The Classification Of Motion in Image Sequences Using 3D Recursive Adaptive Filters To Obtain Neural Network Input Vectors

L. T. Bruton¹, Fellow, IEEE, N. R. Bartley¹, Member, IEEE, and Z. Q. Liu², Senior Member, IEEE

¹Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada.
²Department of Computer Science, University of Melbourne, Parkville, Victoria, Australia.

ABSTRACT

A new application of neural networks is described that permits the selective classification of objects on the basis of their motion in digital image sequences. An adaptive three-dimensional (3D) recursive Linear-Trajectory (LT) filter is employed to track a moving object on a smoothly-varying space-time trajectory. The trajectory information produced by the adaptive 3D LT filter is used as the input vector to a conventional Multilayer Perceptron (MLP) neural network to perform the classification of motion.

1. Introduction

Three dimensional (3D) recursive digital Linear-Trajectory (LT) filters may be used to selectively track the motion of objects in digital image sequences by adaptively steering the 3D frequency-planar passband of the filter to track the time-varying 3D frequency-planar energy density function of the moving object in space-time [2]. Such tracking methods are known [2] to be especially immune to additive noise and they can successfully discriminate against objects that have motions that differ only slightly from that of the object that is being tracked.

The purpose of this contribution is to show that the selectively filtered tracked object, which is a passband object of the LT filter, produces a robust estimate of the instantaneous 3D space-time velocity vector of the tracked object which may then be used as a member of the batched training input matrix of a conventional Multilayer Perceptron (MLP) neural network. The outputs of the MLP can be used as classifiers that identify and categorize many useful motion and positional characteristics of the objects in the image sequence.

The results reported here use a first-order 3D recursive filter [2],[1] and a two-layer 100-input 12-output MLP to correctly classify synthetic automobiles that have 12 different trajectories as they pass through a two-road intersection. It is shown that classifications on the basis of vehicle velocities, positions and directions of travel are feasible with 100% classification accuracy. The selectivity of the 3D passband of the filter determines the ability of the filter to discriminate against competing objects and noise in the input sequence. For the reported experiments, the dynamic response of the 3D filter causes the estimated filtered velocity vectors of the tracked vehicles to depart significantly from the actual velocity vectors of the corresponding tracked input vehicles. However, the neural network succeeds in correctly classifying 12 different training motions without error.

These results suggest that the method will be sufficiently robust to classify the motions of the tracked vehicles when the input image sequences are heavily contaminated with additive noise or with other objects that enter the image having trajectories in space-time that are close to the object that is being tracked. For example, for the case of vehicle motion classifications, the method produces motion/position classifications that are relatively robust in the presence of other vehicles, pedestrians and video noise.

2. Review of 3D Linear Trajectory Signals and Filters

In this section, we briefly review the fundamental class of 3D LT signals and the simple 3D recursive filter algorithms that have been used to enhance LT signals.
2.1. 3D Linear Trajectory Signals

Many important 3D filtering problems, associated with the enhancement of digitized image sequences, involve 3D component signals that can be characterized in the 3D continuous space-time domain \(t \equiv (t_1, t_2, t_3) \in \mathbb{R}^3 \) as LT signals. A LT signal \(v_{LT}(t) \) is defined in [1] as belonging to the class of 3D signals for which there exists a direction \(d \) along which \(v_{LT}(t) \) is constant along all lines in this direction, as illustrated in Fig. 1(a). When presented as a temporal succession of frames in \(t_3 \), such signals have the property that they move with constant spatial velocity in \(t_1, t_2 \) [1].

The 3D LT signal in Fig. 1(a) has a corresponding energy density spectrum that exists entirely on a plane passing through the origin in \(\omega \equiv (\omega_1, \omega_2, \omega_3) \in \mathbb{R}^3 \), as shown in Fig. 1(b). The normal \(n \) to this plane, referred to as the signal plane, has the same direction in \(\omega \) as the direction \(d \) of the LT signal in \(t \) [1].

