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Abstract We study the Landau resonance between geodesic acoustic mode (GAM) and

trapped electrons as a GAM’s collisionless damping. The assumption of ω̄de ¿ ωbe is adopted.

The damping rate induced by trapped electrons is found to be an increasing function of q. In low

q range, circulating-ion-induced damping rate is larger than that induced by trapped electrons.

As q increases, the latter becomes larger than the former. The reason is that trapped electrons’

resonant velocity is close to vte from the lower side, whiles circulating ions’ resonant velocity gets

bigger further from vti. So the number of resonant trapped electrons increases, whiles the number

of resonant circulating ions decreases. The amplitude of damping rate induced by trapped elec-

trons in the edge plasma can be comparable to that induced by circulating ions in the low q range.

Another phenomenon we found is that in the chosen range of ε, the damping caused by trapped

electrons has a maximum value at point εq for different q. The reason is that as ε is close to εq,

trapped electorns’ resonant velocity is close to vte.
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1 Introduction

Geodesic acoustic modes (GAM) [1], is an electro-
static mode unique in toroidal confinement devices with
geodesic curvature. The electrostatic potential of GAM
is characterized by a toroidal mode number n = 0
and a poloidal mode number m = 0, and an n = 0
and m = 1 up-down anti-symmetric density pertur-
bation [2−4]. GAM is extensively studied in the past
decade due to its potential role in regulating the drift
wave turbulences, which are generally believed to be
one of the major candidate of anomalous transport
in magnetic confinement fusion [5−7]. The excitation
threshold and saturation level of GAM are determined
by its damping mechanisms. In this paper we study the
collisionless damping of GAM due to trapped electrons.

GAM, unlike its low frequency counterpart, has a
finite collisionless damping. The collisionless damp-
ing of GAM due to resonant circulating ions has been
intensively studied, while trapped ion effect on GAM
is ignored since one typically has ωG À ωb,i. Here,
ωG and ωb,i are respectively the GAM frequency and
bounce frequency of trapped ions. The frequency of
GAM, in the Te ¿ Ti limit, is given by Ref. [8] ω2

G =

7v2
ti(1 + 46/49q2)/4R2, where vti is ions and electrons’

thermal velocity respectively, q is the safety factor, and
R is major radius. The effect of electrons on GAM
collisionless damping, was believed to be small, since
the characteristic frequency of electrons, i.e., the tran-
sit frequency of circulating electrons is too high for
effective resonant energy exchange with GAM. How-
ever, large scale particle in cell simulation with kinetic
electrons [9], shows that, the contribution of trapped
electrons to GAM collisionless damping, can be com-
parable, or even larger than that due to ions. Fur-
thermore, the experiments conducted in HL-2A [6] show
that GAM’s amplitude reduces with increasing electron
cyclotron resonance heating (ECRH) power. One pos-
sible explanation is that with the heating of electron
perpendicular energy by ECRH, more trapped electrons
are formed, leading to enhanced GAM damping. As a
matter of fact, the bounce frequency of deeply trapped
electrons, ωb ≈ √

εµB0/qR
√

m is comparable to ωG

in the high q range in the edge plasma in tokamak,
where the circulating ion resonance, which is usually
the most effective wave particle resonance for GAM, is
minimized. Here, ε is aspect ratio and µ is the mag-
netic moment. So it is expected that trapped electron

650



ZHANG Shuangxi et al.: Damping of Geodesic Acoustic Mode by Trapped Electrons

Landau damping is dominant in the high q regime of
a collisionless plasma. Based on these considerations,
we are motivated to study trapped electrons’ effect on
GAM’s damping theoretically in this paper using drift
kinetic theory assuming kρi,e ¿ 1 . Here, k is GAM’s
radial wavenumber and ρi,e is Larmor radius [10] for ions
and electrons respectively. We will focus on the con-
tribution from deeply trapped electrons for analytical
progress, despite the fact that, more important roles
may be played by barely trapped electrons [9].

