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Computational Study
of the Blood Flow in Three
Types of 3D Hollow Fiber
Membrane Bundles
The goal of this study is to develop a computational fluid dynamics (CFD) modeling
approach to better estimate the blood flow dynamics in the bundles of the hollow fiber
membrane based medical devices (i.e., blood oxygenators, artificial lungs, and hemodia-
lyzers). Three representative types of arrays, square, diagonal, and random with the po-
rosity value of 0.55, were studied. In addition, a 3D array with the same porosity was
studied. The flow fields between the individual fibers in these arrays at selected Reynolds
numbers (Re) were simulated with CFD modeling. Hemolysis is not significant in the fiber
bundles but the platelet activation may be essential. For each type of array, the average
wall shear stress is linearly proportional to the Re. For the same Re but different arrays,
the average wall shear stress also exhibits a linear dependency on the pressure difference
across arrays, while Darcy’s law prescribes a power-law relationship, therefore, under-
estimating the shear stress level. For the same Re, the average wall shear stress of the di-
agonal array is approximately 3.1, 1.8, and 2.0 times larger than that of the square,
random, and 3D arrays, respectively. A coefficient C is suggested to correlate the CFD
predicted data with the analytical solution, and C is 1.16, 1.51, and 2.05 for the square,
random, and diagonal arrays in this paper, respectively. It is worth noting that C is
strongly dependent on the array geometrical properties, whereas it is weakly dependent
on the flow field. Additionally, the 3D fiber bundle simulation results show that the three-
dimensional effect is not negligible. Specifically, velocity and shear stress distribution
can vary significantly along the fiber axial direction. [DOI: 10.1115/1.4025717]

Keywords: artificial lung, hollow fiber, shear stress, computational fluid dynamics,
microscale modeling

1 Introduction

Hollow fiber membrane bundles are commonly used in blood-
contacting medical devices for replacement of human organ func-
tions or treatment of diseases. Lung assist devices, also known as
blood oxygenators or artificial lungs, are medical devices
designed to replace or supplement the respiratory function of
lungs. They are routinely used in cardiopulmonary bypass for
open heart surgery and for extracorporeal membrane oxygenation
with cardiac/cardiopulmonary supports [1]. Blood oxygenation in
artificial lungs is a diffusion process between blood and oxygen,
usually achieved with the aid of hollow fiber membranes. In these
devices, blood flows around the outside of thousands of hollow
fibers, and oxygen flows inside the fiber lumen [2,3]. Hemodialy-
sis is a clinical approach that is also based on diffusion to remove
metabolic waste products (i.e., potassium, urea and inorganic salt,
etc.), as well as excessive free water, from blood when patients
have renal failure [4]. These devices have benefitted many
patients; however, there are still a number of complications and
problems associated with these devices. For example, device-
induced blood trauma (i.e., hemolysis, platelet activation, and

alteration of blood coagulation) and thrombosis are important
issues limiting device performance and are clinical complications.

Mechanisms of blood damage in hollow fiber membrane bun-
dles are complicated and have not been well investigated. In gen-
eral, they are related to the internal architecture of devices,
biocompatibility of device materials, and local flow dynamics.
The quantitative study of the effect of hollow fiber bundle structure/
packing on mass transfer and device-induced blood trauma
remains challenging because blood flow in the hollow fiber bundle
is complicated and difficult to measure [5]. Generally, empirical
design and in vitro testing are adopted to evaluate the overall per-
formance of oxygenators and hemodialyzers [6–8], which could
not provide flow details and mass transport processes inside the
hollow fiber bundle for relating the device design to its perform-
ance and clinical complications.

Recently, interests in fluid dynamics inside fiber bundle devices
have led to the development of CFD models that provide some
useful methods to estimate flow, mass, and heat transport phenom-
ena [2,3,9–20]. Some of these models [2,3,9–13] assumed fiber
bundles as homogeneous porous media, and blood flow through
fiber bundles was numerically solved using multiphase fluid
dynamics. Flow properties were volume averaged with lumped
parameters. The superficial fluid velocity or interstitial velocity
was estimated by the flow rate, cross-sectional area, permeability,
and porosity. These models could capture global flow patterns and
some flow properties through membrane bundles and have proven
to be capable of modeling the overall device performance in a rel-
atively efficient way. However, these models could not provide
detailed local flow characteristics inside the fiber bundles. Specifi-
cally, local velocity distributions and local shear stress
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distributions around individual fibers are not available to accu-
rately predict blood damage and thrombotic potential in devices.

