Zitai Wang

Zitai Wang
  • Doctor of Engineering
  • Chinese Academy of Sciences

About

18
Publications
1,123
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
90
Citations
Current institution

Publications

Publications (18)
Preprint
Full-text available
Real-world datasets often follow a long-tailed distribution, making generalization to tail classes difficult. Recent methods resorted to long-tail variants of Sharpness-Aware Minimization (SAM), such as ImbSAM and CC-SAM, to improve generalization by flattening the loss landscape. However, these attempts face a trade-off between computational effic...
Article
Multi-label Out-Of-Distribution (OOD) detection aims to discriminate the OOD samples from the multi-label In-Distribution (ID) ones. Compared with its multiclass counterpart, it is crucial to model the joint information among classes. To this end, JointEnergy, which is a representative multi-label OOD inference criterion, summarizes the logits of a...
Preprint
Full-text available
Multi-label Out-Of-Distribution (OOD) detection aims to discriminate the OOD samples from the multi-label In-Distribution (ID) ones. Compared with its multiclass counterpart, it is crucial to model the joint information among classes. To this end, JointEnergy, which is a representative multi-label OOD inference criterion, summarizes the logits of a...
Preprint
Full-text available
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely, diffusion feature. We discover that diffusion feature has been hindered by a hidden yet universal phenomenon that we call content s...
Preprint
Full-text available
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative tasks such as semantic segmentation. Given numerous activations, selecting a small yet effective subset poses a fundamental problem. To t...
Preprint
Full-text available
With the progressive advancements in deep graph learning, out-of-distribution (OOD) detection for graph data has emerged as a critical challenge. While the efficacy of auxiliary datasets in enhancing OOD detection has been extensively studied for image and text data, such approaches have not yet been explored for graph data. Unlike Euclidean data,...
Article
Full-text available
Multi-label ranking, which returns multiple top-ranked labels for each instance, has a wide range of applications for visual tasks. Due to its complicated setting, prior arts have proposed various measures to evaluate model performances. However, both theoretical analysis and empirical observations show that a model might perform inconsistently on...
Preprint
Full-text available
Multi-label ranking, which returns multiple top-ranked labels for each instance, has a wide range of applications for visual tasks. Due to its complicated setting, prior arts have proposed various measures to evaluate model performances. However, both theoretical analysis and empirical observations show that a model might perform inconsistently on...
Article
Full-text available
Graph anomaly detection is crucial for identifying nodes that deviate from regular behavior within graphs, benefiting various domains such as fraud detection and social network. Although existing reconstruction-based methods have achieved considerable success, they may face the Anomaly Overfitting and Homophily Trap problems caused by the abnormal...
Preprint
Full-text available
With the great success of deep neural networks, adversarial learning has received widespread attention in various studies, ranging from multi-class learning to multi-label learning. However, existing adversarial attacks toward multi-label learning only pursue the traditional visual imperceptibility but ignore the new perceptible problem coming from...
Preprint
Full-text available
Traditional machine learning follows a close-set assumption that the training and test set share the same label space. While in many practical scenarios, it is inevitable that some test samples belong to unknown classes (open-set). To fix this issue, Open-Set Recognition (OSR), whose goal is to make correct predictions on both close-set samples and...
Preprint
Full-text available
Top-k error has become a popular metric for large-scale classification benchmarks due to the inevitable semantic ambiguity among classes. Existing literature on top-k optimization generally focuses on the optimization method of the top-k objective, while ignoring the limitations of the metric itself. In this paper, we point out that the top-k objec...
Article
Top- $k$ error has become a popular metric for large-scale classification benchmarks due to the inevitable semantic ambiguity among classes. Existing literature on top- $k$ optimization generally focuses on the optimization method of the top- $k$ objective, while ignoring the limitations of the metric itself. In this paper, we point out that the...
Conference Paper
Full-text available
When facing rich multimedia content and making a decision, users tend to be overwhelmed with redundant options. Recommendation system can improve the users' experience by predicting the possible preference of a given user. The vast majority of the literature adopts the collaborative framework, which relies on a static and fixed formulation of the r...

Network

Cited By