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Abstract

The Nash equilibrium is the central pillar of modern non-cooperative game theory

with a wide range of applications. Based on the references, I will demonstrate

my learning process about Nash equilibrium. This is followed by a proof of the

existence of Nash equilibrium and some examples. In this report, I also include a

review of graph theory and linear programming in professor Zhang’s class.

Keywords: Nash Equilibrium; Kakutani Fixed Point Thm; Course Review

1 Introduction

Formally, in a non-cooperative game with normal-form G = 〈N, {Si}ni=1, {vi}ni=1〉, the

mixed-strategy profile σ∗ = (σ∗1, σ
∗
2, . . . , σ

∗
n) is a Nash equilibrium if for each player, σ∗i is

a best response to σ∗−i. That is,

∀i ∈ N, vi
(
σ∗i , σ

∗
−i
)
≥
(
σi, σ

∗
−i
)
∀σi ∈ ∆Si

Intuitively, when individual rational player cannot benefit more by changing strategy

with the other players’ strategies remaining statu quo, the current strategy profile and

the corresponding payoffs consitutues a Nash equilibrum(NE).

Aware of the vital importance of Nash equilibrium and impressed by the character

of John Forbes Nash Jr in ’A beautiful mind’, I have been looking forward to delving

into Nash equilibrium. Starting from what is covered in class, I finished reading chap-

ters 1-6 of Steven Tadelis’s Game Theory An Introduction [1]. Also, some references to
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Fudenberg’s[2], as well as open MIT course [3] and open Yale course[4], help shed light

on the structure of game theory.

In section 2, I explore the history of Nash equilibrium and quote some applications.

From what I have learned about the minmax equilibrium of zero-sum finite game in class,

I will introduce some core concepts and definitions in order to step into NE. However,

due to the technical difficulty, I’d like to restrict our attention in static games with

complete information. Also, rationality and common knowledge of rationality should be

guaranteed.

In section 3, with my understanding and experience about NE, I will give some analysis

of NE in the aspects of existence, uniqueness, and invariance/stability, just like every

equilibrium in other solution concepts. In the mean time, intuitively, I try to make some

comparisons of equilibria in other subjects like Static Mechanics, PDE and Stochastic

Process.

In section 4, I head back to the John Nash’s famous existence theorem. Equipped with

the knowledge from Real Analysis[6] and Functional Analysis[7], after a sketchy proof of

Kakutani’s fixed point thm, I will try to show the proof of Nash’s Existence Theorem in

details and carefully verify the specific conditions.

In the following section, from the perpective of NE, I present the typical example

Prisoner’s Dilemma to illustrate the critical concepts argued above. Then, I introduce

Matching Pennies to give some flavor to the computation of NE. In the last example, I

lay out some further ideas about relationship between pure-strategy and mixed-strategy

NE.

In the section of course review, after recalling what is covered about graph theory

and linear programming in class, I give some reflections and puts forth several questions.

In the graph theory, minimum spnning tree, shortest path problem, max-flow min-cut

theorem and min-cost max-flow problem are revisited. As for linear programming, I will

conduct the simplex algorithm step by step in a specific example. Duality, important in

many ways, will be given further consideration.

Finally, I will draw some conclusions and write further notes in which I will analyze

both the advantages and disadvantages of this article, followed by my sincere acknowl-

edgements.

Remark Instead of being a research paper, this article should serve as a learning report

which maybe and reasonally includes some parts far from being outright original. The

author would like to avoid the originality problem and claim that every word is written

after aborbing the related knowledge throughly.
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2 Background of Nash Equilibrium

2.1 History

In this subsection, I will introduce the brief history of game theory while trying to make

connections to NE and the contents of optimization class. Following the timeline, I in-

clude some of my own opinions and reflections.

Early before the rise of modern game theory marked by the contributions of John von

Neumann and Oskar Morgenstern, the first known discussion of game theory occurred in

a letter about Waldegrave problem in which James Waldegrave provides a solution to a

two-person version of the card game le Her, in 1713.

In his 1838 ”Research into the Mathematical Principles of Theory Wealth”, Antonie

Augustin Cournot considered a duopoly and presents a solution that is a restricted ver-

sion of the Nash equilibrium. In the chapter 4 of Tadelis’s[1], it introduces the example of

Cournot Duopoly to illustrate a the concept of Iterated Elimination of Strictly Dom-

inated Pure Strategies (IESDS). By IESDS, we can rule out the strictly dominated

strategies iteratedly to reach a smaller set of strategy profiles called IESDS equilibrium

in the solution concept IESDS. I think it worth mentioning that IESDS is based on the

rationality of the players and the common knowledge of rationality among the players

in the game, because a rational player will never choose to ignore the possible situations

without assuring that his opponents won’t take the corresponding strategies. With the

background omitted, the procedure of IESDS in Cournot Duopoly is presented in Figure

1.

Figure 1: IESDS convergence in the Cournot game
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Question What is Nash equilibrium? Or by what kind of solution concept the NE is

predicted? How to analyze and predict the decisions of players?

In 1913, Ernst Zermelo published On an Application of Set Theory to the Theory of

the Game of Chess. It proved that optimal chess strategy is strictly determined, which

paved the way for more generay theorems.

Remark I believe most students are familiar with Zermelo-Fraenkel axiomatic set the-

ory. Along with the choice axiom, the ZF-C axiomatic set theory is the base of most

modern mathematical disciplines. To illustrate, many theorems like Hahn-Banach Theo-

rem or Tychonoff Product Theorem, as crutial as cornerstones, are derived from the choice

axiom or its equivalents. Hence the application of set theory implies the essential role of

game theory in some sense.

As time went by, the modern game-theoretic concept of Nash equilibrium is instead

defined in terms of mixed strategies, where players choose a probability distribution over

possible actions. The concept of the mixed-strategy Nash equilibrium was introduced by

John von Neumann and Oskar Morgenstern in their 1944 book The Theory of Games

and Economic Behavior. However, their analysis was restricted to the special case of

zero-sum games. They showed that a mixed-strategy Nash equilibrium will exist for any

zero-sum game with a finite set of actions.

