ON A PAIR OF ZETA FUNCTIONS

Zhi-Wei Sun
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~ZWsun

Abstract. Let m be a positive integer, and define

$$
\zeta_{m}(s)=\sum_{n=1}^{\infty} \frac{\left(-e^{2 \pi i / m}\right)^{\omega(n)}}{n^{s}} \text { and } \zeta_{m}^{*}(s)=\sum_{n=1}^{\infty} \frac{\left(-e^{2 \pi i / m}\right)^{\Omega(n)}}{n^{s}}
$$

for $\Re(s)>1$, where $\omega(n)$ denotes the number of distinct factors of n, and $\Omega(n)$ represents the total number of prime factors of n (counted with multiplicity). In this paper we study these two zeta functions and related arithmetical functions. We show that

$$
\sum_{\substack{n=1 \\ \text { s squarefree }}}^{\infty} \frac{\left(-e^{2 \pi i / m}\right)^{\omega(n)}}{n}=0 \quad \text { if } m>4,
$$

which is similar to the known identity $\sum_{n=1}^{\infty} \mu(n) / n=0$ equivalent to the Prime Number Theorem. For $m>4$, we prove that

$$
\zeta_{m}(1):=\sum_{n=1}^{\infty} \frac{\left(-e^{2 \pi i / m}\right)^{\omega(n)}}{n}=0 \text { and } \zeta_{m}^{*}(1):=\sum_{n=1}^{\infty} \frac{\left(-e^{2 \pi i / m}\right)^{\Omega(n)}}{n}=0,
$$

and that both $V_{m}(x)(\log x)^{2 \pi i / m}$ and $V_{m}^{*}(x)(\log x)^{2 \pi i / m}$ have explicit given finite limits as $x \rightarrow \infty$, where

$$
V_{m}(x)=\sum_{n \leqslant x} \frac{\left(-e^{2 \pi i / m}\right)^{\omega(n)}}{n} \text { and } V_{m}^{*}(x)=\sum_{n \leqslant x} \frac{\left(-e^{2 \pi i / m}\right)^{\Omega(n)}}{n} .
$$

We also raise a hypothesis on the parities of $\Omega(n)-n$ which implies the Riemann Hypothesis.

[^0]
1. Introduction

The Riemann zeta function $\zeta(s)$, defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad \text { for } \Re(s)>1
$$

plays a very important role in number theory. As Euler observed,

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \quad \text { for } \Re(s)>1
$$

(In such a product we always let p run over all primes.) It is well-known that $\zeta(s)$ for $\Re(s)>1$ can be continued analytically to a complex function which is holomorphic everywhere except for a simple pole at $s=1$ with residue 1. The famous Riemann Hypothesis asserts that if $0 \leqslant \Re(s) \leqslant 1$ and $\zeta(s)=0$ then $\Re(s)=1 / 2$. The Prime Number Theorem $\pi(x) \sim x / \log x($ as $x \rightarrow \infty)$ is actually equivalent to $\zeta(1+i t) \neq 0$ for any nonzero real number t. (See, e.g., R. Crandall and C. Pomerance [CP, pp. 33-37].)

Let μ be the Möbius fucntion. It is well known that

$$
\zeta(s) \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=1 \text { for } \Re(s)>1
$$

Also, either of $\sum_{n=1}^{\infty} \mu(n) / n=0$ and $\sum_{n \leqslant x} \mu(n)=o(x)$ is equivalent to the Prime Number Theorem. (Cf. T. M. Apostol [A].)

The reader may consult [A] and [IR, pp. 18-21] for the basic knowledge of arithmetical functions and the theory of Dirichlet's convolution and Dirichlet series.

If $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ is squarefree, then $\mu(n)=(-1)^{\Omega(n)}$ depends on $\Omega(n)$ modulo 2 , where $\Omega(n)$ denotes the number of all prime factors of n (counted with multiplicity). For the Liouville function $\lambda(n)=(-1)^{\Omega(n)}$, it is known that

$$
\sum_{d \mid n} \lambda(d)= \begin{cases}1 & \text { if } n \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

Landau proved in his thesis that the equality $\sum_{n=1}^{\infty} \lambda(n) / n=0$ is equivalent to the Prime Number Theorem. J. van de Lune and R. E. Dressler [LD] showed that $\sum_{n=1}^{\infty}(-1)^{\omega(n)} / n=0$, where $\omega(n)$ denotes the number of distinct prime factors of n.

Now we give natural extensions of the functions $\mu(n), \lambda(n)$ and $\zeta(s)$.
Definition 1.1. For $n \in \mathbb{Z}^{+}$we set

$$
\mu_{m}(n)= \begin{cases}\left(-e^{2 \pi i / m}\right)^{\omega(n)} & \text { if } n \text { is squarefree } \tag{1.1}\\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{equation*}
\nu_{m}(n)=\left(-e^{2 \pi i / m}\right)^{\omega(n)} \text { and } \nu_{m}^{*}(n)=\left(-e^{2 \pi i / m}\right)^{\Omega(n)} \tag{1.2}
\end{equation*}
$$

For $\Re(s)>1$ we define

$$
\begin{equation*}
\zeta_{m}(s)=\sum_{n=1}^{\infty} \frac{\nu_{m}(n)}{n^{s}}=\prod_{p}\left(1-\frac{e^{2 \pi i / m}}{p^{s}-1}\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{m}^{*}(s)=\sum_{n=1}^{\infty} \frac{\nu_{m}^{*}(n)}{n^{s}}=\prod_{p}\left(1+\frac{e^{2 \pi i / m}}{p^{s}}\right)^{-1} \tag{1.4}
\end{equation*}
$$

As ν_{m}^{*} is completely multiplicative, the second identity in (1.4) is easy and in fact known. Since ν_{m} is multiplicative, if $\Re(s)>1$ then

$$
\sum_{n=1}^{\infty} \frac{\nu_{m}(n)}{n^{s}}=\prod_{p} \sum_{k=0}^{\infty} \frac{\nu_{m}\left(p^{k}\right)}{p^{k s}}=\prod_{p}\left(1-e^{2 \pi i / m} \sum_{k=1}^{\infty} \frac{1}{p^{k s}}\right)
$$

and hence the second equality in (1.3) does hold.
As $\mu_{1}=\mu$, we call μ_{m} the generalized Möbius function of order m. Note that $\zeta_{2}(s)=\zeta_{2}^{*}(s)=\zeta(s)$. Also, $\nu_{1}^{*}(n)=(-1)^{\Omega(n)}$ is the Liouville function $\lambda(n)$, and

$$
\zeta_{1}^{*}(s)=\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}=\frac{\zeta(2 s)}{\zeta(s)}=\prod_{p}\left(1+\frac{1}{p^{s}}\right)^{-1} \quad \text { for } \Re(s)>1
$$

If we replace $-e^{2 \pi i / m}$ in the definition of $\zeta_{m}^{*}(s)$ by $e^{2 \pi i / m}$, the resulted function was showed to have an infinitely many valued analytic continuation into the half plane $\Re(s)>1 / 2$ by T. Kubota and M. Yoshida [KY]. (See also [A] and [CD].) It seems that the zeta function $\zeta_{m}(s)$ introduced here has not been studied before.

