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The effects of transverse magnetic field and viscosity on the Richtmyer–Meshkov instability are
considered under the framework of two semi-infinite fluids with densities �+ and �−, magnetic fields
B+ and B−, and viscosities �+ and �−, respectively. The amplitude of the perturbations is analytically
obtained. It is found that the magnetic field provides oscillation and damping, and viscosity provides
damping. When both are present, the perturbations of the interface undergo damped oscillation
provided that the magnetic field is strong enough; otherwise the perturbations will damp from the
beginning. © 2008 American Institute of Physics. �DOI: 10.1063/1.2888512�

I. INTRODUCTION

The Richtmyer–Meshkov �RM� �Refs. 1–3� instability
arises when an incident shock wave strikes a corrugated in-
terface of a stratified heterogeneous fluid. The RM instability
was theoretically predicted by Richtmyer2 and confirmed in
experiment by Meshkov.3 Richtmyer’s work, which dealt
with the interaction of a shock wave with a perturbed contact
discontinuity separating fluids of different densities, con-
cluded that the perturbations grow linearly with time
��kAT�u�0t, where � is the perturbation amplitude, k is
the mode wave number, AT is the Atwood number, and �u is
the difference between the shocked and unshocked mean in-
terface velocity.

The RM instability is important in a wide variety of
applications including supernova blast wave interaction with
surrounding matter in astrophysics4 and inertial confinement
fusion �ICF�,5 in which we are primarily interested. In these
applications, the fluids may be ionized, thus the feature of
the instability may be affected by magnetic field. In practice,
it is expected that magnetic field can exist in ionized fluids.
The temperature and density gradient of the laser-induced
plasma in ICF can generate large-scale circulating magnetic
field.6 Other mechanisms, such as Weible instability, reso-
nant absorption, and motion of superthermal electrons, can
also generate such a magnetic field.7 So it is important to
investigate the effect of magnetic field on RM instability,
which has partly been discussed by previous authors. Samta-
ny’s numerical simulation8 of a shock interacting with an
oblique planar contact discontinuity demonstrated that the
growth of the RM instability is suppressed in the existence of
a magnetic field. Wheatly et al.9 studied the case with a
magnetic field perpendicular to the interface by solving the
linearized initial value problem and found that the initial
growth rate of the RM instability was unaffected by the mag-
netic field, but for a finite magnetic field the interface ampli-

tude was asymptotic to a constant value. Thus the RM insta-
bility is suppressed. However, the effect of the magnetic
field which is parallel to the interface �namely, the transverse
magnetic field� has not been analytically investigated.
In fact, when transverse magnetic field exists, in a supercon-
ductive plasma, it will act somewhat as a surface tension.
The transverse magnetic field will hinder the surface pertur-
bations from growing and as a result will stabilize the
instability.

The effects of viscosity on the RM instability are often
ignored by previous authors. Viscosity is often thought of as
trivial importance on plasma instabilities because of the cal-
culated viscosity from kinetic equations are often very
small.10 However, recent measurements of viscosity are up to
108 times larger than predicted by classical collisional
theory.11 Mikaelian examined the effects of viscosity on RM
instability, and concluded that the viscosity contributes to the
suppression of the instability due to the dissipation of
energy.12 A nonlinear viscous theory of RM instability is
built by Carlès and Popinet �CP� and agreed very well with
the result of direct numerical simulation.13 The effect of vis-
cosity on RM instability was also investigated experimen-
tally and the theories of Mikaelian and CP were compared in
Ref. 14. Recently, it was found that viscosity can suppress
the “kink-singularities” of a shocked interface.15

In this work, we present a linear analysis of the RM
instability under the effects of magnetic field and viscosity
with a single-mode sinusoidal perturbation in amplitude. The
equilibrium magnetic field is parallel to the material inter-
face. By analytically deriving the expression of the interface
perturbations, we find out that both the transverse magnetic
field and the viscosity act as stabilizing mechanisms; besides,
the magnetic field also contributes to oscillation. The work is
organized as follows: In Sec. II, a physical model is built and
some basic assumptions are set. In Sec. III, a specific calcu-
lation is presented and an analytical expression of the inter-
face perturbation is obtained. The effects of the quantitiesa�Electronic mail: dli@ustc.edu.cn.

PHYSICS OF PLASMAS 15, 042305 �2008�

1070-664X/2008/15�4�/042305/5/$23.00 © 2008 American Institute of Physics15, 042305-1

Downloaded 02 Nov 2010 to 60.12.143.5. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2888512
http://dx.doi.org/10.1063/1.2888512
http://dx.doi.org/10.1063/1.2888512


such as viscosity, magnetic field, etc. on the RM instability
are discussed in Sec. IV. The results are summarized in
Sec. V.