Course Review In the beginning of optimization method class, professor Zhang intro-

duced the standard notations in game theory and the simplified history, especially the

origin of modern game theory.

Following John von Neumann’s steps, prof. Zhang focused on the zero-sum games

and expressed the equilibrium in the solution concept of minmax principle. Afterwards,

professor Zhang proved the saddle point condition in both pure-strategy and mixed-

strategy game, which serve as a useful theoretical principle to decide whether a specific

strategy profile is a equilibrium. In my opinion, one of the obvious advantages of zero-

sum game is that, since condition of zero-sum can reduce the ’degree of freedom’ by 1

and lay a retriction of payoffs, game theorists are allowed to replace payoff matrix with

’gain matrix’.

To achieve higher practivity, we learned several equivalent theorems of saddle point

principle, one of which is of linear-programming version. From this LP-version theorem

plus the strict duality theorem in LP, professor Zhang proved the existence of the equilib-

rium in mixed-strategy game, which was obtained by the great mathematican John von

Neumann sixty years ago! Personally, I really admire John von Neumann for his ground-

breaking contributions to so many areas like PDE, topology, ergodic theory, computer
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science. . .

As for the computation of solution in mixed-strategy game, we mainly learned three

kinds of methods. The first one is graphical method, which can not be effectively applied if

there are more than three strategies. The second method is derived from linear-equation-

version of the aforementioned principle. However, it requires the chosen probability

vector
−→
X >

−→
0 in the usual partial order of Rn. The last method is LP. Among all the

algoritms to solve LP probelms Interior-point method and Simplex method are famous.

The Simplex Algorithm will be conducted in section 6.2. By the way, our famous HUST

alumnus, professor Yinyu Ye from Stanford U, as well as a John von Neumann Theory

Prize laureate, works on mathematical optimization, especially Interior-point method.

Remark In the above review, it is not difficult to perceive the two places where LP

is used, leading to the review of LP in section 6.2. Now that the main content of game

theory in our class locates here, where is our target–the Nash equilibrium?

The contribution of Nash in his 1951 article ’Non-Cooperative Games’ was to define

a mixed-strategy Nash equilibrium for any game with a finite set of actions and prove

that at least one (mixed-strategy) Nash equilibrium must exist in such a game. The

key to Nash’s ability to prove existence far more generally than von Neumann lay in his

definition of equilibrium. According to Nash, ”an equilibrium point is an n-tuple such

that each player’s mixed strategy maximizes his payoff if the strategies of the others

are held fixed. Thus each player’s strategy is optimal against those of the others.” Just

putting the problem in this framework allowed Nash to employ the Kakutani fixed-point

theorem in his 1950 paper, and a variant upon it in his 1951 paper used the Brouwer

fixed-point theorem to prove that there had to exist at least one mixed strategy profile

that mapped back into itself for finite-player (not necessarily zero-sum) games, namely,

a strategy profile that did not call for a shift in strategies that could improve payoffs.

Player2

Player1

L C R

U 7, 7 4, 2 1, 8

M 2, 4 5, 5 2, 3

D 8, 1 3, 2 0, 0

Table 1: From von Neumann’s equilibrium to NE

Remark There it is! In Table 1, the bold strategy (M,C) is decided by best-response

correspondence, a generation of minmax principle of zero-sum game. Nash equilibrium

is a generation of the equilibrium introduced in our class which captures the essential

idea of a equilibrium. Non-cooperative means self-enforcing where individual player
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seeks to maximize his own profits with horizon ”restricted”, matching the selfishness in

human nature. In the author’s opinion, the sadness of non-cooperative can be illustrated

in Tragedy of the Commons. However, for the purpose of academical research, selfish

incentives is indispensable in prediction. On the other hand, in cooperative game, a third

party can enact laws to ”control” the players’ actions. The Prisoner’s Dilemma in sec-

tion 5.1 will illustrate this scenario. The meaning of non-cooperative can also be felt in

the definition of NE where individual cannot improve payoff as long as the others refuse

to change their strategies. Last but not least, the existence of NE and the Kakutani

fixed-point theorem will be revisted in section 4.

Since the development of the Nash equilibrium concept, game theorists have discov-

ered that it makes misleading predictions (or fails to make a unique prediction) in certain

circumstances. They have proposed many related solution concepts (also called ’refine-

ments’ of Nash equilibria) designed to overcome perceived flaws in the Nash concept.

One particularly important issue is that some Nash equilibria may be based on threats

that are not ’credible’. In 1965 Reinhard Selten proposed subgame perfect equilibrium

as a refinement that eliminates equilibria which depend on non-credible threats. How-

ever, subsequent refinements and extensions of the Nash equilibrium concept share the

main insight on which Nash’s concept rests: all equilibrium concepts analyze what

choices will be made when each player takes into account the decision-making

of others.

Remark Ultimatum Game can shed light on the subgame perfect equilibrium and non-

credible threats, but it costs a huge amount of efforts to delve further into the applications

and modern developments of NE. With a wide range of application, game theory has

become a heated research area in many disciplines nowadays while our attention will be

restricted in static games with complete information in the following sections.

2.2 Applications

As is mentioned for many times, both from the nature and principle of NE, Nash equi-

librium has gained a huge variety of applications, resulting in NE’s critical role in game

theory as well as in the modern society.

Game theorists use the Nash equilibrium concept to analyze the outcome of

the strategic interaction of several decision makers. In other words, it provides

a way of predicting what will happen if several people or several institutions

are making decisions at the same time, and if the outcome for each of them

depends on the decisions of the others. The simple insight underlying John

Nash’s idea is that one cannot predict the result of the choices of multiple
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decision makers if one analyzes those decisions in isolation. Instead, one must

ask what each player would do, taking into account the decision-making of

the others.

Nash equilibrium has been used to analyze hostile situations like war and

arms races, and also how conflict may be mitigated by repeated interaction.

It has also been used to study to what extent people with different prefer-

ences can cooperate, and whether they will take risks to achieve a cooperative

outcome. It has been used to study the adoption of technical standards, and

also the occurrence of bank runs and currency crises. Other applications in-

clude traffic flow, how to organize auctions, the outcome of efforts exerted by

multiple parties in the education process, regulatory legislation such as envi-

ronmental regulations, natural resource management, analysing strategies in

marketing, and even penalty kicks in football.

