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Abstract: Inertia match of the parallel manipulator means the ratio of the inertial load of the parallel manipulator converted to each 
actuator shaft and the moment of inertia of the actuator is kept within a reasonable range. Currently there are many studies on parallel 
manipulators, but few mention inertia parameters and inertia match of parallel manipulators. This paper focuses on the inertia 
characteristics of the 3-RRR reconfigurable planar parallel manipulator. On the basis of the inverse dynamic formulations deduced with 
the principle of virtual work, the inertia matrix of the 3-RRR planar parallel manipulator in the actuator space is obtained in algebraic 
form. Then, by unifying the dimension and averaging diagonal elements of the inertia matrix, the equivalent inertia of the parallel 
manipulator, which is the inertial load of the parallel manipulator converted to each actuator shaft, is determined. By transforming the 
inertia problem of the 3-RRR parallel manipulator into that of the serial multi-bar manipulator, the practicality of the equivalent inertia 
deduced by inverse dynamics is demonstrated. According to the physical meaning of the inertia equation, the manipulator is divided in 
to three parts. Further analysis is carried out on the contribution of each part to the equivalent inertia and their distributions in the 
required workspace, revealing that the passive links cannot ignored in calculating the equivalent inertia of the parallel manipulator. 
Finally, the inertia match for the 3-RRR reconfigurable parallel manipulator under three configurations is accomplished, and reducers 
are selected. The equivalent inertia calculation and the inertial match results illustrate that the inertia math is a necessary step to the 
design of the parallel manipulator, and inertia parameters dramatically affect dynamic performances of parallel manipulators. Besides, 
the equivalent inertia and inertial match principles, proposed in the paper, can be widely applied in the dynamic analysis and 
servomotors selecting for the parallel manipulator. 
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1  Introduction∗ 
 

Reconfigurable manipulators, which are characterized by 
modularity, integrability, customization and convertibility, 
can be easily reconfigured and can cost-effectively respond 
to unpredictable market changes. The parallel manipulator, 
which typically consists of a moving platform and a fixed 
base connected together by several identical limbs, is 
inherently symmetric and modular, and is prone to be 
reconfigurable[1]. The reconfigurable parallel kinematics 
manipulator, which is usually abbreviated as the 
reconfigurable parallel kinematics manipulator (RPKM) for 
short, is an important branch of reconfigurable 
manipulators. The parallel manipulator has advantages of 
high rigidity, high acceleration and high flexibility over the 
serial manipulator. In particular, the lower-mobility parallel 
manipulator has potentials of larger workspace, better 
operability and simpler structure than the 6-degree-of- 
freedom(DOF) parallel manipulator[2–3]. Reconfigurable 
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planar parallel manipulators, that inherit advantages of both 
parallel manipulators and reconfigurable manipulators, 
have great prospects. An important purpose of RPKMs is 
the testing platform to take theories on parallel 
manipulators into practice[4].  

Usually, in the design of parallel manipulator, actuator 
parameters such as the rated and maximum speed, torque 
and power are considered. However, in order to achieve 
excellent kinematics performance, the inertia match of the 
parallel manipulator, which means the match between the 
inertial load of the parallel manipulator converted to each 
actuator shaft and the moment of inertia of the actuator, 
should be fulfilled, too. In the field of the RPKM, the need 
for the inertia match is more obvious, due to the significant 
variations of the inertial load resulting from 
reconfigurations. Additionally, an actuator, which is a drive 
element, may include a gear reducer and a coupler besides 
a motor.  

The equivalent inertia of the parallel manipulator, which 
indicates the inertial load of the parallel manipulator 
converted to each actuator shaft, should be determined first, 
based on the inertia matrix. It is obvious that the inverse 
dynamics, which is the process of deriving the driving force 
of each actuator from the kinematics of the manipulator and 
external force system exerted on it, is a convenient way to 
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obtain the inertia matrix of the parallel manipulator in the 
actuator space. Several approaches, such as the Newton- 
Euler formulation[5–7], the Lagrangian formulation[8–9], and 
the principle of virtual work[10–13], have been proposed. The 
principle of virtual work, which has been concluded as the 
most effective way to deduce the dynamic formulation of 
the parallel manipulator, is employed to obtain the inverse 
dynamics of the 3-RRR reconfigurable planar parallel 
manipulator in this paper.  

