objects from the background, due to a limited understanding of order, the relative depth between objects in a scene. To address this issue, we propose OIS: order-aware interactive segme...
Recent advancements in 3D reconstruction methods and vision-language models have propelled the development of multi-modal 3D scene understanding, which has vital applications in robotics, autonomous driving, and virtual/augmented reality. However, current multi-modal scene understanding approaches have naively embedded semantic representations into...
Novel view synthesis has advanced significantly with the development of neural radiance fields (NeRF) and 3D Gaussian splatting (3DGS). However, achieving high quality without compromising real-time rendering remains challenging, particularly for physically-based ray tracing with view-dependent effects. Recently, N-dimensional Gaussians (N-DG) intr...
Conventional 3D medical image segmentation methods typically require learning heavy 3D networks (e.g., 3D-UNet), as well as large amounts of in-domain data with accurate pixel/voxel-level labels to avoid overfitting. These solutions are thus extremely time- and labor-expensive, but also may easily fail to generalize to unseen objects during trainin...
Positioning patients for scanning and interventional procedures is a critical task that requires high precision and accuracy. The conventional workflow involves manually adjusting the patient support to align the center of the target body part with the laser projector or other guiding devices. This process is not only time-consuming but also prone...
We introduce a novel bottom-up approach for human body mesh reconstruction, specifically designed to address the challenges posed by partial visibility and occlusion in input images. Traditional top-down methods, relying on whole-body parametric models like SMPL, falter when only a small part of the human is visible, as they require visibility of m...
Digitally reconstructed radiographs (DRRs) are simulated 2D X-ray images generated from 3D CT volumes, widely used in preoperative settings but limited in intraoperative applications due to computational bottlenecks, especially for accurate but heavy physics-based Monte Carlo methods. While analytical DRR renderers offer greater efficiency, they ov...
Recent advances in convolutional neural network (CNN) interpretability have led to a wide-variety of gradient-based visual attention techniques for generating visual attention maps. However, most of these methods require a classification-type design architecture, and consequently concentrate on classification/categorization-type tasks. Extending th...
With the rise of cameras and smart sensors, humanity generates an exponential amount of data. This valuable information, including underrepresented cases like AI in medical settings, can fuel new deep-learning tools. However, data scientists must prioritize ensuring privacy for individuals in these untapped datasets, especially for images or videos...
Federated learning (FL) is a machine learning paradigm in which distributed local nodes collaboratively train a central model without sharing individually held private data. Existing FL methods either iteratively share local model parameters or deploy co-distillation. However, the former is highly susceptible to private data leakage, and the latter...
Deep implicit functions (DIFs) have emerged as a potent and articulate means of representing 3D shapes. However, methods modeling object categories or non-rigid entities have mainly focused on single-object scenarios. In this work, we propose MODIF, a multi-object deep implicit function that jointly learns the deformation fields and instance-specif...
The detection of human parts (e.g., hands, face) and their correct association with individuals is an essential task, e.g., for ubiquitous human-machine interfaces and action recognition. Traditional methods often employ multi-stage processes, rely on cumbersome anchor-based systems, or do not scale well to larger part sets. This paper presents PBA...
Most nighttime semantic segmentation studies are based on domain adaptation approaches and image input. However, limited by the low dynamic range of conventional cameras, images fail to capture structural details and boundary information in low-light conditions. Event cameras, as a new form of vision sensors, are complementary to conventional camer...
To date, little attention has been given to multi-view 3D human mesh estimation, despite real-life applicability (e.g., motion capture, sport analysis) and robustness to single-view ambiguities. Existing solutions typically suffer from poor generalization performance to new settings, largely due to the limited diversity of image/3D-mesh pairs in mu...
With the increasing ubiquity of cameras and smart sensors, humanity is generating data at an exponential rate. Access to this trove of information, often covering yet-underrepresented use-cases (e.g., AI in medical settings) could fuel a new generation of deep-learning tools. However, eager data scientists should first provide satisfying guarantees...
Interactive volume segmentation can be approached via two decoupled modules: interaction-to-segmentation and segmentation propagation. Given a medical volume, a user first segments a slice (or several slices) via the interaction module and then propagates the segmentation(s) to the remaining slices. The user may repeat this process multiple times u...
To date, little attention has been given to multi-view 3D human mesh estimation, despite real-life applicability (e.g., motion capture, sport analysis) and robustness to single-view ambiguities. Existing solutions typically suffer from poor generalization performance to new settings, largely due to the limited diversity of image-mesh pairs in multi...
