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Abstract. Let m be a positive integer, and define

ζm(s) =

∞∑

n=1

(−e2πi/m)ω(n)

ns
and ζ∗m(s) =

∞∑

n=1

(−e2πi/m)Ω(n)

ns
,

for ℜ(s) > 1, where ω(n) denotes the number of distinct factors of n, and Ω(n)

represents the total number of prime factors of n (counted with multiplicity). In
this paper we study these two zeta functions and related arithmetical functions.

We show that

∞∑

n=1
n is squarefree

(−e2πi/m)ω(n)

n
= 0 if m > 4,

which is similar to the known identity
∑

∞

n=1 µ(n)/n = 0 equivalent to the Prime

Number Theorem. For m > 4, we prove that

ζm(1) :=

∞∑

n=1

(−e2πi/m)ω(n)

n
= 0 and ζ∗m(1) :=

∞∑

n=1

(−e2πi/m)Ω(n)

n
= 0,

and that both Vm(x)(log x)2πi/m and V ∗

m(x)(log x)2πi/m have explicit given

finite limits as x → ∞, where

Vm(x) =
∑

n6x

(−e2πi/m)ω(n)

n
and V ∗

m(x) =
∑

n6x

(−e2πi/m)Ω(n)

n
.

We also raise a hypothesis on the parities of Ω(n)−n which implies the Riemann
Hypothesis.
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1. Introduction

The Riemann zeta function ζ(s), defined by

ζ(s) =
∞
∑

n=1

1

ns
for ℜ(s) > 1,

plays a very important role in number theory. As Euler observed,

ζ(s) =
∏

p

(

1− 1

ps

)−1

for ℜ(s) > 1.

(In such a product we always let p run over all primes.) It is well-known that
ζ(s) for ℜ(s) > 1 can be continued analytically to a complex function which is
holomorphic everywhere except for a simple pole at s=1 with residue 1. The
famous Riemann Hypothesis asserts that if 0 6 ℜ(s) 6 1 and ζ(s) = 0 then
ℜ(s) = 1/2. The Prime Number Theorem π(x) ∼ x/ log x (as x → ∞) is
actually equivalent to ζ(1 + it) 6= 0 for any nonzero real number t. (See, e.g.,
R. Crandall and C. Pomerance [CP, pp. 33-37].)

Let µ be the Möbius fucntion. It is well known that

ζ(s)

∞
∑

n=1

µ(n)

ns
= 1 for ℜ(s) > 1.

Also, either of
∑∞

n=1 µ(n)/n = 0 and
∑

n6x µ(n) = o(x) is equivalent to the

Prime Number Theorem. (Cf. T. M. Apostol [A].)
The reader may consult [A] and [IR, pp. 18-21] for the basic knowledge of

arithmetical functions and the theory of Dirichlet’s convolution and Dirichlet
series.

If n ∈ Z+ = {1, 2, 3, . . .} is squarefree, then µ(n) = (−1)Ω(n) depends
on Ω(n) modulo 2, where Ω(n) denotes the number of all prime factors of
n (counted with multiplicity). For the Liouville function λ(n) = (−1)Ω(n), it is
known that

∑

d|n
λ(d) =

{

1 if n is a square,

0 otherwise.

Landau proved in his thesis that the equality
∑∞

n=1 λ(n)/n = 0 is equivalent to
the Prime Number Theorem. J. van de Lune and R. E. Dressler [LD] showed
that

∑∞
n=1(−1)ω(n)/n = 0, where ω(n) denotes the number of distinct prime

factors of n.
Now we give natural extensions of the functions µ(n), λ(n) and ζ(s).

Definition 1.1. For n ∈ Z+ we set

µm(n) =

{

(−e2πi/m)ω(n) if n is squarefree,

0 otherwise,
(1.1)
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νm(n) = (−e2πi/m)ω(n) and ν∗m(n) = (−e2πi/m)Ω(n). (1.2)

For ℜ(s) > 1 we define

ζm(s) =
∞
∑

n=1

νm(n)

ns
=

∏

p

(

1− e2πi/m

ps − 1

)

(1.3)

and

ζ∗m(s) =

∞
∑

n=1

ν∗m(n)

ns
=

∏

p

(

1 +
e2πi/m

ps

)−1

. (1.4)

As ν∗m is completely multiplicative, the second identity in (1.4) is easy and
in fact known. Since νm is multiplicative, if ℜ(s) > 1 then

∞
∑

n=1

νm(n)

ns
=

∏

p

∞
∑

k=0

νm(pk)

pks
=

∏

p

(

1− e2πi/m
∞
∑

k=1

1

pks

)

and hence the second equality in (1.3) does hold.
As µ1 = µ, we call µm the generalized Möbius function of order m. Note

that ζ2(s) = ζ∗2 (s) = ζ(s). Also, ν∗1 (n) = (−1)Ω(n) is the Liouville function
λ(n), and

ζ∗1 (s) =
∞
∑

n=1

λ(n)

ns
=
ζ(2s)

ζ(s)
=

∏

p

(

1 +
1

ps

)−1

for ℜ(s) > 1.