![Fig. 1: 3D LT signals](image)

2.2. 3D Recursive Linear Trajectory Filters

Simple 3-D continuous-domain prototype filter networks, comprised of inductance (L), capacitance (C) and resistance (R) elements, may be designed to have a passband that closely surrounds the signal plane and have been shown to be useful for selectively enhancing such LT signals [1],[5]. One such network that has been employed successfully [1],[5] is shown in Fig. 2.

![Fig. 2: A 3D LT prototype filter network](image)

The Laplace transform input-output voltage transfer function \(T(s) \), \(s \equiv [s_1, s_2, s_3]^T \in \mathbb{C}^3 \), is given by

\[
T(s) = \frac{R}{R + s_1 L_1 + s_2 L_2 + s_3 L_3}
\]
(1)

and has a 3-D magnitude frequency response \(M(\omega) = |T(j\omega)| \) given by

\[
M(\omega) = \frac{R}{\sqrt{R^2 + (\omega_1 L_1 + \omega_2 L_2 + \omega_3 L_3)^2}}.
\]
(2)

\(M(\omega) \) has a resonant plane, as shown in Fig. 3, and given by

\[
\omega_1 L_1 + \omega_2 L_2 + \omega_3 L_3 = 0 \quad \text{Resonant Plane} \]
(3)

and has -3dB planes, also shown in Fig. 3, given by

\[
\omega_1 L_1 + \omega_2 L_2 + \omega_3 L_3 = \pm R \quad -3\text{dB Planes} \]
(4)

The resonant plane in Fig. 3 passes through the origin and has unit normals \(n \) given by \(n = \pm ||L||_2^{-1}(e_1 L_1 + e_2 L_2 + e_3 L_3) \), \(L_1, L_2, L_3 \geq 0 \), where \(||L||_2 = \sqrt{L_1^2 + L_2^2 + L_3^2} \) and \(e_1, e_2, e_3 \) are the orthogonal unit basis vectors in the \(\omega_1, \omega_2, \omega_3 \) directions. The perpendicular distance between the resonant and -3dB planes is \(R/||L||_2 \) and the 3D Q-factor for this filter is defined in [1] as \(Q(\omega) = ||n||_2 ||L||_2 / R \).

Corresponding discrete-domain LT image sequences \(v_{LT}(x, y, t), x, y, t \in N^3 \), may be obtained from \(v_{LT}(t) \) by uniformly sampling. We employ the triple bilinear transformation on (1), which leads to simple 3D recursive filter algorithms for the enhancement of 3D digitized LT image sequences [1],[5].
3. The Adaptive 3D Recursive Linear Trajectory Filter System

In this section, we briefly review the adaptive 3D recursive LT filter described in [2] and show how object velocity information is extracted for the purpose of motion classification.

In many practical 3D images, objects often do not proceed on perfectly linear trajectories, but instead exhibit temporally-smooth motion along curved trajectories in space-time. It is convenient to represent such curved-trajectory signals in x, y, t with piece-wise linear trajectory signals, where the trajectory is shown in Fig. 4 as a time sequence of chordal segments. The enhancement of such piece-wise linear trajectory signals is then carried out by employing an adaptive 3D LT filter whose resonant plane is oriented on every frame i to selectively enhance an LT signal having the direction of the chordal segment v_i, as shown.

We employ the adaptive 3D filter system shown in Fig. 5. Consider the output of the 3D LT filter at frame $t = i$ and let the position of the object be centered at the pixel position \hat{x}_i, \hat{y}_i, and similarly at $\hat{x}_{i-1}, \hat{y}_{i-1}$ in frame $i-1$. We define the instantaneous velocity vector as v_i where

$$v_i = [\Delta \hat{x}_i, \Delta \hat{y}_i] = [\hat{x}_i - \hat{x}_{i-1}, \hat{y}_i - \hat{y}_{i-1}]. \quad (5)$$

We use v_i to define the trajectory of the object on frame i.

