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Abstract: The prediction of monthly rainfall is greatly beneficial for water resources management
and flood control projects. Machine learning (ML) techniques, as an increasingly popular approach,
have been applied in diverse climatic regions, showing their respective superiority. On top of that,
the ensemble learning model that synthesizes the advantages of different ML models deserves more
attention. In this study, an ensemble learning model based on stacking approach was proposed.
Four prevalent ML models, namely k-nearest neighbors (KNN), extreme gradient boosting (XGB),
support vector regression (SVR), and artificial neural networks (ANN) are taken as base models. To
combine the outputs from the base models, the weighting algorithm is used as second-layer learner
to generate predictions. Large-scale climate indices, large-scale atmospheric variables, and local
meteorological variables were used as predictors. R2, RMSE and MAE, were used as evaluation
metrics. The results show that the performance of base models varied among the nine stations in
the Taihu Basin, while the stacking approach generally performed better than the four base models.
The stacking model showed better performance in spring and winter than in summer and autumn.
During wet months, the accuracy of model prediction varied more significantly. On the whole, based
on performance evaluation measures, it is concluded that the proposed stacking ensemble multi-ML
model can provide a flexible and reasonable prediction framework applicable to other regions.

Keywords: rainfall; prediction; machine learning; stacking model; Taihu basin

1. Introduction

Rainfall is an essential component in the hydrological cycle. Rainfall prediction is a
fundamental issue in hydrological application. Reliable rainfall prediction is principal for
water resource management, agriculture and flood control projects [1–3]. In the current
context of climate change [4] and intense human activity, rainfall pattern becomes more
complicated; thus, rainfall prediction remains a significant and demanding problem [5,6].

Generally, for modeling precipitation, numerical models based on the physical mecha-
nisms and the statistical models were commonly employed [7,8]. The numerical models
are based on the physical equations, including the complex process of atmosphere, ocean
and land [9,10]. A large amount of data, such as temperature, pressure and moisture are
acquired to drive the numerical models, which expends a lot of calculation costs. The statis-
tical model is an approach of acquiring the features of historical rainfall time series and
then predicting the evolution based on these features. The autoregressive model (AR) [11],
the autoregressive moving average (ARMA) model [12,13] and the autoregressive mov-
ing integrated average (ARIMA) model [14,15] have been widely used for hydrological
series predicting.
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Machine learning (ML) techniques, as an increasingly popular approach, provide an
attractive alternative to traditional methods for rainfall prediction [16], driven by flexible
predictor datasets [17,18]. It can take advantage of all kinds of information, including, but not
limited to, atmospheric, geographical and oceanic factors to predict the target [19,20]. Multiple
machine learning methods have been employed for predicting rainfall. Yu et al. [21]
compared the effectiveness of support vector regression (SVR) and random forest (RF) in
radar-derived rainfall forecasting in three reservoir catchments in Taiwan and found that
SVR was more accurate in the estimation of rainfall. Cramer et al. [22] compared to the
application of ML techniques in 20 cities around Europe and 22 cities in the United States,
and found that ANN, SVR, and genetic programming (GP) showed better agreement than
Markov chain, radial basis neural networks (RBNN), M5 rules, M5 model trees and K-
nearest neighbors (KNN). Pour et al. [23] predicted seasonal rainfall extremes in Malaysia,
and found that Bayesian artificial neural networks (BANN) performed the best, followed by
SVR and RF. Sachindra et al. [24] compared the effectiveness of relevance vector machine
(RVM) with ANN, SVR, and GP for downscaling reanalysis data to monthly rainfall in
Australia. This research shows that RVM is recommended over GP, ANN or SVR in
developing downscaling models. Diez-Sierra and del Jesus [19] predicted long tern term
daily rainfall, showing that neural networks (NN) presented significantly better results
when predicting the intensity of rainfall, followed by SVM, KNN and RF, with slightly
worse values of R and RMSE than NN in Spain. Zeynoddin et al. [3] demonstrated that
a hybrid model by integrating a linear model and non-linear ELM model was powerful
for monthly rainfall prediction in a tropical region. Zhou et al. [25] compared RF, gradient
boosting regression (GBM), SVR, ANN and dual-stage attention-based recurrent neural
network (DA-RNN) in predicting monthly rainfall in Yangtze River Delta, China, showing
that RF performed better in terms of MAE, and that RF and ANN proved to be favorable in
terms of R2, RMSE.

Previous studies have generally investigated an individual ML method with single
structure, demonstrating their respective superiority. Considering that rainfall is affected
by different factors, as well as that it shows different statistical characteristics, the individ-
ual ML model with a specific structure possesses limited ability to present the complex
relationship between rainfall and diverse predictors in varying climatic regions. In recent
years, ensemble learning methods, which can combine multiple ML models, have shown
their advantages [26]. The stacking ensemble model is a popular one among them [27–29].
‘Stacking’ is a specific type of ensemble learning which can take advantage of different
base model structures to generate theoretically more promising prediction [30]. Zoune-
mat et al. [31] summarized research on the application of ensemble learning approaches in
a hydrological field, and claimed that using ensemble strategies is superior over individual
machine learning models. Li et al. [32] integrated SVR, RF, elastic net regression (ENR) and
extreme gradient boosting (XGB), through the stacking ensemble approach for mid-term
streamflow forecasting. It was found that the application of the stacking strategy improved
the ability of individual models. Wang et al. [33] compared stacking model with individual
models for beach water quality prediction, finding the stacking model is the most robust
one for 3 beaches in 5-year prediction. Nevertheless, the potential of stacking ensemble
model in rainfall prediction has less explored.

The main objective of this study is to develop a stacking ensemble model for monthly
rainfall prediction with multiple predictors and to examine the performance of the model.
Specially, four machine learning models (KNN, XGB, SVR, ANN) were utilized as base
learners due to their high popularity and good performance on previous studies. By means
of assigning weights, the four base learners were combined to the stacking ensemble model.
The performance of the stacking ensemble model is assessed by evaluation metrics R2,
RMSE, MAE. The predicted results are examined on an annual aggregated scale, seasonal
scale, dry/intermediate/wet month months and months of extreme rainfall.

The rest of this paper is organized as follows: Section 2 introduces the study area and
data. Section 3 presents a brief introduction of four machine learning models, the stacking
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ensemble framework, hyper-parameter optimization, evaluation metrics and categorization
of dry/intermediate/wet months. Section 4 presents the results and discussions, including
the comparison of model performances, the examination of the performance at different
time scales, and the discussion of prediction results. Section 5 presents a summary and
conclusions.

2. Study Area and Data

The Taihu basin (ranging from latitude 30◦28′ N to 32◦15′ N and longitude 119◦11′ E
to 121◦53′ E) is located in the Yangtze River Delta, on the southeast coast of China, as
shown in Figure 1. The total area of the watershed is approximately 36,895 km2, comprising
of parts of Jiangsu Province, Zhejiang Province and Anhui Province and Shanghai City.
Around 80% of the Taihu basin is plain, and the remaining 20% is occupied by low hills
in the western part of the Taihu basin [34], with rivers and lakes accounting for 17% of
the total area of the basin [35]. The Taihu basin is located in a subtropical monsoon zone,
with the average annual precipitation is 1218.1 mm [36]. Cyclonic storms and convectional
rainfall frequently occurring in flood season (May to September), are the main triggers for
flood events that, consequently, affect infrastructure and human lives.