The arrangement of this paper is as follows. In sec-
tion 2, the calculation of perturbed density of ions and
trapped electrons is carried out. In section 3, GAM’s
eigenfrequency and trapped-electron-induced damping
are obtained. In section 4, some numerical examples
are given to study reliability of GAM’s eigenvalue and
trapped electrons damping rate on parameters of mag-
netic field and plasma. Section 5 is the summary.

2 Perturbed density of circulat-
ing ions

In this paper, we adopt the magnetic field B =
B0[eξ/ (1 + ε cos θ) + eθε/q], which is of large aspect
ratio and circular cross section. Here B0 is the am-
plitude of equilibrium magnetic field, ε = r/R is as-
sumed to be small but finite, ξ, θ are toroidal and
poloidal unit vector respectively, and q is safety fac-
tor. If GAM’s electrostatic potential can be decom-
posed as φ =

∑
ω,k φ̃k(θ) exp[ik (r − r0)− iωt], the k

component of the response of particles can be de-
scribed as f̃q1,k = −q1F0q1 φ̃k/Tq1 + h̃q1,k, where φ̃0 is
the poloidally-averaged zonal potential, q1 is the parti-
cle’s charge and h̃ is the non-adiabatic perturbed distri-
bution, which satisfies the following drift kinetic equa-
tion [11,12]

(
ω − ωdq1 sin θ + iωtq1

∂

∂θ

)
h̃q1,k =

q1F0q1

Tq1

ωφ̃k, (1)

where ωdq1 =
v2
⊥/2+v2

‖
2ωq1R k, ωtq1 = v‖/qR.

2.1 Perturbed density of circulating
ions

The trapped ion effect on GAM’ damping is ignored
due to ωG À ωbi. The solution of circulating ions con-
cerned with Eq. (1) is given in Ref. [8]. The total per-
turbed distribution function is the summation of ana-
lytical solution of Eq. (1) and the adiabatic part

f̃i,k = −eF0i

Ti

∞∑

l=−∞
φ̃k,leilθ

×
[
1−

∞∑
m,n=−∞

im−nei(m−n)θ ωJmJn

ω + (n− l) ωti

]
, (2)

where Jm, Jn are bessel functions of ωdi/ωti and F0i

is Maxwellian distribution. In our paper, modes of

m = 0,±1 are kept due to the ordering relationship
φ̃k,m/φ̃k,0 ∼ (ωdi/ωti)

m given in Refs. [13,14] because
of ωdi/ωti ¿ 1. The perturbed densities of m = 0,±1
are obtained by integrating Eq. (2) in velocity space

ñi,k,0 = −enk,0k
2q2v2

tiφ̃k,0

2ω2
i Ti

(
Z (ζi)
2ζi

+
Z1 (ζi)

2
+ Z3 (ζi)

)

+
ienk,0ωkq2Rφ̃k,1

ωiTi

(
Z (ζi)
2ζi

+ Z1 (ζi)
)

, (3)

ñi,k,±1 =
−en0φ̃k,±1

Ti
(1 + ζiZ (ζi))

× ien0φ̃k,0kωq2R

2ωiTi

(
Z (ζi)
2ζi

+ Z1 (ζi)
)

, (4)

where ζi = ωqR/vti. To get the above equations, the
following integral formulas are used.

Z (ζ) =
1√
π

∫ exp
(
−v2

‖
)

v‖ − ζ
dv‖, (5)

Z1 (ζ) =
1√
π

∫ exp
(
−v2

‖
)

v2
‖

v2
‖ − ζ2

dv‖ = 1 + ζZ (ζ) , (6)

Z2 (ζ) =
1

π3/2

∫
2πv⊥dv⊥dv‖

×
exp

(
−v2

‖ − v2
⊥

)(
v2
‖ + v2

⊥/2
)

v2
‖ − ζ2

=
Z (ζ)
2ζ

+Z1 (ζ) , (7)

Z3 (ζ) =
1

π3/2

∫
2πv⊥dv⊥dv‖

×
exp

(
−v2

‖ − v2
⊥

)(
v2
‖ + v2

⊥/2
)

v2
‖

v2
‖ − ζ2

= 1+ζ2Z2 (ζ) , (8)