On the other hand, heterogeneous models or so-called micro-
scale models were also developed [14–20]. These microscale
models were mainly in two categories: (1) blood flow and mass
transfer around a single fiber [14,15] or (2) the interstitial blood
flow and mass transfer among fiber arrays [16–20]. Mazaheri and
Ahmadi [19] computationally studied a 2D oxygenator with a
diagonal array of 3300 hollow fibers, and they reported that the
blood flow inside the fiber bundle was nonuniform, which is dif-
ferent from the uniform flow predicted by the porous media
model. They also pointed out that pseudohomogeneous porous
models may not be able to correctly predict the transport proper-
ties, such as the residency time.

In spite of numerous studies of hollow fiber bundles, many key
factors affecting oxygenator performances are still not well under-
stood. For example, all the previously discussed computational
studies focused on either a single fiber or arrays of identical fibers
with uniform patterns perpendicular to the flow. However, hollow
fibers in oxygenators are neither in nice uniform patterns nor iden-
tical. Distances between fibers may vary; cross sections of fibers
may be different; fibers may not be perpendicular to the coming
flow [21,22]. Furthermore, the local shear stress distributions have
not yet been studied, which is important to estimate the shear-
induced blood damage. Flow entrance and exit effects may be sig-
nificant, and the non-Newtonian viscosity (shear thinning) of
blood may need to be considered to better understand the local
shear stress distributions [23,24].

The aim of this study is to develop a microscale CFD modeling
approach to better understand blood flow in hollow fiber bundles
for artificial lung devices and hemodialyzers. The relationship
between shear stress distribution and the types of fiber arrays was
the primary interest of this paper. Three types of arrays (square,
diagonal, and random) were chosen to represent fiber
configurations.

2 Materials and Methods

Fiber bundles in oxygenators or hemodialyzers are usually
made from fiber sheets of evenly spaced fibers. Thus, the fibers in
a bundle are evenly spaced in the lateral direction. The space
between two layers may be varied and arranged according to the
fiber bundle porosity, which is defined as the ratio of void space
and total volume of the bundle. In this study, four types of fiber
arrays with a porosity of 0.55 were created (Fig. 1). Fibers in the
square (Fig. 1(a)), diagonal (Fig. 1(b)), and random (Fig. 1(c))
arrays are parallel to each other, while angles between the odd
and even row fibers in the 3D array are at 20 deg (Fig. 1(d) and
the insert). Polypropylene fibers prearranged in a sheet format of

50 fibers per inch (Celgard
VR

X30-240, Celgard, NC) were used in
these models. In the square model, the distance between two
neighboring fibers along the Y-direction is 508 lm, consist with
the fiber sheet format; the fibers in the X-direction are in parallel
lines with a distance of 314 lm (Fig. 1(a)). For the diagonal
bundle, the distance between two neighboring fibers along the
Y-direction remains to be 508 lm. However, the fibers in the X-
direction is shifted 254 lm in the Y-direction relative to neighbor-
ing fibers and the distance in the X-direction remains to be 314 lm
(Fig. 1(b)). For the random array, a series of random values gener-
ated with the random function (Matlab, Mathwork, MA) were
used to determine the relative positions of fiber layers (Fig. 1(c)).
These models replicate a block of the fiber bundles. The first two
models represent the two extreme configurations while the ran-
dom model may represent a typical configuration of an artificial
lung. The 3D model was generated by rotating the odd row fibers
of the square array by 10 deg and the even row fibers by 10 deg in
the opposite direction (Fig. 1(d)). The angle between the odd and
even row fibers was selected according to the measurement of the
fiber bundle in the Thoratec pediatric pump lung device (Thoratec
Corporation, Pleasanton, CA). A schematic presentation of the
model and corresponding mesh structure of the diagonal array are
shown in Fig. 2. The computational domain was composed of 216
fibers, an inflow section before, and an outflow section after the
bundle inside a cuboid domain. The bundle was located at the
middle of the domain to avoid the inlet and outlet boundary
effects. Uniform velocities at the inlet and outlet were selected to
define the fluid advection. The top, bottom, and two side walls
were set as symmetry walls. No-slip wall conditions were applied
along the fiber walls.

