Zhenting Xiang

Zhenting Xiang
  • DDS,PhD
  • Postdoctoral fellow at University of Pennsylvania

About

25
Publications
3,221
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
400
Citations
Current institution
University of Pennsylvania
Current position
  • Postdoctoral fellow

Publications

Publications (25)
Article
Full-text available
Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces....
Article
Full-text available
Bacterial biofilms are pervasive and recalcitrant to current antimicrobials, causing numerous infections. Iron oxide-nanozymes, including an FDA-approved formulation (ferumoxytol, FMX), show potential against biofilm infections via catalytic activation of hydrogen peroxide (H2O2). However, clinical evidence on its efficacy and therapeutic mechanism...
Article
Full-text available
Bacterial infections in irregular and branched confinements pose significant therapeutic challenges. Despite their high antimicrobial efficacy, enzyme‐mimicking nanoparticles (nanozymes) face difficulties in achieving localized catalysis at distant infection sites within confined spaces. Incorporating nanozymes into microrobots enables the delivery...
Article
Full-text available
Tailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous fo...
Article
Full-text available
This study introduces dendritic microparticles from PLGA and PLGA- b -PEG for oral antifungal delivery. They adhere to oral surfaces, offer sustained release, and prevent biofilms, while being biodegradable, promising for treating oral infections.
Article
Full-text available
Dental caries is the most common human disease caused by oral biofilms despite the widespread use of fluoride as the primary anticaries agent. Recently, an FDA-approved iron oxide nanoparticle (ferumoxytol, Fer) has shown to kill and degrade caries-causing biofilms through catalytic activation of hydrogen peroxide. However, Fer cannot interfere wit...
Article
Full-text available
Fungal pathogens have been designated by the World Health Organization as microbial threats of the highest priority for global health. It remains a major challenge to improve antifungal efficacy at the site of infection while avoiding off-target effects, fungal spreading, and drug tolerance. Here, w e develop a nanozyme-based microrobotic platform...
Preprint
Full-text available
Dental caries (tooth decay) is the most prevalent human disease caused by oral biofilms, affecting nearly half of the global population despite increased use of fluoride, the mainstay anticaries (tooth-enamel protective) agent. Recently, an FDA-approved iron oxide nanozyme formulation (ferumoxytol, Fer) has been shown to disrupt caries-causing biof...
Article
Full-text available
Candida albicans, a fungus typically found in the mucosal niche, is frequently detected in biofilms formed on teeth (dental plaque) of toddlers with severe childhood caries, a global public health problem that causes rampant tooth decay. However, knowledge about fungal traits on the tooth surface remains limited. Here, we assess the phylogeny, phen...
Article
Full-text available
Fungi and bacteria often engage in complex interactions, such as the formation of multicellular biofilms within the human body. Knowledge about how interkingdom biofilms initiate and coalesce into higher-level communities and which functions the different species carry out during biofilm formation remain limited. We found native-state assemblages o...
Article
Introduction: Streptococcus mutans and Candida albicans are frequently detected together in the plaque from patients with early childhood caries (ECC) and synergistically interact to form a cariogenic cross-kingdom biofilm. However, this biofilm is difficult to control. Thus, to achieve maximal efficacy within the complex biofilm microenvironment,...
Article
Streptococcus mutans is considered the primary etiological agent of human dental caries. Glucosyltransferases (Gtfs) from S. mutans play important roles in the formation of biofilm matrix and the development of cariogenic oral biofilm. Therefore, Gtfs are considered an important target to prevent the development of dental caries. However, the role...
Article
Full-text available
The oral cavity, as the entry point to the body, may play a critical role in the pathogenesis of SARS-CoV-2 infection that has caused a global outbreak of the coronavirus disease 2019 (COVID-19). Available data indicate that the oral cavity may be an active site of infection and an important reservoir of SARS-CoV-2. Considering that the oral surfac...
Article
Objective Dentin remineralization at the bonded interface would protect it from external risk factors, therefore, would enhance the longevity of restoration and combat secondary caries. Dental biofilm, as one of the critical biological factors in caries formation, should not be neglected in the assessment of caries preventive agents. In this work,...
Article
Fluoride facilitates the remineralization of dental hard tissues and affects bacterial activities. Therefore, it is extensively used as an anti-caries agent in clinical practice and daily life. Although some studies focused on understanding Streptococcus mutans’ response to fluoride, the mechanism regulating intrinsic fluoride tolerance is not yet...
Article
Full-text available
Background: The relationship between oral microbiota and IE (infective endocarditis) is well established. Opportunistic pathogens in normal oral flora enter the bloodstream through daily oral cleaning or invasive dental procedures, leading to the occurrence of infective endocarditis. An in vitro iron-deficient condition leads to a drastic communit...
Preprint
Full-text available
Background: The relationship between oral microbiota and IE (infective endocarditis) is well established. Opportunistic pathogens in normal oral flora enter the bloodstream through daily oral cleaning or invasive dental procedures, leading to the occurrence of infective endocarditis. An in vitro iron-deficient condition leads to a drastic community...
Preprint
Full-text available
Background: The relationship between oral microbiota and IE (infective endocarditis) is well established. Opportunistic pathogens in normal oral flora enter the bloodstream through daily oral cleaning or invasive dental procedures, leading to the occurrence of infective endocarditis. An in vitro iron-deficient condition leads to a drastic community...
Article
Full-text available
Bacterial cell division is initiated by tubulin homologue FtsZ that assembles into a ring structure at mid‐cell to facilitate cytokinesis. EzrA has been identified to be implicated in FtsZ ring dynamics and cell wall biosynthesis during cell division of Bacillus subtilis and Staphylococcus aureus, the model rod and cocci. However, its role in patho...
Article
Full-text available
Streptococcus is a genus of oval-shaped bacteria that act as both commensals and pathogens. Streptococcal infections are relevant to high morbidity and huge socioeconomic costs, with drug resistant strains becoming an increasing threat. Cell division plays an essential role during streptococcal colonization and infection, rendering it an ideal targ...
Article
Full-text available
GntR family transcription factors have been implicated in the regulation of carbohydrate transport and metabolism in many bacteria. However, the function of this transcription factor family is poorly studied in Streptococcus mutans, which is a commensal bacterium in the human oral cavity and a well-known cariogenic pathogen. One of the most importa...
Article
Full-text available
Background WRAP53, including α, β and γ isoforms, plays an important role not only in the stability of p53 mRNA, but also in the assembly and trafficking of the telomerase holoenzyme. It has been considered an oncogene and is thought to promote the survival of cancer cells. The aim of this study was to detect the role of TCAB1 (except WRAP53α) in t...

Network

Cited By