Z4 (ζ) =
1

π3/2

∫
2πv⊥dv⊥dv‖

×
exp

(
−v2

‖ − v2
⊥

)(
v2
‖ + v2

⊥/2
)2

v2
‖ − ζ2

=
Z (ζ)
2ζ

+
Z1 (ζ)

2
+ Z3 (ζ) . (9)

2.2 Perturbed density for trapped elec-
trons

In toroidal devices such as tokamak, equilibrium
magnetic field forms a magnetic mirror due to its mag-
netic field gradient. Part of electrons could be trapped
by such magnetic mirror and bounce between the
two mirror points. Trapped electrons’ perturbed dis-
tribution is obtained by adopting the method used in
Refs. [15-17], which transforms gyrokinetic orbit refer-
ence frame into banana orbit center reference frame
to study the resonance between trapped particles’ pre-
cessional frequency and Alfven wave’s frequency. The
poloidal angle of trapped electrons’ bounce motion is
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defined as θ. In this paper, only deeply trapped elec-
trons are considered so that θ can be approximated as
θ = θb sin η, where θb is poloidal angle at the mirror
point and η is ballooning angle centering on banana
orbit center.

The trapped electrons’ perturbed distribution func-
tion can be decomposed as f̃e,k = eF0φ̃k/Te + h̃k. Non-
adiabatic perturbed distribution h̃k transformed from
gyro orbit center into banana orbit center is

h̃b,k =
(∑

h
(−i)h

Jh (λb) eiηh
)

h̃e,k, (10)

where λb = θb (ω̄de/ωb) , ω̄de = kv2
te/Rωce, and ωce =

−eB/me. For small banana width, λb ¿ 1 which en-
sures J0 (λb) ≈ 1 and Jh(λb) ¿ 1. Thus at the lowest
and relevant order, Eq. (10) gives h̃b,k = h̃k. For deeply
trapped electrons, the bounce frequency is approxi-
mated as ωbe = ε1/2v/qR and v‖∂/qR∂θ = ωb∂/∂η.
Eq. (1) is reformulated for trapped electrons’ h̃b,k

[15,18]

(
ω − ω̄de sin θ + i

∂

∂η

)
h̃k

=
−eF0i

Te
ω

(∑
h

ihJh (λb) e−iηh
)

φ̃k. (11)

To solve Eq. (11), only terms of h = 0 are kept in the
right side of Eq. (11) due to λ̃ ¿ 1. And φ̃k is approx-
imated as

φ̃k = φ̃k,0 + φ̃k,1eiθ + φ̃k,−1e−iθ. (12)

e±iθ in φk in Eq. (12) are expanded by the Bessel se-
ries of η and only terms of |n| ≤ 1 are kept because
of θ = θb sin η and θb ¿ 1. Noticing the following
equities θ = θb sin η, sin η = cos(π/2 − η), eiz cos η =
+∞∑
−∞

inJn (z) einη, and ignoring Bessel functions of n > 1

in eiz cos η, e±iθ are expanded as

exp (±iθ) = J0 (±θb)− J1 (±θb)
(
e−iη − eiη

)
. (13)

Substituting Eq. (13) into Eq. (12) gives

φ̃k = φ̃k,0 + φ̃k,1J0 (θb) + φ̃k,−1J0(−θb)

−
(
φ̃k,1J1 (θb)− φ̃k,−1J1 (θb)

) (
e−iη − eiη

)
. (14)

The perturbed distribution functions of m = 0,±1 are
obtained by substituting Eq. (14) into Eq. (11).