Mesh independence analysis was conducted, and the final mesh
of the flow domain contained 3.5 to 4.3� 106 hybrid (tetrahedral/
hexahedral) elements. Structured hexahedral elements were used
for the inflow and outflow regions, and finer meshes were gener-
ated in the fiber array region. Fine hybrid elements were utilized
in the area adjacent to hollow fibers (Fig. 2(b)). All the computa-
tional models were implemented and meshed with a commercial
geometry and mesh development software Gambit v.2.4.6 (Ansys
Fluent Inc., Lebanon, NH). The commercial CFD simulation soft-
ware Fluent 13.0 (Ansys Fluent Inc., Lebanon, NH) was used to
compute the interstitial blood flow through the fiber arrays. The
blood flow was assumed to be steady and incompressible. Given
the low Reynolds number, the laminar model was utilized to solve
the continuum and momentum equations [14–18,21,22]

r �~m ¼ 0 (1)

q
@~m

@t
þ~m •r~m

� �
¼ �rpþr � �s (2)

Fig. 1 Schematic top views of the (a) square, (b) diagonal, (c) random, and (d) 3D arrays. Each
array has 216 hollow fibers and the porosity is 0.55. The insert shows the 3D fibers.
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where ~v is the velocity vector, q is the density of the blood, �s is
the stress tensor, and p is the pressure. �s is linearly dependent on
the rate of deformation tensor D, �s¼ 2 lD, where
D 5 (rmþrmT)/2.

Blood was approximated as a non-Newtonian fluid with shear
rate dependent on the fluid viscosity as given by the following
modified Casson model [20,25]:

l ¼ s0

uþ 1

� �1=2

þl1=2
c

 !2

(3)

where s0 is the yield stress and the value was 0.005 Pa; u is the
magnitude of the shear rate, and lc is the Casson viscosity and the
value is 3.5 cP for human blood. q is the blood density, which is
1056 kg/m3 for human blood.

The semi-implicit method for pressure-linked equations (SIM-
PLE) pressure-velocity coupling algorithm was utilized and all
discretizations were performed with second-order accuracy. A
user-defined function was utilized to implement the non-
Newtonian blood flow property in the model. Solutions were
judged to be numerically converged when all four (continuity and
three velocity components) scaled residuals were smaller than
1� 10�5.

Reynolds numbers (Re) 1.0, 5.0, and 10.0 were selected. This
Re range is representative for realistic situations encountered in
artificial lungs as previously reported [20]. Re measures the ratio
of the inertial to the viscous flow effects for the flow domain and
is defined as the following [20]:

Re ¼ UinDq
lc

(4)

where Uin is the average inlet velocity, and D is the diameter of
the hollow fibers.

Permeability of the porous bundle is calculated as the following
[26,27]:

Kp ¼
lcðQ=AÞ

Dp=l
(5)

where Q is the inlet flow rate, A is the cross-sectional area perpen-
dicular to the flow direction, Dp is the pressure difference across
the fiber bundle, and l is the bundle length in the flow direction.
An average wall shear stress over the cylindrical array by intersti-
tial flows is theoretically derived and estimated as the following
[27,28]:

sav ¼
4

p
lcðQ=AÞffiffiffiffiffiffi

Kp

p (6)

The pressure drop in Eq. (5) is usually obtained from the experi-
mental measurements in macroscale analysis. However, it was
obtained from the simulation in this study for the purpose of com-
paring the simulated shear stress by the microscale models with
the analytical estimate on the fiber bundles in this paper. Equa-
tions (5) and (6) together provide the analytical estimate of the av-
erage shear stress in a homogenous porous media. However, the
average shear stress estimated from Eqs. (5) and (6) does not
incorporate the impact of the geometrical configuration of fiber
arrays, such as fiber spatial distribution and fiber diameter. In the
following section, simulation results are compared with the ana-
lytical estimate by Eqs. (5) and (6) for different Reynolds numbers
(Re¼ 1.0, 5.0, and 10.0) and different fiber array geometrical
configurations.

3 Results

Figure 3 shows the velocity magnitude contours at selected
cross sections for the square, diagonal, random, and 3D fiber
arrays when Re is 5.0. As expected, the blood velocity increases
after the blood enters the fiber bundle because the flow area
decreased. Velocities are nonuniformly distributed in fiber bun-
dles. The peak velocities are approximately 0.18, 0.22, 0.33, and
0.27 m/s for the square, diagonal, random, and 3D arrays, respec-
tively. The nonuniform distribution of the velocity fields is con-
sistent with what Mazaheri and Ahmadi reported in 2006 [19],
and this indicates the irregular local shear stress distributions. Fig-
ures 3(d)–3(f) show a strong three-dimensional effect in the veloc-
ity field of the 3D array. Specifically, the velocity distribution
varies significantly in the z direction (in other words, along the

Fig. 2 (a) CFD geometry and (b) mesh illustrations around the fibers for the diagonal array
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fiber axis direction). It is worth noting that the velocity magni-
tudes plotted in Fig. 3 include all three components, and a direct
comparison of Figs. 3(a) and 3(d) (or 3(b) and 3(e)) is not
relevant.