Our following theorem is not difficult.
Theorem 1.1. Let m be any positive integer.
(i) The function $\mu_{m}^{*}(n)=\mu_{m}(n) \lambda(n)$ is the inverse of $\nu_{m}^{*}(n)$ with respect to the Dirichlet convolution, and hence

$$
\begin{equation*}
\zeta_{m}^{*}(s) \sum_{n=1}^{\infty} \frac{\mu_{m}^{*}(n)}{n^{s}}=1 \quad \text { for } \Re(s)>1 \tag{1.5}
\end{equation*}
$$

For $\Re(s)>1$ we also have

$$
\begin{equation*}
\zeta_{m}(s) \sum_{n=1}^{\infty} \frac{\left(1+e^{2 \pi i / m}\right)^{\Omega(n)}}{n^{s}}=\zeta(s) . \tag{1.6}
\end{equation*}
$$

(ii) If $m>4$, then

$$
\begin{equation*}
\prod_{p}\left(1+\frac{e^{2 \pi i / m}}{p}\right)^{-1}=0 \tag{1.7}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\prod_{p}\left(1+\frac{e^{2 \pi i / 3}}{p}\right)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty}\left|\prod_{p \leqslant x}\left(1+\frac{e^{2 \pi i / 4}}{p}\right)\right|=\frac{\sqrt{15}}{\pi} . \tag{1.8}
\end{equation*}
$$

Remark 1.1. If $\Re(s)>1$, then both $\zeta_{m}^{*}(s)$ and $\zeta_{m}(s)$ are nonzero by (1.5) and (1.6).

Our second theorem is a general result.
Theorem 1.2. Let z be a complex number with $\Re(z)<1$. Then

$$
\begin{equation*}
\sum_{n \leqslant x} \frac{z^{\omega(n)}}{n}=\mathcal{F}(z)(\log x)^{z}+c(z)+O\left((\log x)^{z-1}\right) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{n \leqslant x \\ n \text { is squarefree }}} \frac{z^{\omega(n)}}{n}=\mathcal{G}(z)(\log x)^{z}+c_{*}(z)+O\left((\log x)^{z-1}\right) \tag{1.10}
\end{equation*}
$$

where $c(z)$ and $c_{*}(z)$ are constants only depending on z, and

$$
\begin{aligned}
& \mathcal{F}(z)=\frac{1}{\Gamma(1+z)} \prod_{p}\left(1+\frac{z}{p-1}\right)\left(1-\frac{1}{p}\right)^{z} \\
& \mathcal{G}(z)=\frac{1}{\Gamma(1+z)} \prod_{p}\left(1+\frac{z}{p}\right)\left(1-\frac{1}{p}\right)^{z}
\end{aligned}
$$

If $|z|<2$, then

$$
\begin{equation*}
\sum_{n \leqslant x} \frac{z^{\Omega(n)}}{n}=\mathcal{H}(z)(\log x)^{z}+C(z)+O\left((\log x)^{z-1}\right) \tag{1.11}
\end{equation*}
$$

where $C(z)$ is a constant only depending on z, and

$$
\mathcal{H}(z)=\frac{1}{\Gamma(1+z)} \prod_{p}\left(1-\frac{z}{p}\right)^{-1}\left(1-\frac{1}{p}\right)^{z}
$$

Theorem 1.2 obviously has the following consequence.

Corollary 1.1. For any complex number z with $\Re(z)<0$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{z^{\omega(n)}}{n}=c(z) \quad \text { and } \quad \sum_{\substack{n=1 \\ n \text { is squarefree }}}^{\infty} \frac{z^{\omega(n)}}{n}=c_{*}(z) . \tag{1.12}
\end{equation*}
$$

If $|z|<2$ and $\Re(z)<0$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{z^{\Omega(n)}}{n}=C(z) \tag{1.13}
\end{equation*}
$$

Theorem 1.3. We have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu_{5}(n)}{n}=\sum_{n=1}^{\infty} \frac{\mu_{6}(n)}{n}=\cdots=0 \tag{1.14}
\end{equation*}
$$

Moreover, for any positive integer $m \neq 2$ we have

$$
\begin{equation*}
(\log x)^{e^{2 \pi i / m}} \sum_{n \leqslant x} \frac{\mu_{m}(n)}{n}=\mathcal{G}\left(-e^{2 \pi i / m}\right)+O\left(\frac{1}{\log x}\right) \quad(x \geqslant 2) \tag{1.15}
\end{equation*}
$$

where $\mathcal{G}(z)$ is defined as in Theorem 1.2.
Remark 1.2. It is known that

$$
\sum_{n \leqslant x} \frac{\mu_{2}(n)}{n}=\sum_{n \leqslant x} \frac{|\mu(n)|}{n}=\frac{6}{\pi^{2}} \log x+c+O\left(\frac{1}{\sqrt{x}}\right)(x \geqslant 2)
$$

where $c=1.04389 \ldots$ (see, e.g., [BS, Lemma 14]). (1.15) with $m=4$ implies that

$$
\lim _{x \rightarrow \infty}\left|\sum_{n \leqslant x} \frac{\mu_{4}(n)}{n}\right|=|\mathcal{G}(-i)| .
$$

After reading the first version of this paper, D. Broadhurst simplified $|\mathcal{G}(-i)|$ as $\sqrt{15 \sinh \pi / \pi^{3}}$.
Theorem 1.4. Let

$$
V_{m}(x)=\sum_{n \leqslant x} \frac{\nu_{m}(n)}{n} \text { and } V_{m}^{*}(x)=\sum_{n \leqslant x} \frac{\nu_{m}^{*}(n)}{n}
$$

for $m \in \mathbb{Z}^{+}$and $x \geqslant 2$. Then

$$
\begin{align*}
V_{3}(x) & =\mathcal{F}\left(-e^{2 \pi i / 3}\right)(\log x)^{(1-i \sqrt{3}) / 2}+c_{3}+O\left(\frac{1}{\sqrt{\log x}}\right), \tag{1.16}\\
V_{3}^{*}(x) & =\mathcal{H}\left(-e^{2 \pi i / 3}\right)(\log x)^{(1-i \sqrt{3}) / 2}+C_{3}+O\left(\frac{1}{\sqrt{\log x}}\right),
\end{align*}
$$

and

$$
\begin{align*}
V_{4}(x) & =\mathcal{F}(-i)(\log x)^{-i}+c_{4}+O\left(\frac{1}{\log x}\right) \tag{1.17}\\
V_{4}^{*}(x) & =\mathcal{H}(-i)(\log x)^{-i}+C_{4}+O\left(\frac{1}{\log x}\right)
\end{align*}
$$

where $c_{3}, C_{3}, c_{4}, C_{4}$ are suitable constants. Also, for $m=5,6, \ldots$ we have $V_{m}(x)=V_{m}^{*}(x)=o(1)$, i.e.,

$$
\begin{equation*}
\zeta_{m}(1):=\sum_{n=1}^{\infty} \frac{\nu_{m}(n)}{n}=0 \quad \text { and } \quad \zeta_{m}^{*}(1):=\sum_{n=1}^{\infty} \frac{\nu_{m}^{*}(n)}{n}=0 \tag{1.18}
\end{equation*}
$$

Moreover, for $m=1,5,6, \ldots$ we have

$$
\begin{equation*}
V_{m}(x)(\log x)^{e^{2 \pi i / m}}=\mathcal{F}\left(-e^{2 \pi i / m}\right)+O\left(\frac{1}{\log x}\right) \tag{1.19}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{m}^{*}(x)(\log x)^{e^{2 \pi i / m}}=\mathcal{H}\left(-e^{2 \pi i / m}\right)+O\left(\frac{1}{\log x}\right) . \tag{1.20}
\end{equation*}
$$

Remark 1.3. It seems that c_{3} and C_{3} are nonzero but $c_{4}=0$ (and probably also $\left.C_{4}=0\right)$. Broadhurst simplified $|\mathcal{H}(-i)|$ as $\sqrt{(\sinh \pi) \pi / 15}$.