II. EQUATIONS AND ASSUMPTION

In this paper, an incompressible viscid magnetized fluid
is considered. Dissipation effects, except viscosity, are ig-
nored on RM instability. The equilibrium profiles, such as
mass density �0, magnetic field B0, and coefficient of dy-
namic viscosity �, are illustrated in Fig. 1. We take a sharp
boundary model, i.e., two semi-infinite uniform fluids with
density �+ and �− separated by a horizontal interface at
z=0. The equilibrium quantities are considered to be con-
stant at both sides of the interface, while at the interface,
there is a jump. The complete equilibrium profiles are given
by

u0 = 0, B0 = B0�z�ey ,

�0 = �−, B0�z� = B−, � = �− for z � 0,

�0 = �+, B0�z� = B+, � = �+ for z � 0,

where �+�B+ ,�+� and �−�B− ,�−� are, respectively, the mass
density �magnetic field, coefficient of dynamics viscosity� at
both sides of the interface. We will examine the evolution of
a rippled interface separating two incompressible fluids in
the noninertial reference frame that is impulsively acceler-
ated at t=0. We begin the analysis with the magnetohydro-
dynamics equations,

��

�t
+ � · ��u� = 0, �1�

�
�u

�t
+ �u · �u = − �p + J � B + � · � + �g , �2�

J =
1

�0
� � B , �3�

�B

�t
= − � � E , �4�

E + u � B = 0, �5�

where �0 is the magnetic permeability, and J, E are the
electric current density and electric field, respectively.
g=−�u	�t�ez approximates the effect of the incident shock
wave, where �u is the imparted jump velocity and 	�t� is the
Dirac delta function. The viscous tensor � can be expressed
in an incompressible fluid as

�ij = �� �uj

�xi
+

�ui

�xj
� . �6�

As we have mentioned, the fluid is incompressible, thus we
have

� · u = 0. �7�

Density, pressure, and viscosity gradients are all parallel
to the shock acceleration which is in the direction of the
negative z axis, so it is logical to assume that the inhomoge-
neity exists only in this very direction. Assume that all quan-
tities are of the following form 
=
0+
1, where 
0 denote
the equilibrium quantities, and 
1, which are much smaller
than 
0, denote the perturbed quantities. It is also assumed
that all perturbations have the sinusoidal form 
1�y ,z , t�
= 
̃1�z , t�eiky. Employing the condition that the magnetic field
is solenoidal �� ·B=0�, we get the linearized equations from
Eqs. �1�–�7�,

��1

�t
+ u1z

d�0

dz
= 0, �8�

�0
�u1y

�t
= − ik�p1 +

B0 · B1

�0
� +

1

�0
�ikB0B1y + B1z

dB0

dz
�

+ �� �2

�z2 − k2�u1y + � �u1y

�z
+ iku1z�d�

dz
, �9�

�0
�u1z

�t
= −

�

�z
�p1 +

B0 · B1

�0
� +

1

�0
�ikB0B1z�

+ �� �2

�z2 − k2�u1z + 2
�u1z

�z

d�

dz
− �1�u	�t� , �10�

�B1

�t
= ikB0u1 − u1z

dB0

dz
, �11�

iku1y +
�u1z

�z
= 0. �12�

III. ANALYTICAL DEVELOPMENT

Combining Eqs. �10� and �11�, we have

FIG. 1. The initial condition geometry. Two semi-infinite fluids of mass
density �− and �+, magnetic field B− and B+ in the y direction and coeffi-
cients of dynamic viscosity �− and �+ are separated by an interface at
z=0. The interface perturbations are in the y direction and with the wave-
length ���=2� /k�.
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ik�0
�u1z

�t
=

�

�z
��0

�u1y

�t
−

1

�0
�ikB0B1y + B1z

dB0

dz
�

− �� �2

�z2 − k2�u1y − � �u1y

�z
+ iku1z�d�

dz
	

−
1

�0
k2B0B1z + ik�� �2

�z2 − k2�u1z

+ 2ik
�u1z

�z

d�

dz
− ik�1�u	�t� . �13�

Introducing the perturbation of the interface 
= 
̄�z , t�eiky, the
normal component of the perturbed velocity can be written
as

u1z =
d


dt
. �14�

Thus we may get the perturbations of the mass density, mag-
netic field and transverse velocity,

�1 = − 

d�0

dz
, �15�

B1y = −
��
B0�

�z
, B1z = ikB0
 , �16�

u1y =
i

k

�

�t

�


�z
. �17�

Substituting Eqs. �14�–�17� into Eq. �13�, we get the equation
describing the perturbations of the interface,

k2�0
�2


�t2 =
�

�z
��0

�2

�t2

�


�z
+

k2B0
2

�0

�


�z
− �

�

�t
� �2

�z2 − k2� �


�z

−
�

�t
� �2

�z2 + k2�

d�

dz
	 −

k4B0
2

�0

 + k2�

�

�t

�� �2

�z2 − k2�
 + 2k2 �

�t

�


�z

d�

dz
+ k2�u

d�0

dz

	�t� .

