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Particulate matter pollution, nowadays, is one of the most concerning environmental problems in Chinese cities, and yet
monitoring of PM2.5 (aerodynamic diameter of particle ≤2.5 µm) by means of Environmental Internet of Things (EIoT) is
still limited in the urbanizing regions in China. A real-time 1 year continuous observation of PM2.5 by EIoT was carried
out at a coastal site in Xiamen City during 2012, with the objective to explore the temporal variations and possible sources
of PM2.5 in this urbanizing region. The annual average PM2.5 mass concentration was 32.7 ± 9.6 µg m−3, with the highest
level in spring (43.6 ± 5.0 µg m−3) and lowest in summer (21.0 ± 2.5 µg m−3). The mean diurnal pattern of PM2.5

mass concentrations had an obvious morning peak and low values from midnight to dawn. Additionally, the concentrations
on workdays were clearly higher in contrast to those on weekends. These results indicate that particulate matter in this
region is mainly influenced by anthropogenic activities, and could be effectively scavenged by precipitation. Pollution rise
suggested that particulate matters were mainly from civil engineering during the construction of new urban area. A distinct
characteristic of particulate matters in this urbanizing region was the low ratio (0.40) of PM2.5/PM10, which might result
from the increment of coarse particles emission from freeways, construction, and sea spray. The outcomes also show that
EIoT technology is convenient for the management of particulate matter pollution.

Keywords: PM2.5; Environmental Internet of Things (EIoT); temporal variations; urbanizing region; Xiamen City

Introduction

Particulate matters have great adverse effects on public
health and atmospheric environment. Many epidemiolog-
ical studies have demonstrated that fine particulate mat-
ters (PM2.5: aerodynamic diameter of particle ≤2.5 µm)
are related to cardiopulmonary morbidity and mortality
(Delfino et al. 2005; Pope et al. 2006; Ito et al. 2011;
Zhou et al. 2011; Cao et al. 2012). Particulate matters,
especially PM2.5, contribute substantially to the reduced
visibility and radiative balance (Environmental Protection
Agency 1999; Yu et al. 2000; Yu et al. 2001; Watson 2002;
Han et al. 2012). Thus, particulate matter pollution has
aroused worldwide concerns in recent decades.

Particulate matter, nowadays, is one of the most con-
cerning problems of atmospheric pollution in Chinese
cities. The high frequency of haze events that occurred
in the north of China aroused a debate on PM2.5 among
the governors, public, and experts in 2011 (Yuan et al.
2012), which promoted the implementation of a stricter
national ambient air quality standard. Based on the pub-
lic requirement, the Ministry of Environmental Protection
(MEP) of the People’s Republic of China revised the ambi-
ent air quality standards and set the annual and daily
average PM2.5 standards as 35 µg m−3 and 75 µg m−3,
respectively (2012). The new standard required the key
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cities in China to perform and report PM2.5 measurements
in addition to PM10 (aerodynamic diameter of particle
≤10 µm). However, longtime PM2.5 monitoring in China
is still limited, especially on the southeast coast, which is
undergoing a fast urbanization process.

Xiamen City is a famous tourist city in the southeastern
coastline of China and also an important window for inter-
national links. Due to the rapid urbanization in Xiamen
City in recent years (Hua et al. 2010; Zhao et al. 2010),
Jimei District has become a new urban area of Xiamen
City. Substantial particulate matters are emitted to the
atmosphere from the burning of fossil fuel, motor vehicles,
and municipal construction etc., despite some mitigation
measures having been taken. As a result, the occurrences
of haze events showed an increasing trend in this urbaniz-
ing region (Wang et al. 2009). Hence, it is meaningful to
study the pollution characteristics of PM2.5 at this coastal
site. Nowadays, the Internet of Things (IoT) is a promising
approach to monitor and manage environmental quality,
which can report real time what happens, when every ordi-
nary object is connected by the internet (Atzori et al. 2010;
Dlodlo 2012). This work presents here with the objective
to understand the level and temporal variations of PM2.5 by
the EIoT technology in the rapid urbanizing area in Xiamen
City.

© 2013 Taylor & Francis
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Methods

Site description

As shown in Figure 1, the sampling site (24.61◦N,
118.06◦E) is located on the roof (8 m above the ground)
of a building in the Institute of Urban Environment,
Chinese Academy of Sciences in Jimei District, Xiamen
City, southeast coast of China. It is located at the south-
ern foot of mountains, surrounded by schools, residential
districts, freeways, construction sites, and Xinglin Bay,
facing Xiamen Island across the sea. Xiamen City has a
subtropical oceanic monsoon climate, with an annual aver-
age temperature of 21◦C. The annual average precipitation
in Xiamen City is 1100 mm, concentrated from May to
September (Zhao et al. 2010).