Figure 1. Map of the study region and location of rain stations.

For the monthly rainfall prediction, nine stations located in the Taihu Basin and its
surroundings were selected, as shown in Figure 1. Since the long-term rainfall series data
in the Taihu basin for access are limited, three stations (Nanjing, Nantong and Ningguo)
within about 30 km from the Taihu basin were used in this study. The monthly rainfall at
these adjacent stations are also subject to the similar climatic condition [37,38]. The monthly
rainfall datasets for the period 1961–2019 were obtained from the China Meteorological Data
Service Centre, China Meteorological Administration (CMA) (http://data.cma.cn/data/
cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html (accessed on 27 February
2021)). Table 1 provides the geographic details and climatic properties of the nine stations.

http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html


Water 2022, 14, 492 4 of 20

Table 1. The geographic details and climatic characteristics of the nine stations in the study.

No. Station Abbr.
Longitude

(◦E)
Latitude

(◦N)
Altitude

(m)

Monthly Precipitation

Mean
(mm)

Maximum
(mm)

Coefficient of
Variation (Cv)

1 Xujiahui XJH 121.43 31.20 4.6 101.3 725.5 0.809
2 Baoshan BS 121.45 31.40 5.5 94.5 570.9 0.834
3 Dongshan DS 120.43 31.07 17.5 95.8 696.6 0.764
4 Liyang LY 119.48 31.43 7.7 97.3 521.3 0.820
5 Pinghu PH 121.08 30.62 5.4 103.4 569.3 0.788
6 Hangzhou HZ 120.17 30.23 41.7 119.2 611.0 0.712
7 Nanjing NJ 118.90 31.93 35.2 90.5 661.5 0.952
8 Nantong NT 120.98 32.08 4.8 91.6 604.4 0.909
9 Ningguo NG 118.98 30.62 87.3 120.8 783.2 0.730

A total of 14 variables, including large-scale climate indices, large-scale atmospheric
variables, and local meteorological variables, were used as predictors (Table 2).

The large-scale climate indices in the prediction were the Nino 3.4 index (Nino 3.4), the
southern oscillation index (SOI), the Western Pacific subtropic high intensity (WPSH) and
the Southern Hemisphere annular mode Index (SAMI). Nino 3.4 is identified as the average
sea surface temperatures (SST) anomaly in the region of 5◦ N–5◦ S and 170◦ W–120◦ W.
The southern oscillation index (SOI) is typically calculated using the Troup’s method
using the values of pressure differences from Tahiti and Darwin. Nino 3.4 and SOI are
el nino southern oscillation (ENSO) indictors, which is one of the most important global
atmospheric phenomena, influencing rainfall and temperature across the globe. The
Western Pacific subtropic high intensity (WPSH) is measured by the geopotential height at
500 hPa in the region of 110◦ E–180◦ E and 10◦ N to the north [39]. The Southern Hemisphere
annular mode index (SAMI) is defined as the difference in the normalized monthly zonal-
mean sea level pressure between 40◦ S and 65◦ S [40]. Previous studies [39–42] demonstrated
that WPSH and SAMI significantly impact the summer rainfall in the lower Yangtze River
basin. The climate indices with the lag month (up to 6 months lagged) of the highest
correlation coefficient were utilized as predictors, as shown in Figure S1.

The large-scale atmospheric variables used in this study were sea level pressure (SLP)
and meridional wind at 850 mb (V-wind), representing large-scale circulation anoma-
lies [43]. The sea level pressure (SLP) in the Indian Ocean is relevant to rainfall in the
study region [42]. The meridional wind at 850 mb (V-wind) is commonly used as the
large-scale atmospheric predictor for rainfall in varying regions [5,43–45]. Correlation
coefficient between the large-scale atmospheric variables and rainfall was used to select
the spatial grid and the lag month of the large-scale atmospheric variables. As shown
in Figure 2, the spatial grids of SLP were selected by the interactive correlation analysis
provided by the Physical Sciences Division in the Earth System Research Laboratory (ESRL
2008) (https://psl.noaa.gov/data/correlation/ (accessed on 7 December 2021)), and the
correlation coefficient between the selected SLP with 4 months lagged and rainfall was
−0.464. All the selected large-scale atmospheric variables were highly correlated with
rainfall in the study region of over 0.001 statistical significance level.

The local meteorological predictors for each station were monthly maximum tempera-
ture (Tmax), monthly minimum temperature (Tmin), monthly mean temperature (Tmean),
monthly mean pressure (Pmean), monthly mean water pressure (emean), monthly mean
relative humidity (dmean) and monthly sunshine duration (Dsun). These predictors were
selected for representing local scale characteristics.

https://psl.noaa.gov/data/correlation/
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Table 2. Summary of candidate predictors for the stacking model.

No. Multiscale Predictors Data Source

1

Large-scale climate
indices

Nino 3.4 index (Nino 3.4)

Hadley Centre Global Sea Ice and Sea Surface
Temperature (Had-ISST). (https://psl.noaa.gov/
gcos_wgsp/Timeseries/Data/nino34.long.data

(accessed on 17 March 2021))

2 Southern Oscillation Index (SOI)
Climatic Research Unit, University of East Anglia.

(https://crudata.uea.ac.uk/cru/data/soi/
(accessed on 8 March 2021))

3 Southern Hemisphere annular mode index (SAMI) (http://ljp.gcess.cn/dct/page/65609
(accessed on 15 June 2021))

4 Western Pacific subtropic high intensity (WPSH)
National Climate Center

(https://cmdp.ncc-cma.net/Monitoring/
(accessed on 3 June 2021))

5
Large-scale

atmospheric variables

sea level pressure (15◦ S to 25◦ S, 55◦ E to 70◦ E)
(SLP) Reanalysis data of NCEP/NOAA [46]

(http://www.esrl.noaa.gov/psd/cgi-bin/data/
timeseries/timeseries1.pl

(accessed on 17 June 2021))
6 meridional wind (20◦ N to 47.5◦ N, 105◦ E to 125◦ E)

(V-wind(1))
7 meridional wind (32.5◦ N, 120◦ E) (V-wind(2))

8

Local meteorological
variables

Monthly mean air temperature (◦C) (Tmean)
China Meteorological Data Service Centre, China

Meteorological Administration (CMA)
(http://data.cma.cn/data/cdcdetail/dataCode/

SURF_CLI_CHN_MUL_DAY_V3.0.html
(accessed on 27 February 2021))

9 Monthly maximum air temperature (◦C) (Tmax)
10 Monthly minimum air temperature (◦C) (Tmin)
11 Monthly mean air pressure (Pmean)
12 Monthly mean vapor pressure (emean)
13 Relative humidity (dmean)
14 Sunshine duration (Dsun)

Figure 2. The correlation coefficient between the sea level pressure (SLP) and rainfall in the study
region: (a) The correlation map for the spatial grids selection; (b) The correlation of the time series
between SLP and rainfall for the lagged months selection.