�18�

Since at both sides of the interface, the equilibrium pro-
files such as �0, �, and B0 are constant, we have d
0 /dz
=0. Equation �18� reduces to

��0
�2

�t2 +
k2B0

2

�0
− �

�

�t
� �2

�z2 − k2�	� �2

�z2 − k2�
 = 0. �19�

The exact form of the interface perturbations can be ob-
tained by solving Eq. �19�, but to do so one must know the
time dependence of the perturbations. This apparently circu-
lar argument suggests the fact that Eq. �19� is a fourth-order
eigenvalue equation.12 Following Mikaelian’s approach, we
may get an explicit, analytical albeit approximate expression
of the interface perturbations by taking the following as-
sumption:

�2


�z2 − k2
 = 0. �20�

The general solution of Eq. �20� is a linear combination of
e+kz and e−kz. Consider the physical boundary condition, i.e.,


z=��=0 and the continuous boundary condition, i.e.,


z=0+ =

z=0−, we have


 = ���t�e−kzeiky z � 0

��t�e+kzeiky z � 0
. �21�

Spatially integrating Eq. �18� over the interface from 0− to
0+, and taking into account Eq. �21�, we have

d2��t�
dt2 + k2va

2��t� + 2k2�
d��t�

dt
− kAT�u��t� = 0, �22�

where va�
�B+
2 +B−

2� / ��0��++�−�� is the modified Alfvén
velocity, ����++�−� / ��++�−� is the mean kinematic vis-
cosity, and AT���+−�−� / ��++�−� is the Atwood number.
Solving this equation, we may get the amplitude of the per-
turbations under the effects of transverse magnetic field and
viscosity,

��t�
��0�

= �cosh��t� +
k2� + kAT�u

�
sinh��t�	e−k2�t, �23�

where �=k
k2�2−va
2.

IV. DISCUSSION

In this section, effects of the magnetic field, viscosity,
wavelength, and density gradient on the RM instability are
discussed.

For pure magnetic field we have �=0, �2=−k2va
2, and

Eq. �23� can be simplified to

��t�/��0� = cos�kvat� +
AT�u

va
sin�kvat� . �24�

The linear growth of the instability is suppressed to oscilla-
tion with constant amplitude.

For pure viscosity �va=0�, we get

��t�
��0�

= 1 +
AT�u

2k�
�1 − e−2k2�t� , �25�

which is consistent with Mikaelian’s work.12

If both va=0 and �=0, we recover the classical linear-
growth result of Richtmyer2

��t�/��0� = 1 + �ukATt . �26�

The combined effect of magnetic field and viscosity,
shown by Eq. �23�, may be qualitatively described as fol-
lows: viscosity provides damping; magnetic field provides
oscillation and damping. When both are present, the motion
of the perturbations will be oscillated damping provided
�2�0, otherwise there will be no oscillation. As time goes
by, the perturbations will be damped out due to the dissipa-
tion of the viscosity.
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To discuss the effect of the magnetic field, we have the
wave number k0 and viscosity �0 fixed. The natural param-
eter to denote the effect of magnetic field, we believe, is
defined by setting �=0, i.e., vac=k0�0. The effect of the
magnetic field on RM instability is illustrated in Fig. 2. We
may see that when the magnetic field is not big enough
�va /vac�1�, the perturbations will be damped from the be-
ginning. While va /vac�1, � becomes a pure imaginary
number, thus the amplitude of the perturbations will be os-
cillated damping with frequency �k
va

2−vac
2 � increasing with

magnetic field. The magnetic field also contributes to
the suppression of the perturbations. For the simplicity
of discussion, we will take the va /vac�1 case as an instance.
In practice, the effect of magnetic field is often much stron-
ger than that of the viscosity. Then the modulus of the per-
turbations at time t can be expressed as ���t� /��0� �
=
1+ �k�+AT�u�2 / �va

2−k2�2�e−k2�t; we may see that the am-
plitude of the perturbations decreases with the magnetic
field. When �2�0, the stabilization effect of the magnetic
field is also present. In a nonresistive plasma, the magnetic
lines are frozen together with the fluid. When perturbations
occur, the magnetic tension hinders the perturbations from
growing, and as a result, the instability is suppressed. At the
same time, this tension acts as a restoring force, therefore the
interface oscillates.