Reflection With the assitance of references, surely I have read and understood many

typical examples of aforementioned applications at an introductory level. As for our daily

life, I do think out a game when I am typing this line. Imagine that it is raining outside,

while, in the dormitory, both my roommate and I don’t want to go to West One Dinning

Hall for lunch at 12 am. Also, if only one person choose to go, he shoud buy a lunch

for the other one. If both go outside, they will get wet in the rain and become unhappy.

Finally, if both choose to stay, we will be hungry, which is more serious than getting wet.

Moreover, my roomate is more lazy than me. The payoff matrix is listed below.

Roommate

Me

Go Stay

Go -1, -2 -4, 1

Stay 0, -5 -3, -3

Table 2: Payoff matrix of HUST Lunch Dilemma

Analysis With the aforementioned IESDS, both of us will prefer to stay in the dor-

mitory and starve, leading to a Nash equilibrium! However, following our instinct, this

equilibrium is not Pareto Opitimal. In mathematics, Pareto Opitimal is a maximial ele-

ment in the poset consisting of payoff vectors. Further analysis lies in section 5.1 where

there is a game similiar to HUST Lunch Dilemma. Of course, this example is really

primitive and fails to demonstrate the vital importance of NE in enconomics or political

science, because, in the practice, except the classic examples like Bertrand Duopoly of

Prize Competetion or Political Ideology and Electoral Competition, I think the dynamic

game of incomplete information often arises and dominates.
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3 Evaluating Nash Equilibrium

3.1 Existence

Nash has proved the existence for any non-cooperative mixed-strategy finite game with

fixed point theorems. I leave this job in the next section. What I should mention is that

the condition of mixed-strategy implies the convexity and allows richer space of strategis

and beliefs–possible strategies player believe his opponents could choose, thus ensuring

the existence.

1. Firstly, convexity condition is essential in most fixed point theorems including

Brower’s, Kakutani’s and Schauder’s.

2. Secondly, convexity is important in applied mathematics including convex analysis,

linear programming and Supported Vector Machine(SVM) in classfying problem of

mathematical modeling.

3. Last but not least, I believe the essence and nature of convexity should be found in

pure mathematics. Locally convex topological space is one of the most important

object in Functional Analysis, for example, the Hyperplane Seperation Theorem and

the Krein-Milman Theorem considering the extreme points in convex compact set.

In some sense, I think the extreme points are like the basic feasible solutions in LP.

However, much more is waiting for me to find out about convexity. Moreover, the

mixed-strategy resembles the uncertain world by allowing players to choose strategies

stochastically. As for finding a NE, mixed-strategy shifts the discrete situation into a

continuous one which provides the tools in calculus like differential.

On the other hand, the conditions where the existence is not guaranteed are not

rare. Nash equilibrium need not exist if the set of choices is infinite and noncompact.

A simple example is when two players simultaneously name a natural number with the

player naming the larger number wins. If the two firms have different marginal prices, the

Bertrand Duopoly about price competition can also serve as an excellent instance failing

to have a NE.

3.2 Uniqueness

If a non-cooperative game has a unique NE, surely the corresponding strategy profile will

be adopted, hence we can predict the strategies precisely. However, NE may have its

companions if there exists one.

With the background information omitted for convinience, the following example has

three Nash equilibria. The payoff matrix is listed below.
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Player2

Player1

A B C

A 0, 0 20, 30 5, 10

B 37, 22 0, 0 5, 15

C 8, 4 13, 2 9, 10

Table 3: Game with three NE

It is not difficult to discern the three Nash equilibria bold in this pure-strategy game.

However, the values of the entries of payoff matrix are designed by myself deliberately.

In the section 5.3, a more fruitful example is evaluated by generating a mixed-strategy

NE from two obvious pure-strategy Nash equilibria.

3.3 Stability/Invariance

Just like many other equilibria, the stablity of Nash equilibrium should also enjoy con-

siderable attention.

Importance Stablility intuitively means that a small perturbance won’t affect the equi-

librium too much or even results in nothing. In PDE, we do not want the little inaccu-

racy of parameters, inital condition, boundary condition or maybe ’right-hand function’

to cause huge variation of the solution. On the other hand, we concern about different

kinds of stability like Lyapunov Stability or Global Stability of equilibrium points. The

motivation is that people cannot measure the condition precisely because the whole exist-

ing measure system is ’discrete’ and approximation is usually the best choice, attaching

vital importance to stability.

For the similiar reason, stability is crucial in practical applications of Nash equilibria,

since the mixed strategy of each player is not perfectly known, but has to be inferred from

statistical distribution of their actions in the game. Be aware that the Nash equilibrium

defines stability only in terms of unilateral deviations due to the self-enforement/non-

cooperative in the definition of NE.

Remark As for the small perturbance, a fluctuation of the number of players or strate-

gies shouldn’t be considered minute while it is likely to cause a completely different NE.

Take the extreme case of two-player game with two strategies as example, no one can

deny the great influence caused by the change in the size of the game. However, a recall

of professor Zhang’s lecture reveals that the solution in class is indeed stable with minute

fluctuation of the values of payoff function. Since most payoff matrix/gain matrice given

in class consist of exclusively integer entries, a small change, say 0.1, to payoff won’t affect

the players’ choice of strategy profile. But it is rare to witness this scenario in mixed-
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strategy games because the NE in mixed-stratey is essentially the precise proportion of

the pure-strategy.

4 Existence of Nash Equilibrium

Theorem 1 Nash’s Existence Theorem Any n-player normal-form game with finite

strategy sets Si for all players has a Nash equilibrium in mixed strategis.

The necessarity of mixed-strategy has been intuitively discussed in section 3.1. To begin

with, I present the abstract Kakutani’s fixed point theorem in the chapter 5 of Fuctional

Analysis[7], leaving out the version in Real Analysis [6] (Because in chapter 22 of [6],

Kakutani’s fixed point theorem is proved in order to obtain the existence of Haar measure

that I think deviates from what we aquire. )

Theorem 2 Abstract Kakutani’s Fixed Point Theorem Suppose that

(a) K is a nonempty compact convex set in a locally convex space X;

(b) G is an equicontinuous group of affine maps taking K in to K.