3. Methodology

The models are trained and evaluated using above predictors. Since regional rainfall
is related to multiscale climatic and meteorological features, the 14 predictors utilized
represent the factors with multiple scales associated with rainfall in the study region. In
addition, rainfall data from 9 rain stations are employed, keeping nearly 90% of each
station for fitting the models (training), and the remaining roughly 10% for evaluating their
prediction skill (testing) [47,48]. A fifty-nine years-long time series for each station are split
in two sets (shown in Figure 3): the training set for the period of 1961–2012, containing
52 years of data and the testing set for the period of 2013–2019, containing the remaining
7-year data. Predictive performance is evaluated over the testing set, which is not learned
in any methods.

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.data
https://crudata.uea.ac.uk/cru/data/soi/
http://ljp.gcess.cn/dct/page/65609
https://cmdp.ncc-cma.net/Monitoring/
http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl
http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
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Figure 3. Methodological scheme of training and testing set division to fit and evaluate the models.

3.1. Machine Learning Methods
3.1.1. K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) was proposed by Cover T.M. and Hart P.E. [49]. K-nearest
neighbors (KNN) is a non-linear method whose predictions are computed through the
weighted mode (classification) or the weighted mean (regression) of the k nearest points
to the one being predicted. The Euclidean distance metric and Manhattan distance metric
are commonly used metrics for finding the closest k neighbors in the training set. Then,
the predicted target is obtained by averaging these neighbors, or the weighted average
according to the distance. More details on the KNN algorithm can be found in [50].

3.1.2. Extreme Gradient Boosting (XGB)

Extreme gradient boosting (XGB, also known as XGBoost) proposed by Chen and
Guestrin [51], is a new application of gradient boosting machines. As the gradient boosting
machines, XGB is developed through an additive training strategy. The predictions are
made from weak learners that continuously develop over the mistakes from the former
learners. The difference is that the gradient boosting algorithm is a negative gradient that
learns a weak learner to approximate the loss function. XGB first finds the second-order
Taylor approximation of the loss function at that point, and then minimizes the approxima-
tion loss function to train the weak learner. XGB can process sparse data automatically, and
it is generally more than ten times faster than the conventional gradient boosting technique.
For more information, readers are referred to [52].

3.1.3. Support Vector Regression (SVR)

Support vector regression (SVR) is a kind of support vector machine (SVM) [53] for
performing the regression task. The general concept of SVR is that it nonlinearly maps
the feature data into the high-dimensional feature space. The objective of SVR is to find
a hyperplane that maximizes the margins by separating samples belonging to different
groups. The data points that support the margin at a close distance from the hyperplane
are known as support vectors. In SVR, mapping the feature set into the high-dimensional
feature space is achieved by the kernel function. The detailed description on various kernels
can be found in [47]. Previous hydrological studies of SVR application demonstrated that
the radial basis function kernel was found to be effective [5,20,54,55].

3.1.4. Artificial Neural Network (ANN)

Artificial neural network (ANN) is inspired by the neurological structure of the human
brain [56]. A common ANN architecture used in this study is the multiple layer perceptrons
(MLP). The mathematical description of the method can be found in [57]. As a brief
description, MLP is a feedforward network that consists of an input layer, hidden layer(s)
and an output layer. The input layer receives external data and the output one produces
the final result. The hidden layers are neurons nodes between the input and out layer,
providing nonlinearity. More complex problems can be solved by increasing the hidden
neurons or layers used. A neuron is a computational unit that receives input from other
neurons that are interconnected with weight. The ‘activation function’ that each neuron uses
receives the linear combination of inputs to produce the results in non-linear transformation.
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In the present study, the traditional backpropagation algorithm [58] was adopted as the
learning algorithm.

3.2. Stacking Ensemble Learning

The stacking ensemble learning is proposed by Wolpert [26], taking advantage of
mutual complementarity among the base models to enhance generalization ability. The
process occurs by, firstly, obtaining the results predicted by a set of diverse base models,
and then optimally combining the outputs from the base models using a meta-learner to
generate the final prediction. To prevent overfitting, the outputs from the base models are
not directly learned by the meta-model. The leave-one-out cross validation method is used
in this ensemble learning strategy. The validation folds are stacked as the new dataset for
the meta-model to learn, which is the reason this strategy is called “stacking”. How to
integrate the base models is important. Multiple linear regression ML models such as RF,
can be used as a meta-model. In our study, weights were assigned to the base models to
constitute the stacking model prediction. The mathematical expression can be presented as:

yP,i =
M

∑
m=1

ωm fm,i (1)

where ωm (m = 1, 2, . . . , M) is the weight assigned for each base models, f m,i represents
the prediction of the model m for the ith observation.

To obtain the optimal final prediction, the set of stacking weights were estimated by
minimizing the mean square linear regression. Thus, the objective function under two
constraints are as follows:

Ω = argmin
N

∑
i=1

[yO,i −
M

∑
m=1

ωm fm,i]
2 (2)

ωm ≥ 0 m = 1, 2, . . . , M (3)

M
∑

m=1
ωm = 1 m = 1, 2, . . . , M (4)

where Ω = {ω1, ω2, . . . , ωM} is the set of weights assigned to the base models. Two
constraints are: (i) weights should be larger than or equal to zero, and (ii) the sum of
the weights equals to one. This leads to a quadratic minimization problem [59], and the
python package ‘qpsolvers’ was used to solve it. Through calculating the weights of the
base models, the stacking model was integrated to generate the final prediction. The
construction of the proposed stacking model and the overall flowchart of the adopted
methodology in this study is presented in Figure 4.

3.3. Hyper-Parameter Optimization

Hyper-parameter tuning is commonly used to construct an appropriate model for
a specific prediction. The model performance varies with different selection of hyper-
parameter values. Table 3 summarizes the main hyper-parameters of the four machine
learning models applied in this study. Taking SVR and ANN as examples, Figure 5 shows
the process of hyper-parameter tuning of the two models. The hyper-parameters were tuned
and evaluated over the training set by k-fold cross-validation [60]. K-fold cross-validation
leveraging information in a small dataset helps to avoid overfitting and to produce a
model that performs well on new data [61]. Figure 5a,b illustrates how the performance
of SVR varies with the hyper-parameter Cost © and Gamma(γ). For SVR, the cost C and
γ with the radial basis function kernel are significant hyper-parameters. It illustrates a
proper value range of the cost C; γ were nearly 10−2 to 10−1 and 10 to 100, respectively.
For ANN, the size of the hidden layer is an essential hyper-parameter, indicating the
complexity of the learning model. In Figure 5c, ANN with a hidden layer of (8) and (8,8)
were compared. Earlier convergence (nearly 190 epochs) and higher performance (R2 of
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0.53) over the validation set were shown on the ANN with the layer of (8) compared to
one with a hidden layer of (8,8). This indicates that the relatively smaller size of hidden
layer ANN has enough learning capacity, and that too large of a size of hidden layer will
cause overfitting. For the machine learning model, multiple important hyper-parameters
impact the model performance comprehensively; the grid search approach was utilized
to optimize the combination of hyper-parameters within the specified range in this study.
Then, the models with hyper-parameters tuned were applied in the testing set. There was
no notable higher performance in the training set than the testing one, indicating that the
models built are reasonable and capable of generalization.