The representative velocity fields around the fibers in these
three fiber arrays are depicted in Fig. 4 (Re¼ 5.0). For the square
array (Fig. 4(a)), larger velocities were seen in the side gaps
between the fiber rows along the flow direction, and smaller
velocities were seen in the gaps between the fiber columns per-
pendicular to the flow direction. For the diagonal array (Fig. 4(b)),
velocities were relatively evenly distributed around fibers. For the
random array (Fig. 4(c)), velocities varied significantly at different
locations (i.e., around fibers in the back (fiber c1), front (fiber c2),
or side regions (fiber c3)).

Shear stress contours in the square, diagonal, and random arrays
are presented in Fig. 5 (Re¼ 5.0). On average, the diagonal array
had the highest shear stresses, and the square array had the lowest
shear stresses. The average shear stress in the random array lied in
between. Wall shear stresses for select fibers from these three fiber
arrays are presented in Figs. 5(d)–5(f). Similarly, the square array
showed the lowest wall shear stress. The wall shear stress distribu-
tion is approximately the same for every individual fiber in both
square and diagonal arrays due to their symmetric geometry.
However, wall shear stresses varied significantly from one fiber to
another in the random array (refer to fibers 1 to 8 in Fig. 5(f)). The
peak local wall shear stresses were 21.80, 45.98, and 52.58 Pa for
the square, diagonal, and random arrays, respectively.

Figure 6 shows the shear stress contours in the 3D array when
Re is 5.0. Similar to the velocity field that was presented previ-
ously, shear stress varies significantly in the z direction as well.
The three-dimensional effect is more obvious in the wall shear
stress contour shown in Fig. 6(d). The peak wall shear stress is

approximately 26.93 Pa, which appears at the squarelike cross sec-
tions (Fig. 6(a)).

Wall shear stress distributions for select fibers (Re¼ 5.0) are
presented in Fig. 7. For the square and diagonal arrays (Figs. 7(a)
and 7(b)), wall shear stresses are symmetrical with respect to the
flow direction (or X direction) for each fiber. However, wall shear
stresses are asymmetrical for the random array (fibers c1, c2, and
c3 in Fig. 7(c)), especially for the fiber c3. It can be shown that
this asymmetrical wall shear stress distribution could decrease the
potential of platelet deposition. Because of the non-Newtonian
shear thinning behavior of the blood [23,24], wall shear stress
may contain a component normal to the front wall that points
towards the fiber walls (i.e., Figs. 7(b) and 7(c)).

Figure 8 shows the area-weighted average wall shear stresses
over the fibers in one row along the flow direction when Re is 5.0
(Fig. 8(a)) and the global area-weighted average shear stress over
all 216 fibers for different Re (Fig. 8(b)). For all the selected Re,
the diagonal array has the highest average shear stress; the square
array has the lowest average shear stress; the average shear stress
of the random array and 3D array fall in the middle (Fig. 8(b)).
Interestingly, for the square, diagonal and 3D arrays, the average
shear stresses over the individual fibers are approximately the
same, except the fibers in the first and last columns. These differ-
ences reflect the effects of the flow fields at the entrance (the first
column) and the exit (the last column) where the flow fields are
very different from those in the middle section. On the contrary,
the average shear stresses for the individual fibers in the random
array vary randomly (Fig. 8(a)). The average wall shear stresses
of the random and 3D arrays are very close.

Figure 9 presents the probability density function (PDF) of the
global wall shear stresses on the 216 fibers in the four arrays,
respectively. The PDF describes the relative possibility for a