Measurement

The real time online mass concentrations of PM2.5 and
PM10 were measured by a Tapered Element Oscillating
Microbalance (TEOM) sampler (RP1400, Thermo Fisher
Scientific, Waltham, MA, USA), which detected a heated
(50◦C) air sample and had a sampling period as short
as 5 min. The TEOM data have artifacts due to the
volatilization of water and other volatile components;
thus, TEOM mass averaged over 24 h tends to be less
than the filter based methods (Russell et al. 2004). The
TEOM mass concentrations were calibrated regularly by
filters with measured masses. Besides, regular cleaning
and maintenance were carried out for this instrument.
Wind speed, wind direction, and temperature were mea-
sured with automatic meteorological instruments (Met One
Instruments, Inc., Grants Pass, OR, USA). Precipitation
was recorded daily by the pluviograph. The measurement
period covered a whole year of 2012, from 1 January to
31 December.

The data of PM2.5 were managed by the means of
EIoT, which was composed of monitoring instruments, an
information transmission system, and a computer system
unit. When the PM2.5 concentrations exceeded the level
of national ambient air quality standards for PM2.5 (35 µg
m−3) (MEP 2012), or there was a malfunction of the instru-
ments, the EIoT system will send a message to remind the

manager. Following are the variations of PM2.5 managed
by this EIoT system (Zhao et al. 2013).

Results and discussion

Seasonal and monthly variations of PM2.5

Figure 2 presents the monthly and seasonal variations of
PM2.5 at the coastal site during the 1 year. The mass
concentrations of PM2.5 varied from 19.0 ± 10.3 µg m−3

in July to 46.7 ± 18.9 µg m−3 in March, with an
average of 32.7 ± 9.6 µg m−3. The annual average
concentration is slightly lower than the national ambi-
ent air quality standards for PM2.5 (35 µg m−3) (MEP
2012). The concentration at this site is much lower
than that in Beijing (79.4–208.4 µg m−3) (Yang et al.
2005), Shanghai (94.6 µg m−3) (Wang et al. 2006),
Guangzhou (105.9 ± 71.4 µg m−3) (Cao et al. 2003),
Xi’an (130.8–375.2 µg m−3) (Cao et al. 2007), and cities
in northeast China (130.8–375.2 µg m−3) (Han et al.
2010). However, the concentration exceeds that of cities in
Spain (20–35 µg m−3) (Querol et al. 2008), Switzerland
(7.9–24.4 µg m−3) (Gehrig & Buchmann 2003), and
United States (6.0–31.3 µg m−3) (Pinto et al. 2004; Yu
et al. 2004, 2007).

The quarterly average mass concentrations followed
the order of summer (21.0 ± 2.5 µg m−3) < autumn
(29.8 ± 4.8 µg m−3) < winter (36.3 ± 6.4 µg m−3) <

spring (43.6 ± 5.0 µg m−3). The lower concentrations in
summer might be interpreted by the abundance of pre-
cipitation, strong atmospheric convection, and the clean
air parcels originating from the open ocean during the
summer months. A distinct seasonal characteristic at this
site was that the highest concentration was observed in
spring, while other studies in cities in northern China usu-
ally reported highest values in winter (Yang et al. 2005;
Cao et al. 2007; Yang et al. 2007; Han et al. 2010). The
seasonal differences might be interpreted as that (1) there
are substantial combustions of fossil and biomass fuels for
heating during the cold seasons in northern China, while
there is no heating facilities in Xiamen City due to the
mild winter, and (2) the Asian dust storms occurring usu-
ally in spring will bring significant amount of PM2.5 from

Figure 1. The location and terrain of the sampling site in southeast coast of China.
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Figure 2. Monthly and seasonal variations of PM2.5 mass concentrations. The box plots indicate the mean concentration (square) and
the 10th, 25th, 50th, 75th, and 90th percentiles. The markers have the same meaning in the following figures.

the desert regions of central Asia to the southeast coast of
China (Tsai and Chen 2006).

Diurnal variations of PM2.5

Figure 3 shows the mean diurnal variations of PM2.5

mass concentrations from hourly averaged TEOM data in
2012. The most distinct characteristic of this diurnal pat-
tern was the pronounced morning peak, which occurred
from 6:00 AM to 10:00 AM. Except autumn, the obvious
morning peaks were also observed in spring (8:00–10:00),
summer (6:00–8:00), and winter (8:00–10:00) (Figure S1,
online only). The morning peaks were also observed in
Hangzhou (Xiao et al. 2011), central California (Chow
et al. 1999), and southeast Texas (Russell et al. 2004) etc.,

which could be explained by the increment of particulate
matter emissions from traffic, factories, and catering, and
the bursts of photochemical activity after sunrise. After the
morning peaks, the values begin to decline until 14:00.
A slight peak was also observed during the evening rush
hours (18:00–20:00). The lower points during a day were
found from midnight to early morning. The diurnal pat-
tern indicated that the particulate matters in this urbanizing
region closely linked with the anthropogenic activities.

