
A Spatiotemporal Indexing Approach for Efficient Processing of Big

Array-based Climate Data with MapReduce

Zhenlong Lia,b, Fei Hua, John L. Schnasec, Daniel Q. Duffyd, Tsengdar Leee,

Michael K. Bowend, Chaowei Yanga*

a Spatiotemporal Innovation Center, George Mason University, Fairfax, 22030

b Department of Geography, University of South Carolina, Columbia, SC, 29208

c Office of Computational and Information Sciences and Technology,NASA Goddard

Space Flight Center, Greenbelt, MD, 20771

 d NASA Center for Climate Simulation, Goddard Space Flight Center, Greenbelt, MD,

20771

e Earth Science Division, NASA Headquarters, Washington D.C., 20024

*Corresponding author

zhenlong@mailbox.sc.edu, {fhu, cyang3}@gmu.edu, {john.l.schnase, daniel.q.duffy,

tsengdar.j.lee, michael.k.bowen}@nasa.gov

To cite this paper:

Li, Z., Hu, F., Schnase, J. L., Duffy, D. Q., Lee, T., Bowen, M. K., & Yang, C. (2017). A

spatiotemporal indexing approach for efficient processing of big array-based climate data

with MapReduce. International Journal of Geographical Information Science, 31(1), 17-

35.

 2

A Spatiotemporal Indexing Approach for Efficient Processing of Big

Array-based Climate Data with MapReduce

Climate observations and model simulations are producing vast amounts of array-

based spatiotemporal data. Efficient processing of this data is essential for

assessing global challenges such as climate change, natural disasters, and diseases.

This is challenging not only because of the large data volume, but also because of

the intrinsic high-dimensional nature of geoscience data. To tackle this challenge,

we propose a spatiotemporal indexing approach to efficiently manage and process

big climate data with MapReduce in a highly scalable environment. With this

approach, big climate data is directly stored in a Hadoop Distributed File System in

its original, native file format. A spatiotemporal index is built to bridge the logical

array-based data model and the physical data layout, which enables fast data

retrieval when performing spatiotemporal queries. Based on the index, a data-

partitioning algorithm is applied to enable MapReduce to achieve high data

locality, as well as balancing the workload. The proposed indexing approach is

evaluated using the NASA Modern-Era Retrospective Analysis for Research and

Applications (MERRA) climate reanalysis dataset. Experimental results show that

the index can significantly accelerate querying and processing (~10x speedup

compared to the baseline test using the same computing cluster), while keeping the

index-to-data ratio small (0.0328%). The applicability of the indexing approach is

demonstrated by a climate anomaly detection deployed on a NASA Hadoop

cluster. This approach is also able to support efficient processing of general array-

based spatiotemporal data in various geoscience domains without special

configuration on a Hadoop cluster.

Keywords: spatiotemporal index, big climate data, array-based, Hadoop

MapReduce, HDFS, NASA MERRA, climate change

 3

1. Introduction

Big data, referring to the enormous volume, velocity, and variety of data (NIST

Cloud/BigData Workshop, 2014), has become one of the most significant technology

shifts in the 21st century (Mayer-Schönberger and Cukier, 2013). In climate science,

large volumes of spatiotemporal data are generated to describe the complex Earth climate

system. This data normally includes observational data from remote sensors (e.g. space-

borne instruments), numerical simulation data from climate modelling, and model-based

retrospective analysis data created by assimilating observational data into climate models

(Overpeck et al. 2011). Climate data is accumulating at an exponentially increasing rate

due to the fast-paced advancement of sensors and high performance computing

technologies (Edwards 2010, Li et al. 2015). It is predicted that the climate simulation

and observational data held by NASA alone will reach nearly 350 Petabytes by 2030

(Skytland 2012). In fact, climate science is a typical domain that represents the big data

shift across all geoscience domains (Schnase et al. 2014, Edwards 2010).

Big climate data is playing a critical role in studies that enable us to better

understand how the complex climate system works, and thus attempt to predict future

climate changes. Processing and making sense of vast amounts of climate data enables

scientists to answer key questions in climate research. However, efficient handling of

this data poses critical challenges for at least two types of operations: spatiotemporal data

mining and spatiotemporal query.

Spatiotemporal data mining: Mining interesting climate trends and

spatiotemporal patterns from terabytes of high-dimensional data sets is important to

climate studies. Example applications include detecting temperature anomalies in the

 4

global climate system, identifying geographical regions with similar climate patterns, and

investigating spatiotemporal distribution of extreme weather events (Das and

Parthasarathy 2009). However, climate data is high dimensional (two or three dimensions

of space and one temporal dimension) and normally contains hundreds of variables

describing land, oceans, and the atmosphere. Mining information from these high-

dimensional big data sets is challenging. It takes approximately three hours to read one

terabyte of data using a single computer with a 100 megabytes per second (mbps) hard

drive read speed, and this is before analyzing complex spatiotemporal relationships.

Therefore, distributed parallel computing must be employed to process big climate data

in a feasible time frame. In addition, the traditional approach of storing the data in a

centralized repository and later moving it to specialized computing facilities for analysis

is no longer efficient (Schnase et al. 2014).

Spatiotemporal data query: Through spatiotemporal aggregation, basic

statistical information such as means, maxima and minima can be derived for further

analysis. Often times, scientists are only interested in part of the data, thus a

spatiotemporal query is required. Such a query may include three constraints: geographic

area (space), time period (time) and variables, as, for example, finding the precipitation

data from 1979 to 2014 in the United States. Such an operation is challenging because

climate data is normally stored in array-based high-dimensional files (e.g. NetCDF or

HDF), with each file containing many variables. Since the metadata is distributed across

different files, one often needs to scan all the data files to retrieve a small amount of data.

