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ABSTRACT. Let m be a positive integer, and define

Cm(s) = Z ( °

27rz/m)w(n) o0 27rz/m)Q(n)

and ((s) = Z —

for R(s) > 1, where w(n) denotes the number of distinct factors of n, and Q(n)
represents the total number of prime factors of n (counted with multiplicity). In
this paper we study these two zeta functions and related arithmetical functions.
We show that

o _2mi/m\w(n)
3 ) o it 4,
n=1 n

n is squarefree

which is similar to the known identity > > | u(n)/n = 0 equivalent to the Prime
Number Theorem. For m > 4, we prove that

oo 27rz/m)w(n)

m(1) : Z

_ 27ri/m)ﬂ(n)

=0 and (},(1):= Z Eemmy =0,
n=1 n

and that both Vi, (z)(logz)?™"/™ and V% (z)(logx)?™/™ have explicit given
finite limits as x — oo, where

27i/myw(n) _27i/m\Q(n)
Vi)=Y ol (CalCa s ) and Vji(z)= > ey
n

n<x n<x

We also raise a hypothesis on the parities of 2(n) —n which implies the Riemann
Hypothesis.
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1. INTRODUCTION

The Riemann zeta function ((s), defined by

¢(s) = Z s for R(s) > 1,
n=1

plays a very important role in number theory. As Euler observed,

o) =] (1 _ i) T e () > L

» p

(In such a product we always let p run over all primes.) It is well-known that
((s) for R(s) > 1 can be continued analytically to a complex function which is
holomorphic everywhere except for a simple pole at s=1 with residue 1. The
famous Riemann Hypothesis asserts that if 0 < R(s) < 1 and ((s) = 0 then
R(s) = 1/2. The Prime Number Theorem 7 (z) ~ z/logz (as x — o0) is
actually equivalent to ((1 + it) # 0 for any nonzero real number ¢. (See, e.g.,
R. Crandall and C. Pomerance [CP, pp. 33-37].)
Let u be the Mobius fucntion. It is well known that

)y M

Also, either of 37, u(n)/n = 0 and 3, ., pu(n) = o(x) is equivalent to the
Prime Number Theorem. (Cf. T. M. Apostol [A].)

The reader may consult [A] and [IR, pp. 18-21] for the basic knowledge of
arithmetical functions and the theory of Dirichlet’s convolution and Dirichlet
series.

If n € Zt = {1,2,3,...} is squarefree, then p(n) = (—1)®™ depends
on (n) modulo 2, where 2(n) denotes the number of all prime factors of
n (counted with multiplicity). For the Liouville function A(n) = (—1)%() it is

known that
1 if n is a square,
> AMd) =
d|n

=1 for R(s) > 1.

0 otherwise.

Landau proved in his thesis that the equality >~ A(n)/n = 0 is equivalent to
the Prime Number Theorem. J. van de Lune and R. E. Dressler [LD] showed
that Y o0 (—1)*(™ /n = 0, where w(n) denotes the number of distinct prime
factors of n.

Now we give natural extensions of the functions u(n), A(n) and ((s).

Definition 1.1. For n € Z* we set

(—e2mi/myw(n) if p is squarefree,
o) = { (1

0 otherwise,
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U (n) = (—e2™/™)«(M) and ¥ (n) = (=2 /™))% m), (1.2)
For R(s) > 1 we define

Cm(5) = i ”72&") =11 (1 - ;%_/T) (1.3)

and

G =3B T (14 ) (L4

As v}, is completely multiplicative, the second identity in (1.4) is easy and
in fact known. Since v, is multiplicative, if £(s) > 1 then

HZ mGs :H<1_62ﬂi/m§:pis>
k=1

n=1 p k=0 P

oo

and hence the second equality in (1.3) does hold.

As p1 = p, we call p,, the generalized Mobius function of order m. Note
that (a(s) = (3(s) = C(s). Also, vi(n) = (—1)®™ is the Liouville function
A(n), and

f) = N M) C(2s) I s
Ci(s) = = ) _H<1+p5) for R(s) > 1

n=1 p

If we replace —e?™/™ in the definition of ¢* (s) by €27/ the resulted function
was showed to have an infinitely many valued analytic continuation into the half
plane R(s) > 1/2 by T. Kubota and M. Yoshida [KY]. (See also [A] and [CD].)
It seems that the zeta function (,,(s) introduced here has not been studied
before.