Fig. 3 Contours of velocity magnitude (m/s) around fibers at selected cross sections for the (a) square, (b) diagonal, (c) ran-
dom, and (d–f) 3D arrays when Re is 5.0
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random variable to take on a given value. The PDF is always
larger than or equal to 0, and its integral over the entire space is
equal to 1. For the square array (Fig. 9(a)), the wall shear stresses
range from 0 to 21.8 Pa, and approximately 40% of the wall surfa-
ces has shear stress smaller than 1.0 Pa. The PDF of the square
array remains a relatively low value (i.e., < 4%) for the wall shear
stresses larger than 1.0 Pa. On the contrary, the wall shear stresses
vary in much wider ranges for the diagonal and random arrays.
For the diagonal array (Fig. 9(b)), wall shear stresses are between
0 and 46.0 Pa. Different from the square array, less than 1% of the
wall surface in the diagonal array has the shear stresses smaller
than 1.0 Pa, and over 80% of the wall surface has the shear
stresses larger than 15.0 Pa. Most of the wall surface has the wall
shear stresses between 15.0 Pa and 30.0 Pa. For the random array
(Fig. 9(c)), wall shear stresses spread over a wide range from 0 to
40.0 Pa. Different from the diagonal and square arrays, approxi-
mately 9% of the wall surface has wall shear stresses smaller than
1.0 Pa, and the overall distribution is relatively flat. For the 3D
array (Fig. 9(d)), wall shear stresses also spread over a wide range.
Approximately 7% of the wall surface has wall shear stresses
smaller than 1.0 Pa.

Table 1 lists the maximum, median, and area-weighted average
shear stresses of the four arrays when Re varies from 1.0 to 10.0.
For the same Re, the random array has the largest maximum wall
shear stress and the square array has the smallest maximum wall
shear stress. However, the diagonal array has much larger median
and mean shear stresses than other arrays. Specifically, for the
same Re, the average wall shear stress of the diagonal array is
approximately 3.1, 1.8, and 2.0 times larger than that of the
square, random, and 3D arrays, respectively. It is worth noting
that the area-weighted average wall shear stresses are linearly pro-
portional to the Re for each type of array, which indicates that the
Darcy permeability is weakly dependent on the flow field (see
Eqs. (5) and (6)).

In Fig. 10, the simulated global average wall shear stresses for
the square, diagonal and random arrays were grouped by Re and

compared with the analytical solutions (see Eq. (6)). The solid
lines show the results of Re¼ 10.0; the dashed lines show the
results of Re¼ 5.0; the dotted lines show the results of Re¼ 1.0.
The lines in black represent the results of simulations, whereas the
lines in gray indicate the analytical results derived from Eq. (6).
The diamond, triangular, and square symbols refer to the diagonal
array, the random array, and the square array, respectively. For
each Re, when the spatial configuration of fiber arrays changed
from the square array (square symbols in Fig. 10) to the random
array (triangular symbols in Fig. 10) to the diagonal array (diago-
nal symbols in Fig. 10), the analytical solutions (gray lines) were
proportional to the square root of the pressure difference (see Eqs.
(5) and (6)). However, the simulated data (black lines) showed a
linear relationship with an incline rate of 0.0086. Furthermore, the
deviation between the simulated data (black lines) and the analyti-
cal solutions (gray lines) increased with the pressure difference
across the arrays for the same Re. For example, when Re was 5.0,
the relative deviation between the simulated data and the analyti-
cal solution was approximately 46% when the pressure difference
across the fiber array was 745.56 Pa (square array); the relative
deviation increased to approximately 91% when the pressure dif-
ference increased to 1281.28 Pa (random array); the relative devi-
ation became approximately 160% when the pressure difference
became 2348.10 Pa (diagonal array).

To estimate the potential of platelet activation, the linear stress
accumulation (SA) used by Xenos et al. [29] was calculated.
Approximately 1800 particles were released from the inlet, and
stresses and time which particles experienced when they passed
the fiber bundles were tracked; SA for each particle was then cal-
culated by linearly integrating the shear stresses over time. The
PDF of the SA is plotted in Fig. 11 for the four arrays. The PDF
of the SA can be used to illustrate the overall thrombogenic poten-
tial of the blood flow [29]. The mean SA for the square, diagonal,
random and 3D arrays are 0.51 Pa�s, 0.77 Pa�s, 0.48 Pa�s, and
0.55 Pa.s. The 10th percentile of the SA distribution for the
square, diagonal, random, and 3D arrays are 0.17 Pa�s, 0.31 Pa�s,

Fig. 4 Flow velocity vectors around selected fibers at a middle cross section for the (a) square,
(b) diagonal, and (c) random arrays when Re is 5.0
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0.26 Pa�s and 0.17 Pa�s, respectively; the medians of the SA distri-
bution for the square, diagonal, random, and 3D arrays are
0.26 Pa�s, 0.65 Pa�s, 0.37 Pa�s and 0.37 Pa.s, respectively; the 90th
percentile of the SA distribution for the square, diagonal, random,
and 3D arrays are 1.28 Pa�s, 1.33 Pa�s, 0.86 Pa�s and 0.93 Pa.s,
respectively. SA is more widely distributed for the square, diago-
nal, and 3D arrays. For the random array, 80% of the SA fall in a
relatively narrower region from 0.26 Pa�s to 0.86 Pa�s compared
with the other types of arrays.