Theorem 1.1 is not difficult. Our proofs of Theorems 1.2-1.4 depend heavily on some results of A. Selberg [S] (see also H. Delange [D] and Theorem 7.18 of [MV, p. 231]) and the Abel summation method via Abel's identity (see, [A, p. 77]).

Motivated by Theorem 1.4 we raise the following conjecture for further research.

Conjecture 1.1. Both $V_{1}(x)=\sum_{n \leqslant x}(-1)^{\omega(n)} / n$ and $V_{1}^{*}(x)=\sum_{n \leqslant x}(-1)^{\Omega(n)} / n$ are $O\left(x^{\varepsilon-1 / 2}\right)$ for any $\varepsilon>0$. Also, $\left|\sum_{n \leqslant x}(-2)^{\Omega(n)}\right|<x$ for all $x \geqslant 3078$.

Remark 1.4. It seems that $V_{1}(x)$ might be $O(\sqrt{(\log x) / x})$ or even $O(1 / \sqrt{x})$. The asymptotic behavior of $\sum_{n \leqslant x} 2^{\Omega(n)}$ was investigated by E. Grosswald [G].

In 1958 C. B. Haselgrove $[\mathrm{H}]$ disproved Pólya's conjecture that $\sum_{n \leqslant x} \lambda(n) \leqslant$ 0 for all $x \geqslant 2$; he also showed that Turán's conjecture $\sum_{n \leqslant x} \lambda(n) / n>0$ for $x \geqslant 1$, is also false. (See also [L] and [BFM].) Our following hypothesis might be the right one along this direction.

Hypothesis 1.1. (i) For any $x \geqslant 5$, we have

$$
\begin{equation*}
S(x):=\sum_{n \leqslant x}(-1)^{n-\Omega(n)}>0 \tag{1.21}
\end{equation*}
$$

i.e.,

$$
|\{n \leqslant x: \Omega(n) \equiv n(\bmod 2)\}|>|\{n \leqslant x: \Omega(n) \not \equiv n(\bmod 2)\}|
$$

Moreover,

$$
S(x)>\sqrt{x} \text { for all } x \geqslant 325, \text { and } S(x)<2.3 \sqrt{x} \text { for all } x \geqslant 1
$$

(ii) For any $x \geqslant 1$ we have

$$
\begin{equation*}
T(x):=\sum_{n \leqslant x} \frac{(-1)^{n-\Omega(n)}}{n}<0 \tag{1.22}
\end{equation*}
$$

Moreover,

$$
T(x) \sqrt{x}<-1 \text { for all } x \geqslant 2, \text { and } T(x) \sqrt{x}>-2.3 \text { for all } x \geqslant 3
$$

Remark 1.5. We have verified parts (i) and (ii) of the hypothesis for x up to 6×10^{10} and 2×10^{9} respectively. Here are values of $S(x)$ for some particular x :

$$
\begin{gathered}
S(10)=2, S\left(10^{2}\right)=14, S\left(10^{3}\right)=54, S\left(10^{4}\right)=186, S\left(10^{5}\right)=464 \\
S\left(10^{6}\right)=1302, S\left(10^{7}\right)=5426, S\left(10^{8}\right)=19100, S\left(10^{9}\right)=62824 \\
S\left(10^{10}\right)=172250, S\left(2 \cdot 10^{10}\right)=252292, S\left(3 \cdot 10^{10}\right)=292154 \\
S\left(4 \cdot 10^{10}\right)=263326, S\left(5 \cdot 10^{10}\right)=360470, S\left(5.5 \cdot 10^{10}\right)=455216
\end{gathered}
$$

Example 1.1. For $x_{1}=17593752$ and $x_{2}=123579784$, we have

$$
S\left(x_{1}\right)=9574, S\left(x_{2}\right)=11630, \frac{S\left(x_{1}\right)}{\sqrt{x_{1}}} \approx 2.28252, \frac{S\left(x_{2}\right)}{\sqrt{x_{2}}} \approx 1.04618
$$

Though we are unable to prove Hypothesis 1.1 , we can show the following result.

Theorem 1.5. (i) We have

$$
\begin{equation*}
S(x)=o(x) \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-\Omega(n)}}{n}=0 . \tag{1.23}
\end{equation*}
$$

(ii) If $S(x)>0$ for all $x \geqslant 5$, or $T(x)<0$ for all $x \geqslant 1$, then the Riemann Hypothesis holds.

Note that

$$
S(x)>0 \Longleftrightarrow|\{n \leqslant x: 2 \mid(n-\Omega(n))\}|>\frac{x}{2}
$$

In view of Hypothesis 1.1, it is natural to ask whether

$$
\left\lvert\,\left\{n \leqslant x: m|(n-\Omega(n)\}|>\frac{x}{m} \text { for sufficiently large } x .\right.\right.
$$

For $m=3,4, \ldots, 18,20$ we have the following conjecture.
Conjecture 1.2. We have

$$
|\{n \leqslant x: 4 \mid(n-\Omega(n))\}|<\frac{x}{4} \quad \text { for any } x \geqslant s(4)
$$

and for $m=3,5,6, \cdots, 18,20$ we have

$$
|\{n \leqslant x: m \mid(n-\Omega(n))\}|>\frac{x}{m} \quad \text { for all } x \geqslant s(m)
$$

where

$$
\begin{aligned}
& s(3)=62, s(4)=1793193, s(5)=187, s(6)=14, s(7)=6044, s(8)=73 \\
& s(9)=65, s(10)=61, s(11)=4040389, s(12)=14, s(13)=6943303 \\
& s(14)=4174, s(15)=77, s(16)=99, s(17)=50147927, s(18)=73, s(20)=61
\end{aligned}
$$

Remark 1.7. The case $m=19$ seems much more sophisticated. Perhaps the sign of $|\{n \leqslant x: 19 \mid(n-\Omega(n))\}|-x / 19$ changes infinitely often.

As there are generalized Riemann Hypothesis for algebraic number fields, we propose the following extension of Hypothesis 1.1.
Hypothesis 1.2 (Generalized Hypothesis). Let K be any algebraic number field. Then we have

$$
S_{K}(x):=\sum_{N(A) \leqslant x}(-1)^{N(A)-\Omega(A)}>0 \quad \text { for sufficiently large } x,
$$

where A runs over all nonzero integral ideals in K whose norm (with respect to the field extension K / \mathbb{Q}) are not greater than x, and $\Omega(A)$ denotes the total number of prime ideals in the factorization of A as a product of prime ideals (counted with multiplicity). In particular, for $K=\mathbb{Q}(i)$ we have $S_{K}(x)>0$ for all $x \geqslant 9$, and for $K=\mathbb{Q}(\sqrt{-2})$ we have $S_{K}(x)>0$ for all $x \geqslant 132$.

Now we give one more conjecture.