Most works in the field of the RPKM concentrated on 
either the parameter design and optimization or the 
workspace comparison[1,14]. To the best of the authors’ 
knowledge, little attention has been paid to the study of the 
inertia matrix or the inertia match. In fact, the inertia match 
of the RPKM can guarantee good kinematics performance 
of the manipulator, is the necessary step to the design of 
RPKM. 

By taking the 3-RRR reconfigurable planar parallel 
manipulator described in section 2 as the research object, 
the algebraic expression of the inertia matrix converted to 
the actuator space is deduced, and the equivalent inertia is 
figured out in section 3. In section 4, the practicality of the 
equivalent inertia of the parallel manipulator is verified 
numerically. A further analysis is carried out on 
contributions of different parts in the 3-RRR reconfigurable 
planar parallel manipulator to the total equivalent inertia, in 
section 5. The inertia match of the 3-RRR RPKM is 
accomplished, and the match result is shown in section 6. 
At last, conclusions of the paper are given in section 7. 

 
2  System Description 

 
As shown in Fig. 1, the object under study is a 3-DOF 

parallel manipulator driven by three AC servo motors. It is 
a horizontally arranged 3-RRR RPKM, which consists of a 
moving platform, a base and three identical limbs[15]. Each 
limb is composed of a drive link and a passive link, which 
are connected together by a rotational joint. Two ends of 
each limb are connected to the base and the moving 
platform individually by a rotational joint.  

The middle part of each link is a replaceable bar, whose 
ends are connected to rotation modules with screw bolts 
(see Fig. 2). The reconfigurable manipulator is equipped 
with three suites of replaceable bars of different stiffness 
but same length (the mass and moment of inertia are 
different), including a suite of light flexible bars, a suite of 
aluminum bars and a suite of steel bars. The structure of a 
limb is shown in Fig. 2. Actuator adapters of passive links 
are used to connect shafts of actuators. There are two kinds 
of rotation modules that are used in pair to compose 
rotational joints.  

The reconfigurable manipulator is designed as a testing 
platform used to study the active vibration control of the 
3-RRR parallel manipulator of different stiffness, using 
distributed arrays of surface-bonded lead zirconate titanate 
(PZT) patch sensors and actuators. It provides a perfect 

opportunity to the research of the equivalent inertia for 
parallel manipulators.  

 

 
Fig. 1.  3-RRR reconfigurable planar parallel manipulator 

1. Actuator; 2. Moving platform; 3. Passive link; 

4. Drive link; 5. Fixed base 

 

(a) Passive link 

 
(b) Drive link 

Fig. 2.  Structure of a limb 
1, 3, 6. Rotation module; 2, 5. Replaceable bar; 4. Actuator adapter 

 
3  Dynamic Equations 

 
Structure of the object can be simplified as shown in Fig. 

3. Since high-speed bearings are equipped, the coulomb 
and viscous frictions exerted on rotational joints are 
reasonably neglected. The only external force exerted on 
the moving platform is gravity, which is eliminated from 
dynamic equations, due to the horizontal arrangement.  

 
3.1  Inverse kinematics 

As demonstrated in Fig. 3, a global frame ( )A OXYZ is 
attached to the geometric center of the fixed base with the 
X-axis parallel to 1 2A A , and the Z-axis perpendicular to the 
plane defined by 1 2 3A A A . Then, position vectors of iA (i=1, 
2, 3) in the global frame are given as 

 
T

1
3, ,0

2 6
a a⎛ ⎞

− −⎜ ⎟⎜ ⎟
⎝ ⎠

A ,
T

2
3, ,0

2 6
a a⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
A ,

T

3
30, ,0
3

a⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

A , 

 
where 1 2 2 3 3 1 a= = =A A A A A A . 
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Fig. 3.  Kinematic model of the 3-RRR RPKM 

 
The moving frame ( )C O X Y Z′ ′ ′ ′  is located at the mass 

center of the moving platform with the X’-axis parallel to C1 
C2, and the Z’-axis perpendicular to the platform plane. Posi- 
tion vectors of iC (i=1, 2, 3) in the moving frame are given 
as 

 
T T T

1 2 3
3 3 3, ,0 , , ,0 , 0, ,0

2 6 2 6 3
h h h h h⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

C C C , 

 

where 1 2 2 3 3 1 h= = =C C C C C C . 