Our following theorem is not difficult.

Theorem 1.1. Let m be any positive integer.
(i) The function ur,(n) = pm(n)\(n) is the inverse of v}, (n) with respect to
the Dirichlet convolution, and hence

i i (1 =1 for R(s) > 1. (1.5)

For R(s) > 1 we also have

wi/m\Q(n
SR ) (1.6)

(3!

n=1
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(ii) If m > 4, then

I1 (1 + e%i/m)_l —0. (1.7)

On the other hand,

o27i/3
H (1 + ) =0 and lim
p XT—r 00

p

I1 (1 + 627;/4) ‘ - g (1.8)

p<T

Remark 1.1. If R(s) > 1, then both (¥, (s) and (,,(s) are nonzero by (1.5) and
(1.6).
Our second theorem is a general result.

Theorem 1.2. Let z be a complex number with R(z) < 1. Then

w(n)

>~ = F(2)(logx)” + c(2) + O((logx) ™) (1.9)

n<x
and

e
Z = G(2)(log x)* 4 c.(2) + O((log z)*™1), (1.10)

n<x
n is squarefree

where ¢(z) and c.(z) are constants only depending on z, and

A= () ()
0 e 1(5) (105)

If || < 2, then

= H(2)(logx)* + C(z) + O((log z)*™ 1), (1.11)

where C(z) is a constant only depending on z, and

#e - 0-2) (-3)

Theorem 1.2 obviously has the following consequence.
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Corollary 1.1. For any complex number z with R(z) < 0, we have

w(n) e Zw(n)

and Z = ¢, (2). (1.12)

n

- n=1
n is squarefree

If |2| <2 and R(z) <0, then

Z C(z). (1.13)
n=1
Theorem 1.3. We have
3 o) _ no_ ..o (1.14)
n
n=1 =

Moreover, for any positive integer m # 2 we have

(logl‘)ezﬂ/m Z ,umn(n) _ g(_e%’i/m) +0 (loéx) (33 > 2), (1.15)

n<x

where G(z) is defined as in Theorem 1.2.

Remark 1.2. It is known that

) L)

n<x n<x

WV

2)

where ¢ = 1.04389... (see, e.g., [BS, Lemma 14]). (1.15) with m = 4 implies

that
Z pa(n)

n<e

= 1G(=i)l.

lim
XT—r 00

After reading the first version of this paper, D. Broadhurst simplified |G(—i)|
as /15sinh7/73.

Theorem 1.4. Let

Vin(x) = Z Ym (1) and V) (x)= Z Vin (1)

n

form € Z* and x > 2. Then

) . 1
Va(z) =F (—e>™/3)(logz) 1 =V3)/2 4 3 + O < ) :

* g’ —1 1
Vi (x) =H(—e*""/?)(log 2) V2 4+ 05+ 0 (x/@) ’
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and
Vi(z) =F(=i)(logz) " +c4 + O <lo )
&% (1.17)
Vi (x) =H(—i)(logz) ™"+ Cy + O (logaj)
where c3,C3,cq,Cy are suitable constants. Also, for m = 5,6,... we have
Vin(x) = Vi (x) = 0(1), i.e.,
=S 0 and (1))=Y '/m (1.18)
n=1 n=1
Moreover, for m =1,5,6,... we have
e2ri/m. _27mi/m 1
Vin(2)(log x) = F(—e )+ O (loga:) (1.19)
and
V2 (@) (log2)°™" = H(—e2miimy 4 0 (). (1.20)
m log =

Remark 1.3. It seems that c3 and C3 are nonzero but ¢4 = 0 (and probably
also C4 = 0). Broadhurst simplified |H(—i)| as y/(sinh7)m/15.

Theorem 1.1 is not difficult. Our proofs of Theorems 1.2-1.4 depend heavily
on some results of A. Selberg [S] (see also H. Delange [D] and Theorem 7.18
of [MV, p.231]) and the Abel summation method via Abel’s identity (see, [A,

p. 77)).
Motivated by Theorem 1.4 we raise the following conjecture for further re-
search.