Managing big climate data in such a way that supports efficient query and retrieval is

essential for big climate data processing.

 5

MapReduce, a parallel data processing framework pioneered by Google (Dean

and Ghemawat 2008), has been proven to be effective when it comes to handling big data

challenges. As an open source implementation of MapReduce, Hadoop (White 2009) has

gained increasing popularity over the past several years. However, Hadoop is not

designed to handle spatiotemporal data, which has triggered a multitude of studies to

bridge the gap; this is elaborated in Section 2. Aiming to address the challenges posed by

the typical operations mentioned above, we propose a novel spatiotemporal indexing

approach that significantly accelerates querying and processing of big climate data.

Specifically, a spatiotemporal index is proposed to bridge the logical array-based data

model and the physical data layout, which enables host-aware fast data retrieval with

spatiotemporal querying. A data-partitioning algorithm is introduced to enable

MapReduce to achieve high data locality and a more balanced workload when processing

in parallel.

The remainder of this paper is organized as follows: Section 2 reviews research

on using Hadoop to process array-based spatiotemporal data; Section 3 details our

indexing approach; Section 4 evaluates the proposed approach by conducting a series of

experiments; Section 5 demonstrates how the indexing approach could be used in

practical climate studies; finally, Section 6 summarizes the research and envisions future

research.

2. Related work

To bridge the gap between array-based spatiotemporal data and Hadoop MapReduce, a

variety of studies have been carried out. Zhao, et al. (2010) converted NetCDF data into

ASCII-based CDL (network Common data form Description Language) files. This

 6

approach works, but it increases the size of the data set and breaks the original data

integrity by disrupting its logical organization, changing format, and dissociating its

embedded metadata. Duffy et al. (2012) re-organized array-based NetCDF data into

Hadoop Sequence Files, a flat file consisting of binary key/value pairs. This approach

keeps the data integrity since the data is still in its original format, but Hadoop Sequence

Files are not optimized for random access, which significantly impairs the performance.

To overcome this issue, Li et al. (2015) decomposed the array-based data and stored it in

HBase, a NoSQL database built upon HDFS. However, all these methods need to

transform the original data format from NetCDF. This is problematic, because converting

vast amounts of data to other formats requires extra effort and time, and two copies of the

data must be maintained (original and converted), which increases data management

complexity.

To avoid the issues caused by data conversion, Buck et al. (2011) developed

SciHadoop, which provides logical query abilities over array-based data models such as

NetCDF data. SciHadoop uses techniques such as physical-to-logical translation,

chunking, grouping, and sampling to bridge between the logical and physical

organization of data on-the-fly. However, using sampling to identify data locality

introduces overhead before the data can be processed. In addition, each query requires a

sampling process, even if the resultant data is the same.

Indexing methods are widely used to accelerate querying of structured data. Much

work has been done to embed spatial trees such as Quad-tree (Finkel and Bentley, 1974)

and R-Tree (Guttman 1984) into Hadoop to support large-scale spatial data querying.

SpatiaHadoop (Eldawy and Mokbel 2013) adapts traditional spatial index structures to

 7

form a two-level spatial index of global and local indexing for vector data. Based on

SpatialHadoop, SHAHED (Eldawy et al. 2015) builds Quad-trees to index satellite data.

However, these index trees require loading all the values into themselves, so they may be

much bigger than the original data. How to build, store and search the index becomes a

new problem. Once generated, scientific data is usually read-only, and bitmap indexes

can be used to reduce the index size. Fastbit (Wu et al., 2009) takes advantage of bitmap

compression, encoding, and binning to build a multidimensional bit index for scientific

data. This approach, however, does not work for data sets that contain variables with very

high cardinalities. SciHive (Geng et al. 2013, Geng et al. 2014) calculates the value range

for each HDFS block by historical queries to build a distributed adaptive index. But it has

a special requirement for the block size and the value range of the raw data. When the

block size is not big enough to cover a file, it will result in a large amount of remote

reading, which is very slow. GeoBase develops a Z-region index to interface array-based

data and key-value stores based on HBase (Malik 2013). The Z-region index enables

efficient range queries and aggregation queries. When partitioning the data set, however,

some data rearrangement is required, as well as processing prior to reading the input

splits.

The above studies provided valuable guidelines for leveraging the Hadoop

MapReduce framework to handle big spatiotemporal data challenges in geoscience

domains. However, these approaches introduce new overhead problems, such as disk

overhead caused by data transformation and index construction, and CPU overhead

caused by logical-to-physical transformation. In addition, most approaches are not

flexible due to their special requirements for each particular dataset or the specific

 8

configurations of the computing environment. The indexing approach proposed in this

paper aims to efficiently query and process big array-based spatiotemporal data natively

without any data transformation or special configuration of the Hadoop cluster.

3. Methodologies

3.1. Spatiotemporal Query Model for MapReduce

Array-based data models are widely used to represent spatiotemporal scientific data.

Typically, an array-based data file is a multi-dimensional array consisting of two or three

spatial dimensions (latitude, longitude and/or altitude) and one temporal dimension (time)

(Figure 1). In climate data, each layer in the array is a two-dimensional spatial grid

storing the values for a specific climate variable. These layers are further grouped by

altitude, and all variables for a given time period are physically stored together to form

the temporal dimension. This hierarchical data structure, coupled with metadata and

associated access libraries (e.g. NetCDF for JAVA), makes it possible to retrieve the

value for any variable in the collection given a specified time and location.

 9

Figure 1. Illustration of array-based data model (n variables with 3D space and 1D time).