Figure 4. Flowchart of the stacking-based methodology in the study.

Table 3. Summary of the hyper-parameters of the four machine learning models.

Machine Learning Model Hyper-Parameters

K-nearest neighbors (KNN) Number of neighbors
Weights

Extreme gradient boosting (XGB)
Number of estimators

Learning rate
Max depth

Support vector regression (SVR) Cost C
Parameter of Gaussian Kernel—Gamma(γ)

Artificial neural network (ANN)

Size of hidden layer
Activation function

Learning rate
Batch size
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Figure 5. The R2 score of hyper-parameters tuning at Ningguo station. (a) Cost (C) of SVR;
(b) Gamma (γ) of SVR; (c) size of hidden layer of ANN. The shaded areas include 5-flod cross-
validation results.
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3.4. Performance Evaluation

The performances of the above machine learning models were evaluated by the
commonly used statistic metrics: (1) Coefficient of determination (R2), (2) root mean square
error (RMSE), (3) mean absolute error (MAE). R2 measures the proportion of variance
explained by the model. The best possible score is 1.0; a larger value represents a better fit.
RMSE evaluates the residual between observed and predicted values and is particularly
sensitive to the large errors, since the errors are squared before they are averaged. the MAE
is less sensitive to extreme values than the RMSE [62]. The mathematical formulas are
as follows:

Coefficient of determination (R2)

R2 = 1−

N
∑

i=1
(yP,i − yO,i)

2

N
∑

i=1
(yO,i − yO,i)

2
(5)

Root mean square error (RMSE)

RMSE =

√√√√ 1
N

N

∑
i=1

(yP,i − yO,i)
2 (6)

Mean absolute error (MAE)

MAE =
1
N

N

∑
i=1
|yP,i − yO,i| (7)

where yP,i and yO,i are the predicted and observed monthly precipitation in test period t
(test slice), respectively, i is the month of the dataset and N (= 84) is the length (number of
samples in the test set) in period t (2013–2019), yO,i is the mean values of the series yO,i.

3.5. Categorization of Dry, Intermediate and Wet Months in Terms of Standardized Precipitation
Index (SPI)

For measuring the model performance on normal, below and above normal monthly
rainfall prediction, the standardized precipitation index (SPI) proposed by McKee et al. [63]
was used to designate the monthly precipitation into the dry/intermediate/wet classifica-
tions. SPI was calculated using the available program from the National Drought Mitigation
Centre (https://drought.unl.edu/droughtmonitoring/SPI/SPIProgram.aspx (accessed on
29 July 2021)). The SPI calculated in this study is based on representing the historical
monthly precipitation record with a gamma distribution. Positive SPI values represent wet
conditions; the higher the SPI, the more unusually wet a month is. Negative SPI values
represent dry conditions; the lower the SPI, the more unusually dry a month is. The detailed
methodology and the computation process of SPI can be found in Angelidis et al. [64].

SPI was obtained based on the observed monthly rainfall series. The calculated SPI
fall into three categories, namely, ‘dry’ (SPI < −1), ‘intermediate’ (−1 ≤ SPI ≤ 1), and ‘wet’
(SPI > 1). The performance of the models above was assessed respectively in terms of the
three categories.

4. Results and Discussion
4.1. Intercomparison of Model Performances

Four base models and the stacking model are constructed at nine stations in the Taihu
basin for prediction of monthly rainfall. Prediction is independent for each station. The
observed and predicted monthly precipitation series of all the models at the nine stations
are shown in Figure S2.

https://drought.unl.edu/droughtmonitoring/SPI/SPIProgram.aspx
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Figure 6 demonstrates the prediction skills of all the models at the nine rainfall stations.
Among the four base models, the model performances vary in terms of R2, RMSE, and MAE.
The R2 ranges from 0.29 to 0.70. The RMSE and MAE range from 48 mm to 79 mm and
from 35 mm to 51 mm, respectively. It presents analogous ranges of the evaluation metrics
with the previous predictions at the lower reach of the Yangtze River [25], illustrating the
models in this study perform in the reasonable range. Among the base models, ANN at
Xujiahui had the best prediction accuracy with the highest R2 and the smallest RMSE and
MAE, while the accuracy of KNN was the worst in terms of the three metrics at almost all
the stations. There was no base model that performed best at all the stations.

Figure 6. Comparison of model overall performance for the 9 stations using R2; RMSE and MAE.

We then compared the performance of the base models and the stacking model. The
best models selected in terms of R2 and RMSE were same at the nine stations (shown in
Table S1), and the stacking model performed best at two stations. In terms of MAE, the
stacking model performed best at four stations. This implies that, through combining
ML models of diverse structures, the stacking model has the potential to over-perform
all its base models. At the other stations, the stacking model showed analogous accuracy
with the best base models. It should be noted that, though the stacking model was not
selected as the best one at all the nine stations, the variation of each metric was lower,
implying that the stacking model can produce more robust predictions at regional scale.
Additionally, as shown in Table 4, the stacking strategy reduced MAE more effectively than
RMSE, since MAE evaluates the average magnitude, while RMSE is more sensitive to the
large errors, which are squared before they are averaged. This indicates that, except for the
magnification of the large errors generally occurring at extreme rainfall samples [65], the
stacking model appeared to be more favorable in the measurement of average performance
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in the entire rainfall series prediction. The best model for each station selected in terms of
R2, RMSE and MAE is shown in Table S1.

Table 4. Evaluation metrics averaged over the nine stations at different time scales.

Evaluation Metrics KNN XGB SVR ANN Stack

All months
R2 0.407 0.526 0.523 0.532 0.526

RMSE (mm) 68.72 61.57 61.65 60.92 61.51
MAE (mm) 46.34 42.41 43.16 42.47 41.65

Annual
aggregation scale

RMSE (%) 26.12 22.33 22.12 24.63 23.34
MAE (%) 21.39 18.31 18.61 21.02 19.40

Spring RMSE (mm) 43.82 45.74 45.79 47.16 44.22
MAE (mm) 33.86 37.18 36.88 37.89 35.58

Summer
RMSE (mm) 95.50 87.56 87.06 85.19 87.44
MAE (mm) 73.85 66.46 66.21 66.72 66.82

Autumn
RMSE (mm) 77.17 64.35 64.02 62.89 65.27
MAE (mm) 50.55 44.21 44.03 42.61 43.15

Winter
RMSE (mm) 34.45 27.46 29.52 28.06 26.22
MAE (mm) 27.09 21.77 25.54 22.67 21.05

Dry months RMSE (mm) 61.05 47.56 49.45 43.03 46.78
MAE (mm) 49.90 37.47 40.39 32.33 35.87

Intermediate
months

RMSE (mm) 36.98 40.53 42.27 43.94 38.77
MAE (mm) 28.08 32.26 33.06 33.98 30.21

Wet months
RMSE (mm) 121.23 101.22 99.03 96.82 103.43
MAE (mm) 97.86 73.15 72.94 71.33 76.69

Months of extreme
rainfall

RMSE (mm) 197.70 172.36 164.65 157.80 173.26
MAE (mm) 188.36 162.22 153.26 143.32 163.38

4.2. Prediction Skills at Different Time Scales

It is also of importance to predict annual, seasonal and other scales in the water
resources management. Thus, we examined the model performance at annual aggregated
scale, seasonal scale, dry/intermediate/wet months and months of extreme rainfall.

