Ziang Yan

Ziang Yan
Tsinghua University | TH · Department of Automation

PhD Candidate

About

14
Publications
4,442
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
141
Citations
Introduction
Ziang Yan currently works at the Department of Automation, Tsinghua University. Ziang does research in Machine Learning and Computer Vision.

Publications

Publications (14)
Preprint
Full-text available
For visual object recognition tasks, the illumination variations can cause distinct changes in object appearance and thus confuse the deep neural network based recognition models. Especially for some rare illumination conditions, collecting sufficient training samples could be time-consuming and expensive. To solve this problem, in this paper we pr...
Preprint
Full-text available
The idea of unfolding iterative algorithms as deep neural networks has been widely applied in solving sparse coding problems, providing both solid theoretical analysis in convergence rate and superior empirical performance. However, for sparse nonlinear regression problems, a similar idea is rarely exploited due to the complexity of nonlinearity. I...
Preprint
Estimated time of arrival (ETA) is one of the most important services in intelligent transportation systems and becomes a challenging spatial-temporal (ST) data mining task in recent years. Nowadays, deep learning based methods, specifically recurrent neural networks (RNN) based ones are adapted to model the ST patterns from massive data for ETA an...
Preprint
The tremendous recent success of deep neural networks (DNNs) has sparked a surge of interest in understanding their predictive ability. Unlike the human visual system which is able to generalize robustly and learn with little supervision, DNNs normally require a massive amount of data to learn new concepts. In addition, research works also show tha...
Article
The tremendous recent success of deep neural networks (DNNs) has sparked a surge of interest in understanding their predictive ability. Unlike the human visual system which is able to generalize robustly and learn with little supervision, DNNs normally require a massive amount of data to learn new concepts. In addition, research works also show tha...
Preprint
Unlike the white-box counterparts that are widely studied and readily accessible, adversarial examples in black-box settings are generally more Herculean on account of the difficulty of estimating gradients. Many methods achieve the task by issuing numerous queries to target classification systems, which makes the whole procedure costly and suspici...
Article
In large-scale visual recognition tasks, researchers are usually faced with some challenging problems, such as the extreme imbalance in the number of training data between classes or the lack of annotated data for some classes. In this paper, we propose a novel neural network architecture that automatically synthesizes pseudo feature representation...
Article
Full-text available
Despite the efficacy on a variety of computer vision tasks, deep neural networks (DNNs) are vulnerable to adversarial attacks, limiting their applications in security-critical systems. Recent works have shown the possibility of generating imperceptibly perturbed image inputs (a.k.a., adversarial examples) to fool well-trained DNN models into making...
Article
Full-text available
Zero-shot learning (ZSL) is a challenging task aiming at recognizing novel classes without any training instances. In this paper we present a simple but high-performance ZSL approach by generating pseudo feature representations (GPFR). Given the dataset of seen classes and side information of unseen classes (e.g. attributes), we synthesize feature-...
Article
Full-text available
Object detection when provided image-level labels instead of instance-level labels (i.e., bounding boxes) during training is an important problem in computer vision, since large scale image datasets with instance-level labels are extremely costly to obtain. In this paper, we address this challenging problem by developing an Expectation-Maximization...
Article
Full-text available
Deep learning models' architectures, including depth and width, are key factors influencing models' performance, such as test accuracy and computation time. This paper solves two problems: given computation time budget, choose an architecture to maximize accuracy, and given accuracy requirement, choose an architecture to minimize computation time....
Article
Full-text available
Recurrent neural network (RNN)'s architecture is a key factor influencing its performance. We propose algorithms to optimize hidden sizes under running time constraint. We convert the discrete optimization into a subset selection problem. By novel transformations, the objective function becomes submodular and constraint becomes supermodular. A gree...

Network

Cited By