Despite the elegance of this approach, the logical structure of array-based data

makes it difficult to use MapReduce. In a MapReduce environment, files are loaded into

HDFS as fix-sized blocks (e.g. 64 Mb or 128 Mb) distributed across the nodes of a

storage cluster. Each block is generally replicated with a factor of three (Figure 2).

HDFS's block-oriented storage model is essential for MapReduce parallelization.

However, these blocks are created using the byte streams of source data files. With array-

based data, important information about its logical organization, such as variables, space,

and time, is ignored. In addition, MapReduce operations are based on key-value pairs,

which do not easily map into the hierarchical, multi-dimensional logical data model that

is intrinsic to geospatial data. These mismatches make it challenging to process array-

based spatiotemporal data with MapReduce.

Figure 2. Array-based data is stored across nodes as blocks without any logical data

model information; in this example, every block is triplicated across nodes.

 10

In order to bridge between the array-based data and MapReduce, we introduce a

spatiotemporal query model (STQuery):

𝐴𝑟𝑟𝑎𝑦𝐷𝑎𝑡𝑎 → 𝑆𝑇𝑄𝑢𝑒𝑟𝑦(𝑉𝑎𝑟, 𝐶𝑜𝑣, 𝐴𝑙𝑡, 𝑇𝑖𝑚𝑒) → 𝐺𝑟𝑖𝑑𝑠 → 𝑀𝑎𝑝𝑅𝑒𝑑𝑢𝑐𝑒

In the query,

 Var denotes a subset of the variables: 𝑉𝑎𝑟 ∈ {𝑣1,𝑣2, … , 𝑣𝑛}

 Cov denotes a 2D spatial grid (coverage) defined by 𝐿𝑎𝑡 ∈ {−90°,90°} and

𝐿𝑜𝑛 ∈ {−180°, 180°}

 Alt denotes a subset of the vertical layers (altitude): 𝐴𝑙𝑡 ∈ {𝑎1, 𝑎2, … , 𝑎𝑛 }

 Time denotes a subset of the timestamps: 𝑇𝑖𝑚𝑒 ∈ {𝑡1, 𝑡2, … , 𝑡𝑛}

STQuery filters the ArrayData using constraints on the logical data view. The result of a

query is a subset of the original data consisting of many 2D grids, with each grid being

represented as a , where . Thus, a query containing n

variables, m timestamps, and k vertical layers results in a total of number of

grids. These grids are stored as key-value pairs recognizable by MapReduce. Grids

generated by each query have the same or overlapping geographic extent as specified by

the Coverage query parameter. When the Coverage parameter covers an entire

geographic region, the grid is equal to the layer in the original array-based data model.

Based on the query model, the problem of processing spatiotemporal array-based data

with MapReduce is transformed to the problem of processing the spatial grids

(key-value pairs).

(, ,)grid v t a (, ,) (, ,)v t a Var Time Alt

n m k

n m k

 11

3.2. Spatiotemporal Index

The spatiotemporal query model is an essential concept for building the spatiotemporal

index and improving the efficiency of MapReduce, because it uses Grids to map a file's

logical, multi-dimensional array data model to the key-value pairs used by MapReduce.

For example, suppose that STQuery references 600 grids on a six-node cluster. Each node

can potentially process 100 grids in parallel during the map stage of a MapReduce

operation. However, this parallelism cannot typically be realized, because MapReduce's

physical view of the data (byte streams, blocks, and nodes) lacks locality information

about the data's logical organization. The problem is worsened by the fact that an array

data file can easily reach several gigabytes in size, while a grid might only be a small

portion of the file. This problem can be solved, however, if we know where grids are

stored. The spatiotemporal index makes this possible by linking physical location

information to logical, spatiotemporal information.

Figure 3. Relationship between the physical location information (node, file, and byte)

and the logical spatiotemporal information (time, space, and variable) (assumed

replication factor of 3).

 12

Figure 3 depicts the relationship between a file's logical space, time, and variable

view of the data, and Hadoop's physical byte stream, block, and node view of the data.

The array-based file is stored in HDFS as a byte stream starting with a file header, which

is followed by a sequence of grids that are temporally ordered. Each block is duplicated

across HDFS nodes based on a replication factor. The block size is configured by the user

(128 megabytes by default in Hadoop Yarn1). Grid sizes are determined by the spatial

resolution and spatial coverage of the original file. For global climate data, the grid size is

normally not bigger than several megabytes. For instance, the NASA Modern-Era

Retrospective Analysis for Research and Applications (MERRA) product used in our

work has a spatial resolution of 2/3° longitude by 1/2° latitude; the resultant grid size is ~

0.66 megabytes per climate variable. Therefore, each block generally contains many

grids, with each grid being replicated across the nodes.

The proposed index structure is illustrated in Figure 4. The index contains five

components: gridId, startByte, endByte, nodeList, and fileId for three levels of the index:

byte level, file level, and node level. To build the index, the values of the five

components are extracted from the array-based data stored in HDFS using an appropriate

access library (e.g. NetCDF for Java).

gridId is the bridge between the logical data view and physical data layout. It

consists of three parameters in the logical view: variable, time, and altitude. startByte and

1 http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

 13

endByte are the byte-level indices that record the exact byte location of the grid in a file.

fileId is the file-level index that records which file a grid belongs to and how data in that

file is compressed. The byte- and file-level indices enable each grid to be read directly

from a file's byte stream using the file system's native I/O method. This improves

efficiency by eliminating the need to consult metadata to retrieve a piece of data from a

large file.

nodeList records the node location where grids are physically stored. The number

of nodes in each list is equal to the replication factor. Some grids are split into two blocks

as illustrated in Figure 3. For these grids, a node in the nodeList may only store part of

the grid. However, since the block size is generally much larger than the grid size, most

grids remain intact within blocks and nodes across the HDFS. As shown in Section 3.3,

an effective grid assignment strategy allows most grids to be read locally, which

maximizes data locality, an important factor affecting performance in MapReduce.