At the annual aggregation scale, Table 4 shows the evaluation metrics (RMSE and MAE)
of the five models at nine rainfall stations over the study region. The RMSE of the stacking
model at the annual aggregation scale was 157.5–399.7 mm (accounting for 15–35% of the
annual precipitation averaged over the 1961–2019 period), and MAE was 157.6–336.7 mm
(accounting for 11–30%). Among the base models, SVR performed satisfactorily at the
annual aggregation scale, with an RMSE of 135.7–333.8 mm (accounting for 10–31%) and
MAE of 110.9–299.6 mm (accounting for 9–25%). Generally, in terms of the performance at
the annual aggregation scale, the stacking model and ML models, such as SVR and XGB,
showed good ability in readily applying to long-term rainfall prediction for regional water
resources management.

Over four seasons, rainfall shows significantly seasonal variability in the study region.
The average monthly rainfall (1961–2019) at the stations was 81.5–137.1 mm in spring (from
March to May), 151.9–194.8 mm in summer (from June to August), 65.0–96.8 mm in autumn
(from September to November), and 39.9–73.0 mm in winter (from December to February).
Thus, evaluation metrics (RMSE and MAE), the percentage of which accounts for average
monthly rainfall over four seasons, were evaluated at the seasonal scale, shown in Figure 7.
In terms of RMSE and MAE, the prediction in winter was the most accurate, followed
by spring and autumn. The evaluation metrics were highest in summer considering its
largest amount of rainfall over four seasons. While, in terms of the percentage of RMSE
and MAE, the prediction in spring was the most accurate, similar in summer and winter,
but worst in autumn. Generally, the stacking model performed better in spring and winter
than in summer and autumn. It is noted that previous studies [40,42,66] have highlighted
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the importance of accurately predicting summer rainfall. Future work is needed to explore
suitable models and the main factors for summer rainfall prediction in this region.

Figure 7. The value and percentage of evaluation metrics (RMSE and MAE) of the stacking model at
the nine stations in four seasons.

The prediction from the above models was further compared in terms of dry/intermediate/
wet months. As mentioned earlier, SPI was used as the index for classifying the categoriza-
tion. The SPI was calculated based on observed monthly rainfall series, and divided all
months into three categories, namely, ‘dry’ (SPI < −1), ‘intermediate’ (−1 ≤ SPI ≤ 1), and
‘wet’ (SPI > 1). The scatter plots of the stacking model are presented in Figure 8. The results
of base models are shown in Figure S3. It revealed that all the models underestimated
rainfall for the wet months, and slightly overestimated rainfall for the dry months.

The predictions for intermediate and dry months were within a minor error range. The
prediction error on wet conditions was high, and rainfall prediction for wet JJA (June-July-
August) months was the most underestimated, indicating that the wet feature is the most
difficult for the machine learning models to capture. The evaluation metrics (RMSE and
MAE) for dry/intermediate/wet months by the stacking model and the base models shown
in Table 4 also offered the same indication. Similar results were also found in other climate
regions [5,24]. Further work is needed to pay attention on wet JJA rainfall prediction, which
is crucial to the regional flood prevention.

Extreme precipitation deserves special attention in the Taihu basin, considering that
intensive precipitation during the ‘Plum Rain Season’ (the rainy season from late June to
early July in the Yangtze Plain) and typhoon season may cause flooding [35]. We compared
the prediction skill of the above models on precipitation above 300 mm, which is considered
as extreme rainfall in the study region. Since the samples of extreme rainfall are a tiny part
in the series (nearly 3%), the extreme rainfall is generally underestimated by the above
models. Such a feature seems difficult for models to capture. The evaluation metrics
on extreme rainfall are shown in Table 4. They indicated that ANN showed the greatest
predictive ability, followed by SVR. The stacking model performed comparable to XGB.
KNN showed poor predictive power on extreme rainfall, since the stacking model with the
weight-distributed strategy is influenced by all the base models. One of the base models
with poor performance may reduce the prediction ability of the stacking one. Other ML
models can be utilized as an alternative in the flexible stacking framework for enhancing
the predictive skill.
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Figure 8. Scatter plot showing the association between observed and predicted rainfall of the stacking
model for the testing period (2013–2019).

4.3. Discussions

Irrespective of the models used in prediction, there are quite differing prediction effects
shown among the nine stations. Higher performance was shown at Xujiahui and Ningguo
station, with R2 of 0.642 and 0.645, respectively, while lower performance was shown at
Nanjing, with R2 only reaching 0.438 by the stacking model, as depicted in Figure 9. The
certain possible reasons that may impact the performance are addressed as follows.

One of the crucial reasons is likely associated with different characteristics in the
rainfall series among these stations. We used CV and probability density of time series
as examples to demonstrate the various features. Figure 9 shows the performance of
the stacking model contrast to the coefficient of variation (CV) at the nine stations. The
higher CV indicated a more disperse rainfall distribution, which may increase the difficulty
of the series prediction. In Table S2, lower CV are shown in all predicted series than
in observational ones, which indicates that the dispersion feature in the time series is
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difficult to capture. Figure 10 shows the probability density distribution of observations
and predictions by the stacking model at the nine stations. Lower probability density in
distribution tails and excessive distribution around 100 mm also show that the predicted
rainfall is prone to concentrate on moderate values, making the dispersion of the series
difficult to reproduce. Further research is needed to examine the main features of time
series that impact the prediction performance.
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Another characteristic that may affect the prediction is the discrepancy between
the rainfall distributions for the training set (1961–2012) and the testing set (2013–2019).
Figure 10 shows that the probability distribution in the range of 0–100 mm significantly
reduces, while the monthly rainfall larger than 200 mm occurs more frequently during the
testing period (2013–2019) at most of stations. In comparison, there are similar probability
distributions in the training and testing period at Xujiahui and Ningguo station, conducive
to high prediction accuracy at these stations. It implies that the characteristics of training
and testing sets have a notably high impact on the prediction accuracy. Further works can
consider the statistical characteristics in the ML prediction model construction to enhance
the predictive ability.

The division of training and testing sets is an inevitable issue in time series prediction.
Generally, for building a statistical predictive model, the training set and the testing set
are required to contain the same distribution [67], which is conducive to achieving good
prediction results. However, due to the complexities in the change of rainfall character-
istics [4] which is caused by natural and anthropogenic factors, the physical factors that
impact rainfall characteristics are needed in the models as prediction factors in the long
term rainfall prediction to reveal this change. In addition, other climatic and meteorological
variables utilized as predictors also show non-stationarity and complexity in dynamic
climate systems [68]. Identifying major drivers of regional rainfall for mapping relationship
construction is also important to enhance the predictive ability.
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Figure 10. Probability density distribution of observations and predictions by the stacking model at
the nine stations.