Then G has a common fixed point in K.

Sketch of Proof. Proof by contradiction.

On the one hand, firstly, use Hausdorff Maximality Theorem or Zorn’s Lemma to

contruct a minimal compact convext set Q invariant under maps of G, then apply the

equilcontinuity to get two points x and y whose image can’t be too close under any map

T in G.

On the other hand, by the Krein-Milman Theorem and the property of extreme point

p, we get x∗ = y∗ in the closure of G-orbit of x and y respectly, leading to a contradiction.

Back to NE, we define the collection of best-response correspondences, BR ≡ BR1 ×
BR2 × · · · × BRn maps ∆S = ∆S1 × ∆S2 × · · · × ∆Sn, the set of profiles of mixed

strategies, onto itself. That is, BR : ∆S ⇒ ∆S takes every element σ ∈ ∆S and converts

it into a subset BR (σ) ⊂ ∆S. The following fact comes as a direct consequence:

Fact A mixed-strategy profile σ∗ ∈ ∆S is a Nash equilibrium iff it is a fixed point of

BR, that is σ∗ ∈ BR (σ∗).

The biggest difficulty to apply the theorem 2 is that BR is the multivalued/set-

valued function instead of a function/map. To solve this, I indeed try to use the concepts

like equivalent class, but in vail. To construct endomorphisms, I thougt out Fi (σ) :=

(BRi (σ−i) , σ−i) which still fails to be a function let alone the surgectivity and injectivity.
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Hence, the biggest problem is how to deal with the set-valued function/ correspondence.

The following variant of Kakutani’s fixed point thm is proposed for the situation.

Theorem 3 Kakutani’s Fixed Point Theorem for correspondence A correspon-

dence C : X ⇒ X has a fixed point x ∈ C (x) if four condition are satisfied:

1. X is a non-empty, compact, and convex subset of Rn;

2. C (x) is non-empty for all x;

3. C (x) is convex for all x;

4. C has a closed graph.

Now, we verify the four conditions of theorem 3:

1. BR : ∆S ⇒ ∆S operates on ∆S. If the size of Si is mi, then X is the direct

product of n unit cubes in Rmi , which is non-empty, convex, and compact subset

of R
∑n

i=1 mi .

2. Since vi (σ−i) is a continuous linear function on unit cube in Rmi , the best-reponse

BRi (σ−i) is non-empty by the extreme value theorem.

3. Since each set BRi (σ−i) is convex, the direct product, BR (σ) is convex.

4. In my opinion, the last condition is the greatest strength of theorem 3. Though

the closed graph theorem doesn’t suit here due to the multivaluedness, the fourth

condition implies the continuity of BR in some sense. Consider a sequence of mixed-

strategy profiles {
(
ξni , ξ

n
−i
)
}∞n=1 and a best-response sequence {

(
σn
i , σ

n
−i
)
}∞n=1 where(

σn
i , σ

n
−i
)
∈ BR

(
ξni , ξ

n
−i
)
. The reason why we can do this is that by Bolzano-

Weierstrass theorem, we can always find a convergent subsequence. So we let

limn→∞
(
ξni , ξ

n
−i
)

= (ξi, ξ−i) and limn→∞
(
σn
i , σ

n
−i
)

= (σi, σ−i).

To conclude that BR(X) is closed, what’s left is to verify (σi, σ−i) ∈ BR (ξi, ξ−i).

By the continuity and the inequality vi
(
σn
i , ξ

n
−i
)
≥
(
si, ξ

n
−i
)
,∀si ∈ ∆Si , we have

vi (σi, ξ−i) ≥ (si, ξ−i) ,∀si ∈ ∆Si. This implies that σi ∈ BRi (ξ−i). Since i is

arbitrary, we prove that (σi, σ−i) ∈ BR (ξi, ξ−i).

By theorem 3 and the above detailed verifications, indeed, we prove the Nash’s Ex-

istence theorem. However, as a student majoring in mathematics, I should try to find

some materials to study the properties of multivalued functions, thus making up the gap

between theorem 2 and theorem 3.
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5 Typical Examples

In this section, three classic games with discrete strategy set are introduced to demon-

strate the important results about NE. Among the games with interval strategy set,

interesting instances won’t be included, for example, Tragedy of Commons for compu-

tation, Cournot Duopoly for the uniqueness, Bertrand Duopoly for elaborate analysis of

the existence, and Electoral Competition for application in political science.

5.1 Prisoner’s Dilemma

Description of background The Prisoners Dilemma is perhaps the best-known ex-

ample in game theory, and it often serves as a parable for many different applications in

economics and political science. It is a static game of complete information that repre-

sents a situation consisting of two players who are suspects in a serious crime, say, armed

robbery. The police has evidence of only petty theft, and to nail the suspects for the

armed robbery they need testimony from at least one of the suspects. The police decides

to be clever, separating the two suspects at the police station and questioning each in

a different room. Each suspect is offered a deal that reduces the sentence he will get

if he confesses, or finks (F), on his partner in crime. The alternative is for the suspect

to say nothing to the investigators, or remain mum (M), so that they do not get the

incriminating testimony from him.

The payoff of each suspect is determined as follows: If both choose mum, then both

get 2 years in prison because the evidence can support only the charge of petty theft. If,

say, player1 mums while player2 finks, then player1 gets 5 years in prison while player2

gets only 1 year in prison for being the sole cooperator. The reverse outcome occurs if

player1 finks while player2 mums. Finally, if both fink then both get only 4 years in

prison. Because it is reasonable to assume that more time in prison is worse, we use

the payoff representation that equates each year in prison with a value of -1. Its payoff

matrix is represented below:

Prisoner 2

Prisoner 1

M F
M -2, -2 -5, -1
F -1, -5 -4,-4

Table 4: Payoff matrix of Prisoner’s Dilemma

For what I understand, the importance of Prisoner’s Dilemma lies in the following

aspects.