Figure 4. Structure of the spatiotemporal index.

 14

Note that the index structure discussed here is a logical organization showing the

essential components of the index and how they are linked. An actual implementation of

the spatiotemporal index will depend on specific data, application, and deployment

requirements. Generally, storing the index in a relational database is recommended,

because the index's logical structure maps well to relational tables, and relational

databases provide mature and efficient querying capabilities.

3.3. Grid Partition Strategy

HDFS partitions large files into many logical splits, and then assigns these splits to

physical data blocks on physical nodes. How these splits are partitioned and assigned

directly impacts data locality, which has a dramatic affect on the performance of

MapReduce. This section develops a partition strategy that uses the spatiotemporal index

to optimize processing performance by 1) keeping high data locality for each map task, 2)

balancing the workload across cluster nodes, and 3) generating a proper number of map

tasks to minimize the overhead.

3.3.1. Grid assignment

As discussed in Section 3.1, an array-based spatiotemporal query generates grids

where n, m, and k represent the number of variables, timestamps, and vertical layers

respectively. The spatiotemporal index helps maximize locality by tracking grid location

at the node level. The grid assignment strategy described here further improves locality

by grouping and assigning grids to the nodes where they are physically stored (Algorithm

1).

n m k

 15

First, the number of grids that will be assigned to each node is calculated. When

the total number of grids (𝑁𝑡𝑜𝑡𝑎𝑙) can be evenly divided by the number of data nodes (

𝑆𝑛𝑜𝑑𝑒), each node is assigned the same number of grids as 𝐺 = 𝑁𝑡𝑜𝑡𝑎𝑙 𝑆𝑛𝑜𝑑𝑒⁄ . When 𝑁𝑡𝑜𝑡𝑎𝑙

cannot be evenly divided by 𝑆𝑛𝑜𝑑𝑒, an equal number of nodes cannot be assigned across the

nodes. In this case, we first assign 𝐺 = [𝑁𝑡𝑜𝑡𝑎𝑙 𝑆𝑛𝑜𝑑𝑒⁄] grids to each node, each of the

remaining grids (𝑁𝑡𝑜𝑡𝑎𝑙 − 𝑆𝑛𝑜𝑑𝑒 ∗ 𝐺) are randomly assigned to different nodes.

After the number of grids to be assigned to each node is determined, we assign

grids from the grid pool. A grid is suitable to be assigned to a node if the node appears in

a grid’s node list in the spatiotemporal index. Because the data is replicated, a grid may

be suitable for several nodes. Each node chooses their suitable grids from the grid pool.

Any leftover grids are randomly assigned to a node. When all grids have been assigned,

some nodes may have more or less than the calculated number of grids, which will result

in an unbalanced workload. This is resolved by transferring some grids from the nodes

with too many grids to the nodes with fewer grids. This assignment strategy ensures that

each node is assigned nearly the same number of grids, and most grids (over 99%) fully

reside on their suitable nodes. This will significantly increase the performance because

transferring grids across nodes will add significant communication overhead.

3.3.2. Grid combination

The improvements enabled by the spatiotemporal index and grid partitioning strategy are

further enhanced by a grid combing strategy that optimizes the use of a MapReduce

cluster’s available resources. Slots (or containers in Hadoop V2) refer to the number of

parallel map tasks that can run on a node. This is a configurable feature of the Hadoop

environment. Because a grid normally refers to a small amount of data, making each grid

 16

an input split to a map task would result in many tasks and much overhead. To address

this problem, we introduce a combining strategy that organizes an appropriate number of

grids to an input split according the cluster’s available map slots.

Algorithm1. Grid assignment strategy (nodeList denotes the list of nodes in the cluster;

fullNodeList denotes the nodes that have been assigned the number of grids determined in

Step1; unfullNodeList denotes the nodes that have been assigned less than the number of

grids determined in Step 1).

Assuming there are 𝑛𝑠𝑙𝑜𝑡 map slots available for 𝑛𝑜𝑑𝑒𝑖, and the number of grids

assigned to 𝑛𝑜𝑑𝑒𝑖 (denoted as 𝐺𝑖) can be exactly divided by 𝑛𝑠𝑙𝑜𝑡, the number of grids

(𝑛𝑗) for 𝑠𝑙𝑜𝑡𝑗 can be calculated as 𝑛𝑗 = 𝐺𝑖 𝑛𝑠𝑙𝑜𝑡⁄ . If 𝐺𝑖 cannot be evenly divided by 𝑛𝑠𝑙𝑜𝑡,

slots cannot be assigned an equal number of grids. Using the same strategy described in

Section 3.3.1, we first assign 𝑛𝑗
′ = [𝐺𝑖 𝑛𝑠𝑙𝑜𝑡]⁄ grids to 𝑠𝑙𝑜𝑡𝑗, then randomly assign each of