Actuators are located at point ( 1, 2,3)i i =A . The Cartesian 
coordinate vector of the manipulator is given by the 
position and orientation of the platform and can be written 
as 

 
T( , , )x y ϕ=P , 

 
whereϕ is the rotational angle of the platform about the 
Z-axis from the X-axis. Connection points ic (i=1, 2, 3) (as 
expressed in the moving frame) can be described in the 
global frame by using of the platform translation r  and 
rotation matrix R as 
 

base( )i i= +c r Rc . 
 

Referring to Fig. 3, a vector loop equation associated 
with the ith limb in the global frame can be written as  

 
1 1 2 2 ,    1, 2,3,

ii A i i i il l i+ = + + =r Rc r s s        (1) 
 
where T( , ,0)x y=r is the position vector of the moving 
platform; 1 2 1, ,i i il l s and 2is are lengths and unit vectors of 
drive and passive links of the ith limb; 

iAr is position 
vector of point iA  described in the global frame, and the 
rotation matrix can be written as 
 

cos sin 0
sin cos 0
0 0 1

ϕ ϕ
ϕ ϕ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

R . 

 
By setting

ii i A= + −r r Rc r , we obtain 
 

1 1 2 2i i i i il l= +r s s , 
or 

2 2 1 1i i i i il l= −s r s . 
 

Then, taking square of both sides of the above equation 
leads to  

 
22

2 1 12i i i il l= −r s .    (2) 
 
Substituting ( )T

1 cos ,sin ,0i i iθ θ=s into Eq. (2) yields three 
equations as follows: 
 

2
2
12 11 11

3cos cos sin
2 2 6
a hl l x hθ ϕ ϕ

⎡ ⎤⎛ ⎞
= − + − − + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

2

11 11
3 3sin sin cos
6 2 6

a hl y hθ ϕ ϕ
⎡ ⎤⎛ ⎞
− + − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 

2
2
22 21 21

3cos cos sin
2 2 6
a hl l x hθ ϕ ϕ
⎡ ⎤⎛ ⎞

= + − + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

2

21 21
3 3sin sin cos
6 2 6

a hl y hθ ϕ ϕ
⎡ ⎤⎛ ⎞
− + − + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 

2
2
32 31 31

3cos sin
3

l l x hθ ϕ
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
+  

2

31 31
3 3sin cos
3 3

a l y hθ ϕ
⎡ ⎤⎛ ⎞

+ − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. 

 
The inverse kinematic equations for the 3-RRR RPKM 

is 
 

2 2 2
1 1 2 3

1 arctan , 1, 2,3
2

i i i i
i

e e e e
i

a
θ

− ± + −
= = ,   (3) 

 
where ( , 1,2,3)ije i j = is function that is only about 

,x y andϕ . 1iθ  is the rotational angle of the drive link of 
the ith limb. Operation symbols in above equations are 
determined by the assembly structure of the 3-RRR RPKM. 
As the model shown in Fig. 3, positive symbols should be 
chosen. 

The unit vector along the passive link of the ith limb can 
be determined by 

 

2 1 1 2( ) / , 1, 2,3i i i i il l i= − =s r s .            (4) 
 
The velocity mapping function is found by taking the 

derivative of Eq. (1) with respect to time, i.e. 
 

1 1 1 2 2 2 ,    1,2,3,i i i i i i il l i+ × = × + × =�r W Rc W s W s   (5) 
 

where T(0,0, )ϕ= �W , T
1 1(0,0, )i iθ= �W , T

2 2(0,0, )i iθ= �W , 
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1iθ�  and 2iθ�  are angular velocities of drive and passive 
links of the ith limb. 