1. It can clearly illustrated the concept of strict dominance. In the game, for any

player, the stategy F is always better with the opponent’s strategy fixed. Based on

strictly dominated strategy, IESDS can be introduced as the first solution concept.
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2. As a sister solution concept, the rationalizability can arise from concept of the best-

response. In the game, strategy M is never a best response to any belief, thus being

eliminated in the process of obtaining rationalizable strategies.

3. Both of aforementioned two solution concepts require rationality and common

knowledge of rationality, which are also the bases of NE.

4. Revisiting the Perato optimality, while strategy (F, F ) is the unique Nash equilib-

rium, we can find it is Perato dominated by stratety (M,M).

From points 1-3, I can draw a conclution as a demo. In set the of all strategies,

{s|s is a NE} ⊆ {s|s is a rationalizable solution} ⊆ {s|s survives IESDS}

As for the point 4, the failure of Pareto optimality implies that the players would

benefit from modifying the environment in which they find themselves to create other

enforcement mechanismsfor example, punishing those who fink.

To explicitly see how this can work, if the pain from punishment is equivalent to

z, then we have to subtract z units of payoff for each player who finks. The modified

Prisoner’s Dilemma is represented by the following matrix

Prisoner 2

Prisoner 1

M F
M -2, -2 -5, -1-z
F -1-z, -5 -4-z,-4-z

Table 5: Modified Prisoner’s Dilemma

If z is strictly greater than 1, then this punishment will be enough to flip our predicted

equilibrium outcome of the game, because then M becomes the strict dominant strategy,

as well as NE and Pareto optimality. From this, the flavor of self-enforcement/non-

cooperative is obvious. And institutional design/cooperative contract can guide players

to a best situation, leading to the necessarity of managements from government.

5.2 Matching Pennies

In the matching pennies game, two players put two coins on the table simultaneously. If

both heads or tails, player 2 wins while player 1 wins if the sides of coins are different.

To compute the mixed-strategy Nash equilibrium, assign player 1 the probability p of

playing H and (1−p) of playing T, and assign player 2 the probability q of playing H and

(1− q) of playing T. The similar games include rock-paper-scissors and Penalty Goal.

v1 (H, q) = (−1) q + (+1) (1− q) = 1− 2q
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Player 2

Player 1

H T
H -1, +1 +1, -1
T +1, -1 -1, +1

Table 6: Payoff Matrix of Matching Pennies

v1 (T, q) = (+1) q + (−1) (1− q) = 2q − 1

v1 (T, q) = v1 (H, q) =⇒ 1− 2q = 2q − 1 =⇒ q =
1

2

In the same way, p =
1

2
. Thus a mixed-strategy Nash equilibrium, in this game, is for

each player to randomly choose H or T with p =
1

2
and q =

1

2
. The above computation

use a important proposition about NE. That is,

Proposition 1 If σ∗ is a Nash equilibrium, and both si and s′i are in the support of σ∗i ,

then

vi
(
si, σ

∗
−i
)

= vi
(
s′i, σ

∗
−i
)

= vi
(
σ∗i , σ

∗
−i
)

Intuitively, the proposition implies the logic that if a player is mixing several strategies

then he must be indifferent between them. This logic has been used implicitly in the

verification of the convexity of BRi (σ−i) in section 4.

5.3 Multiple Equilibria

Consider the flollowing game:

Player 2

Player 1

C R
M 0, 0 3, 5
D 4, 4 0, 3

Table 7: Payoff Matrix of Matching Pennies

It is easy to check that (M, R) and (D, C) are both pure-strategy Nash equilibria.

It turns out that in 2 × 2 matrix games like this one, when there are two distinct pure-

strategy Nash equilibria then there will almost always be a third one in mixed strategies.

For this game, a computaion similar to Matching Pennies yields the third Nash

equilibrium:
(
σ∗i , σ

∗
−i
)

=
((

1
6
, 5
6

)
,
(
3
7
, 4
7

))
.

Using the payoff functions v1 (M, q) and v1 (D, q) , we have

BR1 (q) =


p = 1 ifq ≤ 3

7

p ∈ [0, 1] ifq = 3
7

p = 0 ifq ≥ 3
7
.
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Similarly, the best response correspondence for player 2 is

BR2 (p) =


q = 1 ifp ≤ 1

6

q ∈ [0, 1] ifp = 1
6

q = 0 ifp ≥ 1
6
.

Now, we draw the two best-response correspondences as they appear in Figure 2.

Figure 2: Best-response correspondences and Nash equilibria

Notice that all three Nash equilibria are revealed in Figure 2: (p, q) ∈ {(1, 0)
(
1
6
, 3
7

)
(0, 1)}.

From the definition of NE in introduction section 1, we can conceive the NE are the in-

tersection of the subsets constructed from the best-response correspondences of all the

players in the set of all the possible strategy profiles.

6 Course Review

6.1 Graph Theory

Starting from the basic notations in graph theory,

MST We learned about the minimum spanning tree along with two classical algorithms

both of which are greedy!

SPP Then we moved to another classical problem of shortest path along with Dijkstra

Algorithm solving the problem with non-negative edge weights and Bellman-Ford

Algorithm solving the problem in which edge weights allowed to be negative. With

Matlab, I constructed typical examples for each of these two algoritms. The exam-

ples are attached as appendix 6.2.2 in the end.
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MFMC Max-flow min-cut problem is another important problem in class. Professor Zhang

proved the Max-flow min-cut theorem– The maximum value of an s-t flow is

equal to the minimum capacity over all s-t cut, based on which the Ford–

Fulkerson algorithm is introduced in class.

Residual graph Gf (V,Ef ) is introduced to find a argumenting path in the process

of Ford–Fulkerson algorithm. A path from s to t in Gf can be understood as a

augmenting chain in the original graph G (V,E) and the minimal weight on the

path is the amount of flow you can increase through the corresponding augmenting

chain. By iteration, you will reach a situation where you can not find a path from

s(source) to t(sink) in Gf any more.

Further reflection: Since the Max-flow min-cut theorem only ensure that if the algo-

rithm terminate, the flow is maximal. But whether the algorithm will terminate in

the end? As a question should be asked to every algorithm, what is the computation

complexity of Ford–Fulkerson algorithm?