Step 1: for each node (𝑛𝑜𝑑𝑒𝑖) in 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡
 determine the number of grid(𝐺𝑖) for 𝑛𝑜𝑑𝑒𝑖

 assign 𝐺𝑖 suitable grids from the grid pool for 𝑛𝑜𝑑𝑒𝑖
 end for
Step 2: for each grid (𝑔𝑟𝑖𝑑𝑗) left in the grid pool

 assign 𝑔𝑟𝑖𝑑𝑗 to a suitable 𝑛𝑜𝑑𝑒

 end for
Step 3: for each node (𝑛𝑜𝑑𝑒𝑗) in 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡

 if (𝑛𝑢𝑚𝑗 of grids in 𝑛𝑜𝑑𝑒𝑗)> 𝐺𝑖 then

 add 𝑛𝑜𝑑𝑒𝑗 to 𝑓𝑢𝑙𝑙𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

 end if
if the 𝑛𝑢𝑚𝑗 of grids in 𝑛𝑜𝑑𝑒𝑗 < 𝐺𝑖 then

 add 𝑛𝑜𝑑𝑒𝑗 to 𝑢𝑛𝑓𝑢𝑙𝑙𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

end if
 end for
 for each node (𝑛𝑜𝑑𝑒𝑗) in 𝑢𝑛𝑓𝑢𝑙𝑙𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

 choose (𝐺𝑗 - 𝑛𝑢𝑚𝑗) suitable grids from 𝑓𝑢𝑙𝑙𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

 assign the grids to 𝑛𝑜𝑑𝑒𝑗

 end for

 17

the left 𝑐𝑜𝑢𝑛𝑡𝑙𝑒𝑓𝑡 grids to a slot, where 𝑐𝑜𝑢𝑛𝑡𝑙𝑒𝑓𝑡 = 𝐺𝑖 − ∑ 𝑛𝑗
′𝑛𝑠𝑙𝑜𝑡

𝑗=1 . By default, the leftover

grids will be assigned to 𝑠𝑙𝑜𝑡1~𝑠𝑙𝑜𝑡𝑐𝑜𝑢𝑛𝑡𝑙𝑒𝑓𝑡
 as in Formula 1

𝑛j = {
1 + 𝑛𝑗

′ , 0 < 𝑗 ≤ 𝑐𝑜𝑢𝑛𝑡𝑙𝑒𝑓𝑡

𝑛𝑗
′ , 𝑐𝑜𝑢𝑛𝑡𝑙𝑒𝑓𝑡 < 𝑗 ≤ 𝑛𝑠𝑙𝑜𝑡

 (1)

Figure 5 shows the overall process for index-based parallelization with

MapReduce. As we describe in the next section, with indexing, grid assignment, and grid

combination, we have achieved a high level of data locality (99% in our experiments) and

significantly improved workload balance.

Figure 5. Index-based parallelization with MapReduce.

 18

4. Evaluation

We conducted several experiments to evaluate the effect of this approach on run time,

data locality, and load balance in MapReduce processing.

4.1. Experimental Design

The experiments were conducted on a Hadoop cluster (version 2.6.0) consisting of seven

computer nodes (one master node and six slave nodes) connected with 1 Gigabit Ethernet

(Gbps). Each node was configured with eight CPU cores (2.35GHz), 16 GB RAM, and

CentOS 6.5.

Modern Era Retrospective-Analysis for Research and Applications data was used

in all experiments. MERRA is a reanalysis of the last 35 years of global climate

observation data from NASA (Rienecker et al. 2011). MERRA was created with the

newest version of the Goddard Earth Observing System Data Assimilation System

Version 5 (GEOS-5) (Duffy et al. 2012), and is playing an important role in studying

weather and climate variability. MAT1NXINT (Bloom et al. 2005) is one product of

MERRA. It contains nearly 111 2-dimensional hourly variables with a spatial resolution

of 2/3° longitude by 1/2° latitude. This data is archived in the HDF-EOS format, based on

HDF4 (Berrick et al. 2008). One month (January 2015) of the MAT1NXINT product

(45.29 GB) was used as experimental data.

Three scenarios were evaluated. Each scenario computed the daily mean for a

specified climate variable in a specified spatiotemporal range. The first scenario was

performed without using the spatiotemporal index or grid partition strategy and served as

 19

a baseline. The second scenario used the spatiotemporal index without the grid partition

strategy. The third scenario used the index with the grid partition strategy.

We embedded the HDFS file system interface into the NetCDF-java library to

support reading MERRA's native HDF files into the HDFS without any preprocessing.

The HDFS block size was configured as 128MB with a replication factor of three. It took

two minutes to build the index for 45 GB of data. The index was stored in a MySQL

database. The size of the index was 15.11 MB, resulting in an index-to-data ratio of

0.0328%.

4.2. Results and Discussion

4.2.1. Supporting spatiotemporal data mining

Computing basic statistics such as average for an entire dataset is considered as canonical

operations in climate analytics (Schnase et al. 2014), and is an essential step in mining

climate data. To test our approach in the three scenarios, we computed the daily global

mean for all 111 variables in our dataset for January 2015. We evaluated three metrics:

run time (time spent on each operation), data locality (ratio of local data read to all data

read), and load balance (number of grids assigned to each node). To reduce variability

and measurement error, we conducted the operation ten times and took average values of

the three metrics. The average run time and data locality results are shown in Figure 6.

 20

Figure 6. Daily global mean computation for all 111 variables of January 2015.

Figure 6A illustrates that using the index can reduce the run time from 1041

seconds to 382 seconds, achieving a 2.7x speed up. Applying the grid partition strategy

reduced the run time even further to 85 seconds, achieving a 12x speed up over the

baseline. Figure 6B shows that the index significantly improved data locality from 61.9%

to 99.5%. This indicates that almost all data required for the parallel MapReduce

operations was read from local nodes throughout the cluster. The reason data locality did

not reach 100% is that a few grids are split and stored on different nodes, as explained in

Section 3.2. In the baseline test, the locality was 61.92%, which is higher than the

expected 50%. This was caused by the relatively small cluster size (six nodes) and the

high replication factor (three).