Conjecture 1.3. For an integer $d \equiv 0,1(\bmod 4)$ define

$$
S_{d}(x)=\sum_{n \leqslant x}(-1)^{n-\Omega(n)}\left(\frac{d}{n}\right),
$$

where $\left(\frac{d}{n}\right)$ denotes the Kronecker symbol. Then

$$
S_{-4}(x)<0, S_{-7}(x)<0, S_{-8}(x)<0
$$

for all $x \geqslant 1$, and
$S_{5}(x)>0$ for $x \geqslant 11, S_{-3}(x)>0$ for $x \geqslant 406759, S_{-11}(x)>0$ for $x \geqslant 771862$, and

$$
S_{24}(x)<0 \text { for } x \geqslant 90601, \text { and } S_{28}(x)<0 \text { for } x \geqslant 629819
$$

We will show Theorems 1.1 and 1.2 in the next section, and prove Theorems 1.3-1.5 in Sections 3-5 respectively.

2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Clearly $\mu_{m}^{*}(1) \nu_{m}^{*}(1)=1 \cdot 1=1$. Let N be any integer greater than one, and let n be the product of all distinct prime factors of N. Then

$$
\begin{aligned}
\sum_{d \mid N} \mu_{m}^{*}(d) \nu_{m}^{*}\left(\frac{N}{d}\right) & =\sum_{d \mid n} e^{2 \pi i \Omega(d) / m}\left(-e^{2 \pi i / m}\right)^{\Omega(n / d)+\Omega(N / n)} \\
& =(-1)^{\Omega(N / n)} e^{2 \pi i \Omega(N) / m} \sum_{d \mid n} \mu\left(\frac{n}{d}\right)=0
\end{aligned}
$$

Therefore μ_{m}^{*} is the inverse of ν_{m}^{*} with respect to the Dirichlet convolution $*$.
Let $s=\sigma+i t$ be a complex number with $\Re(s)=\sigma>1$. Since

$$
\max \left\{\left|\frac{\mu_{m}^{*}(n)}{n^{s}}\right|,\left|\frac{\mu_{m}^{*}(n)}{n^{s}}\right|\right\} \leqslant\left|\frac{1}{n^{\sigma+i t}}\right|=\left|\frac{e^{-i t \log n}}{n^{\sigma}}\right|=\frac{1}{n^{\sigma}}
$$

for any $n \in \mathbb{Z}^{+}$, both $\sum_{n=1}^{\infty} \mu_{m}^{*}(n) / n^{s}$ and $\sum_{n=1}^{\infty} \nu_{m}^{*}(n) / n^{s}$ converge absolutely. Therefore

$$
\sum_{n=1}^{\infty} \frac{\mu_{m}^{*}(n)}{n^{s}} \sum_{n=1}^{\infty} \frac{\nu_{m}^{*}(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{\mu_{m} * \nu_{m}^{*}(n)}{n^{s}}=1
$$

Since $\left|p^{s}\right|=p^{\sigma}>p \geqslant\left|1+e^{2 \pi i / m}\right|$ for any prime p, we have

$$
\prod_{p}\left(1-\frac{1+e^{2 \pi i / m}}{p^{s}}\right)^{-1}=\prod_{p} \sum_{k=0}^{\infty} \frac{\left(1+e^{2 \pi i / m}\right)^{k}}{p^{k s}}=\sum_{n=0}^{\infty} \frac{\left(1+e^{2 \pi i / m}\right)^{\Omega(n)}}{n^{s}}
$$

Note that

$$
\begin{aligned}
\zeta_{m}(s) & =\prod_{p} \frac{p^{s}-1-e^{2 \pi i / m}}{p^{s}-1}=\prod_{p} \frac{1-\left(1+e^{2 \pi i / m}\right) / p^{s}}{1-1 / p^{s}} \\
& =\zeta(s) \prod_{p}\left(1-\frac{1+e^{2 \pi i / m}}{p^{s}}\right) .
\end{aligned}
$$

So (1.6) does hold.
Now assume that $m>4$. Then $2 \pi / m<\pi / 2$ and $0<\cos (2 \pi / m)<1$. For any prime p we have

$$
\left|1+\frac{e^{2 \pi i / m}}{p}\right|=\left|\left(1+\frac{\cos (2 \pi / m)}{p}\right)+i \frac{\sin (2 \pi / m)}{p}\right| \geqslant 1+\frac{\cos (2 \pi / m)}{p} .
$$

Therefore

$$
\left|\prod_{p \leqslant x}\left(1+\frac{e^{2 \pi i / m}}{p}\right)\right| \geqslant \prod_{p \leqslant x}\left(1+\frac{\cos (2 \pi / m)}{p}\right) \geqslant 1+\cos \frac{2 \pi}{m} \sum_{p \leqslant x} \frac{1}{p},
$$

and hence (1.7) holds since $\sum_{p} 1 / p$ diverges (cf. [IR, p. 21]).
Finally we prove the first identity in (1.8). For any prime p, we have

$$
\left|1+\frac{e^{2 \pi i / 3}}{p}\right|^{2}=1+2 \frac{\cos 2 \pi / 3}{p}+\frac{1}{p^{2}}=1-\frac{1}{p}+\frac{1}{p^{2}}=\frac{1+p^{-3}}{1+p^{-1}} .
$$

Thus

$$
\begin{aligned}
\left|\prod_{p \leqslant x}\left(1+\frac{e^{2 \pi i / 3}}{p}\right)\right|^{2} & =\prod_{p \leqslant x}\left(1+\frac{1}{p^{3}}\right) \cdot \prod_{p \leqslant x}\left(1+\frac{1}{p}\right)^{-1} \\
& \leqslant \prod_{p}\left(1+\frac{1}{p^{3}}\right) \cdot\left(1+\sum_{p \leqslant x} \frac{1}{p}\right)^{-1} .
\end{aligned}
$$

Since $\sum_{p} 1 / p$ diverges while $\sum_{p} 1 / p^{3}$ converges, the first equality in (1.7) follows.

The second equality in (1.8) is easy. In fact, as $x \rightarrow \infty$,

$$
\left|\prod_{p \leqslant x}\left(1+\frac{e^{2 \pi i / 4}}{p}\right)\right|^{2}=\prod_{p \leqslant x}\left|1+\frac{i}{p}\right|^{2}
$$

has the limit

$$
\prod_{p}\left(1+\frac{1}{p^{2}}\right)=\frac{\prod_{p}\left(1-1 / p^{2}\right)^{-1}}{\prod_{p}\left(1-1 / p^{4}\right)^{-1}}=\frac{\zeta(2)}{\zeta(4)}=\frac{\pi^{2} / 6}{\pi^{4} / 90}=\frac{15}{\pi^{2}}
$$

In view of the above, we have completed the proof of Theorem 1.1.
To prove Theorem 1.2, we need two lemmas.