5. Conclusions

In this study, a stacking ensemble learning model and its base models were compared
for the prediction of monthly rainfall at nine stations in the Taihu basin, China, using
large-scale climate indices, large-scale atmospheric variables, and local meteorological
variables as predictors. Principal conclusions of the study are as follows:

(1) Through combining models of diverse structures, the stacking model showed the
potential to over-perform all the base models. In terms of different evaluation metrics,
the results varied among the models. In terms of R2 and RMSE, the stacking model
performed best at two stations (Pinghu and Ningguo). In terms of MAE, the stacking
model performed best at four stations (Liyang, Pinghu, Hangzhou and Nanjing). At
the other rainfall stations, the stacking approach also showed satisfactory performance,
close to the best one of the individual base models, and especially showed favorable
results in term of MAE. Thus, the proposed stacking model can produce reasonable
predictions for the entire rainfall series.

(2) At the annual aggregation scale, the stacking model and ML models (SVR and XGB)
performed satisfactorily, showing good ability in applying long-term rainfall predic-
tion for regional water resources management. Over four seasons, the stacking model
generally showed better performance in spring and winter than in summer and au-
tumn. In terms of dry/intermediate/wet months, the models showed a greater minor
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error range in dry and intermediate months than wet months, with underestimation
of the wet months and slight overestimation of the dry months.

(3) In terms of extreme rainfall, ANN outperformed the stacking model. The ML models
generally undervalue extreme rainfall. ANN, relatively, generated the closest predic-
tion, showing the potential to capture the extreme wet condition. Further work is
needed to explore ML methods to enhance the ability of predicting extreme rainfall,
especially in regions vulnerable to flooding.

In this study, a stacking ensemble model of combining different machine learning
model structures was proposed in rainfall prediction. In this flexible stacking framework,
the attempts to improve base-learners and meta-learners were promising to enhance the
prediction ability in further research. In addition to the model structures, the difference
between training and testing data distributions also affected the prediction performance.
Further study should focus on the variability in rainfall series, the identification of impor-
tant drivers to enhance the prediction ability and the examination of more ML models,
such as recurrent neural network (RNN) [58], under the ensemble framework. The data-
driven model with the stacking ensemble framework is readily generalized to other climatic
regions, using climatic, meteorological and diverse information.
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(c) WPSH; (d) SAMI, Figure S2: Prediction results of monthly rainfall at the stations in the Taihu
basin, Figure S3: Scatter plot showing the association between observed and predicted rainfall of
the base models for the testing period (2013–2019), Table S1: The best model selected in terms of
R2, RMSE and MAE at the nine stations, Table S2: The coefficient of variation deviation (CV) of the
observed and the predicted monthly rainfall series at the nine stations.

Author Contributions: J.G.: conceptualization, methodology, formal analysis, visualization, writing—original
draft preparation; S.L.: conceptualization, writing—review and editing, supervision; Z.Z.: con-
ceptualization, methodology, writing—review and editing, supervision; S.R.C.: conceptualization,
writing—review and editing; Q.Z.: conceptualization, formal analysis, writing—review and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program
of China (Grant no.2018YFD1100401), National Natural Science Foundation of China (51909191,
52111530045 and 51961145106) and Russian Fund for Basic Research—National Natural Science
Foundation of China (21-55-53039).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The public archived datasets in the study can be accessed by the links
in Section 2, or requesting on the corresponding author.

Acknowledgments: We are grateful to the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA for
providing us with NCEP Reanalysis Derived data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data, or in the writing of the manuscript.

References
1. Ali, M.; Deo, R.C.; Downs, N.J.; Maraseni, T. Multi-stage hybridized online sequential extreme learning machine integrated with

Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmos. Res. 2018, 213, 450–464. [CrossRef]
2. Bagirov, A.; Mahmood, A.; Barton, A. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach.

Atmos. Res. 2017, 188, 20–29. [CrossRef]
3. Zeynoddin, M.; Bonakdari, H.; Azari, A.; Ebtehaj, I.; Gharabaghi, B.; Madvar, H.R. Novel hybrid linear stochastic with non-linear

extreme learning machine methods for forecasting monthly rainfall a tropical climate. J. Environ. Manag. 2018, 222, 190–206.
[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/w14030492/s1
https://www.mdpi.com/article/10.3390/w14030492/s1
http://doi.org/10.1016/j.atmosres.2018.07.005
http://doi.org/10.1016/j.atmosres.2017.01.003
http://doi.org/10.1016/j.jenvman.2018.05.072
http://www.ncbi.nlm.nih.gov/pubmed/29843092


Water 2022, 14, 492 18 of 20

4. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Geneva. 2014. Available online: https://www.ipcc.ch/report/ar5/syr (accessed on
20 December 2021).

5. Das, P.; Chanda, K. Bayesian Network based modeling of regional rainfall from multiple local meteorological drivers. J. Hydrol.
2020, 591, 125563. [CrossRef]

6. Abbot, J.; Marohasy, J. Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial
neural networks. Atmos. Res. 2014, 138, 166–178. [CrossRef]

7. Shahrban, M.; Walker, J.; Wang, Q.; Seed, A.; Steinle, P. An evaluation of numerical weather prediction based rainfall forecasts.
Hydrol. Sci. J. 2016, 61, 2704–2717. [CrossRef]

8. Ali, M.; Deo, R.C.; Downs, N.J.; Maraseni, T. Chapter 3—Monthly Rainfall Forecasting with Markov Chain Monte Carlo
Simulations Integrated with Statistical Bivariate Copulas. In Handbook of Probabilistic Models; Samui, P., Tien Bui, D., Chakraborty,
S., Deo, R.C., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2020; pp. 89–105. ISBN 978-0-12-816514-0.

9. Giebel, G.; Kariniotakis, G. Wind power forecasting—A review of the state of the art. In Renewable Energy Forecasting: From Models
to Applications; Woodhead Publishing: Cambridge, UK, 2017; ISBN 978-0081005040.

10. Yu, W.; Nakakita, E.; Jung, K. Flood Forecast and Early Warning with High-Resolution Ensemble Rainfall from Numerical Weather
Prediction Model. Procedia Eng. 2016, 154, 498–503. [CrossRef]

11. Carlson, R.F.; MacCormick, A.J.A.; Watts, D.G. Application of Linear Random Models to Four Annual Streamflow Series. Water
Resour. Res. 1970, 6, 1070–1078. [CrossRef]

12. Burlando, P.; Rosso, R.; Cadavid, L.G.; Salas, J.D. Forecasting of short-term rainfall using ARMA models. J. Hydrol. 1993, 144,
193–211. [CrossRef]

13. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural
network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2012, 476, 433–441. [CrossRef]

14. Rahman, M.A.; Yunsheng, L.; Sultana, N. Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall,
Spearman’s rho tests and ARIMA model. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2016, 129, 409–424. [CrossRef]

15. Lana, X.; Rodríguez-Solà, R.; Martínez, M.D.; Casas-Castillo, M.C.; Serra, C.; Kirchner, R. Autoregressive process of monthly
rainfall amounts in Catalonia (NE Spain) and improvements on predictability of length and intensity of drought episodes. Int. J.
Clim. 2020, 41. [CrossRef]

16. Basha, C.Z.; Bhavana, N.; Bhavya, P. Rainfall Prediction Using Machine Learning Amp; Deep Learning Techniques. In Proceedings
of the 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4
July 2020; pp. 92–97.