In this paper, |ω̄de| = |ω̄di| is ensured by the as-
sumption of temperature equilibrium between ions and
electrons. Besides that, kρi ≈ 1 suggested by experi-
ments [4] leads to |ω̄de| ≈ vti/10R. Thus |ω̄de|/ωG ¿
0.1 holds concerned with GAM’s frequency given in
Ref. [8]. So it’s plausible to adopt the ordering rela-
tionship ω̄de/ω ∼ ω̄de/ωbe ¿ 1 when solving Eq. (11)
and keep it’s solution up to order O( ω̄de

ω ).
The perturbed distribution responding to perturbed

electrostatic potential of m = 0 in banana orbit center

frame is derived by iteratively solving drift kinetic equa-
tions up to first order O( ω̄de

ω ). The iterative equations
are(

ω + iωb
∂

∂η

)
gk,1

=
−eF0e

Te
ω

(
φ̃k,0 + φ̃k,1J0 (θb) + φ̃k,−1J0(−θb)

)
, (15)

(
ω + iωb

∂

∂η

)
gk,2 =

θbω̄degk,1

2i
(
eiη − e−iη

)
. (16)

Approximation sin θ ≈ θ = θb sin η is used in the
right hand of Eq. (16). The solutions of Eq. (15) and
Eq. (16) are

g̃k,1 =
−eF0e

Te

[
φ̃b,k,0 + φ̃b,k,1J0 (θb) + φ̃b,k,−1J0 (−θb)

]
,

(17)

g̃k,2

=−eF0e

Te

ω̄de

2i

[
φ̃k,0 + φ̃k,1 (θb)J0(θb) + φ̃k,−1J0 (−θb)

]

×
(

2ωbθb cos η

ω2 − ω2
b

+
i2ωθb sin η

ω2 − ω2
b

)
. (18)

The perturbed distribution functions responding to
perturbed electrostatic potential of m = ±1 in banana
orbit center frame are derived by solving the following
drift kinetic equation

(
ω − ω̄de sin θ + iωb

∂

∂η

)
g̃k,3

=
eFe

2Te
ωθb

(
φ̃k,1 − φ̃k,−1

) (
e−iη − eiη

)
. (19)

Here, approximation J1(θb) = θb/2 is used. By noting
φ̃k,±1/φ̃k,0 ∼ |ωde|/ω, and keeping terms to the same
order as g̃k,2, the solution of Eq. (19) becomes

g̃k,3 =

−eF0eω
(
φ̃k,1 − φ̃k,−1

)

Te
×

(
2θbωb cos η

ω2 − ω2
b

+
i2ωθb sin η

ω2 − ω2
b

)
.

(20)
The terms containing ωbe in the numerator of perturbed
distribution will vanish due to trapped particles moving
in two opposite bounce directions along the magnetic
field line as that circulating particles do [15−17]. Com-
bining Eqs. (17),(18),(20), the non-adiabatic distribu-
tion functions of m = 0,±1 are obtained as

h̃k,0 =
−eF0e

Te

(
φ̃k,0 + φ̃k,1 + φ̃k,−1

)
, (21)

h̃k,±1 =∓ eF0e

Te

ω̄deω

2i
e±iθ

ω2 − ω2
b

(
φ̃k,0 + φ̃k,1 + φ̃k,−1

)

∓ eF0eω
2

Te

e±iθ

ω2 − ω2
b

(
φ̃k,1 − φ̃k,−1

)
.

(22)

652



ZHANG Shuangxi et al.: Damping of Geodesic Acoustic Mode by Trapped Electrons

The perturbed densities are obtained by integrating the
above equations in velocity space. For trapped parti-
cles, the integration in the velocity space can be written
as

〈(· · · )〉=2π
∑

σ=±1

∫ ∞

0

dε

∫ ε/B

ε/Bmax

B

|v‖|
(· · · )dµ, (23)

with Bmax = B0(1+ ε) and Bmin = B0(1− ε) which are
experienced by trapped electrons, and ε, µ are trapped
particles’ kinetic energy and magnetic moment respec-
tively with the normalized mass. Since Eq. (22) does
not explicitly depend on θb, for deeply trapped parti-
cles, we can approximately write Eq. (23) as Ref. [15]

〈(· · · )〉 ≈ 8πε1/2

∫ ∞

0

ε1/2dε cos (θ/2) (· · · )

≈ 4
√

2πε1/2

∫ ∞

0

dvv2(· · · ). (24)

Based on Eq. (22), the non-adiabatic perturbed density
components of m = ±1 are carried out by integrating
h̃k,s in trapped particles’ velocity space through the fol-
lowing integral formula,