The grid partition strategy further reduced run time compared to using the index

alone. This speed-up resulted from balancing the workload among cluster nodes and

generating the appropriate number of splits in order to reduce overhead. Figure 7

compares the grid assignments on each node for the latter two scenarios. When using

only the index, the grids are distributed unequally across the nodes. The largest difference

 21

among them was 2325 grids (~1.32 GB). When applying the partition strategy, each node

had nearly the same number of grids. The biggest difference among these nodes was only

five grids (~2.92 MB). Therefore, with the grid partition strategy, the workload

distribution in the cluster was much more balanced. In addition, the grid combination

algorithm reduced the number of splits from 376 to 36, which alleviates the overhead

caused by too many small map tasks.

Figure 7. Grid distributions across the cluster nodes.

These experiments demonstrate that the index improved performance by

maximizing data locality. The grid partition strategy further increased performance by

balancing the workload and reducing overhead.

4.2.2. Supporting spatiotemporal data query

Indexing is designed to support highly efficient querying by reading only the required

data rather than scanning an entire data set as well as maintaining high data locality. To

 22

test this, we evaluated the effect of varying Var and Time in the query model

. The first set of tests queried and computed the daily global

mean for January 2015 for different numbers of variables. The second set of tests queried

and computed the daily global mean for all variables for a varying numbers of days in

January 2015.

Figure 8 shows the run time for the first set of tests comparing the baseline and

the indexing approach with different numbers of variables. When increasing the number

of variables in the query, the run time for the baseline increased dramatically from 55

seconds to 1042 seconds (a 19-fold increase), while the run time for the indexing

approach increased only slightly from 35 to 85 (a 2.4-fold increase). To explain this result,

the data locality for each test was measured (Figure 9). In the baseline, the average data

locality for all tests was only 56.11%, indicating that nearly half of generated grids were

read from non-local nodes. When increasing the number of variables, more grids were

generated; as a result more grids are read remotely. This degraded the performance, as

network congestion became the bottleneck. With the indexing approach, the data locality

for each test was over 99%, indicating that nearly all generated grids were read locally

regardless of how many variables were queried.

(, , ,)STQuery Var Cov Alt Time

 23

Figure 8. Run time for querying/computing the daily global mean for January 2015 for

different numbers of variables.

Figure 9. Data locality for querying/computing the daily global mean for January 2015

for different numbers of variables.

 24

For the second set of tests, with varying numbers of days, the run time for each

test showed similar patterns as the first set of tests (Figure 10). When the query time

period increased, the baseline run time increased sharply with the number of days due to

low data locality (a large amount of data was read remotely), while the indexing approach

maintained a steady, low run time. When querying a small date range where the network

bottleneck does not exist, the run time for the indexing approach is still far less than that

of the baseline. This is because the indexing approach provides finer parallelization and

load balancing mechanisms across the cluster nodes. For example, when querying the

data from 2015-01-01 to 2015-01-03, the baseline launched only three map tasks, while

the indexing approach launched 36 tasks on six nodes. The combination of the index and

grid partition strategy can effectively decompose a data- and compute-intensive job into a

reasonable number of small jobs to process in parallel.

Figure 10. Run time for querying/computing the daily global mean for all variables for

different numbers of days in January 2015.

 25

In the above experiment we tested mean calculation, a canonical data processing

operation in climate study. Calculating the mean value of a variable for a specified time

period and geographic region clearly illustrates two functionalities of the spatiotemporal

indexing approach: 1) query: one important function of the index is to quickly locate the

required data (grids) from the huge data repository based on the spatiotemporal query

criteria; 2) process: once the required grids are located, these grids will be simultaneously

read into the cluster and distributedly processed (computing mean) in parallel.

5. Application: Anomaly Detection

The purpose of anomaly detection is to find abnormal patterns, or outliers, in a dataset.

These patterns do not “fit” the dataset because they do not follow the expected behavior

of the data (Chandola et al. 2009). Detecting anomalies in variables over time, such as

fluctuations in temperature, is an important consideration in climate studies. To

demonstrate how the proposed indexing approach could be used in practical climate

studies, we deployed a preliminary application to analyze temperature anomalies on a

NASA Goddard Space Flight Center (GSFC) Hadoop cluster. This cluster consists of 36

compute nodes (one master node, one high availability node, and 34 slave nodes)

connected with 56 Gigabit per second (Gbps) Infiniband (IB). Each node is configured

with 16 CPU cores (2.60 GHz) and 16 GB of RAM running CentOS 6.5.

The geospatial region used in the study was derived from the 100 GB MERRA

MAIMNPANA2 data (HDF4). The time period covers 1979 to 2013 (35 years) at a daily

2 http://disc.sci.gsfc.nasa.gov/mdisc/data-holdings/merra/instM_3d_ana_Np.shtml

 26

(24 hour) resolution. This dataset contains 18 four-dimensional variables (time, latitude,

longitude, and altitude) and four three-dimensional variables (time, latitude, and

longitude), each with a spatial resolution of 2/3° longitude by 1/2° latitude. The

spatiotemporal query for detecting the temperature anomalies is constructed as following:

𝑆𝑇𝑄𝑢𝑒𝑟𝑦(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, {48.99, −125.52,30.77, −62.15}, 𝑙𝑎𝑦𝑒𝑟1, {1979 − 2013}).

The spatial region of interest for this study is shown in Figure 11. Since there are

42 vertical layers, the first layer, nearest to the Earth’s surface, was selected. The monthly

temperature mean was then calculated for all logical points in the dataset (12 months per

year * 35 years = 420 mean value calculations). Next, we performed statistical analysis

by overlaying a Gaussian (normal) distribution in order to detect monthly temperature

anomalies over the 35 year time period.

For each month (from January to December), the z-score for month i and year j is

calculated using Formula 2.