Diurnal variations of PM2.5 on workdays and weekends

As shown in Figure 4, the mean diurnal pattern of PM2.5

mass concentrations on workdays is consistent with that
on weekends. Both of them had a morning peak and lower
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Figure 3. The mean diurnal variations of PM2.5 mass concentrations. The box plots indicate the mean concentration (square) and the
10th, 25th, 50th, 75th, and 90th percentiles.
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Figure 4. The mean diurnal variations of PM2.5 mass concentrations on workdays and weekends.

points from midnight to early morning. However, the PM2.5

mass concentrations on workdays were evidently higher
than those on weekends at each clock, which might result
from the less emission from traffic and factories on week-
ends. Charron and Harrison (2005) also found higher levels
of PM2.5 and coarse particles (PM2.5–10) on workdays in
contrast to weekends in London, and ascribed this phe-
nomenon to traffic. Molnár et al. (2002) observed that
the hourly mean number concentrations of particles on
workdays exceeded those on weekend at a major road north
of Gothenburg, especially during the morning rush hours.

Pollution rise of PM2.5

The PM2.5 mass concentration, wind frequency, and speed
are plotted against wind direction in Figure 5. Due to
the obstacles, i.e., the mountains on the north of the

Figure 5. Concentration of PM2.5 as a function of wind direction
frequency (%) and speed (m s−1). The wind speeds are scaled in
order to be clearly shown.

sampling site (Figure 1), the wind is mainly from the
ENE − WSW (clockwise) directions, with few occur-
rences in the W − NE (clockwise) directions. The higher
PM2.5 concentrations were observed as the wind came from
the E − WSW (clockwise) directions, with the highest
concentration found in the SE direction. Additionally, the
PM2.5 showed relatively low concentrations in the ENE
direction despite the wind speed in this direction being
high. Thus, it could be concluded that the particulate mat-
ters at this site were mainly from the ESE − SSE directions
due to the development of new urban area. Long-range
transports of air pollutions from Taiwan and Guangdong
are one of the biggest reasons for the heaviest acidic rain
in the spring season in Xiamen City (Yu 1994; Yu et al.
1998). Therefore, they might also have some impact on
the highest PM2.5 concentrations in the spring in Xiamen
City.

The effect of precipitation on PM2.5

The daily variations of PM2.5 concentrations and precipita-
tions in each season are presented in Figure 6. It was clearly
shown that PM2.5 had low concentrations in the precipita-
tion events. Especially, the PM2.5 concentrations decreased
remarkably as the precipitation was above 10 mm, such as
on 1 January, 6 March, 18 May, 23 June, 3 September, and
30 November. Graedel and Crutzen (1992) reported that a
raindrop might contain as many as 10,000 small particles
as it reached the ground. Thus, precipitation is an effective
way to scavenge particulate matters from the atmosphere.

The ratios of PM2.5/PM10

Figure 7 shows the correlation between PM2.5 and PM10 in
spring, summer, autumn, and winter. The high correlation
(R2 = 0.88) in summer suggested that there were similar
sources for PM2.5 and PM10, and the low correlation
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(R2 = 0.57) implied the complexity of emission sources
of PM2.5 and PM10 in autumn. The ratios of PM2.5/PM10

were not constant over the year, which varied from
0.57 in autumn to 0.63 in summer, with an annual average
of 0.40 (Figure S2). The annual average ratio in this

urbanizing region is lower than that in Guangzhou (0.68)
(Cao et al. 2003), cities in northeast China (0.54–0.67)
(Han et al. 2010), Switzerland (0.59−0.75) (Gehrig &
Buchmann 2003), and Spain (0.50−0.75) (Querol et al.
2008). Possible explanations for the relatively lower ratio

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

U
rb

an
 E

nv
ir

on
m

en
t]

 a
t 0

1:
26

 1
9 

Ju
ne

 2
01

3 



236 Z. Niu et al.

in this urbanizing region include: (1) the emission of
coarse particles arising from traffic-induced abrasion
and resuspension processes (Gehrig & Buchmann 2003;
Charron & Harrison 2005), for there are freeways near
this site; (2) emissions from civil construction work as
Jimei District is undergoing a fast urbanization process;
(3) contribution of the evaporation of sea spray for this site
is close to the seashore.

Conclusion

The results of the 1 year continuous observation of par-
ticulate matters by means of EIoT technology indicate the
annual average mass concentration (32.7 ± 9.6 µg m−3) of
PM2.5 in this urbanizing region is lower than that in many
cities in China, but higher than that in cities in developed
countries. The highest concentration (43.6 ± 5.0 µg m−3)
was found in spring, which was different from the studies
in north China. The diurnal pattern of PM2.5 mass con-
centration showed obvious morning peak and lower points
from midnight to dawn. The concentrations on workdays
were evidently higher in contrast to that on weekends.
The particulate matters at this site were mainly influenced
by human activities. High concentrations found in the
SE direction suggested that the particulate matters were
mainly from civil engineering during the construction of
new urban area. The low ratio of PM2.5/PM10 (0.40) in this
urbanizing region indicates that there are substantial coarse
particles emission sources nearby.
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