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Abstract: With the advancement of satellite remote sensing technologies, constellations are now employed 

as monitoring agents for designated areas. Nevertheless, multiple emergencies may occur at the same time 

around the globe. This paper focuses on constellation configuration control strategy for multipoint obser-

vation. Artificial potential function (APF) control method is adopted to solve the autonomous continuous 

low-thrust reconfiguration control problem. Extended orbital elements were employed to construct the 

quadratic potential function. Lyapunov stability of the proposed algorithm was proved. In addition, a re-

pulsive potential function using relative distance was developed for collision avoidance. Simulations were 

carried out for testing various missions to validate the proposed APF-based control method, and the results 

indicate that the proposed control strategy is efficient, stable, and fulfills the demand for simultaneous 

multipoint emergency observation. 

1. INTRODUCTION  

A satellite constellation is a typical distributed space system. With the advancement of 

satellite remote sensing technologies, constellations are now employed as monitoring 

agents for designated areas. Individual satellites with maneuvering capability in the con-

stellation can provide frequent overflights and coverages to the region of interest. Never-

theless, multiple emergencies may occur at the same time around the globe. For a moni-

toring constellation, as a result, the capability of simultaneous multipoint monitoring is 

required. The constellation will need the ability of autonomous collaborative formation, 

reconfiguration, and maintenance. Individual satellites in mega-constellations launched 

recently are mostly equipped with continuous low-thrust systems, such as electric propul-

sion, in which the methods of impulse control for satellite formation and mission planning 

can longer be applied. A novel method of constellation formation control using continu-

ous low thrust for simultaneous multipoint observation is urgently demanded.  

Artificial potential function (APF) method has shown its potential for constellation 

configuration control. In a paper by Xu et al. [1][2], relative orbital elements-based APF 

control was employed for reconfiguration, bounded flight, and collision avoidance for 

satellite clusters. Autonomous replacement and deorbiting for constellations using classi-

cal orbital elements-based APF control [3] was also accomplished. Yu et al. investigated 

distributed autonomous low-thrust APF control methods for satellite cluster long-distance 

gathering [4]. In present paper, a constellation configuration APF control method for mul-

tipoint emergency observation is proposed.  
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2. METHODOLOGY 

2.1 Dynamical model 

For near-circular orbits, e can be close to 0, numerical singularities may happen in 

terms / d , / dd dt M t  in Gauss equations. Therefore, extended orbital elements 

, cos , sin , , ,a e e i M     = =  = +  are introduced, Gauss equations can be rewritten as, 
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where a is the semi-major axis, e is the eccentricity, i is the inclination,   is the right 

ascension of ascending node,   is the argument of perigee, M is the mean anomaly,   

is the geocentric gravitational constant, r is the geocentric distance of satellite, p is the 

semi-latus rectum, f is the true anomaly, E is the eccentricity anomaly, u is the argument 

of latitude, U, N, W are the components of the thrust acceleration vector in the tangential, 

principal normal and out-of-plane reference frame (Ox2y2z2), shown as Fig1.b. 

 
Fig1 Coordinate Systems 

 

The transformation between the ECI frame OXYZ and Ox2y2z2 can be written as: 
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where ( )1 cos / ,cos sin /sin e f hv e f hv   = + = . The perturbing gravitational accel-

eration due to J2 in Ox2y2z2 is given by: 
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2.2 Artificial potential function for reconfiguration control 

2.2.1 Establishment of reconfiguration artificial potential function 

The reconfiguration artificial potential function (APF)   is given in the quadratic form. 

It contains two parts where slow  is based on slow variables and ,, , , ia     and fast  is 

based on fast variable , 

 

( ) ( )

( ) ( )

T

slow slow ,slow ,slow slow ,slow

fast fast fas

T

,fast ,fast t

fas

,fast

s w tlo

1

2

1

2

a

a

k

k





  

= − −

= − −

+=

t a t

t a t

τ τ τ τQ

τ τ τ τQ   (4) 

where    ,cos sin cos sin cos sin cos sin
slow fast

T T
a e e i i    = =τ τ  are the slow and fast 

state vectors of the controlled satellite, 
,slow ,fast,

t t
τ τ  are the state vectors of a target posi-

tion,  ,sl 7ow 1diag ,...,q q=aQ  and  8,fast 9diag ,q q=aQ  are the weight matrices, ak  is the 

control coefficient. The low-thrust control [ ]OXYZu  can be obtained by solving the partial 

differential of the APF to the velocity in the earth-centered inertial (ECI) system. 
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where    1 6,..., , , , , ,C aC i  =   are the extended orbital elements. Consider the two-body 

equation of relative motion: 
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Let   be an integral form of two-body motion which satisfies

( ) ( )1 6 ,,...,CC r r = ,Then the time derivative of   is [5]: 
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Suppose F  is the perturbation acceleration, then the derivative of integral form of per-

turbed motion P  is: 
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Combining Eq.(7) and Eq.(8), and let P jC = , then we have: 
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which means /j rC   are coefficients of the U, N, W in Eqs.(1). Abbreviate Eqs.(1) as: 
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Therefore, the control can be given as, 
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2.2.2 Stability 

Lyapunov’s second method is employed to examine the stability of the proposed re-

configuration potential function. A system ( ) ( ), ff= = 0T T 0  can be proved stable if the 

Lyapunov function V satisfies the following conditions, 
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Considering ( ) ( )slow ,slow slow,V = − =
t

T τ τ T T , it satisfies (a)(b)(c) in Eq.(12). It can be 

proved that,  
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which means that the slow variable control is stable.  

If we take fast variable   into consideration, then we have: 
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Here: 

 

   
 

 

 

 

 

 
 

3

d

d

d dd d

d d d d

OXYZ OXYZ

OXYZ

OXYZ OXYZ

OXYZ
two bodyOXYZ OXYZ OXYZ

t r

t t t t



−

= − +

  
= + = +
  

τ τ τ τ τ

v r
u

r v
u

r v v

  (15) 

According to Eq.(14), dV/dt is constantly negative when: 
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which means the APF control method is Lyapunov stable when the rate of change of the 

controlled satellite state variables d d/ tτ  under two-body gravity should be equal to that 

of the target satellite d d/t tτ . Otherwise, convergence problems may occur. 

2.3 Artificial potential function for collision avoidance  

Additionally, as close encounters may occur during constellation reconfiguration be-

tween member satellites, a Gauss repulsive potential function between satellite i and j 

using relative distance is developed, 
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where 
ijd  is the distance between two satellites, 

safed  is the target safe distance, 
rd  and 

rd  are control coefficients. In the circumstance of m satellites, the repulsive control on 

satellite i is, 
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where   i j k，，  are unit direction vectors in the ECI system. The repulsive control accelera-

tion need to be transformed to the Ox2y2z2 system according to Eq. (2). 

3. RESULTS 

3.1 Single-satellite initialization 

A simulation for case of a single-satellite was carried out in this section. The initial 

orbital elements of the controlled satellite were 



  4, , , 7528.14km,10, , ,0,5 .03 1 0,,120 5a Me i  −     − =  
, the target orbital elements were

  4, , , 7578.14km,10 ,53.8 ,1, , ,0.0 ,20 1 0t t t t t ta Me i  −      =   . The reconfiguration coefficients were

 125 10 , diag 1.4  9.2e12 9.2e12 5e12 5e12 1e13 1e13 2e8 2e8a ak Q−=  = , repulsive coefficients 

were safe sight25e3, 5 600e3, 5 12 e6,
rdd d  = == = . The mass of the satellite was 225kg, the max-

imum thrust of the satellite was F=0.1N, and the specific impulse was Isp=3000s, which 

is also the same in simulations discussed in sections 3.2 and 3.3. The controlled trajectory 

in the geocentric inertial frame is presented in Fig.2a. The control acceleration plotted in 

Fig.2b. The difference between the controlled orbital elements and target values, i.e., con-

trol errors changing with time is presented in Fig.2c. In the simulation, in 5 days, all 

orbital elements converged to target values. The total fuel consumption was 1.16kg, while 

the controlled satellite moored at a safe distance of 28.4km from the target. 

 
Fig2 Single-satellite initialization results 

3.2 Constellation reconfiguration for continuous coverage 

A simulation for case of constellation reconfiguration for continuous coverage was car-

ried out. Initial configuration is exhibited in Fig.3a. As shown in the figure, 10 satellites 

are evenly distributed on orbital plane 1 with orbit elements of 

  4

1 1 1 1 1, , , 7528.14km,10 ,53 ,120, ,0 1.0a e i  −     =    at an interval of 36°,
1 [0 : 36 : 324 ]M   = . An-

other 10 satellites are 50km above at orbital plane 2, where a2=7578.14km. The other 

orbit elements keep the same as for satellites in plane 1. Suppose an emergency occurs 

and continuous coverage is needed. All 10 satellites in orbital plane 1 is required to ma-

neuver to plane 2 in one day using the proposed APF-based method. In the final state, 

the satellites are evenly spaced with an interval of 18° as presented in Fig.3b. The cone 

half angle of each satellite is θ=45°, illustration of the continuous coverage is presented 

in Fig.3c, with a maximum coverage bandwidth of 1300km. The maximum fuel consump-

tion for a single satellite was 0.23kg.  



 
Fig.3 Continuous coverage reconfiguration results 

3.3 Constellation reconfiguration for simultaneous multipoint observation 

Multipoint revisit requires a group of satellites with the same a and e≈0. Suppose e  

is the earth rotation velocity,   is the average changing rate of   due to J2 perturbation , 

then the trajectories of successive adjacent satellites need to be distributed on the equato-

rial plane with an interval of ( )N eT  = − , where: 
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Let the ground track returns once after Q laps in N days, then the NT  needs to satisfy

( ),/2 /N e N ND T D Q  − == . The successive adjacent satellites also need to have: 
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u

n
=
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−   (20) 

In this simulation case, an 18-satellite constellation was simulated with initial parame-

ters of N=1, Q=15, e=10-4, i=12.3°, a≈6878.14km, 20 55.6, 1u   =     , the max cone 

half angle θ=45° as shown in Fig.4a. Suppose a fire disaster occurs in Amazon Forest 

(0°N, 60°W), a severe flood occurs on Java Island (7°48’S, 110°18’E), a surveillance is 

needed above Huangyan Island (15°08’N, 117°48’E), an eruption from Kilauea Volcano 

occurs (19°26’N, 155°17’W) simultaneously. The coverage of the constellation requires 

to be extended, the inclination angle needs to be increased to it=15° while a, e, , u   

remain unchanged for multipoint observation. 

The constellation reconfiguration will need to be completed in 20 days. The final con-

figuration is shown in Fig.4b and c. The variations of inclination i and the difference of 

 ,   between successive adjacent satellites with time is presented in Fig.4d, e and f. The 

maximum fuel consumption for a single satellite was 5.77kg. The average revisit time of 

the given locations can be seen in Table 1. After the reconfiguration, the Kilauea Volcano 

is included in the observation scope, the average revisit time of the Huangyan Island is 

reduced by half, while that of the Amazon Forest remains unchanged. The average revisit 

time of the Java Island is increased by 15min. In conclusion, simultaneous multipoint 

emergency observation constellation reconfiguration was accomplished by the proposed 

APF method. 



 
Fig.4 Simultaneous multipoint observation reconfiguration results 

 

Table 1 Average Revisit Time Results 
 Average Revisit Time (Initial) Average Revisit Time (Final) 

Amazon Forest (0°N, 60°W)  20min 20min 

Java Island (7°48’S, 110°18’E) 12min 27min 

Huangyan Island (15°08’N, 117°48’E) 40min 20min 

Kilauea Volcano (19°26’N, 155°17’W) ∞ 76min 

4. CONCLUSIONS 

The proposed APF-based control method can be employed for constellation formation 

control and in the mission of simultaneous multipoint observation. Since the method is 

not complex and requires relatively low computational power, it may also be applied in a 

wide range of future applications. 
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