17. Ortiz-García, E.; Salcedo-Sanz, S.; Casanova-Mateo, C. Accurate precipitation prediction with support vector classifiers: A study
including novel predictive variables and observational data. Atmos. Res. 2014, 139, 128–136. [CrossRef]

18. Grace, R.K.; Suganya, B. Machine Learning Based Rainfall Prediction. In Proceedings of the 2020 6th International Conference on
Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; pp. 227–229.

19. Diez-Sierra, J.; del Jesus, M. Long-term rainfall prediction using atmospheric synoptic patterns in semi-arid climates with
statistical and machine learning methods. J. Hydrol. 2020, 586, 124789. [CrossRef]

20. Tian, D.; He, X.; Srivastava, P.; Kalin, L. A hybrid framework for forecasting monthly reservoir inflow based on machine learning
techniques with dynamic climate forecasts, satellite-based data, and climate phenomenon information. Stoch. Hydrol. Hydraul.
2021, 1–23. [CrossRef]

21. Yu, P.-S.; Yang, T.-C.; Chen, S.-Y.; Kuo, C.-M.; Tseng, H.-W. Comparison of random forests and support vector machine for
real-time radar-derived rainfall forecasting. J. Hydrol. 2017, 552, 92–104. [CrossRef]

22. Cramer, S.; Kampouridis, M.; Freitas, A.; Alexandridis, A.K. An extensive evaluation of seven machine learning methods for
rainfall prediction in weather derivatives. Expert Syst. Appl. 2017, 85, 169–181. [CrossRef]

23. Pour, S.H.; Wahab, A.K.A.; Shahid, S. Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular
Malaysia. Atmos. Res. 2019, 233, 104720. [CrossRef]

24. Sachindra, D.; Ahmed, K.; Rashid, M.; Shahid, S.; Perera, B. Statistical downscaling of precipitation using machine learning
techniques. Atmos. Res. 2018, 212, 240–258. [CrossRef]

25. Zhou, Z.; Ren, J.; He, X.; Liu, S. A comparative study of extensive machine learning models for predicting long-term monthly
rainfall with an ensemble of climatic and meteorological predictors. Hydrol. Process. 2021, 35, e14424. [CrossRef]

26. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
27. Rice, J.S.; Emanuel, R.E. How are streamflow responses to the El Nino Southern Oscillation affected by watershed characteristics?

Water Resour. Res. 2017, 53, 4393–4406. [CrossRef]
28. Zhai, B.; Chen, J. Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5 concentrations in

Beijing, China. Sci. Total Environ. 2018, 635, 644–658. [CrossRef] [PubMed]
29. Sun, W.; Trevor, B. A stacking ensemble learning framework for annual river ice breakup dates. J. Hydrol. 2018, 561, 636–650.

[CrossRef]
30. Breiman, L. Stacked Regressions. Mach. Learn. 1996, 24, 49–64. [CrossRef]
31. Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; Hinkelmann, R. Ensemble machine learning paradigms in hydrology: A review.

J. Hydrol. 2021, 598, 126266. [CrossRef]

https://www.ipcc.ch/report/ar5/syr
http://doi.org/10.1016/j.jhydrol.2020.125563
http://doi.org/10.1016/j.atmosres.2013.11.002
http://doi.org/10.1080/02626667.2016.1170131
http://doi.org/10.1016/j.proeng.2016.07.544
http://doi.org/10.1029/WR006i004p01070
http://doi.org/10.1016/0022-1694(93)90172-6
http://doi.org/10.1016/j.jhydrol.2012.11.017
http://doi.org/10.1007/s00703-016-0479-4
http://doi.org/10.1002/joc.6915
http://doi.org/10.1016/j.atmosres.2014.01.012
http://doi.org/10.1016/j.jhydrol.2020.124789
http://doi.org/10.1007/s00477-021-02023-y
http://doi.org/10.1016/j.jhydrol.2017.06.020
http://doi.org/10.1016/j.eswa.2017.05.029
http://doi.org/10.1016/j.atmosres.2019.104720
http://doi.org/10.1016/j.atmosres.2018.05.022
http://doi.org/10.1002/hyp.14424
http://doi.org/10.1016/S0893-6080(05)80023-1
http://doi.org/10.1002/2016WR020097
http://doi.org/10.1016/j.scitotenv.2018.04.040
http://www.ncbi.nlm.nih.gov/pubmed/29679837
http://doi.org/10.1016/j.jhydrol.2018.04.008
http://doi.org/10.1007/BF00117832
http://doi.org/10.1016/j.jhydrol.2021.126266


Water 2022, 14, 492 19 of 20

32. Li, Y.; Liang, Z.; Hu, Y.; Li, B.; Xu, B.; Wang, D. A multi-model integration method for monthly streamflow prediction: Modified
stacking ensemble strategy. J. Hydroinform. 2019, 22, 310–326. [CrossRef]

33. Wang, L.; Zhu, Z.; Sassoubre, L.; Yu, G.; Liao, C.; Hu, Q.; Wang, Y. Improving the robustness of beach water quality modeling
using an ensemble machine learning approach. Sci. Total Environ. 2020, 765, 142760. [CrossRef]

34. Peng, D.; Qiu, L.; Fang, J.; Zhang, Z. Quantification of Climate Changes and Human Activities That Impact Runoff in the Taihu
Lake Basin, China. Math. Probl. Eng. 2016, 2016, 1–7. [CrossRef]

35. Wu, J.; Wu, Z.-Y.; Lin, H.-J.; Ji, H.-P.; Liu, M. Hydrological response to climate change and human activities: A case study of Taihu
Basin, China. Water Sci. Eng. 2020, 13, 83–94. [CrossRef]

36. Liang, W.; Yongli, C.; Hongquan, C.; Daler, D.; Jingmin, Z.; Juan, Y. Flood disaster in Taihu Basin, China: Causal chain and policy
option analyses. Environ. Earth Sci. 2010, 63, 1119–1124. [CrossRef]

37. Ge, Q.; Bian, J.; Zheng, J.; Liao, Y.; Hao, Z.; Yin, Y. The climate regionalization in China for 1981-2010. Chin. Sci. Bull. 2013, 58,
3088–3099. [CrossRef]

38. Tao, L.; He, X.; Qin, J. Multiscale teleconnection analysis of monthly total and extreme precipitations in the Yangtze River Basin
using ensemble empirical mode decomposition. Int. J. Clim. 2020, 41, 348–373. [CrossRef]

39. Liu, Y.; Li, W.; Ai, W.; Li, Q. Reconstruction and Application of the Monthly Western Pacific Subtropical High Indices. J. Appl.
Meteorol. Sci. 2012, 23, 414–423.