4 Discussion

This study aimed to build the link between the shear stresses
estimated by the direct microscale CFD approach and macro
approach, by which one may be able to evaluate the potential of
the platelet deposition and hemolysis in the hollow fiber bundles
more accurately and efficiently. Since blood is a non-Newtonian
fluid with the shear thinning property, the local blood viscosity is
higher where the local shear stress is smaller (see Eq. (3)). As
shown in Fig. 6, the local shear stress around fibers varies signifi-
cantly for the square and the random arrays, which means the
local viscosity varies significantly too. For example, the largest
local viscosity could be more than 20% larger than the smallest

local viscosity in the square array. This shows the importance of
considering the non-Newtonian viscosity of blood in this type of
study.

Hemolysis can be caused by mechanical shear stress in fiber
arrays. The mechanical shear stress can rupture the red blood cell
membrane when it exceeds a critical threshold (�150 Pa) [30].
Additionally, hemolysis can be caused by increasing the exposure
time of red blood cells to stress lower than the threshold [30]. It
has been reported that the amount of hemolysis follows a power
law of shear stress magnitude and exposure time [31]. Square, di-
agonal, random, and 3D fiber arrays were investigated at different
flow rates (or Re), and the maximum shear stresses for these
arrays at the highest flow rate (i.e., Re¼ 10.0) are well below the
critical value (�150 Pa). Given that Re in most oxygenators is
below 10.0 and the exposure time is a few seconds, hemolysis
seems to be negligible inside the fiber bundles. On the other hand,
platelet activation and deposition may be significant. In a recent
review of previous investigations [32], Fraser et al. pointed out
that both shear stress and exposure time play important roles in
platelet activation. Specifically, platelets could be activated with
high shear stress even with short exposure time or low shear stress
if the exposure time is long enough. Since the diagonal array has
higher median and mean wall shear stresses (i.e., > 40 Pa when

Fig. 5 Shear stress contours at the middle plane of the (a) square, (b) diagonal, and (c) random arrays, and wall shear stress
contours on the selected fibers for the (d) square, (b) diagonal, and (c) random arrays when Re is 5.0
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Re¼ 10.0), platelets have a relatively higher possibility to be acti-
vated inside the diagonal fiber bundle. However, areas with very
low flow velocity in the square array could see more platelet
deposition.

Some previous numerical studies of oxygenators used the ho-
mogenous porous media simplification [10,33,34] in order to
reduce the computational cost. However, realistic fiber bundles
are not homogenous, and the local flow details are actually impor-
tant in estimating blood damage. In fact, fibers are mostly
arranged in a random pattern [15,21,22], and spaces between
fibers where blood flows through the fiber bundle are also differ-
ent. For example, this study has demonstrated the existence of the
nonuniform flow (see Figs. 3 and 4) and nonuniform shear stress
(see Figs. 5 and 6) in all three directions in every type of fiber
bundles. This difference between the reality and the simplified
macro approach can result in nonnegligible errors in estimating
the device performances and the related blood damage.

Shear stress distributions are important indicators to estimate
blood damage and deposition inside the oxygenators [4,35,36].
Usually, very low shear stresses may lead to the platelet adhesion
and blood clot to fiber walls [37]. On the other hand, high shear
stresses could induce the platelet activation and even hemolysis,
which can decrease gas exchange capacities and affect device per-
formance. Different fiber arrangements could result in different
local blood dynamics [16,17]. Larger shear rate often appears in
the areas close to fiber walls, and that is why the wall shear stress
distribution is of great interest. One of the criteria for good oxy-
genator design is to ensure the peak wall shear stress to be within
the critical threshold in order to decrease the potential of blood
damages [38]. Although the random array has the larger maxi-
mum shear stress than the square and diagonal arrays, the percent-
age of the area with the high shear stress (i.e., >40.0 Pa when

Re¼ 5.0) is very small. Specifically, less than 2% areas have the
shear stress larger than 40.0 Pa. Instead of comparing the maxi-
mum stress, the average wall shear stress better represents the
global potential blood damage [39] because the average value
indicates the level of the shear stress that the blood cells most
likely experience.