Conjecture 1.1. Both Vi(z) = anx(—l)“’(”)/n and Vi*(z) = anx(—l)ﬂ(”)/n
are O(x°~1/2) for any € > 0. Also, |Zn<m(—2)9(”)\ < x for all x > 3078.

Remark 1.4. Tt seems that Vi (z) might be O(y/(logx)/x) or even O(1/y/x).
The asymptotic behavior of }, 294(") was investigated by E. Grosswald [G].

In 1958 C. B. Haselgrove [H] disproved Pélya’s conjecture that 3 . A(n) <
0 for all x > 2; he also showed that Turdn’s conjecture . A(n)/n > 0 for
x > 1, is also false. (See also [L] and [BFM].) Our following hypothesis might
be the right one along this direction.
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Hypothesis 1.1. (i) For any x > 5, we have

S(x) =) (=1 >0, (1.21)

n<a
1.€.,
Hn<z: Qn)=n (mod 2)}| >{n<z: Qn)#n (mod 2)}.
Moreover,

S(z) > vz for all x > 325, and S(x) <2.3vx forallxz > 1.

(ii) For any x > 1 we have

T(z):=)» ~——— <0. (1.22)

Moreover,

T(z)Vr <=1 forallz>2, and T(z)y/x > —-23 forallz > 3.

Remark 1.5. We have verified parts (i) and (ii) of the hypothesis for = up to
6 x 101 and 2 x 10° respectively. Here are values of S(z) for some particular

xT.

S(10) = 2, S(10%) = 14, S(10%) = 54, S(10%) = 186, S(10°) = 464,
S(10%) = 1302, S(107) = 5426, S(10%) = 19100, S(10°) = 62824,
S(10'%) = 172250, S(2-10'7) = 252292, S(3-10'%) = 292154,
S(4-10'"Y) = 263326, S(5-10'%) = 360470, S(5.5-10'Y) = 455216.

Ezample 1.1. For x; = 17593752 and x5 = 123579784, we have

S(x1) S(w2)
S =9574, S = 11630 ~ 2.28252 ~ 1.04618.
(:Bl) ) (:BQ) ) \/?1 ) \/:L'_Z

Though we are unable to prove Hypothesis 1.1, we can show the following
result.
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Theorem 1.5. (i) We have

e n—Q(n)
S(x) =o(x) and Z ( 1)n =0. (1.23)
n=1

(ii) If S(x) > 0 for all x = 5, or T'(z) < 0 for all x > 1, then the Riemann
Hypothesis holds.

Note that

S(2) >0 < |[{n<a: 2|(n—9(n)>}|>g.

In view of Hypothesis 1.1, it is natural to ask whether
Hn<z: m|(n—Qn)} > L for sufficiently large z.
m

For m = 3,4, ...,18,20 we have the following conjecture.

Conjecture 1.2. We have
{n <z :4(n—Qm)}| < % for any = > s(4),

and form = 3,5,6,---,18,20 we have

Hn <z :m|(n—Qn))} > % for all x > s(m),
where
s(3) =62, s(4) = 1793193, s(5) = 187, s(6) = 14, s(7) = 6044, s(8) = 73,
s(9) = 65, s(10) =61, s(11) = 4040389, s(12) = 14, s(13) = 6943303,
s(14) = 4174, s(15) =77, s(16) = 99, s(17) = 50147927, s(18) = 73, s(20) = 61.

Remark 1.7. The case m = 19 seems much more sophisticated. Perhaps the
sign of [{n <z :19|(n — Q(n))}| — /19 changes infinitely often.

As there are generalized Riemann Hypothesis for algebraic number fields, we
propose the following extension of Hypothesis 1.1.

Hypothesis 1.2 (Generalized Hypothesis). Let K be any algebraic number
field. Then we have

Sk(z) = Z (—)NA=2A) 5 0 for sufficiently large z,
N(A)Lz

where A runs over all nonzero integral ideals in K whose norm (with respect
to the field extension K/Q) are not greater than x, and Q2(A) denotes the total
number of prime ideals in the factorization of A as a product of prime ideals
(counted with multiplicity). In particular, for K = Q(i) we have Sk (x) > 0 for
all z > 9, and for K = Q(v/=2) we have Sk (x) > 0 for all x > 132.