Lemma 2.1 (Selberg [S]). Let z be a complex number. For $x \geqslant 2$ we have

$$
\begin{equation*}
\sum_{n \leqslant x} z^{\omega(n)}=F(z) x(\log x)^{z-1}+O\left(x(\log x)^{\Re(z)-2}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{n \leqslant x \\ \text { S squarefree }}} z^{\omega(n)}=G(z) x(\log x)^{z-1}+O\left(x(\log x)^{\Re(z)-2}\right), \tag{2.2}
\end{equation*}
$$

where

$$
F(z)=\frac{1}{\Gamma(z)} \prod_{p}\left(1+\frac{z}{p-1}\right)\left(1-\frac{1}{p}\right)^{z}
$$

and

$$
G(z)=\frac{1}{\Gamma(z)} \prod_{p}\left(1+\frac{z}{p}\right)\left(1-\frac{1}{p}\right)^{z}
$$

When $|z|<2$, for $x \geqslant 2$ we also have

$$
\begin{equation*}
\sum_{n \leqslant x} z^{\Omega(n)}=H(z) x(\log x)^{z-1}+O\left(x(\log x)^{\Re(z)-2}\right) \tag{2.3}
\end{equation*}
$$

where

$$
H(z)=\frac{1}{\Gamma(z)} \prod_{p}\left(1-\frac{z}{p}\right)^{-1}\left(1-\frac{1}{p}\right)^{z}
$$

Lemma 2.2. Let $a(1), a(2), \ldots$ be a sequence of complex numbers. Suppose that

$$
\begin{equation*}
\sum_{n \leqslant x} a(n)=c x(\log x)^{z-1}+O\left(x(\log x)^{\Re(z)-2}\right) \quad(x \geqslant 2), \tag{2.4}
\end{equation*}
$$

where c and z are (absolute) complex numbers with $z \neq 0$ and $\Re(z) \neq 1$. Then, for $x, y \geqslant 2$ we have

$$
\begin{align*}
& \sum_{n \leqslant x} \frac{a(n)}{n}-\frac{c}{z}(\log x)^{z}-\left(\sum_{n \leqslant y} \frac{a(n)}{n}-\frac{c}{z}(\log y)^{z}\right) \tag{2.5}\\
& \quad=O\left((\log x)^{z-1}\right)+O\left((\log y)^{z-1}\right) .
\end{align*}
$$

Thus, if $\Re(z)<1$ then

$$
\begin{equation*}
\left.\sum_{n \leqslant x} \frac{a(n)}{n}=\frac{c}{z}(\log x)^{z}+c_{z}+O(\log x)^{\Re(z)-1}\right) \quad(x \geqslant 2) \tag{2.6}
\end{equation*}
$$

where c_{z} is a suitable constant.

Proof. Let $A(t)=\sum_{n \leqslant t} a(n)$ for $t \geqslant 2$. By the Abel summation formula,

$$
\begin{aligned}
\sum_{n \leqslant x} \frac{a(n)}{n}-\sum_{n \leqslant y} \frac{a(n)}{n} & =\frac{A(x)}{x}-\frac{A(y)}{y}-\int_{y}^{x} A(t)\left(t^{-1}\right)^{\prime} d t \\
& =\frac{A(x)}{x}-\frac{A(y)}{y}+\int_{y}^{x} \frac{A(t)}{t^{2}} d t .
\end{aligned}
$$

Note that

$$
\frac{A(t)}{t}=c(\log t)^{z-1}+O\left((\log t)^{\Re(z)-2}\right) \quad \text { for } t \geqslant 2
$$

Clearly

$$
\int_{y}^{x} \frac{(\log t)^{z-1}}{t} d t=\left.\frac{(\log t)^{z}}{z}\right|_{y} ^{x}=\frac{(\log x)^{z}-(\log y)^{z}}{z}
$$

and

$$
\int_{y}^{x} \frac{(\log t)^{\Re(z)-2}}{t} d t=\left.\frac{(\log t)^{\Re(z)-1}}{\Re(z)-1}\right|_{y} ^{x}=\frac{(\log x)^{\Re(z)-1}-(\log y)^{\Re(z)-1}}{\Re(z)-1} .
$$

So the desired (2.5) follows from the above.
Now assume that $\Re(z)<1$. For any $\varepsilon>0$ we can find a positive integer N such that for $x, y \geqslant N$ the absolute value of the right-hand side of (2.5) is smaller than ε. Therefore, in view of (2.5) and Cauchy's convergence criterion, $\sum_{n \leqslant x} a(n) / n-c(\log x)^{z} / z$ has a finite limit c_{z} as $x \rightarrow \infty$. Letting $y \rightarrow \infty$ in (2.5) we immediately obtain (2.6). This ends the proof.

Proof of Theorem 1.2. When $z=0$, (1.9)-(1.11) obviously hold with $c(0)=$ $c_{*}(0)=C(0)=0$.

Now assume $z \neq 0$. As $\Gamma(1+z)=z \Gamma(z)$, we see that

$$
\mathcal{F}(z)=\frac{F(z)}{z}, \mathcal{G}(z)=\frac{G(z)}{z}, \text { and } \mathcal{H}(z)=\frac{H(z)}{z} .
$$

Combining Lemmas 2.1 and 2.2 we immediately get the desired (1.9)-(1.11).

3. Proof of Theorem 1.3

We first present two lemmas.
Lemma 3.1. Let $m \in \mathbb{Z}^{+}$and $x \geqslant 1$. Then we have

$$
\begin{equation*}
\sum_{n \leqslant x} \mu_{m}(n)\left\lfloor\frac{x}{n}\right\rfloor=\sum_{n \leqslant x}\left(1-e^{2 \pi i / m}\right)^{\omega(n)} . \tag{3.1}
\end{equation*}
$$

Proof. We first claim that

$$
\begin{equation*}
\sum_{d \mid n} \mu_{m}(d)=\left(1-e^{2 \pi i / m}\right)^{\omega(n)} \tag{3.2}
\end{equation*}
$$

for any $n \in \mathbb{Z}^{+}$. Clearly (3.2) holds for $n=1$. If $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ with p_{1}, \ldots, p_{k} distinct primes and $a_{1}, \ldots, a_{k} \in \mathbb{Z}^{+}$, then

$$
\sum_{d \mid n} \mu_{m}(d)=\sum_{I \subseteq\{1, \ldots, k\}} \mu_{m}\left(\prod_{i \in I} p_{i}\right)=\sum_{r=0}^{k}\binom{k}{r}\left(-e^{2 \pi i / m}\right)^{r}=\left(1-e^{2 \pi i / m}\right)^{\omega(n)} .
$$

Observe that

$$
\sum_{d \leqslant x} \mu_{m}(d)\left\lfloor\frac{x}{d}\right\rfloor=\sum_{d \leqslant x} \mu_{m}(d) \sum_{q \leqslant x / d} 1=\sum_{d q \leqslant x} \mu_{m}(d)=\sum_{n \leqslant x} \sum_{d \mid n} \mu_{m}(d)
$$