If we replace −e2πi/m in the definition of ζ∗m(s) by e2πi/m, the resulted function
was showed to have an infinitely many valued analytic continuation into the half
plane ℜ(s) > 1/2 by T. Kubota and M. Yoshida [KY]. (See also [A] and [CD].)
It seems that the zeta function ζm(s) introduced here has not been studied
before.

Our following theorem is not difficult.

Theorem 1.1. Let m be any positive integer.
(i) The function µ∗

m(n) = µm(n)λ(n) is the inverse of ν∗m(n) with respect to
the Dirichlet convolution, and hence

ζ∗m(s)

∞
∑

n=1

µ∗
m(n)

ns
= 1 for ℜ(s) > 1. (1.5)

For ℜ(s) > 1 we also have

ζm(s)

∞
∑

n=1

(1 + e2πi/m)Ω(n)

ns
= ζ(s). (1.6)
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(ii) If m > 4, then
∏

p

(

1 +
e2πi/m

p

)−1

= 0. (1.7)

On the other hand,

∏

p

(

1 +
e2πi/3

p

)

= 0 and lim
x→∞

∣

∣

∣

∣

∏

p6x

(

1 +
e2πi/4

p

)
∣

∣

∣

∣

=

√
15

π
. (1.8)

Remark 1.1. If ℜ(s) > 1, then both ζ∗m(s) and ζm(s) are nonzero by (1.5) and
(1.6).

Our second theorem is a general result.

Theorem 1.2. Let z be a complex number with ℜ(z) < 1. Then

∑

n6x

zω(n)

n
= F(z)(logx)z + c(z) +O((logx)z−1) (1.9)

and

∑

n6x
n is squarefree

zω(n)

n
= G(z)(log x)z + c∗(z) +O((log x)z−1), (1.10)

where c(z) and c∗(z) are constants only depending on z, and

F(z) =
1

Γ(1 + z)

∏

p

(

1 +
z

p− 1

)(

1− 1

p

)z

,

G(z) = 1

Γ(1 + z)

∏

p

(

1 +
z

p

)(

1− 1

p

)z

.

If |z| < 2, then

∑

n6x

zΩ(n)

n
= H(z)(log x)z + C(z) +O((log x)z−1), (1.11)

where C(z) is a constant only depending on z, and

H(z) =
1

Γ(1 + z)

∏

p

(

1− z

p

)−1 (

1− 1

p

)z

.

Theorem 1.2 obviously has the following consequence.
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Corollary 1.1. For any complex number z with ℜ(z) < 0, we have

∞
∑

n=1

zω(n)

n
= c(z) and

∞
∑

n=1
n is squarefree

zω(n)

n
= c∗(z). (1.12)

If |z| < 2 and ℜ(z) < 0, then

∞
∑

n=1

zΩ(n)

n
= C(z). (1.13)

Theorem 1.3. We have

∞
∑

n=1

µ5(n)

n
=

∞
∑

n=1

µ6(n)

n
= · · · = 0. (1.14)

Moreover, for any positive integer m 6= 2 we have

(log x)e
2πi/m ∑

n6x

µm(n)

n
= G(−e2πi/m) +O

(

1

log x

)

(x > 2), (1.15)

where G(z) is defined as in Theorem 1.2.

Remark 1.2. It is known that

∑

n6x

µ2(n)

n
=

∑

n6x

|µ(n)|
n

=
6

π2
log x+ c+O

(

1√
x

)

(x > 2)

where c = 1.04389 . . . (see, e.g., [BS, Lemma 14]). (1.15) with m = 4 implies
that

lim
x→∞

∣

∣

∣

∣

∑

n6x

µ4(n)

n

∣

∣

∣

∣

= |G(−i)|.

After reading the first version of this paper, D. Broadhurst simplified |G(−i)|
as

√

15 sinhπ/π3.

Theorem 1.4. Let

Vm(x) =
∑

n6x

νm(n)

n
and V ∗

m(x) =
∑

n6x

ν∗m(n)

n

for m ∈ Z+ and x > 2. Then

V3(x) =F(−e2πi/3)(logx)(1−i
√
3)/2 + c3 +O

(

1√
log x

)

,

V ∗
3 (x) =H(−e2πi/3)(log x)(1−i

√
3)/2 + C3 +O

(

1√
log x

)

,

(1.16)
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and

V4(x) =F(−i)(log x)−i + c4 +O

(

1

log x

)

,

V ∗
4 (x) =H(−i)(log x)−i + C4 +O

(

1

log x

)

,

(1.17)

where c3, C3, c4, C4 are suitable constants. Also, for m = 5, 6, . . . we have
Vm(x) = V ∗

m(x) = o(1), i.e.,

ζm(1) :=
∞
∑

n=1

νm(n)

n
= 0 and ζ∗m(1) :=

∞
∑

n=1

ν∗m(n)

n
= 0. (1.18)

Moreover, for m = 1, 5, 6, . . . we have

Vm(x)(log x)e
2πi/m

= F(−e2πi/m) +O

(

1

log x

)

(1.19)

and

V ∗
m(x)(log x)e

2πi/m

= H(−e2πi/m) +O

(

1

log x

)

. (1.20)

Remark 1.3. It seems that c3 and C3 are nonzero but c4 = 0 (and probably

also C4 = 0). Broadhurst simplified |H(−i)| as
√

(sinhπ)π/15.