Now we give one more conjecture.
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Conjecture 1.3. For an integer d = 0,1 (mod 4) define
Suta) = (-1 (£
n )
n<x
where ( ) denotes the Kronecker symbol. Then
5_4(1’) <0, 5_7(33> < 0, S_g(l’) <0
forallx > 1, and

Ss(z) > 0 forx > 11, S_3(z) > 0 forx > 406759, S_11(x) > 0 forxz > 771862,

and
Saq(x) < 0 for x > 90601, and Sag(x) <0 for xz > 629819.

We will show Theorems 1.1 and 1.2 in the next section, and prove Theorems
1.3-1.5 in Sections 3-5 respectively.

2. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1. Clearly u (1)v,(1) =1-1 = 1. Let N be any integer
greater than one, and let n be the product of all distinct prime factors of N.
Then

N . .
ZM;(d)V:;I <E> :ZeQTer(d)/m(_627m/m)Q(n/d)+Q(N/n)

d|N d|n

—(— 1)/ 2N /1§, (g) —0

d|n

Therefore 1, is the inverse of v, with respect to the Dirichlet convolution .
Let s = 0 + it be a complex number with R(s) = ¢ > 1. Since

e { b<

for any n € Z", both 220:1 pk (n)/n®and Yo7 | vk (n)/n® converge absolutely.

Therefore
um Vi (n) o= pan * V(1)
p— _—-s e = 1.

n=1

—itlogn

1
na—l—it

f (1) e

nS

o (1)
nS

Y ’)’LU

Since |p°|=p? >p > |1+ 627”/’”| for any prime p, we have
27ri/m>Q(n)

B 1+627ri/m 1+627r1/m B e (1+€
(-0 -y g -y e

p p k=0
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Note that
ps -1 e27rz/7n B 1— (1 + eQTrz/m)/ps
Cm(s)_H ps —1 _H 1—1/ps
p p
1 +627ri/m
o)
» p

So (1.6) does hold.
Now assume that m > 4. Then 27/m < 7/2 and 0 < cos(2wr/m) < 1. For
any prime p we have

‘1 N 627ri/m‘ _ ‘(1 N cos(27r/m)) N Z,si:(1(27r/m)‘ S cos(27r/m).
p p p
Therefore
2mi/m 2 2 1
II(1+6 )‘>II(1+9§Lﬂﬁﬁ)>1+c%—f§:—,
< p < p m o< P
pxT P P

and hence (1.7) holds since ) 1/p diverges (cf. [IR, p.21]).
Finally we prove the first identity in (1.8). For any prime p, we have
2

2mi/3
‘ =148

i
!
| =
’BM|,_.
—_
+
%I

‘1-1—

Thus

o27i/3
()

2 1
1 “TI(1+ )

PLT PLT

N3 (5

PLT

Since > 1/p diverges while > 1/ p3 converges, the first equality in (1.7) fol-
lows.
The second equality in (1.8) is easy. In fact, as x — oo,

627ri/4
(=)

PLT

2

I

PST

2

14~
p

has the limit

H( 1) [La-1/p)~" (@) _ =6 _ 15

V) TILO- T T ) T a0 e

In view of the above, we have completed the proof of Theorem 1.1. [

p

To prove Theorem 1.2, we need two lemmas.
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Lemma 2.1 (Selberg [S]). Let z be a complex number. For x > 2 we have

Z Zw(n) — F(z)az(logm)z_l +0 (IIJ(lOg.’E‘)%(z)_2> (21)
nx
and
Z Zw(n) _ G(z)x(logaz)z_l +0 (az(log x)mi(Z)—2> , (2.2)
n is gzligrefree
where z
1 z 1
F(2) = — 1+ l—-
(2) I‘(z)l;[< p—l) ( p)
and