The goal of click-based interactive image segmentation is to obtain precise object segmentation masks with limited user interaction, i.e., by a minimal number of user clicks. Existing methods require users to provide all the clicks: by first inspecting the segmentation mask and then providing points on mislabeled regions, iteratively. We ask the qu...
Knowing the 3D motions in a dynamic scene is essential to many vision applications. Recent progress is mainly focused on estimating the activity of some specific elements like humans. In this paper, we leverage a neural motion field for estimating the motion of all points in a multiview setting. Modeling the motion from a dynamic scene with multivi...
Fully supervised human mesh recovery methods are data-hungry and have poor generalizability due to the limited availability and diversity of 3D-annotated benchmark datasets. Recent progress in self-supervised human mesh recovery has been made using synthetic-data-driven training paradigms where the model is trained from synthetic paired 2D represen...
Predicting the future trajectory of a person remains a challenging problem, due to randomness and subjectivity of human movement. However, the moving patterns of human in a constrained scenario typically conform to a limited number of regularities to a certain extent, because of the scenario restrictions (e.g., floor plan, roads, and obstacles) and...
Predicting the future trajectory of a person remains a challenging problem, due to randomness and subjectivity of human movement. However, the moving patterns of human in a constrained scenario typically conform to a limited number of regularities to a certain extent, because of the scenario restrictions and person-person or person-object interacti...
Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized. This is particularly relevant for clinical applications since patient data are usually not allowed to be transferred out of medical facilities, leading to the need for FL. Existing FL met...
Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized. This is particularly relevant for clinical applications since patient data are usually not allowed to be transferred out of medical facilities, leading to the need for FL. Existing FL met...
Knowing the 3D motions in a dynamic scene is essential to many vision applications. Recent progress is mainly focused on estimating the activity of some specific elements like humans. In this paper, we leverage a neural motion field for estimating the motion of all points in a multiview setting. Modeling the motion from a dynamic scene with multivi...
3D patient body modeling is critical to the success of automated patient positioning for smart medical scanning and operating rooms. Existing CNN-based end-to-end patient modeling solutions typically require a) customized network designs demanding large amount of relevant training data, covering extensive realistic clinical scenarios (e.g., patient...
Federated Learning (FL) is a machine learning paradigm where local nodes collaboratively train a central model while the training data remains decentralized. Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution. However, they suffer from communication bottlenecks. More i...
Fully supervised human mesh recovery methods are data-hungry and have poor generalizability due to the limited availability and diversity of 3D-annotated benchmark datasets. Recent progress in self-supervised human mesh recovery has been made using synthetic-data-driven training paradigms where the model is trained from synthetic paired 2D represen...
The goal of click-based interactive image segmentation is to obtain precise object segmentation masks with limited user interaction, i.e., by a minimal number of user clicks. Existing methods require users to provide all the clicks: by first inspecting the segmentation mask and then providing points on mislabeled regions, iteratively. We ask the qu...
The Workshop Program of the Association for the Advancement of Artificial Intelligence’s Thirty-Sixth Conference on Artificial Intelligence was held virtually from February 22 – March 1, 2022. There were thirty-nine workshops in the program: Adversarial Machine Learning and Beyond, AI for Agriculture and Food Systems, AI for Behavior Change, AI for...
While there has been substantial progress in learning suitable distance metrics, these techniques in general lack transparency and decision reasoning, i.e., explaining why the input set of images is similar or dissimilar. In this work, we solve this key problem by proposing the first method to generate generic visual similarity explanations with gr...
Federated Learning (FL) is a machine learning paradigm where local nodes collaboratively train a central model while the training data remains decentralized. Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution. However, they suffer from communication bottlenecks. More i...
We consider the problem of abnormality localization for clinical applications. While deep learning has driven much recent progress in medical imaging, many clinical challenges are not fully addressed, limiting its broader usage. While recent methods report high diagnostic accuracies, physicians have concerns trusting these algorithm results for dia...
In this work, we consider the problem of self-supervised Moving Object Detection (MOD) in video, where no ground truth is involved in both training and inference phases. Recently , an adversarial learning framework is proposed [32] to leverage inherent temporal information for MOD. While showing great promising results, it uses single scale tempora...
We consider the problem of estimating frame-level full human body meshes given a video of a person with natural motion dynamics. While much progress in this field has been in single image-based mesh estimation, there has been a recent uptick in efforts to infer mesh dynamics from video given its role in alleviating issues such as depth ambiguity an...