For viscosity, if we fix the magnetic field and wave num-
ber, �=0 gives the critical viscosity �c=va0 /k0. The depen-
dence of the perturbations on viscosity is illustrated in Fig. 3.
We may observe that for larger viscosity, the perturbations
are more suppressed. In this figure, we also see the criterion
of oscillation at �=0. With the combined effect of magnetic
field and viscosity, if the magnetic field is strong enough, the
perturbations will be oscillated damping, and if the effect of
viscosity dominates, it is just damping.

The dependence of the interface perturbations on the re-
duced wave number �kc=va0 /�0� is shown in Fig. 4. We may

see that larger k, i.e., shorter-wavelength perturbations, oscil-
late faster and are more damped, while longer-wavelength
perturbations oscillate slower and are less damped.

Finally, we would like to discuss the effect of the density
gradient on the instability. Differing from the similar
Rayleigh–Taylor instability, RM instability can be initialized
by shock wave propagating from the heavy fluid to the light
�heavy/light, AT�0�, as well as that from the light to the
heavy �light/heavy, AT�0�. The dependence of the perturba-
tion amplitude on Atwood number is illustrated in Fig. 5. We
can see that the amplitude of perturbations grows from the
start for the light/heavy case and initially decreases before
reversing its phase and growing for the heavy/light case.
When �2�0, the amplitude of the perturbations can be ex-

FIG. 2. The time evolution of perturbations amplitude ��t� /��0� at va /vac

=0.5, 0.8, 1.4, and 3.5, where va is the modified Alfvén velocity and vac

serves as a scale. The interface perturbations oscillate at stronger magnetic
field �va /vac�1�. When the viscosity is ignorable, the interface oscillates at
constant amplitude.

FIG. 3. ��t� /��0� vs t at � /�c=0.3, 0.6, 1.2, and 2.0, where � is the mean
kinematic viscosity, �c serves as a scale. The perturbations damp faster for
stronger viscosities. When the viscosity is not strong enough �� /�c�1�, the
perturbed interface oscillates under the effect of the magnetic field.

FIG. 4. Time evolution of the perturbations amplitude ��t� /��0� at k /kc

=0.3, 0.6, 1.1, and 3.0, where k is the wave number, kc is the scale defined
by �=0. We may see that smaller �bigger� k, i.e., longer �shorter� wave-
length perturbations, oscillate slower �faster�, achieve larger �smaller�
maxima, and are less �more� damped. When k /kc�1, � is imaginary, and
there are no oscillations.
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pressed as ���t� /��0� � =
1+ ��+AT�u /k�2 / 
�2
e−k2�t, from
which we can see that Atwood number influences the RM
instability via the maximum amplitude of the perturbations.
Especially, when AT=−k� /�u, the perturbations will not
grow at all, i.e., the system is stable. Otherwise, the pertur-
bations will increase their amplitude. However, in a long run,
the perturbations will damp out due to the dissipation effect
of the viscosity.

V. CONCLUSION

The effects of transverse magnetic field and viscosity on
the RM instability are examined by considering the behavior
of an impulsively accelerated corrugated interface separating
two incompressible fluids. The expression of the interface
perturbations is analytically obtained. Then effects of trans-
verse magnetic field, viscosity, wave number, and density
gradient on the RM instability are discussed, respectively.

We may see that the perturbations are amplified as long as
the shock interacts with the interface, then damped due to the
stabilizing effect of the transverse magnetic field and the
viscosity. Pure magnetic field will suppress the linear growth
of the RM instability to oscillation with constant amplitude.
For pure viscosity, the RM instability will reach an
asymptotic limit of ��0��1+�uAT /2k��. When �uAT=−2k�,
the asymptote is zero, i.e., the perturbations are completely
suppressed. A criterion of oscillation at �2=k2�k2�2−va

2�=0
is obtained. When �2�0, the amplitude of the interface per-
turbations is damped from the beginning; otherwise the per-
turbation amplitude will undergo oscillated damping with
frequency k
va

2−k2�2. Thus we may see that systems with
stronger magnetic field, longer wavelength, and weaker vis-
cosity tend to oscillate more. We also discussed the effects of
density gradient on the RM instability. The perturbations
grow from the start for the light/heavy case; whereas for the
heavy/light configuration, the perturbations initially decrease
in amplitude before reversing its phase and growing.
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