When |z| < 2, for x > 2 we also have

Z 2 = H(2)z(logz)* ' 4+ 0O (:L'(loga:)%(z)_2> , (2.3)
n<w
where , - N
1=l (=) ()
Lemma 2.2. Let a(1),a(2),... be a sequence of complex numbers. Suppose
et Z a(n) = cx(logz)*~ 4+ O(z(log z)**)=2) (z > 2), (2.4)
n<a

where ¢ and z are (absolute) complex numbers with z # 0 and R(z) # 1. Then,
for x,y > 2 we have

> A ogay - (X )~ oz’

n<w nLy (25)
= O((logz)*~") + O((logy)* ™).
Thus, if R(z) < 1 then
Z @ = g(logaj)z +c, + O(logm)%('z)_l) (x = 2), (2.6)

n<x

where ¢, 15 a suitable constant.
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Proof. Let A(t) =3_, <, a(n) for t > 2. By the Abel summation formula,

Z CL(’I’L) . Z a(n) :A(ZL’) _ A(y> _/ A(t)(t_l)/dt
n n x Y
n<x ny Y
A A
A AW, [ A0,
x Y y
Note that s
¥ = c(logt)*~t 4+ O((logt)¥#=2)  for t > 2.
Clearly
/x (logt)z_ldt _ (logt)®|* _ (logz)* — (logy)?
y t ? Yy o
and

Y (logz)™@) =1 — (log y)*(=)—1
R(z) —1

/I (logt)%(=)—2 (logt)®(=)—1
dt
Y t R(z)—1

Y

So the desired (2.5) follows from the above.

Now assume that R(z) < 1. For any € > 0 we can find a positive integer
N such that for z,y > N the absolute value of the right-hand side of (2.5) is
smaller than . Therefore, in view of (2.5) and Cauchy’s convergence criterion,
> n<e @(n)/n — c(logx)*/z has a finite limit ¢, as z — co. Letting y — oo in
(2.5) we immediately obtain (2.6). This ends the proof. O

Proof of Theorem 1.2. When z = 0, (1.9)-(1.11) obviously hold with ¢(0) =
Now assume z # 0. As I'(1 + z) = zI'(z), we see that

_G()

H(z)

z

, and H(z) =
Combining Lemmas 2.1 and 2.2 we immediately get the desired (1.9)-(1.11). O

3. PROOF OF THEOREM 1.3
We first present two lemmas.

Lemma 3.1. Let m € ZT and x > 1. Then we have

> () | 7] = o1 —ermimyeo, (3.1)

nLx n<x
Proof. We first claim that

3 () = (1 — 2T/ (32)
d|n
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for any n € Z*. Clearly (3.2) holds for n = 1. If n = coepet with pr, ..., g
distinct primes and aq,...,a; € Z*, then

%“m(d) = Ig{;_’ , (gpz) = Z <k) (=2 /My = (1 — 2Ty ),

Observe that

> (@) |5 =D n(d) 0 1= 3 pnd) = DD (@)

d<z d<z g<z/d dg<z n<x dln
Combining this with (3.2) we immediately obtain (3.1). O
Lemma 3.2. Letm € Z*T, m # 2, and x > 2. Then we have

> ) {= )=o), Y vmm) {Z} =o(@), v {T} =ola),

n<x n<x n<x

where {a} denotes the fractional part of a real number a.

Proof. By (2.1)-(2.3),

> () =eG(=e>")(log )~ "1 0 (a(loga) /) = o(a),
n<x
Z Vm(l’) :xF(_e%ri/m>(logx>—62ﬂ/m—1 +0 (x(loga:)_ cos(27r/m)—2) _ 0(33),
n<T
Z v (x) =xH(—e*™/™)(log x)_em/m_l +0 (:z:(log x)_cos(zﬂ/m)_2> = o(x).
n<T

(Note that F(-1) = G(—1) = H(-1) =0.)
Let w be any of the three functions pi,, vm,v,. By the above W(n) =
> n<e W(n) = o(z). We want to show that

n
n<e
Clearly
Wit
r(u) :zsup‘ ®)l <1 foruz>1.
t>u

Also r(u) — 0 as u — oo.
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Let 0 < e < 1. Then

|A(z)] < Zw(m{g} +' > w(”>{%}
ezt | > (W(n)—W(”_l)){%}
<Lex + -

wita) {2} < Wit <
nd
Wisa) { g | < Wleehl < Leod < 20
Therefore
INGIESESE"E |W1i”>|x {%}—{nil}