As shown in Sec. 3, the average wall shear stress is linearly pro-
portional to Re (Fig. 8(b)), which can be predicted by the analyti-
cal solution of Eq. (4), (5), and (6) through simple algebra. This
linear relationship was also reported in the previous microscale
flow modeling in three-dimensional porous scaffold [35,36]. It is
worth noting that Eq. (6) is derived from Darcy’s law for homoge-
neous porous media, which assumes the viscous force term (r2u)
is negligible outside the very thin boundary layer (thickness �
O(

ffiffiffiffiffiffi
Kp

p
=D) [28]. In other words, Kp/D2 should be much smaller

than 1. Results show that the pressure difference across the arrays
has negligible dependence on Re but strong dependence on the ge-
ometrical configurations of arrays (i.e., the volume fraction),
which explains why Eq. (6) predicts the linear relationship
between the average wall shear stress and Re for each type of the
arrays (see Fig. 8(b)) but not the linear relationship between the
average wall shear stress and the pressure difference across arrays
(see Fig. 10).

However, quantitatively, the analytical estimation of the aver-
age wall shear stress by Eq. (6) significantly deviates from that
predicted by the CFD modeling (see Fig. 10), especially when the
pressure difference increases. As discussed previously, the viscous
force term (r2u) cannot be neglected if Kp/D2 is comparable to 1.
For the arrays studied in this paper, Kp calculated by the CFD
model is on the order of 10�10 to 10�9, and the fiber diameter is
approximately on the order of 10�4, from which one can derive
that Kp/D2 is on the order of 10�1 to 1. Apparently, the viscous

Fig. 6 Shear stress contours at the selected cross sections (a) z 5 0 mm, (b) z 5 0.3 mm, and (c) z 5 0.15 mm, and wall shear
stress contour on the selected fibers (d) for the 3D array when Re is 5.0
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term should not be neglected, and the large deviation between the
simulation results and the analytical solution is expected.

To correlate the analytical prediction by Eq. (6) with the calcu-
lated value by the CFD modeling, a coefficient C for the average
wall shear stress can be suggested:

sav random ¼ C� sav ¼ C
4

p
lcðQ=AÞffiffiffiffiffiffi

Kp

p (7)

Comparing the CFD data with the analytical solution, one can get
C¼ 1.16, 1.51, 2.05, and 1.50 for the square, random, diagonal,

Fig. 7 Wall shear stress vectors (X- and Y- shear stresses only) at the X-Y plane for the
selected fibers for the (a) square, (b) diagonal, and (c) random arrays when Re is 5.0

Fig. 8 (a) The area-weighted average wall shear stress over individual fibers in a single row along the flow direction when Re is
5.0 and (b) the average wall shear stress over all 216 fibers for different Re
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and 3D arrays, respectively. Since C is approximately constant for
each type of array, one can conclude that C is not sensitive to the
flow field, and it can be treated as a function of the geometric
properties only. Wang et al. proposed an analytical solution for
the coefficient C for the square array [28]

C ¼ 1� 0319285e2 � 0:043690e4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e� 0:305828e4ð Þ 1þ e� 0:305828e4ð Þ

p þ Oðe6Þ (8)

where e is the solid volume fraction of fibers. Given the solid vol-
ume fraction of the square array 0.45 in this paper, one can derive
C¼ 1.06 from Eq. (8). Although the geometric configurations
(i.e., spaces between two neighboring fibers relative to the fiber
diameter) of the square fiber array studied by Wang and Tarbell

Fig. 9 Probability density function (PDF) of the global wall shear stress over all 216 fibers when Re is 5.0, for the (a) square, (b)
diagonal, (c) random, and (d) 3D arrays

Table 1 Maximum, median, and mean (area-weighted average)
wall shear stress values (Pa) over the total 216 fibers for the
square, diagonal, and random arrays

Re¼ 1.0 Re¼ 5.0 Re¼ 10.0

Max Median Mean Max Median Mean Max Median Mean

Square 4.36 0.88 1.35 21.80 3.91 6.42 45.86 6.25 12.96
Diagonal 8.97 3.85 4.23 45.98 20.05 20.42 95.56 45.02 41.28
Random 10.27 2.25 2.31 52.58 9.75 11.11 112.94 21.03 22.68
3D 5.25 1.83 2.05 26.93 8.54 9.89 61.69 16.84 20.35

Fig. 10 Simulated average wall shear stress (black lines) of the
square (square symbols), diagonal (diamond symbols), and
random (triangular symbols) arrays compared with the analyti-
cally solutions (gray lines). The simulation results of the three
types of arrays are grouped with the same Re, i.e., Re 5 1.0 (dot-
ted lines), Re 5 5.0 (dashed lines), Re 5 10.0 (solid lines).