Combining this with (3.2) we immediately obtain (3.1).
Lemma 3.2. Let $m \in \mathbb{Z}^{+}, m \neq 2$, and $x \geqslant 2$. Then we have

$$
\begin{equation*}
\sum_{n \leqslant x} \mu_{m}(n)\left\{\frac{x}{n}\right\}=o(x), \sum_{n \leqslant x} \nu_{m}(n)\left\{\frac{x}{n}\right\}=o(x), \sum_{n \leqslant x} \nu_{m}^{*}(n)\left\{\frac{x}{n}\right\}=o(x) \tag{3.3}
\end{equation*}
$$

where $\{\alpha\}$ denotes the fractional part of a real number α.
Proof. By (2.1)-(2.3),
$\sum_{n \leqslant x} \mu_{m}(x)=x G\left(-e^{2 \pi i / m}\right)(\log x)^{-e^{2 \pi i / m}-1}+O\left(x(\log x)^{-\cos (2 \pi / m)-2}\right)=o(x)$,
$\sum_{n \leqslant x} \nu_{m}(x)=x F\left(-e^{2 \pi i / m}\right)(\log x)^{-e^{2 \pi i / m}-1}+O\left(x(\log x)^{-\cos (2 \pi / m)-2}\right)=o(x)$,
$\sum_{n \leqslant x} \nu_{m}^{*}(x)=x H\left(-e^{2 \pi i / m}\right)(\log x)^{-e^{2 \pi i / m}-1}+O\left(x(\log x)^{-\cos (2 \pi / m)-2}\right)=o(x)$.
(Note that $F(-1)=G(-1)=H(-1)=0$.)
Let w be any of the three functions $\mu_{m}, \nu_{m}, \nu_{m}^{*}$. By the above $W(n)=$ $\sum_{n \leqslant x} w(n)=o(x)$. We want to show that

$$
\Delta(x):=\sum_{n \leqslant x} w(n)\left\{\frac{x}{n}\right\}=o(x)
$$

Clearly

$$
r(u):=\sup _{t \geqslant u} \frac{|W(t)|}{t} \leqslant 1 \quad \text { for } u \geqslant 1
$$

Also $r(u) \rightarrow 0$ as $u \rightarrow \infty$.

Let $0<\varepsilon<1$. Then

$$
\begin{aligned}
|\Delta(x)| \leqslant & \leqslant \sum_{n \leqslant \varepsilon x} w(n)\left\{\frac{x}{n}\right\}\left|+\left|\sum_{\varepsilon x<n \leqslant x} w(n)\left\{\frac{x}{n}\right\}\right|\right. \\
& \leqslant \varepsilon x+\left|\sum_{\varepsilon x<n \leqslant x}(W(n)-W(n-1))\left\{\frac{x}{n}\right\}\right| \\
& \leqslant \varepsilon x+\left|\sum_{\varepsilon x<n<\lfloor x\rfloor} W(n)\left(\left\{\frac{x}{n}\right\}-\left\{\frac{x}{n+1}\right\}\right)\right| \\
& +\left|W(\lfloor x\rfloor)\left\{\frac{x}{\lfloor x\rfloor}\right\}-W(\lfloor\varepsilon x\rfloor)\left\{\frac{x}{\lfloor\varepsilon x\rfloor+1}\right\}\right| .
\end{aligned}
$$

Note that

$$
\left|W(\lfloor x\rfloor)\left\{\frac{x}{\lfloor x\rfloor}\right\}\right| \leqslant|W(\lfloor x\rfloor)| \frac{\{x\}}{\lfloor x\rfloor} \leqslant 1
$$

and

$$
\left|W(\lfloor\varepsilon x\rfloor)\left\{\frac{x}{\lfloor\varepsilon x\rfloor+1}\right\}\right| \leqslant|W(\lfloor\varepsilon x\rfloor)| \leqslant\lfloor\varepsilon x\rfloor \leqslant \varepsilon x .
$$

Therefore

$$
\begin{aligned}
|\Delta(x)| & \leqslant 1+2 \varepsilon x+\sum_{\varepsilon x<n<\lfloor x\rfloor} \frac{|W(n)|}{n} x\left|\left\{\frac{x}{n}\right\}-\left\{\frac{x}{n+1}\right\}\right| \\
& \leqslant 1+2 \varepsilon x+x r(\varepsilon x) \sum_{\varepsilon x<n<\lfloor x\rfloor}\left\lfloor\left.\frac{x}{n}-\frac{x}{n+1}-\left(\left\lfloor\frac{x}{n}\right\rfloor-\left\lfloor\frac{x}{n+1}\right\rfloor\right) \right\rvert\,\right. \\
& \leqslant 1+2 \varepsilon x+x r(\varepsilon x) \sum_{\varepsilon x<n<\lfloor x\rfloor}\left(\left(\frac{x}{n}-\frac{x}{n+1}\right)+\left(\left\lfloor\frac{x}{n}\right\rfloor-\left\lfloor\frac{x}{n+1}\right\rfloor\right)\right) \\
& \leqslant 1+2 \varepsilon x+x r(\varepsilon x)\left(2 \frac{x}{\lfloor\varepsilon x\rfloor+1}-\frac{x}{\lfloor x\rfloor}-\left\lfloor\frac{x}{\lfloor x\rfloor}\right\rfloor\right)
\end{aligned}
$$

and hence

$$
\frac{|\Delta(x)|}{x} \leqslant \frac{1}{x}+2 \varepsilon+\frac{2}{\varepsilon} r(\varepsilon x) .
$$

It follows that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{|\Delta(x)|}{x} \leqslant 2 \varepsilon \tag{3.4}
\end{equation*}
$$

As (3.4) holds for any given $\varepsilon \in(0,1)$, we must have $\Delta(x)=o(x)$ as desired.

Proof of Theorem 1.3. For $z=-e^{2 \pi i / m}$ we have $\Re(z)=-\cos (2 \pi / m)<1$ since $m \neq 2$. Combining (2.1) with (2.3), we obtain

$$
\sum_{n \leqslant x} \mu_{m}(n)\left\lfloor\frac{x}{n}\right\rfloor=F(1+z) x(\log x)^{z}+O\left(x(\log x)^{-1-\cos (2 \pi / m)}\right)
$$

By Lemma 3.2,

$$
\sum_{n \leqslant x} \mu_{m}(x)\left\{\frac{x}{n}\right\}=o(x)
$$

Therefore

$$
x \sum_{n \leqslant x} \frac{\mu_{m}(n)}{n}=\sum_{n \leqslant x} \mu_{m}(n)\left(\left\lfloor\frac{x}{n}\right\rfloor+\left\{\frac{x}{n}\right\}\right)=F(1+z) x(\log x)^{z}+o(x)
$$

and hence

$$
\begin{equation*}
\sum_{n \leqslant x} \frac{\mu_{m}(n)}{n}=\mathcal{G}(z)(\log x)^{z}+o(1) \tag{3.5}
\end{equation*}
$$

since $F(1+z)=G(z) / z=\mathcal{G}(z)$. Combining (3.5) with (1.10) and noting that $(\log x)^{-z-1} \rightarrow 0$ as $x \rightarrow \infty$, we get $c_{*}(z)=0$. So (1.10) reduces to (1.15).

For $m=5,6, \ldots$ we clearly have $\cos (2 \pi / m)>0$ and hence (1.15) implies that $\sum_{n=1}^{\infty} \mu_{m}(n) / n=0$. This concludes the proof.

Remark 3.1. The way we prove (1.14) can also be used to show Landau's equality $\sum_{n=1}^{\infty} \lambda(n) / n=0$. Since $\lambda=\nu_{1}^{*}$, we have $\sum_{n \leqslant x} \lambda(n)\{x / n\}=o(x)$ by Lemma 3.2. So it suffices to prove $\sum_{n \leqslant x} \lambda(n)\lfloor x / n\rfloor=o(x)$. In fact,

$$
\begin{aligned}
\sum_{d \leqslant x} \lambda(d)\left\lfloor\frac{x}{d}\right\rfloor & =\sum_{d \leqslant x} \lambda(d) \sum_{q \leqslant x / d} 1=\sum_{d q \leqslant x} \lambda(d)=\sum_{n \leqslant x} \sum_{d \mid n} \lambda(d) \\
& =\mid\{1 \leqslant n \leqslant x: n \text { is a square }\} \mid=\lfloor\sqrt{x}\rfloor=o(x)
\end{aligned}
$$

4. Proof of Theorem 1.4

Let $m \in\{1,3,4, \ldots\}$ and $z=-e^{2 \pi i / m}$. When $m=3,(1.9)$ and (1.11) yield (1.16) with $c_{3}=c(z)$ and $C_{3}=C(z)$. In the case $m=4,(1.9)$ and (1.11) give (1.17) with $c_{4}=c(-i)$ and $C_{4}=C(-i)$.