Taking the dot product of Eq. (5) with 2is  and realizing 
 

2 2 2 2 2 2 0, 1, 2,3,i i i i i i i× = × = =i iW s s s s W  
 

leads to 
 

2 2 1 1 2 1, 1,2,3.i i i i i i il i+ × = × =�i i is r W Rc s s s W  

 
The angular velocity vector of the ith drive link is given 

in terms of velocities of the moving platform as 
 

2 2
1

1 1 2

( )
,   1, 2,3.i i i

i
i i i

W i
l
+ ×

= =
×

�i is r Rc s W
s s

      (6) 

 
Similarly, dot multiplying both sides of Eq. (5) with 1is  
gives 
 

1 1
2

2 2 1

( )
= ,   1,2,3.i i i

i
i i i

i
l
+ ×

=
×

�i is r Rc s W
W

s s
      (7) 

 
Simplify Eqs. (6) and (7) as follows: 
 

1 1= , 1,2,3,i i iθ =� �J P               (8) 
 

2 2= , 1, 2,3,i i iθ =� �J P               (9) 
 

where 
1 2 2 2 2 1(cos ,sin , sin cos )

i ii i i i i ix y kθ θ θ θ= − /Rc RcJ , 
 

1 1 1 2 1 2(cos sin sin cos )i i i i i ik l θ θ θ θ= − , 
 

2 1 1 i1 1 2(cos ,sin , sin cos )
i ii i i i ix y kθ θ θ θ= − /Rc RcJ , 

 
2 2 2 1 2 1(cos sin sin cos )i i i i i ik l θ θ θ θ= − , 

 
T( , , )x y ϕ=� � � �P , 

 

i
xRc and

i
yRc are the first and second elements of iRc . 

Further, the Jacobian matrix of drive links is obtained as 
 

11

1 21

31

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

J
J J

J
. 

 
Also, the Jacobian matrix of passive links is obtained as 
 

12

2 22

32

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

J
J J

J
. 

 
Eqs. (8) and (9) can be rewritten in matrix form as 

1 1=� �θ J P ,                   (10) 
 

2 2=� �θ J P ,                   (11) 
 
where  T

1 11 21 31( , , )θ θ θ=� � � �θ , T
2 12 22 32( , , )θ θ θ=� � � �θ . 

The acceleration mapping function is deduced by taking 
the time derivative of Eq. (5) and is expressed in terms of 
linear and angular acceleration vectors of the moving 
platform as 

 
1 1 2 2

1 1 1 1 2 2 2 2

( )
( ) ( ),    1, 2,3.
i i i i i i i i

i i i i i i i i

l l
l l i
+ × + × × = × + × +

× × + × × =

r Rc W W Rc Rc Rc
W W s W W s

�� ε ε ε
 

 
Simplifying the above function and using 0ij ij =is W  
( , 1, 2,3)i j = leads to 
 

2
1 1 2 2i i i i i i i il l+ × − = × + × −r Rc W Rc Rc Rc�� ε ε ε  

2 2
1 1 1 2 2 2 , 1, 2,3i i i i i il l i− =W s W s ,   (12) 

 
where T(0,0, )ϕ= ��ε , T

1 1(0,0, )i iθ= ��ε , T
2 2(0,0, )i iθ= ��ε . 

By taking the dot multiply of Eq. (12) with 2is , the 
angular accelerations of drive links is obtained as   

 
2 2

1
1 1 2

( )
= +i i i

i
i i il
+ ×

×
��i iε

ε
s r Rc s

s s
     

2 2 2
1 1 1 2 2 2 2

1 1 2
,   1, 2,3i i i i i i i i

i i i

l l
i

l
+ −

=
×

W s s W W Rc s
s s

i i .    (13) 

 
Similarly, by taking the dot product of Eq. (12) with 1is , the 
angular acceleration of passive links is obtained as 
 

1 1
2

2 2 1

( )
= +i i i

i
i i il
+ ×

×
s r Rc s

s s
��i iε

ε                 

2 2 2
2 2 2 1 1 1 1

1 2 1
,  1, 2,3 i i i i i i i i

i i i

l l
 i

l
+ −

=
×

i iW s s W W Rc s
s s

.    (14) 

 
 

Simplify Eqs. (13) and (14) as 
 

1 1 1= + , 1, 2,3i i if iθ =�� ��J P ,            (15) 
 

2 2 2= + , 1, 2,3i i if iθ =�� ��J P ,           (16) 
where 

2 2 2
1 1 2 1 2 2 2

1
1 1 2

i i i i i i i i
i

i i i

l l
f

l
θ θ ϕ+ −

=
×

i is s Rc s
s s

, 

 
2 2 2

2 2 1 2 1 1 1
2

1 2 1

i i i i i i i i
i

i i i

l l
f

l
θ θ ϕ+ −

=
×

i is s Rc s
s s

, 

 
2 ,2 =� �J Pθ  

 
1iθ�� and 2iθ��  are angular accelerations of drive and passive 

links of the ith limb. 
Also, it is easy to derive the acceleration mapping func- 
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tion as 
 