Journal of Biomechanical Engineering DECEMBER 2013, Vol. 135 / 121009-9

Downloaded From: http://biomechanical.asmedigitalcollection.asme.org/ on 11/12/2013 Terms of Use: http://asme.org/terms



[28] differ from those of the square array in this paper, the coeffi-
cient calculated from Eq. (8) (1.06) is very close to the value cal-
culated from CFD simulation in this paper (1.16). Considering C
is not sensitive to the flow field, one promising way to estimate
the fiber-bundle-induced blood damage more precisely is to esti-
mate C by directly simulating a small region of the whole fiber
bundle and applying C to the simplified porous media solution on
the whole fiber bundle. This could significantly reduce the compu-
tational cost of the microscale CFD simulation but largely
improve the accuracy of the macroscale porous media simulation.

Three-dimensional effects play an important role in estimating
shear-induced blood damage. Very often, fiber bundles are treated
as two-dimensional uniformly arranged arrays for CFD model
constructions in order to reduce the cost [14–20]. In this study,
significant variances in velocity, shear rate, and wall shear stress
fields are observed in z direction in the 3D array (see Fig. 3 and
Fig. 6). 3D array and random array have similar average wall
shear stress and SA distribution, which indicates that the average
hemolysis and platelet activation due to mechanical shear are
approximately comparable in these two arrays. However, since
initiation of platelet deposition and aggregation is significantly
affected by local blood flow disturbances [40], platelet deposition
could be significantly different in 3D arrays.

Steady flow is applied in this study. However, blood flow from
the right heart ventricle is pulsatile, which peak velocity, pressure,
and shear stress could be several times higher. Additionally, Sher-
iff et al. reported that platelet activation is significantly affected
by shear loading rate [41], which implies that acceleration and
deceleration in blood flow may cause more damage than constant
shear stress. It is apparent that platelet activation and deposition
in time-dependent flow could be notably different from in
steady state flow. However, the aim of this study is to develop a

microscale CFD modeling approach to understand blood flow in
hollow fiber bundles for artificial lung devices and hemodialyzers
more precisely. In other words, the relationship between shear
stress distribution and the geometric properties of different types
of fiber arrays is the primary interest of this paper. Furthermore,
Zierenberg et al. reported that oxygenators are recommended to
be operated at near steady state in order to achieve optimal hemo-
dynamic and gas exchange characteristics [17]. Thus, steady state
flow seems to be a reasonable choice for this study.

5 Conclusion

Blood flow with different Re through square, diagonal, and ran-
dom and 3D fiber arrays with the same porosity are studied in this
paper. The local shear stress is found to vary significantly in these
arrays. Simulated shear stresses in these arrays are well below the
threshold causing hemolysis, and the exposure time was not long
either. In other words, hemolysis is negligible inside fiber arrays.
However, the platelet activation due to mechanical shear stress
and the platelet deposition may exist for these arrays. For each of
these arrays, the area-weighted average wall shear stress increases
linearly with the Re, and the simulated global average wall shear
stresses are larger than the analytical predictions. Furthermore,
the average wall shear stress of different types of arrays with the
same Re also increases linearly with the pressure difference across
arrays, which significantly deviated from the power-law model
analytically predicted. A coefficient C is suggested to correlate
the analytical porous media prediction and the simulation data and
can be used to improve the accuracy of the homogeneous porous
media prediction. Specifically, C is 1.16, 1.51, 2.05, and 1.50 for
the square, random, diagonal, and 3D arrays in this study, respec-
tively. This study shows that C does not change with Re but varies

Fig. 11 Probability density function (PDF) of the linear stress accumulation (SA) in the (a) square, (b) diagonal, (c) random and
(d) 3D arrays when Re is 5.0
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with the array type, which indicates that C is strongly dependent
on the array geometrical properties, such as fiber diameter and po-
rosity, and is weakly correlated with the flow field. Additionally,
the average wall shear stress of the 3D array is similar as that of
the random array. Shear stress in the diagonal array and square
array may be used as the upper and lower limits in evaluating
blood damage in fiber bundles. Further study is necessary to
understand the relationship between the average wall shear stress
and other geometrical properties (i.e., the fiber diameter and the
angle between fibers).
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