𝑧𝑖𝑗 =
𝑥𝑖𝑗 − 𝑢𝑖

𝑠𝑖
, 𝑖 ∈ [1, 12], 𝑗 ∈ [1,35] (2)

Where,

𝑥𝑖𝑗 is the mean temperature for month i and year j

𝑢𝑖 is the mean temperature for month i across 35 years

𝑠𝑖 is the standard deviation for month i across 35 years

 27

Figure 11. Selected geographic region for the temperature anomaly detection.

This application took only 32 seconds to compute all the mean values and

subsequently detect the temperature anomalies for each month by analysing the 100 GBs

of data. Table 1 shows the temperature anomalies for June for the 35 years.

Table 1. June temperature anomalies for the selected geospatial area from 1979 to 2013

(confidence level , two-tail test:).

Year z-score Anomaly (unit: Celsius)

1984 -3.283 -0.670

1988 2.930 0.598

1990 2.974 0.607

0.01 2.576criticalz

 28

1992 -2.813 -0.575

1994 3.289 0.671

1996 -4.434 -0.905

2005 -3.035 -0.620

2007 -6.011 -1.227

2013 3.518 0.718

Traditional approaches for climate anomaly detection usually first compute and cache

various mean values (e.g. monthly mean, yearly mean) for a pre-defined spatial region

(Li et al. 2013), such as the globe or the northern/southern hemispheres, then conduct

analyses based on these aggregated values. This is not flexible, since it does not support a

user-defined, arbitrary spatial region. The proposed indexing approach overcomes this by

enabling us to 1) conduct various data analysis techniques (e.g. anomaly detection)

directly on the original, raw data set while delivering fast response and 2) subset and

focus on the region of interest in the data set by performing flexible spatiotemporal

queries.

6. Conclusion

A spatiotemporal indexing approach is proposed to efficiently retrieve and process big

array-based climate data in parallel using MapReduce. The spatiotemporal index bridges

the gap between array-based data models and block-oriented HDFS storage models by

linking the logical spatiotemporal information (space, time, and variables) to the physical

 29

location information (node, file, and byte). Based on the index, a grid partition algorithm

was developed to optimize MapReduce processing performance by maximizing data

locality and balancing the workload across cluster nodes.

The efficiency of the proposed approach was demonstrated by conducting

spatiotemporal querying and processing on the NASA MERRA climate reanalysis dataset.

Results show that the proposed approach can effectively work with the array-based data

natively, and efficiently query and process big climate data without unnecessary disk

reads. With the indexing approach, data- and compute-intensive operations can be

intelligently decomposed into smaller tasks to be processed in parallel with high data

locality (over 99%), which also results in a well-balanced workload across the nodes.

Finally, a climate anomaly detection application based on the indexing approach was

developed and deployed on the NASA GSFC Hadoop cluster. This application

demonstrates that the indexing approach can be easily applied to efficiently solve real

scientific problems.

6.1 Limitations and future research

There are several limitations of the proposed index, and future research is desired

to further improve its performance as well as make it handle more generic scenarios.

First, grid is the atomic parallelization unit in the proposed spatiotemporal

indexing approach. Generally, this approach works well with most array-based climate

data (such as HDF and NetCDF) that has a relatively low spatial resolution (e.g. 1/2, 1/4

or even 1/8 degree grids). However, for high spatial resolution data sets (e.g. in the level

of meters), the size of each global grid may reach several gigabytes or larger, this could

 30

impair parallelization performance. To overcome this limitation, we plan to improve the

granularity of the index by further decomposing the large 2D grid into smaller tiles, and

using tile as the atomic parallelization unit.

 Second, for the grid partitioning strategy, each node is assumed to have the same

available computing resources. However, each node in the cluster may have different

hardware, or it may have been occupied by other jobs, so the available computing

resources may be different for each node. Consequently, the proposed data partition

algorithm could be improved to consider a possibly unbalanced computing resource

distribution on the cluster when assigning grids.

Third, we will investigate more complicated spatiotemporal analytic use cases

(such as Taylor diagram and climate ensemble analysis) based on the proposed index. In

this case, some other issues need be taken into consideration. For example, based on the

logical-physical relationship captured by the index, how to optimize the data shuffle

between the map stage and reduce stage considering spatiotemporal principles (Yang et

al., 2011)? Finally, the spatiotemporal index also works with Spark3, and we will

compare the performance of MapReduce and Spark on complicated use cases in the next

step.

3 http://spark.apache.org

 31

References

Abouzeid, Azza, et al., 2009. "HadoopDB: an architectural hybrid of MapReduce and

DBMS technologies for analytical workloads." Proceedings of the VLDB

Endowment 2.1: 922-933.

Berrick, S. W., Shen, S., & Ostrenga, D., 2008. Modern Era Retrospective

Restrospective-Analysis for Research and Applications (MERRA) Data and

Services at the GES DISC.

Bloom, S., A. da Silva, D. Dee, M. Bosilovich, et al., 2005. Documentation and

Validation of the Goddard Earth Observing System (GEOS) Data Assimilation

System - Version 4. Technical Report Series on Global Modeling and Data

Assimilation 104606, v26.

Brown, Paul G., 2010. "Overview of SciDB: large scale array storage, processing and

analysis." Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data. ACM.

Buck, J. B., Watkins, N., LeFevre, J., Ioannidou, K., Maltzahn, C., Polyzotis, N., &

Brandt, S., 2011. Scihadoop: Array-based query processing in hadoop.

In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis (p. 66). ACM.

Chandola, V., Banerjee, A., & Kumar, V., 2009. Anomaly Detection: A Survey. ACM

Computing Surveys (pp. 1-72). ACM

Das, M., & Parthasarathy, S., 2009. Anomaly detection and spatio-temporal analysis of

global climate system. In Proceedings of the Third International Workshop on

Knowledge Discovery from Sensor Data (pp. 142-150). ACM.