Following [2], we determine the position of the object in the output of the 3D LT filter on each frame by computing the intensity centroid within an object window, as shown in Fig. 6. For a window size of X_W, Y_W, located at X_i, Y_i, the centroid of the object \hat{x}_i, \hat{y}_i, is given by

$$\hat{x}_i = \frac{1}{A} \sum_{x=0}^{X_W} \sum_{y=0}^{Y_W} V_{out}(x + X_i, y + Y_i, i)x \quad (6)$$

$$\hat{y}_i = \frac{1}{A} \sum_{x=0}^{X_W} \sum_{y=0}^{Y_W} V_{out}(x + X_i, y + Y_i, i)y$$

$$A = \frac{1}{A} \sum_{x=0}^{X_W} \sum_{y=0}^{Y_W} V_{out}(x + X_i, y + Y_i, i)$$

The object's centroid \hat{x}_i, \hat{y}_i is then used as the input to the feedback portion of the system in Fig. 5, where the instantaneous time-varying velocity estimate v_i is determined. This estimate is then filtered using two second-order 1D lowpass recursive filters to smooth the frame-to-frame discontinuities that occur in the velocity estimates. Finally, based on the smoothed velocity estimates $\hat{v}_i = [\hat{x}_i \hat{y}_i]$, the time-varying coefficients $b_{jk}i$ of the 3D LT filter are determined for each frame i. We propose here to employ this smoothed velocity estimate \hat{v}_i directly to classify the trajectory of the object, as described in the following section.

4. Classification of the Passband Tracked Object's Trajectory

For the purpose of classifying the trajectory of a passband object, tracked by the above 3D tracking system, we employ a conventional static MLP network and Time-Delay Neural Network (TDNN) [3], as shown in Fig. 7.

The TDNN consists of a tapped delay line of length M having unity tap weights and is used to collect a time series of M velocity estimates \hat{v}_i.

1597
5. Example: Classification of Vehicle Trajectories

We have employed the above TDNN and MLP successfully to classify the trajectories of vehicles as they pass through an intersection. The vehicles are generated synthetically and are moved on 12 different trajectories, representing a variety of common vehicle movements. The trajectories include north-to-south and south-to-north movements at various speeds as well as left and right turns at the intersection.

The two-layer MLP for this example has 100 inputs, corresponding to \(M = 50 \) velocity estimates, \(N = 12 \) outputs and we employ 16 neurons in the hidden layer. The network has been trained to the 12 input velocity profiles using Matlab's Neural Network Toolbox [4] and a solution has been obtained after 258 training epochs.

For each of the 12 input velocity profiles, the vehicles have been tracked by the 3D tracking system and have been classified by the MLP with 100% classification accuracy. The 3D Q-factor, defined as \(\|L\|_2/R \), for the 3D LT filter in this example is 20.

The velocity profile for No. 6 of the 12 input profiles is shown in Fig. 8, corresponding to a vehicle that approaches the intersection from south-to-north at a constant \([v_x, v_y] = [0, 4] \) pixels per frame, then begins a right turn, slowing to \([-1.414, 1.414]\) pixels per frame, and finally accelerating to \([-4, 0]\) pixels per frame. The estimated velocity profile \(\hat{v} \) for this vehicle is also shown in Fig. 8 and, although it deviates from the input profile noticeably, the MLP is able to classify it easily. The output of the MLP is the vector \(C = [0.02 0.00 0.00 0.01 0.02 0.93 0.04 0.00 0.00 0.00 0.00 0.00] \), correctly identifying velocity profile No. 6.
6. Summary
We have described a new application of neural networks for the purpose of classifying the motion of objects in image sequences. An adaptive 3D LT recursive tracking filter may be used to obtain a robust estimate of the velocity of a particular object in the sequence. Accurate classification is achieved using a conventional MLP neural network.

Acknowledgments
The authors wish to thank Miss Hai-Ling Margaret Cheng for her help in obtaining the experimental results reported here. The authors also gratefully acknowledge the financial support of Micronet, the Canadian Federal Centre of Excellence on Micro-electronic Devices, Circuits and Systems and the Natural Sciences and Engineering Research Council of Canada.

References