<<<<< |z

<1+ 2ex 4 zr(ex) Z

<1+ 2ex + ar(ex) Z ((% - nf—l

T T T
<1+2x—|—x(w)(2 ———{ J
lez] +1 |z Ed
and hence A . )
2@ Lo 4 2 (e
T T €
It follows that A
lim su A=)l < 2e. (3.4)
T—00 Z

As (3.4) holds for any given € € (0,1), we must have A(x) = o(x) as de-
sired. [

Proof of Theorem 1.8. For z = —e?™"/™ we have R(z) = — cos(27/m) < 1 since
m # 2. Combining (2.1) with (2.3), we obtain

Z o, (1) L%J = F(1+ 2)z(logz)* + O (x(loga:)_l_cos(%/m)) .
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By Lemma 3.2,
Z fim () {%} = o(x).
Therefore
&z Z Nmn(n) = Z pm (1) (L%J + {%}) =F(1+ 2)z(logz)® + o(x)
and hence
5= ) g(a)10g ) + of1) 5

n<e

since F'(1+ z) = G(z)/z = G(z). Combining (3.5) with (1.10) and noting that
(logz)=*~! — 0 as * — oo, we get c.(z) = 0. So (1.10) reduces to (1.15).

For m = 5,6,... we clearly have cos(2n/m) > 0 and hence (1.15) implies
that Y >° | pm(n)/n = 0. This concludes the proof. O

Remark 3.1. The way we prove (1.14) can also be used to show Landau’s
equality 3377, A(n)/n = 0. Since A = vf, we have > . A(n){z/n} = o(x) by
Lemma 3.2. So it suffices to prove > . A(n)|z/n] = o(z). In fact,

3 A@) EJ =S Y 1= a@) =33 @)

d<z d<z g<z/d dg<z n<x dln
={1<n<z: nisasquare}| = [Vz| = o(x).

4. PROOF OF THEOREM 1.4

Let m € {1,3,4,...} and z = —e?>™/™, When m = 3, (1.9) and (1.11) yield
(1.16) with c3 = ¢(2) and C3 = C(z). In the case m = 4, (1.9) and (1.11) give
(1.17) with ¢4 = ¢(—i) and Cy = C(—1).

Below we assume that m = 1 or m > 4. Note that R(z) = — cos(27/m) < 0.
By (1.9) and (1.11), we have

Vin(z) = F(2)(log £)* + ¢m + O((logz)*™1)

and
V() = H(2)(logz)* + Cpn 4+ O((log z)* 1),

where ¢,, = ¢(z) and Cy,, = C(2). If ¢,, = C), = 0, then (1.19) and (1.20)
follow. So it suffices to show V,,(z) = o(1) and V(z) = o(1). Note that
¢ (1) =>272, AM(n)/n = 0 by Landau’s result (cf. Remark 3.1) and also (;(1) =

> o1 (=1)% /n = 0 by [LD].

n=1
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Define a(n) = 2% = v* (n) for n € Z* and A(z) := > nce a(n) for x> 1.
And set fs(t) =t=° for s > 1 and ¢ > 1. By the Abel summation formula, for
T = xg = 2 we have

x

S alw)fuln) = A fu(e) ~ Alw)fuleo) ~ [ A@F0

To<n<T Zo

and hence

Z V;;L(n) _ Ax)  A(wo) +S/m ig.tfdt‘ (4.1)

By (2.3), there is a positive constant C' such that

|A(t) — H(2)t(logt)* | < Ct(logt)~27c52/m)  for all ¢ > 2.