Theorem 1.1 is not difficult. Our proofs of Theorems 1.2-1.4 depend heavily
on some results of A. Selberg [S] (see also H. Delange [D] and Theorem 7.18
of [MV, p. 231]) and the Abel summation method via Abel’s identity (see, [A,
p. 77]).

Motivated by Theorem 1.4 we raise the following conjecture for further re-
search.

Conjecture 1.1. Both V1(x) =
∑

n6x(−1)ω(n)/n and V ∗
1 (x) =

∑

n6x(−1)Ω(n)/n

are O(xε−1/2) for any ε > 0. Also, |∑n6x(−2)Ω(n)| < x for all x > 3078.

Remark 1.4. It seems that V1(x) might be O(
√

(log x)/x) or even O(1/
√
x).

The asymptotic behavior of
∑

n6x 2
Ω(n) was investigated by E. Grosswald [G].

In 1958 C. B. Haselgrove [H] disproved Pólya’s conjecture that
∑

n6x λ(n) 6

0 for all x > 2; he also showed that Turán’s conjecture
∑

n6x λ(n)/n > 0 for

x > 1, is also false. (See also [L] and [BFM].) Our following hypothesis might
be the right one along this direction.
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Hypothesis 1.1. (i) For any x > 5, we have

S(x) :=
∑

n6x

(−1)n−Ω(n) > 0, (1.21)

i.e.,

|{n 6 x : Ω(n) ≡ n (mod 2)}| > |{n 6 x : Ω(n) 6≡ n (mod 2)}|.

Moreover,

S(x) >
√
x for all x > 325, and S(x) < 2.3

√
x for all x > 1.

(ii) For any x > 1 we have

T (x) :=
∑

n6x

(−1)n−Ω(n)

n
< 0. (1.22)

Moreover,

T (x)
√
x < −1 for all x > 2, and T (x)

√
x > −2.3 for all x > 3.

Remark 1.5. We have verified parts (i) and (ii) of the hypothesis for x up to
6× 1010 and 2× 109 respectively. Here are values of S(x) for some particular
x:

S(10) = 2, S(102) = 14, S(103) = 54, S(104) = 186, S(105) = 464,

S(106) = 1302, S(107) = 5426, S(108) = 19100, S(109) = 62824,

S(1010) = 172250, S(2 · 1010) = 252292, S(3 · 1010) = 292154,

S(4 · 1010) = 263326, S(5 · 1010) = 360470, S(5.5 · 1010) = 455216.

Example 1.1. For x1 = 17593752 and x2 = 123579784, we have

S(x1) = 9574, S(x2) = 11630,
S(x1)√
x1

≈ 2.28252,
S(x2)√
x2

≈ 1.04618.

Though we are unable to prove Hypothesis 1.1, we can show the following
result.
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Theorem 1.5. (i) We have

S(x) = o(x) and
∞
∑

n=1

(−1)n−Ω(n)

n
= 0. (1.23)

(ii) If S(x) > 0 for all x > 5, or T (x) < 0 for all x > 1, then the Riemann
Hypothesis holds.

Note that

S(x) > 0 ⇐⇒ |{n 6 x : 2 | (n− Ω(n))}| > x

2
.

In view of Hypothesis 1.1, it is natural to ask whether

|{n 6 x : m | (n− Ω(n)}| > x

m
for sufficiently large x.

For m = 3, 4, . . . , 18, 20 we have the following conjecture.

Conjecture 1.2. We have

|{n 6 x : 4|(n− Ω(n))}| < x

4
for any x > s(4),

and for m = 3, 5, 6, · · · , 18, 20 we have

|{n 6 x : m|(n− Ω(n))}| > x

m
for all x > s(m),

where

s(3) = 62, s(4) = 1793193, s(5) = 187, s(6) = 14, s(7) = 6044, s(8) = 73,

s(9) = 65, s(10) = 61, s(11) = 4040389, s(12) = 14, s(13) = 6943303,

s(14) = 4174, s(15) = 77, s(16) = 99, s(17) = 50147927, s(18) = 73, s(20) = 61.

Remark 1.7. The case m = 19 seems much more sophisticated. Perhaps the
sign of |{n 6 x : 19|(n− Ω(n))}| − x/19 changes infinitely often.

As there are generalized Riemann Hypothesis for algebraic number fields, we
propose the following extension of Hypothesis 1.1.