MCMF Min-cost max-flow problem is the final problem discussed in class, which is to find

the maximum flow with the minimum cost. The first step in each iteration is to

find the shortest path from s to t in the graph Ge (V,Ee) with extra edges. The

auxiliary graph Ge allows to reduce the flow in some edge. Then flow fn is modified

based on the corresponding shortest path in Ge to increase the value of the flow

fn+1 of next iteration with minimum cost per unit flow.

Notice that the algorithm used to find shortest path should not be Dijkstra Algo-

rithm, because weights in Ge (V,Ee) can be negative.

Remark A quick reference to [8] shows that max-flow min-cut theorem is a special case

of strict dual theorem in LP between the primal max-flow problem and the dual min-cut

problem, strengthening the necessarity of the review of linear programming.

Graph theory itself is a heated research area nowadays. Apart from the wide appli-

cations, to my knowlege, my roommate Yuyao Zhai will aquire for a Phd setting graph

theory as his researh interest. Also, I read a paper about fractal geometry[9] in which

the techniques in graph theory are surprisingly used to calculate Hausdorff dimension of

Bernoulli Convolution. Although, in that paper, it concentrates more on constructing

a graph instead of studying a existed graph, the power and unbiquity of graph theory

is remarkable. Of course, besides what is covered in class, a large amount of knowledge

about graph theory is waiting for me!
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6.2 Linear Programming

6.2.1 Simplex Method

For the convenience, the backgroud of the linear programming problem is omitted. How-

ever, one should not consider it as a consequence of the author’s downplaying the role

of modeling for specific problems, on the contrary, the ability to contruct a reasonable

mathematical model is the first crucial step to solve a problem. As a famous saying from

computer science goes, ’Garbage in, garbage out.’ If we made a flawed assumption, the

result of our model will be totally wrong.

The first step of LP is using slack variables, surplus variables and restricted variable

subsitution to translate the original problem into a standard form. However, as a key

to start simplex algorithm, the initial basic feasible solution is important, which is also

emphasized by professor Zhang. Hence, in the following example, as is suggested by

professor Zhang, artificial variables are used to solve this problem.

Consider the following linear program:

Minimize: Z = −2x− 3y − 4z

Subject to: 3x+ 2y + z = 10

2x+ 5y + 3z = 15

x, y, z ≥ 0

In the following, LP will be manipulated in tableau form. This tableau is slightly

different from the class, but essentially the same.

Step1 Translate the above LP into tableau form,1 2 3 4 0

0 3 2 1 10

0 2 5 3 15


Step2 Introduce artificial variables u and v and objective function W = u + v, giving a

new tabeau, 
1 0 0 0 0 −1 −1 0

0 1 2 3 4 0 0 0

0 0 3 2 1 1 0 10

0 0 2 5 3 0 1 15


Note that the equation defining the original objective function is retained in antic-

ipation of Phase II of the Two Phases Method introduced in class.
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Step3 After pricing out by adding the last two rows to the top row, this becomes
1 0 5 7 4 0 0 25

0 1 2 3 4 0 0 0

0 0 3 2 1 1 0 10

0 0 2 5 3 0 1 15


Then we start the pivot operation. The entering variable should be chosen in the

free variables whose objective row is positive in a minimize problem. After select-

ing column 5 as pivot column(entering variable), the pivot row 4(leaving variable)

should be selected based on the minimum ratio test suggested in class. The updated

tableau is 
3 0 7 1 0 0 −4 15

0 3 −2 −11 0 0 −4 −60

0 0 7 1 0 3 −1 15

0 0 2 5 3 0 1 15


Step4 Now, the column 4 and column 5 become the basic variables, so repeat the actions

in Step3. Now select column 3 as a pivot column, for which row 3 must be the pivot

row, to get 
1 0 0 0 0 −1 −1 0

0 7 0 −25 0 2 −10 −130

0 0 7 1 0 3 −1 15

0 0 0 11 7 −2 3 25


Step5 The artificial variables are now 0 and they may be dropped giving a canonical

tableau equivalent to the original problem:7 0 −25 0 −130

0 7 1 0 15

0 0 11 7 25


Since positive entries do not exist in objective row of all the variables, this is,

fortuitously, already optimal and the optimum value for the original linear program

is 130/7.

Analysis During the above steps of simplex algorithm, it explicitly announces the ad-

vantage of Two Phases Methods for providing a systematic way to transfer a standard

form into canonical tableau. Hence it avoids the tricky ways to achieve this goal in vari-

ous situations. Due to the applicability to computer, the author prefers to use artificial

variables.

For the existence of solution proved in class, aided with knowledge in Real Analysis[6],
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I think the ’≤’ of constraints plus the linearity of the map A implies the convexity.

As Rn is a Banach space thus locally convex, if the feasible region is compact, all the

conditions needed in Krein-Milman theorem are satisfied. There should exist extreme

points in feasible region, and the region is the convex hull of extreme points, namely

co{Basic feasible solutions}. I think this result is translated into another version as ’basic

theorems in LP’ in class. Surely this observation is not rigid and lacks further consid-

eration. However, as a student, if the abstract theory can be applied here, the range of

similar optimization problems we can deal with will essentially widen, just like how many

other applied mathematics developed.

6.2.2 About the Dual

Inspired by Sir Michael Francis Atiyah who treats mathematics as science of analogy,

I have been trying to distill the similarity from my limited mathematical knowledge.

The word ’dual’ appears several times hitherto in my journey of mathematics explo-

ration. Along with other related concepts like bidual, reflexivity, duality in category

theory. . . dual seems to inpire me to avoid thinking the problem isolatedly by taking

the functionals into consideration, which might help produce more fruitful results. If we

ignore the restrictions and step even further, many concepts or theories in mathematics

come in pairs like A and co-A, local B and global B . . . Why? I don’t know, or even I

should not ask this question and just focus on learning.

Back to LP, the standard form of duality in LP is presented below.