Dean, J., & Ghemawat, S., 2008. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), 107-113.

Duffy, D. Q., Schnase, J. L., Thompson, J. H., Freeman, S. M., & Clune, T. L., 2012.

Preliminary Evaluation of MapReduce for high-performance climate data

analysis.

Edwards, P. N., 2010. A vast machine: Computer models, climate data, and the politics of

global warming (518 pp.). Cambridge, Mass: MIT Press.

 32

Eldawy, A., & Mokbel, M. F., 2013. A demonstration of spatialhadoop: An efficient

mapreduce framework for spatial data. Proceedings of the VLDB

Endowment, 6(12), 1230-1233.

Eldawy, Ahmed, and Mohamed F. Mokbel, 2015. "SpatialHadoop: A MapReduce

Framework for Spatial Data." ICDE.

Eldawy, Ahmed, et al., 2015. "SHAHED: A MapReduce-based System for Querying and

Visualizing Spatio-temporal Satellite Data." ICDE.

Geng, Yifeng, et al., 2013. "SciHive: Array-based query processing with HiveQL."Trust,

Security and Privacy in Computing and Communications (TrustCom), 2013 12th

IEEE International Conference on. IEEE.

Geng, Yifeng, Xiaomeng Huang, and Guangwen Yang, 2014. "Adaptive Indexing for

Distributed Array Processing." Big Data (BigData Congress), 2014 IEEE

International Congress on. IEEE.

Guttman, 1984. “R-trees: A Dynamic Index Structure for Spatial Searching,” in

Proceedings of the 1984 ACM SIGMOD International Conference on

Management of Data, New York, NY, USA, pp. 47–57.  

H. Fuchs, Z. M. Kedem, and B. F. Naylor, 1980. “On Visible Surface Generation by a

Priori Tree Structures,” in Proceedings of the 7th Annual Conference on

Computer Graphics and Interactive Techniques, New York, NY, USA, pp. 124–

133.  

J. L. Bentley, 1975. “Multidimensional binary search trees used for associative

searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517.  

Li Z., Yang C., Sun M., Li J., Xu C., Huang Q., & Liu K., 2013. A High Performance

Web-Based System for Analyzing and Visualizing Spatiotemporal Data for

Climate Studies. In W2GIS, Lecture Notes in Computer Science, Volume 7820

(pp. 190-198). Springer Berlin Heidelberg.

Li Z., Yang C., Yu M., Liu K., Sun M. Enabling Big Geoscience Data Analytics with a

Cloud-based, MapReduce-enabled and Service-oriented Workflow Framework,

2015, PloS one, 10(3), e0116781.

http://link.springer.com/bookseries/558

 33

Lu, Ming-Yee, and Willy Zwaenepoel, 2010. "HadoopToSQL: a mapReduce query

optimizer." Proceedings of the 5th European conference on Computer systems.

ACM, 2010.

Malik, T., 2013, GeoBase: Indexing NetCDF Files for Large-Scale Data Analysis. In Big

Data Management, Technologies, and Applications. Hu, W. C. (Ed.). IGI Global.

Mayer-Schönberger, V., & Cukier, K., 2013. Big data: A revolution that will transform

how we live, work, and think. Houghton Mifflin Harcourt.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, 1990. The R*- tree: An

Efficient and Robust Access Method for Points and Rectangles, in Proceedings of

the 1990 ACM SIGMOD International Conference on Management of Data, New

York, NY, USA, pp. 322–331.  

Overpeck, J. T., Meehl, G. A., Bony, S., & Easterling, D. R., 2011. Climate data

challenges in the 21 st century. Science(Washington), 331(6018), 700-702.

R. A. Finkel and J. L. Bentley, 1974. Quad trees a data structure for retrieval on

composite keys, Acta Informatica, vol. 4, no. 1, pp. 1–9, Mar. 1974  

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., ... &

Woollen, J., 2011. MERRA: NASA's modern-era retrospective analysis for

research and applications. Journal of Climate, 24(14), 3624-3648.

Schnase JL, Duffy DQ, Tamkin GS, Nadeau D, Thompson JH, et al., 2014. MERRA

analytic services: Meeting the big data challenges of climate science through

cloud-enabled climate analytics-as-a-service. Computers, Environment and Urban

Systems doi:10.1016/j.compenvurbsys.2013.12.003

Skytland, N., 2012. Big Data: What is NASA doing with Big Data today? Open.Gov

open access article. http://open.nasa.gov/blog/2012/10/04/what-is-nasa-doing-

with-big-data-today/. Last accessed on 03/15/2015.

T. Sellis, N. Roussopoulos, and C. Faloutsos, 1987. The R+-Tree: A Dynamic Index for

Multi-Dimensional Objects,” Computer Science Department.  

Wang, Daniel L., Charles S. Zender, and Stephen F. Jenks., 2008, Clustered workflow

execution of retargeted data analysis scripts. Cluster Computing and the Grid,

2008. CCGRID'08. 8th IEEE International Symposium on. IEEE.

http://open.nasa.gov/blog/2012/10/04/what-is-nasa-doing-with-big-data-today/
http://open.nasa.gov/blog/2012/10/04/what-is-nasa-doing-with-big-data-today/

 34

White, T., 2009. Hadoop: the definitive guide: the definitive guide. " O'Reilly Media,

Inc.".

Wu, Kesheng, et al., 2009. FastBit: interactively searching massive data. Journal of

Physics: Conference Series. Vol. 180. No. 1. IOP Publishing.

Yang C., Wu H., Huang Q., Li Z., and Li J., 2011. Using spatial principles to optimize

distributed computing for enabling the physical science discoveries, Proceedings

of National Academy of Sciences, 108(14): 5498-5503