Hypothesis 1.2 (Generalized Hypothesis). Let K be any algebraic number
field. Then we have

SK(x) :=
∑

N(A)6x

(−1)N(A)−Ω(A) > 0 for sufficiently large x,

where A runs over all nonzero integral ideals in K whose norm (with respect
to the field extension K/Q) are not greater than x, and Ω(A) denotes the total
number of prime ideals in the factorization of A as a product of prime ideals
(counted with multiplicity). In particular, for K = Q(i) we have SK(x) > 0 for
all x > 9, and for K = Q(

√
−2) we have SK(x) > 0 for all x > 132.

Now we give one more conjecture.
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Conjecture 1.3. For an integer d ≡ 0, 1 (mod 4) define

Sd(x) =
∑

n6x

(−1)n−Ω(n)

(

d

n

)

,

where ( d
n
) denotes the Kronecker symbol. Then

S−4(x) < 0, S−7(x) < 0, S−8(x) < 0

for all x > 1, and

S5(x) > 0 for x > 11, S−3(x) > 0 for x > 406759, S−11(x) > 0 for x > 771862,

and
S24(x) < 0 for x > 90601, and S28(x) < 0 for x > 629819.

We will show Theorems 1.1 and 1.2 in the next section, and prove Theorems
1.3-1.5 in Sections 3-5 respectively.

2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Clearly µ∗
m(1)ν∗m(1) = 1 · 1 = 1. Let N be any integer

greater than one, and let n be the product of all distinct prime factors of N .
Then

∑

d|N
µ∗
m(d)ν∗m

(

N

d

)

=
∑

d|n
e2πiΩ(d)/m(−e2πi/m)Ω(n/d)+Ω(N/n)

=(−1)Ω(N/n)e2πiΩ(N)/m
∑

d|n
µ
(n

d

)

= 0.

Therefore µ∗
m is the inverse of ν∗m with respect to the Dirichlet convolution ∗.

Let s = σ + it be a complex number with ℜ(s) = σ > 1. Since

max

{
∣

∣

∣

∣

µ∗
m(n)

ns

∣

∣

∣

∣

,

∣

∣

∣

∣

µ∗
m(n)

ns

∣

∣

∣

∣

}

6

∣

∣

∣

∣

1

nσ+it

∣

∣

∣

∣

=

∣

∣

∣

∣

e−it logn

nσ

∣

∣

∣

∣

=
1

nσ

for any n ∈ Z+, both
∑∞

n=1 µ
∗
m(n)/ns and

∑∞
n=1 ν

∗
m(n)/ns converge absolutely.

Therefore ∞
∑

n=1

µ∗
m(n)

ns

∞
∑

n=1

ν∗m(n)

ns
=

∞
∑

n=1

µm ∗ ν∗m(n)

ns
= 1.

Since |ps| = pσ > p > |1 + e2πi/m| for any prime p, we have

∏

p

(

1− 1 + e2πi/m

ps

)−1

=
∏

p

∞
∑

k=0

(1 + e2πi/m)k

pks
=

∞
∑

n=0

(1 + e2πi/m)Ω(n)

ns
.
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Note that

ζm(s) =
∏

p

ps − 1− e2πi/m

ps − 1
=

∏

p

1− (1 + e2πi/m)/ps

1− 1/ps

=ζ(s)
∏

p

(

1− 1 + e2πi/m

ps

)

.

So (1.6) does hold.
Now assume that m > 4. Then 2π/m < π/2 and 0 < cos(2π/m) < 1. For

any prime p we have
∣

∣

∣

∣

1 +
e2πi/m

p

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1 +
cos(2π/m)

p

)

+ i
sin(2π/m)

p

∣

∣

∣

∣

> 1 +
cos(2π/m)

p
.

Therefore
∣

∣

∣

∣

∏

p6x

(

1 +
e2πi/m

p

)
∣

∣

∣

∣

>
∏

p6x

(

1 +
cos(2π/m)

p

)

> 1 + cos
2π

m

∑

p6x

1

p
,

and hence (1.7) holds since
∑

p 1/p diverges (cf. [IR, p. 21]).

Finally we prove the first identity in (1.8). For any prime p, we have

∣

∣

∣

∣

1 +
e2πi/3

p

∣

∣

∣

∣

2

= 1 + 2
cos 2π/3

p
+

1

p2
= 1− 1

p
+

1

p2
=

1 + p−3

1 + p−1
.

Thus
∣

∣

∣

∣

∏

p6x

(

1 +
e2πi/3

p

)
∣

∣

∣

∣

2

=
∏

p6x

(

1 +
1

p3

)

·
∏

p6x

(

1 +
1

p

)−1

6
∏

p

(

1 +
1

p3

)

·
(

1 +
∑

p6x

1

p

)−1

.