Below we assume that $m=1$ or $m>4$. Note that $\Re(z)=-\cos (2 \pi / m)<0$. By (1.9) and (1.11), we have

$$
V_{m}(x)=\mathcal{F}(z)(\log x)^{z}+c_{m}+O\left((\log x)^{z-1}\right)
$$

and

$$
V_{m}^{*}(x)=\mathcal{H}(z)(\log x)^{z}+C_{m}+O\left((\log x)^{z-1}\right)
$$

where $c_{m}=c(z)$ and $C_{m}=C(z)$. If $c_{m}=C_{m}=0$, then (1.19) and (1.20) follow. So it suffices to show $V_{m}(x)=o(1)$ and $V_{m}^{*}(x)=o(1)$. Note that $\zeta_{1}^{*}(1)=\sum_{n=1}^{\infty} \lambda(n) / n=0$ by Landau's result (cf. Remark 3.1) and also $\zeta_{1}(1)=$ $\sum_{n=1}^{\infty}(-1)^{\omega(n)} / n=0$ by [LD].

Define $a(n)=z^{\Omega(n)}=\nu_{m}^{*}(n)$ for $n \in \mathbb{Z}^{+}$and $A(x):=\sum_{n \leqslant x} a(n)$ for $x \geqslant 1$. And set $f_{s}(t)=t^{-s}$ for $s \geqslant 1$ and $t \geqslant 1$. By the Abel summation formula, for $x \geqslant x_{0} \geqslant 2$ we have

$$
\sum_{x_{0}<n \leqslant x} a(n) f_{s}(n)=A(x) f_{s}(x)-A\left(x_{0}\right) f_{s}\left(x_{0}\right)-\int_{x_{0}}^{x} A(t) f_{s}^{\prime}(t) d t
$$

and hence

$$
\begin{equation*}
\sum_{x_{0}<n \leqslant x} \frac{\nu_{m}^{*}(n)}{n^{s}}=\frac{A(x)}{x^{s}}-\frac{A\left(x_{0}\right)}{x_{0}^{s}}+s \int_{x_{0}}^{x} \frac{A(t)}{t^{s+1}} d t . \tag{4.1}
\end{equation*}
$$

By (2.3), there is a positive constant C such that

$$
\left|A(t)-H(z) t(\log t)^{z-1}\right| \leqslant C t(\log t)^{-2-\cos (2 \pi / m)} \quad \text { for all } t \geqslant 2 .
$$

Therefore

$$
\begin{aligned}
\left|\frac{A(x)}{x^{s}}\right| & \leqslant\left|\frac{H(z)(\log x)^{z-1}}{x^{s-1}}\right|+C \frac{(\log x)^{-2-\cos (2 \pi / m)}}{x^{s-1}} \\
& \leqslant \frac{|H(z)|}{(\log x)^{1+\cos (2 \pi / m)}}+\frac{C}{(\log x)^{2+\cos (2 \pi / m)}} \\
\left|\frac{A\left(x_{0}\right)}{x_{0}^{s}}\right| & \leqslant \frac{|H(z)|}{\left(\log x_{0}\right)^{1+\cos (2 \pi / m)}}+\frac{C}{\left(\log x_{0}\right)^{2+\cos (2 \pi / m)}}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\int_{x_{0}}^{x} \frac{A(t)}{t^{s+1}} d t\right| \leqslant & \int_{x_{0}}^{x}\left|\frac{H(z) t(\log t)^{z-1}}{t^{s+1}}\right| d t+\int_{x_{0}}^{x}\left|\frac{A(t)-H(z) t(\log t)^{z-1}}{t^{s+1}}\right| d t \\
\leqslant & |H(z)| \int_{x_{0}}^{x} \frac{(\log t)^{-1-\cos (2 \pi / m)}}{t} d t+C \int_{x_{0}}^{x} \frac{(\log t)^{-2-\cos (2 \pi / m)}}{t} d t \\
= & \left.|H(z)| \frac{(\log t)^{-\cos (2 \pi / m)}}{-\cos (2 \pi / m)}\right|_{t=x_{0}} ^{x}+\left.C \frac{(\log t)^{-1-\cos (2 \pi / m)}}{-1-\cos (2 \pi / m)}\right|_{t=x_{0}} ^{x} \\
= & \frac{|H(z)|}{\cos (2 \pi / m)}\left(\frac{1}{\left(\log x_{0}\right)^{\cos (2 \pi / m)}}-\frac{1}{\left.(\log x)^{\cos (2 \pi / m)}\right)}\right) \\
& +\frac{C}{1+\cos (2 \pi / m)}\left(\frac{1}{\left.\left(\log x_{0}\right)^{1+\cos (2 \pi / m)}-\frac{1}{(\log x)^{1+\cos (2 \pi / m)}}\right) .}\right.
\end{aligned}
$$

Let $\varepsilon>0$. If x and x_{0} are large enough then by the above for any $s \geqslant 1$ we have

$$
\left|\sum_{x_{0}<n \leqslant x} \frac{\nu_{m}^{*}(n)}{n^{s}}\right|=\left|\frac{A(x)}{x^{s}}\right|+\left|\frac{A\left(x_{0}\right)}{x_{0}^{s}}\right|+s\left|\int_{x_{0}}^{x} \frac{A(t)}{t^{s+1}} d t\right| \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}+s \varepsilon=(1+s) \varepsilon .
$$

Therefore the series $\sum_{n=1}^{\infty} \nu_{m}^{*}(n) / n^{s}$ converges for any $s \geqslant 1$, in particular $\sum_{n=1}^{\infty} \nu_{m}^{*}(n) / n$ converges! If N is large enough, then for any $s \geqslant 1$ we have

$$
\left|\sum_{n>N} \frac{\nu_{m}^{*}(n)}{n^{s}}\right|<(1+s) \varepsilon \text { and }\left|\sum_{n>N} \frac{\nu_{m}^{*}(n)}{n}\right|<2 \varepsilon
$$

and hence

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} \frac{\nu_{m}^{*}(n)}{n^{s}}-\zeta_{m}(1)\right| \leqslant & \left|\sum_{n=1}^{N}\left(\frac{\nu_{m}^{*}(n)}{n^{s}}-\frac{\nu_{m}^{*}(n)}{n}\right)\right| \\
& +\left|\sum_{n>N} \frac{\nu_{m}^{*}(n)}{n^{s}}\right|+\left|\sum_{n>N} \frac{\nu_{m}^{*}(n)}{n}\right| \\
& \leqslant\left|\sum_{n=1}^{N}\left(\frac{\nu_{m}^{*}(n)}{n^{s}}-\frac{\nu_{m}^{*}(n)}{n}\right)\right|+(3+s) \varepsilon .
\end{aligned}
$$