1 1 1= +�� ��θ J P f ,                   (17) 
 

2 2 2= +����θ J P f ,                  (18) 
 

where  T
1 11 21 31( , , )θ θ θ= �� �� ����θ , T

2 12 22 32( , , )θ θ θ= �� �� ����θ , 
T

1 11 21 31=( , , )f f ff , T
2 12 22 32=( , , )f f ff . 

 
3.2  Inverse dynamics 

In this section, the inverse dynamics of the 3-RRR 
RPKM is formulated by adopting the principle of virtual 
work. The inertia forces exerted at the mass center of the 
moving platform is  

 
T( , , )mx my Iϕ= − −�� �� ��F , 

 
where m is the mass of the moving platform which includes 
contributions of the payload and platform itself, I is the 
moment of inertia of the moving platform about its mass 
center. 

The rotation centers iA and iC (i=1, 2, 3) are respectively 
selected as pivotal points of drive and passive links to get 
the most effective derivation process. The centroid of the 
moving platform is selected as a pivotal point too. Thus, for 
the 3-RRR RPKM, the virtual work principle gives 

 
3

T T T T
1 1 1 2 2 2

1
( ) ( ) 0

i ic c
i
δ δθ τ θ δθ θ δ

=

+ − + − + =∑ �� ��r a I I P F , 

            (19) 
where  

ic iδ δ=r U p , 2
2 2ic i i i im m ϕ= − +�� �a U p Rc , 

 
1 0

0 1 ,

0 0 0

i

ii

y

x

−⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

Rc

RcU  
11

1 21

31

,
I

I
I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I  

 

12

2 22

32

I
I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I , 

 
Ii1 is the moment of inertia of the ith drive link about its 
pivotal point Ai, and Ii2 is the moment of inertia of the ith 
passive link about its pivotal point Ci. 
 
3.3  Inertia matrix in actuator space 

Simplifying Eq. (19) leads to the inverse dynamics 
equation of the 3-RRR RPKM. The required input torques 
of the driving joints can be obtained as  

 

e 1 eθ= +��τ I f ,     (20) 
 

3
T 1 T 1 1

e 1 2 1 2 2 2 1 1 1
1

i i
i

m− − − −

=

⎛ ⎞
′= + + +⎜ ⎟

⎝ ⎠
∑I J U J J I J J IJ I ,   (21) 

 
T

i i i′ =U U U , 

m
m

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I . 

 
Where fe is a matrix function about 2 2

1 2,θ θ� � and 2ϕ� , which 
has nothing to do with the inertia.  

Since the mass of passive links are the same, assume 
that 2 2 ( 1,2,3)im m i= = . As mentioned early, the moving 
platform frame ( )C O X Y Z′ ′ ′ ′ is established at the centroid of 
the moving platform, which is also its geometric center. 
Thus, the vector sum of ( 1,2,3)i i =c is zero. Substituting 

3

1
0i

i=
=∑c  and 2 2 ( 1,2,3)im m i= = into Eq. (21), a simplified 

equation can be obtained as 
 

T 1 T 1 1
e 1 2 1 2 2 2 1 1 1( )m− − − −′= + + +I J U J J I J J IJ I ,     (22) 

 
where  
 

3

1 2

3 0 0
0 3 0

0 0
i

i h=

⎡ ⎤
⎢ ⎥′ ′= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

∑U U . 

 
As shown in Eq. (22), due to the closed-loop structure of 

the parallel manipulator, the inertia matrix of the parallel 
manipulator in the actuator space is coupled. Thus, the 
algebraic expression of the equivalent inertia of the RPKM 
is unreachable. However, the mean of diagonal elements of 
the inertia matrix eI can be used as the numerical result of 
the equivalent inertia of the RPKM, which can be 
considered as the average distribution of the sum of the 
theory inertia. Instead of considering both orientation and 
position of the moving platform, assume the rotational 
angle of the moving platform about the Z-axis from the 
X-axis is permanent zero to simplify the calculation. 