∫ +∞

0

dv
v2F0

ω2
b − ω2

=
q2R2

επ3/2v2
te

∫ +∞

0

dv
v2e−v2

v2 − ζ2
e

=
q2R2

2επv2
te

(1 + ζeZ (ζe)) , (25)

where ζe = ωqR/
√

εvte, F0e = exp
(−v2/v2

e

)
/π3/2v3

te,
and vte is electrons’ thermal velocity. Eq. (6) is used to
get the last equality in Eq. (25). The total perturbed

densities of m = ±1 shown below are obtained by com-
bining the non-adiabatic and adiabatic perturbed den-
sities

ñet,k,0 =
−√2εen0

Te

(
φ̃k,1 + φ̃k,−1

)
, (26)

ñet,k,±1 =
√

2εen0φ̃k,±1

Te
± en02

√
2q2R2

π1/2
√

εTe

(1 + ζeZ (ζe))
v2
te

×
[ ω̄deω

2i

(
φ̃k,0 + φ̃k,1 + φ̃k,−1

)
+ω2

(
φ̃k,1 − φ̃k,−1

)]
.

(27)

3 Dispersion relation

The dispersion relation can be obtained by solving
the following quasi-neutral equation group

ñi,k,m = ñep,k,m + ñet,k,m (m = ±1) ,

ñi,k,0 − n0(kai)
2
eφ̃k,0/Ti = 0 (m = 0) .

(28)

Here, ai ≡ (Ti/m)
1
2 /ωi and the perturbed density

for electrons is ñe =
∑
l 6=0

(en0/Te) φ̃leilθ [11]. We add

ions polarization density in quasi-neutral equation for
m = 0. The reason is that for m = 0, ions’ polariza-
tion density is large compared with electron’s density
ñe,k,0 = 0, but for m = ±1, ions’ polarization den-
sity can be neglected compared with the electrons’ per-
turbed densities en0φ̃e,k,m/Te due to the smallness of
kρi. Substituting ions’ and electrons’ perturbed den-
sities in Eqs. (4) and (27) into the quasi-neutral equa-
tions for m = ±1 components, the expressions of φ̃k,±1

are derived

φ̃k,±1 =

∓
[

ikωqR

2ωiTi

(
Z (ζi)
2ζi

+ Z1 (ζi)
)
−
√

2ω̄deωq2R2

iπ1/2
√

εTev2
te

(1 + ζeZ (ζe))

]
φ̃k,0

(
1
Te

+
(1 + ζiZ (ζi))

Ti
+

4
√

2εζ2
e

π1/2Te
(1 + Z (ζe) ζe)

) . (29)

The governing equation is gained by substituting
Eqs. (3) and (29) into the quasi-neutral equation of
m = 0. After simplification, it becomes

−
(

Z (ζi)
2ζi

+
Z1 (ζi)

2
+ Z3 (ζi)

)

+
τζ2

i

(
Z(ζi)
2ζi

+ Z1 (ζi)
)2

1 + τ (1 + ζiZ (ζi)) + 4
√

2επ−1/2ζ2
e (1 + Z (ζe) ζe)

+

τ2
√

2εmeζ2
e

π1/2mi
(1 + ζeZ (ζe))

(
Z(ζi)
2ζi

+ Z1 (ζi)
)

1 + τ (1 + ζiZ (ζi)) + 4
√

2επ−1/2ζ2
e (1 + Z (ζe) ζe)

− 1
q2

= 0. (30)

The third term in the left hand of Eq. (30) originates
from trapped electrons. We will directly solve Eq. (30)
by numerical method to get the frequency and damping
rate.