Letting $s \rightarrow 1+$, we get $\left|\zeta_{m}^{*}(s)-\zeta_{m}^{*}(1)\right| \leqslant 3 \varepsilon$. Therefore

$$
\begin{equation*}
\lim _{s \rightarrow 1+} \zeta_{m}^{*}(s)=\zeta_{m}^{*}(1) \tag{4.2}
\end{equation*}
$$

Similarly, we have $\lim _{s \rightarrow 1+} \zeta_{m}(s)=\zeta_{m}(1)$.
Note that Theorem 1 of [KY] remains true if we use $z=-e^{2 \pi i / m}$ instead of $\rho=e^{2 \pi i / m}$ in $[\mathrm{KY}]$. Thus, there is a function $\psi(s)$ holomorphic in the half plane $\Re(s)>1 / 2$ such that

$$
\zeta_{m}^{*}(s) \zeta(s)^{-z}=\psi(s)
$$

As $\lim _{s \rightarrow 1} \psi(s)=\psi(1)$ and $\lim _{s \rightarrow 1+} \zeta(s)^{-z}=\infty$ we must have $\lim _{s \rightarrow 1+} \zeta_{m}^{*}(s)=$ 0 and hence $\zeta_{m}^{*}(1)=0$. We can modify the proof of [KY, Theorem 1] slightly to prove a similar result for $\zeta_{m}(s)$ and hence deduce $\zeta_{m}(1)=0$.

So far we have completed the proof of Theorem 1.4.

5. Proof of Theorem 1.5

Proof of Theorem 1.5. Let $L(x)=\sum_{n \leqslant x}(-1)^{\Omega(n)}$. (2.3) with $z=-1$ yields that $L(x)=o(x)$. Observe that

$$
S(x)+L(x)=\sum_{n \leqslant x}\left((-1)^{n}+1\right)(-1)^{\Omega(n)}=2 \sum_{m \leqslant x / 2}(-1)^{\Omega(2 m)}=-2 L\left(\frac{x}{2}\right) .
$$

Therefore

$$
S(x)=-L(x)-2 L\left(\frac{x}{2}\right)=o(x) .
$$

Clearly

$$
\sum_{n \leqslant x} \frac{(-1)^{n-\Omega(n)}}{n^{s}}+\sum_{n \leqslant x} \frac{\lambda(n)}{n^{s}}=2 \sum_{\substack{n \leqslant x \\ 2 \mid n}} \frac{\lambda(n)}{n^{s}}=-2 \sum_{m \leqslant x / 2} \frac{\lambda(m)}{(2 m)^{s}}
$$

and hence

$$
\sum_{n \leqslant x} \frac{(-1)^{n-\Omega(n)}}{n^{s}}=-2^{1-s} \sum_{n \leqslant x / 2} \frac{\lambda(n)}{n^{s}}-\sum_{n \leqslant x} \frac{\lambda(n)}{n^{s}} .
$$

Since $\sum_{n \leqslant x} \lambda(n) / n=o(1)$ as shown by Landau, we get $\sum_{n \leqslant x}(-1)^{n-\Omega(n)} / n=$ $o(1)$ and hence $\sum_{n=1}^{\infty}(-1)^{n-\Omega(n)} / n=0$.

Let $\Re(s)>1$. Note that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-\Omega(n)}}{n^{s}}=-\left(1+2^{1-s}\right) \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}=-\left(1+2^{1-s}\right) \frac{\zeta(2 s)}{\zeta(s)}
$$

On the other hand, by Abel's summation method, we have

$$
\sum_{n \leqslant x} \frac{(-1)^{n-\Omega(n)}}{n^{s}}=\frac{S(x)}{x^{s}}+s \int_{1}^{x} \frac{S(t)}{t^{s+1}} d t
$$

and hence

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-\Omega(n)}}{n^{s}}=s \int_{1}^{\infty} \frac{S(t)}{t^{s+1}} d t
$$

Therefore

$$
\begin{equation*}
-\left(1+2^{1-s}\right) \frac{\zeta(2 s)}{\zeta(s)}=s \int_{1}^{\infty} \frac{S(t)}{t^{s+1}} d t \tag{5.1}
\end{equation*}
$$

Let σ_{c} be the least real number such that the integral in (5.1) converges whenever $\Re(s)>\sigma_{c}$. By the above, $\sigma_{c} \leqslant 1$.

Suppose that $S(x)>0$ for all $x \geqslant 5$. In view of (5.1), by applying Landau's theorem (cf. [MV, Lemma 15.1] or Ex. 16 of [Ap, p.248]) we obtain

$$
\lim _{s \rightarrow \sigma_{c}}-\frac{1+2^{1-s}}{s} \cdot \frac{\zeta(2 s)}{\zeta(s)}=\infty
$$

and hence $\sigma_{c} \leqslant 1 / 2$ since $\zeta(s)$ has no real zeroes with $s>1 / 2$. So the righthand side of (5.1) converges for $\Re(s)>1 / 2$ and hence so is the left-hand side of (5.1). Therefore $\zeta(s) \neq 0$ for $\Re(s)>1 / 2$, i.e., the Riemann Hypothesis holds.

Similarly, if $T(x)<0$ for all $x \geqslant 1$, then we get the Riemann Hypothesis by applying Landau's theorem.

So far we have completed the proof of Theorem 1.5.
Acknowledgments. The author would like to thank Dr. D. Broadhurst, P. Humphries, S. Kim, W. Narkiewicz, Hao Pan, M. Radziwill, Ping Xi, and Li-Lu Zhao for helpful comments.

References

[A] A. W. Addison, A note on the compositeness of numbers, Proc. Amer. Math. Soc. (1957), 151-154.
[Ap] T. M. Apostol, Introduction to Analytic Number Theory, Sptinger, New York, 1976.
[BFM] P. Borwein, R. Ferguson and M. J. Mossinghoff, Sign changes in sums of the Liouville function, Math. Comp. 77 (2008), 1681-1694.
[BS] R. Bröker and A. V. Sutherland, An explicit height bound for the classical modular polynomial, preprint, arXiv:0909.3442.
[CD] M. Coons and S. R. Dahmen, On the residue class distribution of the number of prime divisors of an integer, Nagoya Math. J. 202 (2011), 15-22.
[CP] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, 2nd Edition, Springer, New York, 2005.
[D] H. Delange, Sur des formules de Atle Selberg, Acta Arith. 19 (1971), 105-146.
[G] E. Grosswald, The average order of an arithmetic function, Duke Math. J. 23 (1956), 41-44.
[H] C. B. Haselgrove, A disproof of a conjecture of Pólya, Mathematika 5 (1958), 141-145.
[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Springer, New York, 1990.
[KY] T. Kudota and M. Yoshida, A note on the congruent distribution of the number of prime factors of natural numbers, Nagoya Math. J. 163 (2001), 1-11.
[L] R. S. Lehman, On Liouville's function, Math. Comp. 14 (1960), 311-320.
[LD] J. van de Lune and R. E. Dressler, Some theorem concerning the number theoretic function $\omega(n)$, J. Reine Angew. Math. 277 (1975), 117-119.
[MV] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge Univ. Press, Cambridge, 2007.
[S] A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83-87.

[^0]: 2010 Mathematics Subject Classification. Primary 11M99; Secondary 11A25, 11N37.
 Keywords. Zeta function, arithmetical function, asymptotic behavior.
 Supported by the National Natural Science Foundation (grant 11171140) of China.