 
4  Numerical Verification of the Equivalent 

Inertia 
 

Actual values of dynamic parameters of the 3-RRR 
reconfigurable planar parallel manipulator with aluminum 
rigid bars, as shown in Table 1, are substituted into the Eq. 
(22). Then, as shown in Fig. 4, the equivalent inertia is 
figured out in the required workspace, which is a horizontal 
circle with the radius of 250 mm [16].  

 
Table 1.  Practical values of parameters of the manipulator 

with aluminium bars 

Parameter Value 
Length of drive links  li1/ mm 400  
Moment of inertia of drive links  Ii1/(kg•m2) 0.012 
Mass of passive links  m2/kg 0.197 
Length of passive links  li2/mm 400  
Moment of inertia of passive links  Ii2/(kg•m2) 0.012 
Side length of the moving platform  h/mm 80 
Mass of the moving platform  m/kg 0.28 
Side length of the base  a/mm 900 
Moment of inertia of the moving platform  I/(kg•m2) 0.003 04  

(i=1,2,3) 
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Fig. 4 indicates that the range of the equivalent inertia of 
the reconfigurable parallel manipulator is from 29.87 10−×  

2kg mi  to 1 21.65 10 kg m−× i , and the equivalent inertia 
reaches its maximum at the edge of the required workspace. 
There are three gradient directions, along which the 
equivalent inertia increase sharply. These three directions 
are from the center of the workspace to positions of drive 
rotational joints approximately. Gradient directions show a 
little counterclockwise rotation, which is determined by the 
structure of the object. 

 
 

 
Fig. 4.  Equivalent inertia of the 3-RRR RPKM 

 
The 3-RRR parallel manipulator can be driven by one 

drive rotational joint with two others static. At this moment, 
the 3-RRR parallel manipulator is recursive to a serial 
multi-bar manipulator. Due to the nature that the moment of 
inertia is only affected by configuration and posture, the 
inertia problem of 3-RRR parallel manipulators can be 
reasonably recursive to that of serial manipulators. 
Although the motion of the serial multi-bar manipulator is 
different from that of the 3-RRR parallel manipulator, 
under the same posture, the inertia of the serial multi-bar 
manipulator converted to the actuator shaft well equals the 
inertia of 3-RRR parallel manipulator converted to each 
actuator in numerical. Thus, it can be used to verify the 
equivalent inertia deduced by the inertia matrix above.  

In order to verify the equivalent inertia of the object 
shown in Fig. 4, the inertia of the serial multi-bar 
mechanism converted to the actuator shaft is calculated in 
the same workspace (a 250-millimeter-radius circular 

plane), and the orientation angle of the moving platform is 
kept zero, too. Eqs. (3) and (4) are used to obtain the 
posture of the serial multi-bar manipulator in every position 
of the required workspace.  

Due to the circular symmetrical configuration of the 
3-RRR RPKM, assume that drive rotational joints A1 and 
A2 are static. Then, the serial multi-bar manipulator, which 
consists of B1C1, B2C2, the moving platform, B1C1 and 1 1A B , 
is actuated by the drive joint 3A . As all notations have been 
described in section 3, they are not repeated here. 

Forward vector loop equations can be written in the 
global frame as follows: 

 
1 12 12 1l+ = +r Rc s b ,            (23) 

 
2 22 22 2l+ = +r Rc s b ,             (24) 

 
3 31 31 32 32l l+ = +r Rc s s ,            (25) 

 
where 1 1 11 11A l= +b r s , 2 2 21 21A l= +b r s . 

Forward velocity mapping functions can be found by 
taking the derivative of Eqs. (23), (24), and (25) with 
respect to time: 

 
1 12 12 12l+ × = ×�r W Rc W s ,           (26) 

 
2 22 22 22l+ × = ×�r W Rc W s ,            (27) 

 
3 31 31 31 32 32 32l l+ × = × + ×�r W Rc W s W s .  (28) 

 
Taking the dot product of Eqs. (26), (27), and (28) 

correspondingly with 12 22,s s and 32s , the velocity of the 
moving platform can be described by the input angular 
velocity of the drive joint 3A  as 
 

31θ= ��Ap n ,    (29) 
where 
 

1 1

2 2

3 3

12 12 12 12

22 22 22 22

32 32 32 32

cos sin sin cos

cos sin sin cos

cos sin sin cos

Rc Rc

Rc Rc

Rc Rc

x y

x y

x y

θ θ θ θ

θ θ θ θ

θ θ θ θ

⎡ ⎤−
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎢ ⎦⎣

A . 