Since
∑

p 1/p diverges while
∑

p 1/p
3 converges, the first equality in (1.7) fol-

lows.
The second equality in (1.8) is easy. In fact, as x→ ∞,

∣

∣

∣

∣

∏

p6x

(

1 +
e2πi/4

p

)
∣

∣

∣

∣

2

=
∏

p6x

∣

∣

∣

∣

1 +
i

p

∣

∣

∣

∣

2

has the limit

∏

p

(

1 +
1

p2

)

=

∏

p(1− 1/p2)−1

∏

p(1− 1/p4)−1
=
ζ(2)

ζ(4)
=

π2/6

π4/90
=

15

π2
.

In view of the above, we have completed the proof of Theorem 1.1. �

To prove Theorem 1.2, we need two lemmas.
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Lemma 2.1 (Selberg [S]). Let z be a complex number. For x > 2 we have

∑

n6x

zω(n) = F (z)x(log x)z−1 +O
(

x(log x)ℜ(z)−2
)

(2.1)

and
∑

n6x
n is squarefree

zω(n) = G(z)x(log x)z−1 +O
(

x(log x)ℜ(z)−2
)

, (2.2)

where

F (z) =
1

Γ(z)

∏

p

(

1 +
z

p− 1

)(

1− 1

p

)z

and

G(z) =
1

Γ(z)

∏

p

(

1 +
z

p

)(

1− 1

p

)z

.

When |z| < 2, for x > 2 we also have

∑

n6x

zΩ(n) = H(z)x(log x)z−1 +O
(

x(log x)ℜ(z)−2
)

, (2.3)

where

H(z) =
1

Γ(z)

∏

p

(

1− z

p

)−1 (

1− 1

p

)z

.

Lemma 2.2. Let a(1), a(2), . . . be a sequence of complex numbers. Suppose
that

∑

n6x

a(n) = cx(log x)z−1 +O(x(logx)ℜ(z)−2) (x > 2), (2.4)

where c and z are (absolute) complex numbers with z 6= 0 and ℜ(z) 6= 1. Then,
for x, y > 2 we have

∑

n6x

a(n)

n
− c

z
(log x)z −

(

∑

n6y

a(n)

n
− c

z
(log y)z

)

= O((log x)z−1) +O((log y)z−1).

(2.5)

Thus, if ℜ(z) < 1 then

∑

n6x

a(n)

n
=
c

z
(log x)z + cz +O(log x)ℜ(z)−1) (x > 2), (2.6)

where cz is a suitable constant.
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Proof. Let A(t) =
∑

n6t a(n) for t > 2. By the Abel summation formula,

∑

n6x

a(n)

n
−

∑

n6y

a(n)

n
=
A(x)

x
− A(y)

y
−
∫ x

y

A(t)(t−1)′dt

=
A(x)

x
− A(y)

y
+

∫ x

y

A(t)

t2
dt.

Note that
A(t)

t
= c(log t)z−1 +O((log t)ℜ(z)−2) for t > 2.

Clearly
∫ x

y

(log t)z−1

t
dt =

(log t)z

z

∣

∣

∣

∣

x

y

=
(log x)z − (log y)z

z

and
∫ x

y

(log t)ℜ(z)−2

t
dt =

(log t)ℜ(z)−1

ℜ(z) − 1

∣

∣

∣

∣

x

y

=
(log x)ℜ(z)−1 − (log y)ℜ(z)−1

ℜ(z) − 1
.

So the desired (2.5) follows from the above.
Now assume that ℜ(z) < 1. For any ε > 0 we can find a positive integer

N such that for x, y > N the absolute value of the right-hand side of (2.5) is
smaller than ε. Therefore, in view of (2.5) and Cauchy’s convergence criterion,
∑

n6x a(n)/n − c(log x)z/z has a finite limit cz as x → ∞. Letting y → ∞ in

(2.5) we immediately obtain (2.6). This ends the proof. �

Proof of Theorem 1.2. When z = 0, (1.9)-(1.11) obviously hold with c(0) =
c∗(0) = C(0) = 0.

Now assume z 6= 0. As Γ(1 + z) = zΓ(z), we see that

F(z) =
F (z)

z
, G(z) = G(z)

z
, and H(z) =

H(z)

z
.

Combining Lemmas 2.1 and 2.2 we immediately get the desired (1.9)-(1.11). �

3. Proof of Theorem 1.3

We first present two lemmas.

Lemma 3.1. Let m ∈ Z+ and x > 1. Then we have
∑

n6x

µm(n)
⌊x

n

⌋

=
∑

n6x

(1− e2πi/m)ω(n). (3.1)

Proof. We first claim that
∑

d|n
µm(d) = (1− e2πi/m)ω(n) (3.2)
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for any n ∈ Z+. Clearly (3.2) holds for n = 1. If n = pa1

1 · · · pak

k with p1, . . . , pk
distinct primes and a1, . . . , ak ∈ Z+, then

∑

d|n
µm(d) =

∑

I⊆{1,... ,k}
µm

(

∏

i∈I

pi

)

=

k
∑

r=0

(

k

r

)

(−e2πi/m)r = (1− e2πi/m)ω(n).

