About
37
Publications
1,375
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
479
Citations
Introduction
Skills and Expertise
Publications
Publications (37)
Data Poisoning (DP) is an effective attack that causes trained classifiers to misclassify their inputs. DP attacks significantly degrade a classifier's accuracy by covertly injecting attack samples into the training set. Broadly applicable to different classifier structures, without strong assumptions about the attacker, an
unsupervised
Bayesian...
The rapid advancement of large language models (LLMs) has catalyzed the deployment of LLM-powered agents across numerous applications, raising new concerns regarding their safety and trustworthiness. Existing methods for enhancing the safety of LLMs are not directly transferable to LLM-powered agents due to their diverse objectives and output modal...
Providing a logical framework for student learning, this is the first textbook on adversarial learning. It introduces vulnerabilities of deep learning, then demonstrates methods for defending against attacks and making AI generally more robust. To help students connect theory with practice, it explains and evaluates attack-and-defense scenarios alo...
Deep Neural Networks (DNNs) are now commonly used for the monitoring and control of critical infrastructure, particularly to address classification, recognition, authentication, and detection problems. DNNs support the cooperation between sensing and high-dimensional analysis using the Dynamic Data-Driven Applications Systems (DDDAS) framework. How...
Backdoor (Trojan) attacks are an important type of adversarial exploit against deep neural networks (DNNs), wherein a test instance is (mis)classified to the attacker's target class whenever the attacker's backdoor trigger is present. In this paper, we reveal and analyze an important property of backdoor attacks: a successful attack causes an alter...
Deep neural networks are vulnerable to backdoor attacks (Trojans), where an attacker poisons the training set with backdoor triggers so that the neural network learns to classify test-time triggers to the attacker's designated target class. Recent work shows that backdoor poisoning induces over-fitting (abnormally large activations) in the attacked...
Backdoor (Trojan) attack is a common threat to deep neural networks, where samples from one or more source classes embedded with a backdoor trigger will be misclassified to adversarial target classes. Existing methods for detecting whether a classifier is backdoor attacked are mostly designed for attacks with a single adversarial target (e.g., all-...
A backdoor or Trojan attack is an important type of data poisoning attack against deep neural network (DNN) classifiers, wherein the training dataset is poisoned with a small number of samples that each possess the backdoor pattern (usually a pattern that is either imperceptible or innocuous) and which are mislabeled to the attacker's target class....
A Backdoor attack (BA) is an important type of adversarial attack against deep neural network classifiers, wherein test samples from one or more source classes will be (mis)classified to the attacker's target class when a backdoor pattern (BP) is embedded. In this paper, we focus on the post-training backdoor defense scenario commonly considered in...
Backdoor attacks (BAs) are an emerging threat to deep neural network classifiers. A victim classifier will predict to an attacker-desired target class whenever a test sample is embedded with the same backdoor pattern (BP) that was used to poison the classifier's training set. Detecting whether a classifier is backdoor attacked is not easy in practi...
Backdoor (Trojan) attacks are emerging threats against deep neural networks (DNN). A DNN being attacked will predict to an attacker-desired target class whenever a test sample from any source class is embedded with a backdoor pattern; while correctly classifying clean (attack-free) test samples. Existing backdoor defenses have shown success in dete...
Backdoor attacks (BA) are an emerging threat to deep neural network classifiers. A classifier being attacked will predict to the attacker's target class when a test sample from a source class is embedded with the backdoor pattern (BP). Recently, the first BA against point cloud (PC) classifiers was proposed, creating new threats to many important a...
Backdoor data poisoning (a.k.a. Trojan attack) is an emerging form of adversarial attack usually against deep neural network image classifiers. The attacker poisons the training set with a relatively small set of images from one (or several) source class(es), embedded with a backdoor pattern and labeled to a target class. For a successful attack, d...
Data Poisoning (DP) is an effective attack that causes trained classifiers to misclassify their inputs.DP attacks significantly degrade a classifier's accuracy by covertly injecting attack samples into the training set. Broadly applicable to different classifier structures, without strong assumptions about the attacker, we herein propose a novel Ba...
Vulnerability of 3D point cloud (PC) classifiers has become a grave concern due to the popularity of 3D sensors in safety-critical applications. Existing adversarial attacks against 3D PC classifiers are all test-time evasion (TTE) attacks that aim to induce test-time misclassifications using knowledge of the classifier. But since the victim classi...
Backdoor data poisoning attacks add mislabeled examples to the training set, with an embedded backdoor pattern, so that the classifier learns to classify to a target class whenever the backdoor pattern is present in a test sample. Here, we address posttraining detection of scene-plausible perceptible backdoors, a type of backdoor attack that can be...
With wide deployment of deep neural network (DNN) classifiers, there is great potential for harm from adversarial learning attacks. