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The CRISPR/Cas (clustered regularly interspaced short
palindromic repeats/CRISPR-associated) adaptive immune
system, which was discovered in bacteria and archaea, can
specifically degrade invasive viral and plasmid DNA by
base pairing between crRNAs (CRISPR RNAs) and the
target DNA [1,2]. Recently, the Streptococcus pyogenes
type II CRISPR system was shown to be able to perform
efficient targeted gene disruption by employing three
fundamental components: (1) Cas9 endonuclease, which
catalyzes DNA cleavage, and (2) crRNAs and (3)
tracrRNAs (trans-activating crRNAs), which are both
crucial for directing Cas9 to target sites and for transform-
ing Cas9 from an inhibited conformation into an active
state [3–5]. However, a comparable level of gene targeting
can be mediated by a chimeric single-guide RNAs
(sgRNAs), which results from the fusion of a crRNA and
a tracrRNA, and this system is easier to operate both in
vivo and in vitro [4]. Compared with the complicated
design and assembly of ZFNs (zinc finger nucleases) and
TALENs (transcription activator-like effector nucleases),
redirecting Cas9 to a new target site requires only the
alteration of a gene-specific 20-nt DNA sequence in
sgRNAs, which can be synthesized on a large scale [6,7].
RNA-guided Cas9 has recently been demonstrated to be a
robust tool for genome engineering in many cell lines and
organisms [8–13].
Gene targeting in large domestic animals has been

considered an intractable task involving screening for
gene-targeted cells, the deletion of selective markers, and

somatic cell nuclear transfer (SCNT), and it usually results
in abortion or unhealthy newborns due to abnormal
epigenetic modifications [14,15]. Recently, Zhou and
colleagues reported the first gene-knockout pigs generated
using a one-step zygote injection of the CRISPR/Cas9
system, demonstrating a highly promising rapid method to
create large domestic gene-knockout animals [16]. Here,
we report the first successful one-step generation of gene-
knockout sheep using the same method.
To test the feasibility of gene targeting in sheep using the

CRISPR/Cas9 system, we designed sgRNAs targeting the
myostatin (MSTN) gene (Supplementary information,
Table S1). Myostatin is a transforming growth factor-β
family member that negatively regulates muscle mass.
Naturally occurring MSTN mutations in dogs and Belgian
Blue cattle have been found to result in similar double-
muscled phenotypes [17,18]. The disruption of the MSTN
gene in mice has been shown to also cause a pronounced
increase in skeletal muscle mass [19]. Thus, animal
breeding scientists are highly interested in modifying the
MSTN gene in large domestic animals, such as pigs and
sheep. Further research should be performed to determine
whether such genetic modifications could improve meat
production in these animals.
We designed sgRNAs targeting the third exon of MSTN

(Fig. 1a), resulting in out-of-frame indels (insertions or
deletions) predicted to abolish normal MSTN function. To
determine the working efficiency of the Cas9 system in
vitro, sheep codon-optimized Cas9 and sgRNA expression
plasmids were cotransfected into sheep fibroblast cells.
Genomic DNA isolated from the cells 48 h after
transfection was subjected to PCR amplification and the
Surveyor assay to confirm cleavage. The two expected
cleavage bands were observed, suggesting that the MSTN
gene was mutated in a proportion of the transfected cells.
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The average gene targeting efficiency was estimated to be
19.3% (Supplementary information, Fig. S1).
After confirming that the Cas9 system worked in sheep

fibroblast cells in vitro, we examined whether it also
worked in vivo. Briefly, Cas9 mRNA and the sgRNAs were
in vitro transcribed using T7 RNA polymerase (Supple-
mentary information, Table S2). A mixture of the Cas9
mRNA and the sgRNAs was microinjected into 213
embryos in two independent experiments. The injected
embryos were immediately transferred into 55 surrogate
females, 31 of which became pregnant, suggesting a low
toxicity of the Cas9:sgRNAmixture. Between 140 and 152
days after the uterine transfer, 35 lambs were successfully
delivered, resulting in a live birth rate of 16.4%
(Supplementary information, Table S3). Tissue samples
from the hind leg muscles and ears of all the lambs were
dissected for MSTN genotyping. The regions surrounding
the target site in theMSTN gene were amplied by PCR and
the Surveyor assay was used to assess cleavage (Supple-
mentary information, Table S4). Apparent cleavage bands
were detected in samples from one male and one female
lamb (Fig. 1b), suggesting gene disruption by Cas9. To
confirm this gene disruption, we cloned the PCR products
and randomly selected more than 80 clones derived from
each lamb for Sanger sequencing. Consistent with the
cleavage assays, five different mutant alleles were found in
the two animals, with indels ranging from 0 to 18 bp

(Fig. 1c). The female lamb was shown to have the wild-
type allele and two mutant alleles, and the male lamb
harbored the wild-type allele and five mutant alleles. We
thus concluded these two animals as monoallelic mutants.
Among the five mutant alleles, three caused out-of-frame
mutations that disrupted the coding region; the other two
mutant alleles, an in-frame deletion (18 bp) and a
substitution of five nucleotides (0 bp), may have had little
effect on the function of MSTN.
Previous reports have suggested that a small number of

mismatches between sgRNAs and the complementary
target DNA are easily tolerated, resulting in a high
frequency of off-target mutagenesis in human cells
[20,21]. To determine whether there were off-target
mutations in the two lambs, we searched the entire sheep
genome. We found six potential off-target loci containing a
maximum of five mismatches compared with the specific
sgRNAs designed for the MSTN gene (Supplementary
information, Table S5). The genomic regions flanking the
putative off-target sites were amplified and examined using
both Surveyor assays and the direct sequencing of PCR
products. The cleavage bands of off-target (OT-1,
Supplementary information, Fig. S2 and Table S5) were
found to result from nearby SNPs, but no mutations in any
intended loci were revealed. However, we cannot exclude
the possibility that an extremely low level of some off-
target mutations beyond the sensitivity of the method we

Fig. 1 Generation ofMSTN-knockout sheep and analysis of the mutant alleles. (a) A schematic of the sgRNAs targeting the third exon of
the MSTN gene. The PAM motif is shown in green. The target site is underlined, and the 12 bp seed sequence is highlighted in blue. The
primers for the PCR analysis are indicated by arrows; (b) indel mutations in the ear and muscle were detected using the Surveyor assay. Ear
and muscle tissues from the control group with a wild-type MSTN gene produced a 556 bp band. Monoallelic mutant sheep produced
multiple bands with lengths of 556 bp, 331 bp, and 225 bp; (c) sequence analysis of the mutations detected in the two lambs. Deletions are
indicated by a dashed line, and insertions are shaded in cyan. The numbers following the sequences indicate the specific type of mutation,
and the clone numbers are surrounded by brackets.
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used may have occurred. Taken together, the results
indicate that we have successfully generated MSTN
genetically modified sheep through the one-step micro-
injection of a Cas9 RNA:sgRNA mixture into fertilized
eggs, although the production efficiency (2/35) of mutant
lambs was not as high as those previously reported for
other species [11,16].
At least two mutant alleles were identified in each of the

two MSTN-knockout lambs. The presence of multiple
mutant alleles is a common phenomenon, and it has also
been observed in other genetically modified species
generated by the microinjection of a Cas9 RNA:sgRNA
mixture into zygotes [11,13,16]. These observations
strongly indicate that when using this method, Cas9-
mediated double-stranded DNA breaks (DSBs) could
occur many times independently after the one-cell embryo
stage, leading to multiple modified alleles and, thus,
mosaic animals. Considering the time and efficiency
issues, a better method to create gene-targeted large
animals might be the injection of a preassembled Cas9:
sgRNA protein complex directly into the nucleus of a one-
cell-stage embryo.
In summary, we have successfully obtainedMSTN gene-

mutated sheep, demonstrating that the direct injection of
Cas9:sgRNA into zygotes can be widely used to create
gene knockouts in large domestic animals. This method
may greatly facilitate improvements in animal breeding
and the application of these animals in biomedical studies.
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