Observe that

∑

d6x

µm(d)
⌊x

d

⌋

=
∑

d6x

µm(d)
∑

q6x/d

1 =
∑

dq6x

µm(d) =
∑

n6x

∑

d|n
µm(d).

Combining this with (3.2) we immediately obtain (3.1). �

Lemma 3.2. Let m ∈ Z+, m 6= 2, and x > 2. Then we have

∑

n6x

µm(n)
{x

n

}

= o(x),
∑

n6x

νm(n)
{x

n

}

= o(x),
∑

n6x

ν∗m(n)
{x

n

}

= o(x),

(3.3)
where {α} denotes the fractional part of a real number α.

Proof. By (2.1)-(2.3),

∑

n6x

µm(x) =xG(−e2πi/m)(log x)−e2πi/m−1 +O
(

x(log x)− cos(2π/m)−2
)

= o(x),

∑

n6x

νm(x) =xF (−e2πi/m)(log x)−e2πi/m−1 +O
(

x(log x)− cos(2π/m)−2
)

= o(x),

∑

n6x

ν∗m(x) =xH(−e2πi/m)(log x)−e2πi/m−1 +O
(

x(log x)− cos(2π/m)−2
)

= o(x).

(Note that F (−1) = G(−1) = H(−1) = 0.)

Let w be any of the three functions µm, νm, ν
∗
m. By the above W (n) =

∑

n6x w(n) = o(x). We want to show that

∆(x) :=
∑

n6x

w(n)
{x

n

}

= o(x).

Clearly

r(u) := sup
t>u

|W (t)|
t

6 1 for u > 1.

Also r(u) → 0 as u→ ∞.
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Let 0 < ε < 1. Then

|∆(x)| 6
∣

∣

∣

∣

∑

n6εx

w(n)
{x

n

}

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

εx<n6x

w(n)
{x

n

}

∣

∣

∣

∣

6εx+

∣

∣

∣

∣

∑

εx<n6x

(W (n)−W (n− 1))
{x

n

}

∣

∣

∣

∣

6εx+

∣

∣

∣

∣

∑

εx<n<⌊x⌋
W (n)

(

{x

n

}

−
{

x

n+ 1

})
∣

∣

∣

∣

+

∣

∣

∣

∣

W (⌊x⌋)
{

x

⌊x⌋

}

−W (⌊εx⌋)
{

x

⌊εx⌋+ 1

}
∣

∣

∣

∣

.

Note that
∣

∣

∣

∣

W (⌊x⌋)
{

x

⌊x⌋

}
∣

∣

∣

∣

6 |W (⌊x⌋)| {x}⌊x⌋ 6 1

and
∣

∣

∣

∣

W (⌊εx⌋)
{

x

⌊εx⌋+ 1

}
∣

∣

∣

∣

6 |W (⌊εx⌋)| 6 ⌊εx⌋ 6 εx.

Therefore

|∆(x)| 61 + 2εx+
∑

εx<n<⌊x⌋

|W (n)|
n

x

∣

∣

∣

∣

{x

n

}

−
{

x

n+ 1

}
∣

∣

∣

∣

61 + 2εx+ xr(εx)
∑

εx<n<⌊x⌋

∣

∣

∣

∣

x

n
− x

n+ 1
−

(

⌊x

n

⌋

−
⌊

x

n+ 1

⌋)
∣

∣

∣

∣

61 + 2εx+ xr(εx)
∑

εx<n<⌊x⌋

((

x

n
− x

n+ 1

)

+

(

⌊x

n

⌋

−
⌊

x

n+ 1

⌋))

61 + 2εx+ xr(εx)

(

2
x

⌊εx⌋+ 1
− x

⌊x⌋ −
⌊

x

⌊x⌋

⌋)

and hence
|∆(x)|
x

6
1

x
+ 2ε+

2

ε
r(εx).

It follows that

lim sup
x→∞

|∆(x)|
x

6 2ε. (3.4)

As (3.4) holds for any given ε ∈ (0, 1), we must have ∆(x) = o(x) as de-
sired. �

Proof of Theorem 1.3. For z = −e2πi/m we have ℜ(z) = − cos(2π/m) < 1 since
m 6= 2. Combining (2.1) with (2.3), we obtain

∑

n6x

µm(n)
⌊x

n

⌋

= F (1 + z)x(log x)z +O
(

x(log x)−1−cos(2π/m)
)

.
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By Lemma 3.2,
∑

n6x

µm(x)
{x

n

}

= o(x).

Therefore

x
∑

n6x

µm(n)

n
=

∑

n6x

µm(n)
(⌊x

n

⌋

+
{x

n

})

= F (1 + z)x(log x)z + o(x)

and hence
∑

n6x

µm(n)

n
= G(z)(log x)z + o(1) (3.5)

since F (1 + z) = G(z)/z = G(z). Combining (3.5) with (1.10) and noting that
(log x)−z−1 → 0 as x→ ∞, we get c∗(z) = 0. So (1.10) reduces to (1.15).