40. Nan, S.; Li, J. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern
Hemisphere annular mode. Geophys. Res. Lett. 2003, 30. [CrossRef]

41. Tang, Y.; Huang, A.; Wu, P.; Huang, D.; Xue, D.; Wu, Y. Drivers of Summer Extreme Precipitation Events Over East China. Geophys.
Res. Lett. 2021, 48. [CrossRef]

42. Fan, K.; Wang, H.; Choi, Y.-J. A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River
Valley summer rainfall. Chin. Sci. Bull. 2008, 53, 602–609. [CrossRef]

43. Guo, Y.; Li, J.; Li, Y. Seasonal Forecasting of North China Summer Rainfall Using a Statistical Downscaling Model. J. Appl. Meteorol.
Clim. 2014, 53, 1739–1749. [CrossRef]

44. Wang, C.; Jia, Z.; Yin, Z.; Liu, F.; Lu, G.; Zheng, J. Improving the Accuracy of Subseasonal Forecasting of China Precipitation with
a Machine Learning Approach. Front. Earth Sci. 2021, 9. [CrossRef]

45. Babel, M.S.; Sirisena, T.A.J.G.; Singhrattna, N. Incorporating large-scale atmospheric variables in long-term seasonal rainfall
forecasting using artificial neural networks: An application to the Ping Basin in Thailand. Water Policy 2016, 48, 867–882.
[CrossRef]

46. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The
NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [CrossRef]

47. Hofmann, T.; Schölkopf, B.; Smola, A.J. Kernel methods in machine learning. Ann. Stat. 2008, 36, 1171–1220. [CrossRef]
48. Marsland, S. Machine Learning: An Algorithmic Perspective, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2014;

ISBN 978-0-429-10250-9.
49. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
50. Ahmadi, A.; Moridi, A.; Lafdani, E.K.; Kianpisheh, G. Assessment of climate change impacts on rainfall using large scale climate

variables and downscaling models—A case study. J. Earth Syst. Sci. 2014, 123, 1603–1618. [CrossRef]
51. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13 August 2016; pp. 785–794.
52. Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-based method for flash flood risk assessment. J. Hydrol.

2021, 598, 126382. [CrossRef]
53. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
54. Raghavendra, N.S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. 2014,

19, 372–386. [CrossRef]
55. Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Filho, E.I.F. Estimation of reference evapotranspiration in Brazil with limited

meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [CrossRef]
56. Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharma-

ceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [CrossRef]
57. Ahmed, K.; Shahid, S.; Bin Haroon, S.; Xiao-Jun, W. Multilayer perceptron neural network for downscaling rainfall in arid region:

A case study of Baluchistan, Pakistan. J. Earth Syst. Sci. 2015, 124, 1325–1341. [CrossRef]
58. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
59. Frank, M.; Wolfe, P. An algorithm for quadratic programming. Nav. Res. Logist. Q. 1956, 3, 95–110. [CrossRef]
60. Markatou, M.; Tian, H.; Biswas, S.; Hripcsak, G.M. Analysis of Variance of Cross-Validation Estimators of the Generalization

Error. J. Mach. Learn. Res. 2005, 6, 1127–1168. [CrossRef]
61. Lever, J.; Krzywinski, M.; Altman, N. Model selection and overfitting. Nat. Methods 2016, 13, 703–704. [CrossRef]
62. Fox, D.G. Judging Air Quality Model Performance: A Summary of the AMS Workshop on Dispersion Model Performance, Woods

Hole, Mass., 8–11 September 1980. Bull. Am. Meteorol. Soc. 1981, 62, 599–609. [CrossRef]

http://doi.org/10.2166/hydro.2019.066
http://doi.org/10.1016/j.scitotenv.2020.142760
http://doi.org/10.1155/2016/2194196
http://doi.org/10.1016/j.wse.2020.06.006
http://doi.org/10.1007/s12665-010-0786-x
http://doi.org/10.1360/972012-1491
http://doi.org/10.1002/joc.6624
http://doi.org/10.1029/2003GL018381
http://doi.org/10.1029/2021GL093670
http://doi.org/10.1007/s11434-008-0083-1
http://doi.org/10.1175/JAMC-D-13-0207.1
http://doi.org/10.3389/feart.2021.659310
http://doi.org/10.2166/nh.2016.212
http://doi.org/10.1175/1520-0477(1996)077&lt;0437:TNYRP&gt;2.0.CO;2
http://doi.org/10.1214/009053607000000677
http://doi.org/10.1109/TIT.1967.1053964
http://doi.org/10.1007/s12040-014-0497-x
http://doi.org/10.1016/j.jhydrol.2021.126382
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/j.asoc.2014.02.002
http://doi.org/10.1016/j.jhydrol.2019.03.028
http://doi.org/10.1016/S0731-7085(99)00272-1
http://doi.org/10.1007/s12040-015-0602-9
http://doi.org/10.1038/323533a0
http://doi.org/10.1002/nav.3800030109
http://doi.org/10.7916/d86d5r2x
http://doi.org/10.1038/nmeth.3968
http://doi.org/10.1175/1520-0477(1981)062&lt;0599:JAQMP&gt;2.0.CO;2


Water 2022, 14, 492 20 of 20

63. McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the
8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; p. 6.

64. Angelidis, P.B.; Maris, F.; Kotsovinos, N.; Hrissanthou, V. Computation of Drought Index SPI with Alternative Distribution
Functions. Water Resour. Manag. 2012, 26, 2453–2473. [CrossRef]

65. Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing
average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

66. Yang, J.; Wang, B.; Bao, Q. Biweekly and 21–30-Day Variations of the Subtropical Summer Monsoon Rainfall over the Lower
Reach of the Yangtze River Basin. J. Clim. 2010, 23, 1146–1159. [CrossRef]

67. Solomatine, D.P.; Ostfeld, A. Data-driven modelling: Some past experiences and new approaches. J. Hydroinform. 2008, 10, 3–22.
[CrossRef]

68. Patel, D.; Canaday, D.; Girvan, M.; Pomerance, A.; Ott, E. Using machine learning to predict statistical properties of non-stationary
dynamical processes: System climate, regime transitions, and the effect of stochasticity. Chaos Interdiscip. J. Nonlinear Sci. 2021,
31, 033149. [CrossRef]

http://doi.org/10.1007/s11269-012-0026-0
http://doi.org/10.3354/cr030079
http://doi.org/10.1175/2009JCLI3005.1
http://doi.org/10.2166/hydro.2008.015
http://doi.org/10.1063/5.0042598

	Introduction 
	Study Area and Data 
	Methodology 
	Machine Learning Methods 
	K-Nearest Neighbors (KNN) 
	Extreme Gradient Boosting (XGB) 
	Support Vector Regression (SVR) 
	Artificial Neural Network (ANN) 

	Stacking Ensemble Learning 
	Hyper-Parameter Optimization 
	Performance Evaluation 
	Categorization of Dry, Intermediate and Wet Months in Terms of Standardized Precipitation Index (SPI) 

	Results and Discussion 
	Intercomparison of Model Performances 
	Prediction Skills at Different Time Scales 
	Discussions 

	Conclusions 
	References