Therefore
z—1 —2—cos(27/m)
Aw)| _|HE)oga) ™! | |, log)
xs 333_1 xs—l
|H(2)| C
X (logx>1+cos(27r/m) (log x)2_|_cos(2ﬂ./m) s

A(zo) |H(z)| C

{1)8 X (log x0)1+cos(27r/m) (lOg x0)2+605(2ﬂ/m) ’

H(2)t(logt)*~!
ts—l—l

A(t) — H(2)t(logt)*~1

e dt

and
‘/ tstt‘g/ dt—l—/
o Zo o

T (logt —1—cos(27/m) T (logt —2—cos(27/m)
<|H(z>|/ (og?) dt+0/ (log ) dt
o T

t . t
log ¢ — cos(2mw/m) |® log # —1—cos(27/m) |%
:|H(Z>|(og ) L+ o Uogt)
—cos(2m/m) |,_,. —1—cos(2m/m) |,_,,

__|H(2)] 1 B 1
_COS(27T/m) (log :L'0>COS(27"/m) (log x)cos(27r/m)

1 1
N 1 + cos(2m/m) <(logx0)1+005(27f/m) B (1Og3;)1+c0S(27r/m)) '

Let € > 0. If x and z( are large enough then by the above for any s > 1 we
have

T A(t) e €
s /mo ts+1dt‘<§+§+86:(1+s)a




ON A PAIR OF ZETA FUNCTIONS 17

Therefore the series > >, v (n)/n® converges for any s > 1, in particular
S°%° v (n)/n converges! If N is large enough, then for any s > 1 we have

n=1"m

ZL) (1+s)e and Z inl )<25,
n>N n>N
and hence
oo N
Vi (2 v (n) v (n)
— < —
A G
Vi (1) Vi (1)
DI Rl D D
n>N n>N
N (n) vi(n
I (5 ) s
Letting s — 1+, we get |}, (s) — ¢}, (1)] < 3e. Therefore
im G2 () = G (1), (42)

Similarly, we have limg_,14 G (s) = Gn(1).

Note that Theorem 1 of [KY] remains true if we use z = —e>™/™ instead
of p = e?™/™ in [KY]. Thus, there is a function 1 (s) holomorphic in the half
plane $(s) > 1/2 such that

Aslimg_q ¥ (s) = ¢(1) and limg 14 ((s) ™% = 0o we must have limg_,14 ¢, (s) =
0 and hence ¢}, (1) = 0. We can modify the proof of [KY, Theorem 1] slightly
to prove a similar result for (,,(s) and hence deduce ¢, (1) = 0.

So far we have completed the proof of Theorem 1.4.

5. PROOF OF THEOREM 1.5

Proof of Theorem 1.5. Let L(x) = anx(—l)ﬂ("). (2.3) with z = —1 yields
that L(z) = o(x). Observe that

S(z)+ Liz) = Y ()" + (-1 =2 3 (-1)%Cm = 2 (5> .

2
n<x m<x/2

Therefore
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Clearly
(=12 A(n) A(n) A(m)
=2 =2
ns + Z ns ns Z (2m)®
n<x n<z n<x m<xz/2
2|n
and hence (19 (n) n)
1)n—RHn 1—s A(n A(n
P D Dl sl Dl
n<x n<z/2 n<x
Since ), <, A(n)/n = o(1) as shown by Landau, we get anx(—l)”_g(”)/n =

o(1) and hence > °°  (—1)"=") /p = 0.
Let R(s) > 1. Note that

8

n Q(n) C(28)
—(1+2'79) —(1 42t .
2 2 )
On the other hand, by Abel’s summation method, we have
—1)n—8(n) z
S CU st s,
— ns xs 1 ts—l—
and hence - )
e s,
—1 ns 1 t +
Therefore ((25) " §(t)
(142t 2= / dt. 1
U205 =0 v o1

Let o. be the least real number such that the integral in (5.1) converges
whenever R(s) > o.. By the above, . < 1.

Suppose that S(x) > 0 for all x > 5. In view of (5.1), by applying Landau’s
theorem (cf. [MV, Lemma 15.1] or Ex. 16 of [Ap, p.248]) we obtain

po 1270 ((2s)

s—grlC S ¢(s) -

and hence o, < 1/2 since ((s) has no real zeroes with s > 1/2. So the right-
hand side of (5.1) converges for R(s) > 1/2 and hence so is the left-hand side of
(5.1). Therefore ((s) # 0 for R(s ) > 1/2, i.e., the Riemann Hypothesis holds.
Similarly, if T'(x) < 0 for all z > 1, then we get the Riemann Hypothesis by
applying Landau’s theorem.
So far we have completed the proof of Theorem 1.5. [
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