For m = 5, 6, . . . we clearly have cos(2π/m) > 0 and hence (1.15) implies
that

∑∞
n=1 µm(n)/n = 0. This concludes the proof. �

Remark 3.1. The way we prove (1.14) can also be used to show Landau’s
equality

∑∞
n=1 λ(n)/n = 0. Since λ = ν∗1 , we have

∑

n6x λ(n){x/n} = o(x) by

Lemma 3.2. So it suffices to prove
∑

n6x λ(n)⌊x/n⌋ = o(x). In fact,

∑

d6x

λ(d)
⌊x

d

⌋

=
∑

d6x

λ(d)
∑

q6x/d

1 =
∑

dq6x

λ(d) =
∑

n6x

∑

d|n
λ(d)

=|{1 6 n 6 x : n is a square}| = ⌊
√
x⌋ = o(x).

4. Proof of Theorem 1.4

Let m ∈ {1, 3, 4, . . .} and z = −e2πi/m. When m = 3, (1.9) and (1.11) yield
(1.16) with c3 = c(z) and C3 = C(z). In the case m = 4, (1.9) and (1.11) give
(1.17) with c4 = c(−i) and C4 = C(−i).

Below we assume that m = 1 or m > 4. Note that ℜ(z) = − cos(2π/m) < 0.
By (1.9) and (1.11), we have

Vm(x) = F(z)(log x)z + cm +O((log x)z−1)

and

V ∗
m(x) = H(z)(log x)z + Cm +O((log x)z−1),

where cm = c(z) and Cm = C(z). If cm = Cm = 0, then (1.19) and (1.20)
follow. So it suffices to show Vm(x) = o(1) and V ∗

m(x) = o(1). Note that
ζ∗1 (1) =

∑∞
n=1 λ(n)/n = 0 by Landau’s result (cf. Remark 3.1) and also ζ1(1) =

∑∞
n=1(−1)ω(n)/n = 0 by [LD].



16 ZHI-WEI SUN

Define a(n) = zΩ(n) = ν∗m(n) for n ∈ Z+ and A(x) :=
∑

n6x a(n) for x > 1.

And set fs(t) = t−s for s > 1 and t > 1. By the Abel summation formula, for
x > x0 > 2 we have

∑

x0<n6x

a(n)fs(n) = A(x)fs(x)− A(x0)fs(x0)−
∫ x

x0

A(t)f ′
s(t)dt

and hence
∑

x0<n6x

ν∗m(n)

ns
=
A(x)

xs
− A(x0)

xs0
+ s

∫ x

x0

A(t)

ts+1
dt. (4.1)

By (2.3), there is a positive constant C such that

|A(t)−H(z)t(log t)z−1| 6 Ct(log t)−2−cos(2π/m) for all t > 2.

Therefore

∣

∣

∣

∣

A(x)

xs

∣

∣

∣

∣

6

∣

∣

∣

∣

H(z)(log x)z−1

xs−1

∣

∣

∣

∣

+ C
(log x)−2−cos(2π/m)

xs−1

6
|H(z)|

(log x)1+cos(2π/m)
+

C

(log x)2+cos(2π/m)
,

∣

∣

∣

∣

A(x0)

xs0

∣

∣

∣

∣

6
|H(z)|

(log x0)1+cos(2π/m)
+

C

(log x0)2+cos(2π/m)
,

and

∣

∣

∣

∣

∫ x

x0

A(t)

ts+1
dt

∣

∣

∣

∣

6

∫ x

x0

∣

∣

∣

∣

H(z)t(log t)z−1

ts+1

∣

∣

∣

∣

dt+

∫ x

x0

∣

∣

∣

∣

A(t)−H(z)t(log t)z−1

ts+1

∣

∣

∣

∣

dt

6|H(z)|
∫ x

x0

(log t)−1−cos(2π/m)

t
dt+ C

∫ x

x0

(log t)−2−cos(2π/m)

t
dt

=|H(z)| (log t)
− cos(2π/m)

− cos(2π/m)

∣

∣

∣

∣

x

t=x0

+ C
(log t)−1−cos(2π/m)

−1− cos(2π/m)

∣

∣

∣

∣

x

t=x0

=
|H(z)|

cos(2π/m)

(

1

(log x0)cos(2π/m)
− 1

(log x)cos(2π/m)

)

+
C

1 + cos(2π/m)

(

1

(log x0)1+cos(2π/m)
− 1

(log x)1+cos(2π/m)

)

.