Primal problem: cTx subject to Ax ≤ b, x ≥ 0; (1)

Dual problem: bTy subject to ATy ≥ c, y ≥ 0; (2)

Weak duality:

Proof. Last week in class, with a recall of Functional Analysis [7], the weak duality can

be obtained in a simple way.

Considering two Banach spaces X and Y , for convenience, I use 〈x, x∗〉 to denote that

the continous linear functional x∗ in X∗, dual of X, applies to a point x in X. The same

goes for Y .

By the Riesz–Fisher Theorem, Rn as a Hilbert space is reflexive. Hence the 〈x, x∗〉
could be understood as inner product in corresponding space for simplicity. Also, besides

being a mapping from Y ∗ to X∗, AT becomes the conjugate of A from Y to X.

x, as a functional, is positive means ∀α ≥ 0 ∈ X, 〈α, x〉 ≥ 0. Also ATy − c ≥ 0 ∈ X
implies,

〈ATy − c, x〉 ≥ 0 =⇒ 〈ATy, x〉 ≥ 〈c, x〉
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Similarly,

〈b− Ax, y〉 ≥ 0 =⇒ 〈b, y〉 ≥ 〈Ax, y〉

By the definition of conjugate,

〈ATy, x〉 = 〈Ax, y〉 (3)

Finally,

〈b, y〉 ≥ 〈Ax, y〉 = 〈ATy, x〉 ≥ 〈c, x〉

Analysis One should argue that the direct use of inner product will get the same result

faster. It cannot be denied, but I strongly contend that we should be aware that the inner

products in the equation (3) are in different Hilbert spaces X and Y .

Strong duality Strong duality indicates the gap between cTxs of primal problem and

bTys of dual problem is zero. In the class of game theory, professor Zhang used strong

duality to prove the existence of von Neumann’s equilibrium in finite zero-sum game with

mixed-strategy and improved simplex algorithm in the last two classes.

In a word, according to the contents of former sections, linear programming is a crucial

tool in both game theory and graph theory, as well as a key theme in operation research.

In my opinion, LP deserves my further efforts.

Further Notes

• Advantages Through classic examples and original reflections, I manage to present

what I have learned about Nash equilibrium in a natural way. Moreover, by review-

ing course and making connections, I obtain a deeper understanding of what is

covered in class.

• Disadvantages Examples used in article are simple and contain little computa-

tion. Unfamiliar with the correct tone in formal academic writing, I surely have

made many mistakes and typos. Most of my arguments are intuitive and lack rigid

inductions.

• Prospective Apart from improving the knowledge structure about operation re-

search, I will try to become more proficient in LATEX. Plenty preparation should be

down to include more mathemetical proof in the article.

21



Acknowledgements

The author would like to thank professor Zhang for her heuristic and comprehensive class

which lays out a basic ground of operation research for my future study. Also, I really

appreciate this opportunity to implement my first academic writing in English, as well

as the support from my roommate Yuyao Zhai who strengthened my confidence to make

the first step. And thanks my friend Jingyuan Liu for being willing to scrutinize this

article. Finally, since optimization method class might be the last undergraduate course

I can attend, I would like to express my sincere gratitude to all the instructors in School

of Mathematics at HUST who help me grow into who I am.

References

[1] Steven Tadelis. Game theory: an introduction, Princeton University Press, USA,

2013. ISBN 978-0-691-12908-2 (hbk. : alk. paper), HB144.T33

[2] Fudenberg, Drew & Tirole, Jean. (2018). Game theory/ Drew Fudenberg, Jean Tirole.

SERBIULA (sistema Librum 2.0).

[3] Mihai Manea. 14.126 Game Theory. Spring 2016. Massachusetts Institute of Tech-

nology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons

BY-NC-SA.

[4] Ben Polak. Game Theory. Fall 2007. Yale University: Open Yale Courses.

https://oyc.yale.edu/economics/econ-159 Course Number: ECON 159

[5] Cabrales, Antonio. (2018). Nash and game theory.

[6] Royden, H. L., and Patrick Fitzpatrick. Real Analysis. Pearson, 2018.

[7] Rudin, Walter. Functional Analysis. McGraw-Hill, 2006.

[8] Bondy, J.A, and U.S.R Murty. Graph Theory. 1st ed., ser. 0072-5285, Springer-Verlag

London, 2008. Graduate Texts in Mathematics. GTM 244

[9] Shigeki Akiyama, De-Jun Feng, Tom Kempton, Tomas Persson; On the Hausdorff

Dimension of Bernoulli Convolutions, International Mathematics Research Notices, ,

rny209, https://doi.org/10.1093/imrn/rny209

[10] Wikipedia contributors. ”Nash equilibrium.” Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 2 Nov. 2018. Web. 11 Nov. 2018.

[11] Wikipedia contributors. ”Ultimatum game.” Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 25 Jul. 2018. Web. 11 Nov. 2018.

22



[12] Wikipedia contributors. ”Max-flow min-cut theorem.” Wikipedia, The Free Ency-

clopedia. Wikipedia, The Free Encyclopedia, 31 Oct. 2018. Web. 11 Nov. 2018.

[13] Wikipedia contributors. ”Linear programming.” Wikipedia, The Free Encyclopedia.

Wikipedia, The Free Encyclopedia, 30 Oct. 2018. Web. 11 Nov. 2018.

Appendix

Homework of graph theory

Weekly Homework 1 Math Class: Optimization Methods

Zhou FENG

U201510104 November 14, 2018

Exercise 1

Use the Dijkstra algorithm and the successive approximation algorithm taught in class

to find the minimal distances in a graph.

Dijkstra Algorithm

Discription of problem

The target undirected graph G1 = (V,E,W ) is showed below as an image plotted by

matlab and an adjacent matrix.

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 0 6 3 Inf Inf Inf Inf Inf Inf

v2 6 0 2 Inf 3 2 Inf Inf Inf

v3 3 2 0 1 Inf 3 Inf Inf Inf

v4 Inf Inf 1 0 5 7 3 Inf Inf

v5 Inf 3 Inf 5 0 4 3 Inf 2

v6 Inf 2 3 7 4 0 Inf 6 Inf

v7 Inf Inf Inf 3 3 Inf 0 5 Inf

v8 Inf Inf Inf Inf Inf 6 5 0 2

v9 Inf Inf Inf Inf 2 Inf Inf 2 0

Table 8: Adjacent Matrix of G1

Then apply the Dijkstra algorithm to find the minimal distance between V1 and other

vertices.
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Figure 3: The plotted G1

Solution

Since the weight attached to each edge ofG1 is nonnegative, the principle that the Dijkstra

algorithm is based on is assued. Hence the Dijkstra algorithm can be applied properly.