 
 
By using of Eqs. (1) to (4), unit vectors along passive 

and drive links can be obtained. Simultaneously, taking 
31θ� and �p  into Eqs. (26), (27), and (28), 12θ� , 22θ� and 
32θ� can be deduced. Further, according to the equivalent 

inertia principle of serial mechanisms, the inertia of the 
serial manipulator converted to the actuator shaft is 
obtained as 
 

2 2 2
load 31 2 31 32 32 31 12 12 31( / ) ( / )I I m l I Iθ θ θ θ= + + + +� � � �  

2 2 2 2
22 22 31 31 31 31( / ) ( / ) ( / ) ( / )I m x m y Iθ θ θ θ ϕ θ+ + +� � � � �� � � . 

 
Taking practical values of parameters, which are shown 
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in Table 1, into the above equation, the distribution map of 
the inertia of the serial multi-bar manipulator is obtained, as 
shown in Fig. 5.  

 
 

 
Fig. 5.  Inertia of the serial manipulator converted to the actuator 
 

Examination of Fig. 5 indicates following conclusions: 
(1) The range of the inertia of the serial manipulator 

converted to the actuator is from 2 27.60 10  kg m−× i  
to 1 21.35 10  kg m−× i , which verifies the equivalent inertia 
of the RPKM obtained in section 3 to some extent in value. 

(2) The distribution of the equivalent inertia of the 
RPKM, as shown in Fig. 4, can be regard as the stacking of 
inertias of serial manipulators independently actuated by 1A , 

2A and 3A  in turn, which verifies the equivalent inertia in 
distribution. 

In all, the equivalent inertia of the RPKM and the 
recursive method are mutually verified, can well reflect the 
distribution and value of the inertial load of the parallel 
manipulator converted to each actuator shaft. The result 
obtained through the recursive serial method is incomplete, 
and cannot replace the equivalent inertia deduced from 
inertial matrix. It is because the parallel manipulator is 
inherently coupled, which is missing in the recursive way. 
Besides, the equivalent inertia can be obtained conveniently 
from inverse dynamic formulations, which are already 
obtained in the calculation of required rated torque of 
actuators. Thus, the analysis and application, in the 
following sections, are all based on the equivalent inertia.  

 
5  Analysis 

 
In this section, analysis on the equivalent inertia of the 

3-RRR reconfigurable planner parallel manipulator is 
carried out.  

Examining Fig. 4, some useful conclusions can be drawn 
on the distribution of the equivalent inertia of the 3-RRR 
RPKM in the workspace. 

(1) The distribution of the equivalent inertia is circular 
symmetrical, which is determined by the configuration 
feature of the 3-RRR parallel manipulator. 

(2) The variation of the equivalent inertia reflects 
changes of Jacobian matrixes. And, clues can be found in 
Eq. (22).  

(3) In trajectory planning, since the equivalent inertia 
increases gradually from the centre to the edge in the 
required workspace, the region around centre should be 
fully utilized.  

(4) Although the required workspace of the 3-RRR 
RPKM is circular, the suggested workspace is triangular. 

Beneath, let’s take a closer look at contributions of each 
part of the 3-RRR RPKM to the equivalent inertia. 

According to differences of the physical meaning, Eq. 
(22) can be written as 
 

e 1 2 2′ ′′ ′= + + +I I I I I ,            (30) 
 

where 
T T 1

2 1 2 2 2 1
− −′ =I J J I J J ,            (31) 

 
T 1

2 2 1 1m − −′′ ′=I J U J ,              (32) 
 

T 1
1 1
− −′ =I J IJ .               (33) 

 
The motion of a rigid body can be divided into the 

rotation around some point and the movement with the 
point. 2′I , which is converted from the inertia matrix of 
passive link 2I , indicates the rotation of passive links about 
pivotal points iC . However, 2′′I , which is converted from 
the mass of passive links and the dimension matrix of the 
manipulator ( ′U ), indicates the movement of passive links 
with pivotal points iC . r, which is converted from the mass 
and inertia matrix of the moving platform I , indicates the 
motion of the moving platform. 1I is the inertia matrix of 
drive links, and can be converted to the actuator shaft 
directly without any change. 