4 Numerical study

In this section, we will numerically solve Eq. (30) to
get GAM’s frequency and damping rate as functions of
q and ε, respectively. To numerically solve the govern-
ing equation, the plasma dispersion function is trans-
formed to

Z (ζ) = e−ζ2

(
iπ1/2 − 2

∫ ζ

0

ex2
dx

)
. (31)

With the assumption of thermal equilibrium between
ions and electrons, the expressions τ = 1 and vte/vti ≈
40 hold. In this paper, ε is chosen to be in the range
[0.01, 0.4] to ensure ω̄de ¿ ωbe.
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4.1 The effect of q on GAM’s dispersion

GAM’s frequency and damping rate as functions of
q are studied by specifying ε = 0.3 and locating q in the
range [1,7] as shown in Figs.1 and 2. GAM’s frequency
is a decreasing function of q as shown in Fig. 1, which is
pointed out by Refs. [8,13]. Fig. 1 also reveals that the
component of trapped electrons slightly reduces GAM’s
frequency in high q range.

Fig.1 The comparison of GAM’s frequency as a decrease

function of q

Fig.2 The comparison of GAM’s damping rate as a func-

tion of q

The reason for slightly changing rate of GAM’s fre-
quency by electrons’ trapped rate ε is revealed by
Eq. (27). In Eq. (27), the non-adiabatic part of trapped
electrons’ perturbed density contributes to electrons’
trapped effect on GAM’s frequency. This perturbed
density contains two parts. The first is proportional
to

√
εω̄deζeφ̃k,0/ωb. The second one is proportional

to
√

εζ2
e φ̃k,1. In the considered regime, ζe < 1 and

φ̃k,±1/φ̃k,0 ≈ ω̄de/ωb exist. Further, for ζe, 1 + ζeZ(ζe)
can be approximated as follows

1 + ζeZ (ζe) ≈ 1− 2ζ2
e +

4
3
ζ4
e − iζee−ζ2

e . (32)

So the trapped electrons’ non-adiabatic effect (trapped
effect) on GAM’s frequency is O(ζe) order smaller com-
pared with the adiabatic part on GAM’s frequency.
When ε becomes larger, ζe becomes inversely smaller,
GAM’s frequency is less affected by large ε as shown

in Fig. 4, which also shows that GAM’s frequency is
affected more obviously by small ε, consistent with our
analysis.

The damping rate induced by circulating ions as
shown in Fig. 2 decreases exponentially when q in-
creases, because as q increases, ζir, where r represents
the real part, becomes larger. However, as a compar-
ison, trapped-electrons-induced damping is an increas-
ing function of q shown in Fig. 2, and as q increases, the
amplitude of this damping rate becomes comparable to
that induced by circulating ions in low q range.

The explanation for the increasing of trapped-
electron-induced damping rate with q is as follows. To
make Landau resonance happen, the equities v‖/vti ≈ ζi

for circulating ions in Eq. (2) and v/vte ≈ ζe for trapped
electrons in Eq. (25) should hold. When q increases, ζir

becomes much larger than one, but ζer is close to 1 as
shown in Fig. 3, which implies that the circulating ions’
resonant velocity becomes much larger than vti, but the
trapped electrons’ resonant velocity is close to vte. So
as q increases, the number of resonant circulating ions
decreases, whiles the number of resonant trapped elec-
trons increases.

Fig.3 ζir and ζer as a function of q with ε = 0.3

Fig.4 GAM’s frequency as a function of ε for q = 4, 5, 6

with trapped electron effect included
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4.2 The effect of ε on GAM’s dispersion

The variations of GAM’s frequency and damping
rate as functions of ε are studied in Figs. 4-6, where pa-
rameter ε is chosen in [0.01, 0.4] and q are specified by
three values 4, 5, 6, to observe the combined effect of ε
and q on GAM’s dispersion. Fig. 4 shows that trapped
electrons has nearly no effect on GAM’s frequency in
the range ε ∈ [0.01, 0.4].