Despite much recent progress in video-based person re-identification (re-ID), the current state-of-the-art still suffers from common real-world challenges such as appearance similarity among various people, occlusions, and frame misalignment. To alleviate these problems, we propose Spatio-Temporal Representation Factorization module (STRF), a flexi...
We consider the problem of obese human mesh recovery, i.e., fitting a parametric human mesh to images of obese people. Despite obese person mesh fitting being an important problem with numerous applications (e.g., healthcare), much recent progress in mesh recovery has been restricted to images of non-obese people. In this work, we identify this cru...
Despite substantial progress in applying neural networks (NN) to a wide variety of areas, they still largely suffer from a lack of transparency and interpretability. While recent developments in explainable artificial intelligence attempt to bridge this gap (e.g., by visualizing the correlation between input pixels and final outputs), these approac...
Domain Adaptation aims at adapting the knowledge learned from a domain (source-domain) to another (target-domain). Existing approaches typically require a portion of task-relevant target-domain data a priori. We propose an approach,
zero-shot deep domain adaptation
(ZDDA), which uses paired dual-domain task-irrelevant data to eliminate the need f...
We consider the problem of abnormality localization for clinical applications. While deep learning has driven much recent progress in medical imaging, many clinical challenges are not fully addressed, limiting its broader usage. While recent methods report high diagnostic accuracies, physicians have concerns trusting these algorithm results for dia...
We consider the problem of estimating a parametric model of 3D human mesh from a single image. While there has been substantial recent progress in this area with direct regression of model parameters, these methods only implicitly exploit the human body kinematic structure, leading to sub-optimal use of the model prior. In this work, we address thi...
This paper considers the problem of 3D patient body modeling. Such a 3D model provides valuable information for improving patient care, streamlining clinical workflow, automated parameter optimization for medical devices etc. With the popularity of 3D optical sensors and the rise of deep learning, this problem has seen much recent development. Howe...
We consider the problem of visually explaining similarity models, i.e., explaining why a model predicts two images to be similar in addition to producing a scalar score. While much recent work in visual model interpretability has focused on gradient-based attention, these methods rely on a classification module to generate visual explanations. Cons...
The ongoing COVID-19 pandemic, caused by the highly contagious SARS-CoV-2 virus, has overwhelmed healthcare systems worldwide, putting medical professionals at a high risk of getting infected themselves due to a global shortage of personal protective equipment. This has in-turn led to understaffed hospitals unable to handle new patient influx. To h...
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world. Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19, whereas the recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical speci...
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world. Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19, whereas the recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical speci...
We consider the problem of estimating a parametric model of 3D human mesh from a single image. While there has been substantial recent progress in this area with direct regression of model parameters, these methods only implicitly exploit the human body kinematic structure, leading to sub-optimal use of the model prior. In this work, we address thi...
We consider the problem of learning similarity functions. While there has been substantial progress in learning suitable distance metrics, these techniques in general lack decision reasoning, i.e., explaining why the input set of images is similar or dissimilar. In this work, we solve this key problem by proposing the first method to generate gener...
We consider the problem of human pose estimation. While much recent work has focused on the RGB domain, these techniques are inherently under-constrained since there can be many 3D configurations that explain the same 2D projection. To this end, we propose a new method that uses RGB-D data to estimate a parametric human mesh model. Our key innovati...
Recent advances in Convolutional Neural Network (CNN) model interpretability have led to impressive progress in visualizing and understanding model predictions. In particular, gradient-based visual attention methods have driven much recent effort in using visual attention maps as a means for visual explanations. A key problem, however, is these met...
With only coarse labels, weakly supervised learning typically uses top-down attention maps generated by back-propagating gradients as priors for tasks such as object localization and semantic segmentation. While these attention maps are intuitive and informative explanations of deep neural network, there is no effective mechanism to manipulate the...
A counterfactual query is typically of the form 'For situation X, why was the outcome Y and not Z?'. A counterfactual explanation (or response to such a query) is of the form "If X was X*, then the outcome would have been Z rather than Y." In this work, we develop a technique to produce counterfactual visual explanations. Given a 'query' image $I$...
With vast amounts of video content being uploaded to the Internet every minute, video summarization becomes critical for efficient browsing, searching, and indexing of visual content. Nonetheless, the spread of social and egocentric cameras tends to create an abundance of sparse scenarios captured by several devices, and ultimately required to be j...