Let ε > 0. If x and x0 are large enough then by the above for any s > 1 we
have
∣

∣

∣

∣

∑

x0<n6x

ν∗m(n)

ns

∣

∣

∣

∣

=

∣

∣

∣

∣

A(x)

xs

∣

∣

∣

∣

+

∣

∣

∣

∣

A(x0)

xs0

∣

∣

∣

∣

+ s

∣

∣

∣

∣

∫ x

x0

A(t)

ts+1
dt

∣

∣

∣

∣

6
ε

2
+
ε

2
+ sε = (1 + s)ε.
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Therefore the series
∑∞

n=1 ν
∗
m(n)/ns converges for any s > 1, in particular

∑∞
n=1 ν

∗
m(n)/n converges! If N is large enough, then for any s > 1 we have

∣

∣

∣

∣

∑

n>N

ν∗m(n)

ns

∣

∣

∣

∣

< (1 + s)ε and

∣

∣

∣

∣

∑

n>N

ν∗m(n)

n

∣

∣

∣

∣

< 2ε,

and hence

∣

∣

∣

∣

∞
∑

n=1

ν∗m(n)

ns
− ζm(1)

∣

∣

∣

∣

6

∣

∣

∣

∣

N
∑

n=1

(

ν∗m(n)

ns
− ν∗m(n)

n

)
∣

∣

∣

∣

+

∣

∣

∣

∣

∑

n>N

ν∗m(n)

ns

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

n>N

ν∗m(n)

n

∣

∣

∣

∣

6

∣

∣

∣

∣

N
∑

n=1

(

ν∗m(n)

ns
− ν∗m(n)

n

)
∣

∣

∣

∣

+ (3 + s)ε.

Letting s→ 1+, we get |ζ∗m(s)− ζ∗m(1)| 6 3ε. Therefore

lim
s→1+

ζ∗m(s) = ζ∗m(1). (4.2)

Similarly, we have lims→1+ ζm(s) = ζm(1).
Note that Theorem 1 of [KY] remains true if we use z = −e2πi/m instead

of ρ = e2πi/m in [KY]. Thus, there is a function ψ(s) holomorphic in the half
plane ℜ(s) > 1/2 such that

ζ∗m(s)ζ(s)−z = ψ(s).

As lims→1 ψ(s) = ψ(1) and lims→1+ ζ(s)
−z = ∞ we must have lims→1+ ζ

∗
m(s) =

0 and hence ζ∗m(1) = 0. We can modify the proof of [KY, Theorem 1] slightly
to prove a similar result for ζm(s) and hence deduce ζm(1) = 0.

So far we have completed the proof of Theorem 1.4.

5. Proof of Theorem 1.5

Proof of Theorem 1.5. Let L(x) =
∑

n6x(−1)Ω(n). (2.3) with z = −1 yields

that L(x) = o(x). Observe that

S(x) + L(x) =
∑

n6x

((−1)n + 1)(−1)Ω(n) = 2
∑

m6x/2

(−1)Ω(2m) = −2L
(x

2

)

.

Therefore

S(x) = −L(x)− 2L
(x

2

)

= o(x).
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Clearly

∑

n6x

(−1)n−Ω(n)

ns
+

∑

n6x

λ(n)

ns
= 2

∑

n6x
2|n

λ(n)

ns
= −2

∑

m6x/2

λ(m)

(2m)s

and hence
∑

n6x

(−1)n−Ω(n)

ns
= −21−s

∑

n6x/2

λ(n)

ns
−

∑

n6x

λ(n)

ns
.

Since
∑

n6x λ(n)/n = o(1) as shown by Landau, we get
∑

n6x(−1)n−Ω(n)/n =

o(1) and hence
∑∞

n=1(−1)n−Ω(n)/n = 0.
Let ℜ(s) > 1. Note that

∞
∑

n=1

(−1)n−Ω(n)

ns
= −(1 + 21−s)

∞
∑

n=1

λ(n)

ns
= −(1 + 21−s)

ζ(2s)

ζ(s)
.

On the other hand, by Abel’s summation method, we have

∑

n6x

(−1)n−Ω(n)

ns
=
S(x)

xs
+ s

∫ x

1

S(t)

ts+1
dt

and hence ∞
∑

n=1

(−1)n−Ω(n)

ns
= s

∫ ∞

1

S(t)

ts+1
dt.

Therefore

−(1 + 21−s)
ζ(2s)

ζ(s)
= s

∫ ∞

1

S(t)

ts+1
dt. (5.1)

Let σc be the least real number such that the integral in (5.1) converges
whenever ℜ(s) > σc. By the above, σc 6 1.

Suppose that S(x) > 0 for all x > 5. In view of (5.1), by applying Landau’s
theorem (cf. [MV, Lemma 15.1] or Ex. 16 of [Ap, p.248]) we obtain

lim
s→σc

−1 + 21−s

s
· ζ(2s)
ζ(s)

= ∞

and hence σc 6 1/2 since ζ(s) has no real zeroes with s > 1/2. So the right-
hand side of (5.1) converges for ℜ(s) > 1/2 and hence so is the left-hand side of
(5.1). Therefore ζ(s) 6= 0 for ℜ(s) > 1/2, i.e., the Riemann Hypothesis holds.

Similarly, if T (x) < 0 for all x > 1, then we get the Riemann Hypothesis by
applying Landau’s theorem.

So far we have completed the proof of Theorem 1.5. �
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