The final result is listed below.

Minimal Distance Path

v2 5 1 3 2

v3 3 1 3

v4 4 1 3 4

v5 8 1 3 2 5

v6 6 1 3 6

v7 7 1 3 4 7

v8 12 1 3 6 8

v9 10 1 3 2 5 9

Table 9: The result of Dijkstra algorithm

Bellman-Ford Algorithm

Discription of problem

The target directed graph G2 = (V,E,W ) is showed below as an image plotted by matlab

and an adjacent matrix.
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Figure 4: The plotted G2

Then apply the successive approximation algorithm to find the minimal distance be-

tween V1 and other vertices in G2.

Solution

The result is listed below.

Vertices v1 v2 v3 v4 v5 v6 v7 v8 t=1 t=2 t=3 t=4
v1 0 -1 -3 3 Inf Inf Inf Inf 0 0 0 0
v2 7 0 Inf Inf 5 Inf Inf Inf -1 -6 -6 -6
v3 Inf -3 0 -5 Inf 2 Inf Inf -3 -3 -3 -3
v4 Inf Inf Inf 0 Inf Inf 8 Inf 3 -8 -8 -8
v5 Inf -2 Inf Inf 0 Inf Inf Inf Inf 4 -1 -1
v6 Inf Inf Inf Inf 1 0 1 7 Inf -1 -1 -1
v7 Inf Inf Inf -3 Inf Inf 0 Inf Inf 11 0 0
v8 Inf Inf Inf Inf -3 Inf -5 0 Inf Inf 6 6

Table 10: The result of the algorithm

Matlab Code

function: main

Contents

• set the target graph of successive approximation method
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• plot the graph

• the dijkstra algorithm

• set the target graph of successive approximation method

• plot the graph

• the successive approxiamtion algoritm

clc,clear

set the target graph of successive approximation method

%(mainly the adjacent matrix)

M=[1 6 3 0 0 0 0 0 0;

0 1 2 0 3 2 0 0 0;

0 0 1 1 0 3 0 0 0;

0 0 0 1 5 7 3 0 0;

0 0 0 0 1 4 3 0 2;

0 0 0 0 0 1 0 6 0 ;

0 0 0 0 0 0 1 5 0;

0 0 0 0 0 0 0 1 2;

0 0 0 0 0 0 0 0 1];

plot the graph

figure(1)

Grph= graph(M,’upper’,’OmitSelfLoops’);

plot(Grph,’EdgeLabel’,Grph.Edges.Weight)

title(’the target graph of dijkstra algoritm’)

the dijkstra algorithm

D=M+M’;

D(find(D==0))=inf;

D=D-diag(diag(D));

for i=2:9

[mydistance mypath]=mydijkstra(D,1,i);

end

set the target graph of successive approximation method

%(mainly the adjacent matrix)

M=[1 -1 -3 3 0 0 0 0;
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7 1 0 0 5 0 0 0;

0 -3 1 -5 0 2 0 0;

0 0 0 1 0 0 8 0;

0 -2 0 0 1 0 0 0;

0 0 0 0 1 1 1 7;

0 0 0 -3 0 0 1 0;

0 0 0 0 -3 0 -5 1];

plot the graph

figure(2)

Grph= digraph(M,’OmitSelfLoops’);

plot(Grph,’EdgeLabel’,Grph.Edges.Weight)

title(’the target graph of the approximation algorithm’)

the successive approxiamtion algoritm

S=M;

S(find(S==0))=inf;

S=S-diag(diag(S));

stepmat=mystepsapprox(S,1,8)

stepmat =

0 0 0 0

-1 -6 -6 -6

-3 -3 -3 -3

3 -8 -8 -8

Inf 4 -1 -1

Inf -1 -1 -1

Inf 11 0 0

Inf Inf 6 6

function: mydijkstra

function [mydistance mypath]=mydijkstra(a,sb,db)

% input:aadjacent matrix

% sbinitial point, dbterminal point

% out putmydistanceminmun distance, mypathminmum path

n=size(a,1); visited(1:n)=0;

distance(1:n)=inf; % store the distance
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distance(sb)=0; parent(1:n)=0;

for i=1:n-1

temp=distance;

id1=find(visited==1); %find the marked point

temp(id1)=inf; %put the distance to the marked point to infinity

[t, u] = min(temp); %find the point with minmum marked number

visited(u) = 1; %remember the marked point

id2=find(visited==0); %find the unmarked point

for v = id2

if a(u, v) + distance(u) < distance(v)

distance(v) = distance(u) + a(u, v); %change the number of the point

parent(v) = u;

end

end

end

mypath=[];

if parent(db)~= 0 %if there exists the path

t = db; mypath = [db];

while t~= sb

p=parent(t);

mypath=[p mypath];

t=p;

end

end

mydistance=distance(db);

return

end

function: mystepsapprox

function stepmat = mystepsapprox( ad, spoint, tpoint )

% input:adadjacent matrix

% spointinitial point, tpointterminal point

% outputstepmat- the matrix in the procedure to find the minimal distance

gdegree=length(ad(1,:));

stepmat=ad(spoint,:)’;

step=1;

while 1

tempvector=inf*ones(gdegree,1);
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canreach=find(stepmat(:,step)<inf);

%templength=length(canreach);

for i=1:gdegree

canback=find(ad(:,i)<inf);

findex=intersect(canreach,canback);

if ~isempty(findex)

flagvector=stepmat(findex,step)+ad(findex,i);

tempvector(i)=min(flagvector);

else

tempvector(i)=inf;

end

end

stepmat=[stepmat tempvector];

if norm(stepmat(:,step)-tempvector)==0

break

end

step=step+1;

end
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