By calculation separately, distributions of the equivalent 
inertia contributed by these three parts of the RPKM are 
obtained, as shown in Figs. 6, 7, and 8.  

Although drive and passive links possess the same 
mass and inertia, the contribution of passive links 

2 2′ ′′+I I  to the equivalent inertia is much larger than that of 
drive links. As shown in Fig. 9, the contribution percentage 
of passive links is as high as 66%. It’s because that the 
3-RRR planar parallel manipulator under this configuration 
can get a high terminal velocity while drive rotational joints 
rotate at relative low speeds. In other words, it is the type of 
manipulator with large speed amplification ratio, like Delta 
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and Diamond robots. The inertia and mass of passive links, 
therefore, should not be neglected when simplifying the 
inverse dynamics, especially in the process of the inertia 
match of the parallel manipulator with large speed 
amplification ratio. 

 
 

Fig. 6.  Contribution of ′2I  
 

 
 

Fig. 7.  Contribution of 2′′I  
 

 
 

Fig. 8.  Contribution of ′I  
 

 
Fig. 9.  Contribution percentages of each part 

 
6  Application 

 

In this section, the equivalent inertia of the RPKM is 
used to accomplish the inertia match of the 3-RRR 
reconfigurable planar parallel manipulator under three 
different stiffness configurations. The manipulator is 
equipped with light flexible bars, rigid aluminum bars and 
rigid steel bars in turn. The servo motor is selected first 
according to the rated torque and power, and its moment of 
inertia is 3 22.6 10  kg m−× i . Considering that the equivalent 
inertia should be less than three times of the motor inertia 
to obtain good dynamic performance (generally referring to 
acceleration and deceleration capacities) while the 
recommended ratio is 2.5[17], the inertia match is 
accomplished by matching appropriate reducers. 

 
Table 2.  Inertia match result 

Bar suite 
Reduction 

ratio 

Maximal 
equivalent 

inertia 
Iemax/( kg•m2) 

Performance 
without 
reducers 

Performance 
with 

reducers 

Light flexible
bars 

1:3 6.18×10–2 Acceptable Good 

Alumi-nium 
bars 

1:5 1.65×10–1 Poor Good 

Steel bars 1:8 4.28×10–1 
Out of 
control 

Good 

 
As shown in Table 2, without reducers, when equipped 

with light flexible bars, the dynamic performance of the 
manipulator is barely acceptable. But when equipped with 
steel bars, the manipulator is uncontrollable and vibrates 
fiercely. And, when equipped with aluminum bars, the 
manipulator is under control, but the dynamic performance 
is poor. However, the manipulator, when matched with 
corresponding reducers, can work well in different 
configurations. Finally, the inertia match of the 3-RRR 
reconfigurable planar parallel manipulator is accomplished, 
which also proofs the necessity of the inertia match and the 
practicality of the equivalent inertia.  
 
7  Conclusions 

 
(1) In order to guarantee excellent kinematics and 

dynamics performance, when choosing motor, the inertia 
match of the parallel manipulator should be fulfilled on the 
basis of matches of required maximum speed, maximum 
torque, rated power, and so on.  

(2) The inertia matrix of the 3-RRR reconfigurable 
planar parallel manipulator can be obtained on the basis of 
the inverse dynamic formulation derived by adopting the 
principle of virtual work. 

(3) On the basis of inverse dynamics, the equivalent 
inertia of the parallel manipulator is a convenient and 
practical way to accomplish the inertia match.  
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(4) In the process of calculating the equivalent inertia of 
the 3-RRR parallel manipulator, the inertia and mass of 
passive links should not be neglected when simplifying the 
inverse dynamics, especially for the configurations with the 
large speed amplification ratio feature. 

(5) According to the distribution of the equivalent inertia 
of the 3-RRR RPKM, the suggested workspace is 
triangular. 

(6) Since the equivalent inertia increases gradually with 
the platform moving from the geometric centre to the edge 
in the required workspace, the 3-RRR RPKM can get better 
dynamic performance when the platform moves around the 
workspace centre.  
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