Fig.5 GAM’s damping rate as a function of ε for different

q = 4, 5, 6 with trapped electron effect included

Fig.6 ζe as a function of ε for different q = 4, 5, 6 with

trapped electron effect included

As Fig. 5 shows, the amplitude of damping rate has
a maximum value in the chosen ε range. For specified
q, the maximum damping rate locates at a point where
ε = εq. When ε < εq, damping rate decreases quickly to
zero. And when ε > εq, damping rate decreases grad-
ually. To explain this phenomena, it’s needed to ana-
lyze Eq. (25) where trapped-electrons-induced damping
comes from. According to Plemelj formula, the term
ζeZ(ζe) in Eq. (25) can be reformulated as

ζeZ (ζe) =
∫ +∞

−∞
dv

ζee−v2

v − ζe

= −iπζee−ζ2
e + P

∫ +∞

−∞
dv

ζee−v2

v − ζe
. (33)

When ζe = 1, the imaginary part in Eq. (33) reaches the
maximum value, which implies that the largest damp-
ing rate reaches when trapped electrons’ resonant veloc-
ity equals to electrons’ thermal velocity. On the other
hand, as shown by Fig. 6, ζer approaches 1 as ε is close
to εq. So it’s understood that for specified q, when
ε decreases to εq, the trapped electrons’ resonant ve-
locity is close to electrons’ thermal velocity, where the
density of trapped electrons distributed is much larger
than that distributed in any other velocity range based
on the assumption of Maxwellian distribution for elec-
trons. However, when ε becomes smaller than εq, ζer

become larger than one just as shown in Fig. 6, which
causes the damping rate decreases quickly to zero.

However, our formula can’t stand for much smaller
ε because ω̄de > ωbe is required. As we have proved,
trapped electrons effect on standard GAM’s frequency
can be ignored. So as ε becomes much smaller, ωbe <
ωde < ωG holds, which makes GAM’s damping induced
by trapped electrons can’t happen. On the other hand,
as ε decreases, the number of trapped ions becomes
smaller, thus circulating-ion-induced damping will in-
crease as pointed out in Ref. [19].

5 Summary and discussion

In this paper, we adopted drift kinetic theory for
the study of collisionless damping on GAM. Besides
resonance between circulating ions and GAM, trapped
electron effect on damping is included. Electrostatic
potentials of m = 0,±1 are kept to study the modes
coupling effect. To get trapped electrons perturbed
distribution function, gyro orbit center reference frame
is transformed to banana orbit center reference frame.
The assumption of ω̄de/ωbe ¿ 1 is adopted, so ε should
not be very small and is chosen in [0.01, 0.4]. Resonance
between ω and ±nωb is calculated only for n = 1. We
found that trapped electrons nearly has no effect on
GAM’s frequency, but affect GAM’s damping especially
in the edge plasma in tokamaks. The reason for this
damping effect is that the number of resonant trapped
electrons become larger, since, as q increases, circulat-
ing ions’ resonant velocity is far from vti, but trapped
electrons’ is close to vte. Another result is that the am-
plitude of trapped-electrons-induced damping reaches a
maximum value when ε = εq for specified q. When ε
varies from εq to zero, the amplitude decreases quickly
to zero, and when ε > εq, the amplitude decreases grad-
ually. Because when ε = εq, trapped electrons’ resonant
velocity equals electrons’ thermal velocity, and in the
range ε > εq (ε < εq), the resonant velocity is less
(larger) than electrons’ thermal velocity.

As shown in Fig. 2, when q reaches 7, which is
at the plasma edge in tokamaks, trapped-electron-
induced damping rate reaches a value comparable to
that induced by circulating ions in the low q range.
Such a high damping rate may explain the phenomena
that GAM disappears whiles low frequency zonal flow
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(LFZF) still exists during L-H transition in the edge
plasma in tokamak, where temperature gradient and
density gradient drive drift wave turbulence [5]. The
nonlinear interaction of drift wave turbulence can pro-
vide energy for GAM [5] and LFZF. On the other hand,
LFZF suffers collision damping, whiles GAM suffers col-
lision and collisionless damping. The latter one is in-
duced by circulating ions and trapped electrons. As
shown in Refs. [8,13] and in Fig. 1, when q increases,
damping rate induced by circulating ions decreases too
fast to be counted in the edge plasma. Thus trapped
electrons play an important role in collisionless damp-
ing at this range. During L-H transiton, GAM dis-
appear while LFZF doesn’t, which suggests that the
collision damping rate enforced on GAM and LFZF
may not be strong enough to damp GAM, that’s to say
that trapped-electron-induced damping plays a role in
GAM’S disappearance in the edge plasma.
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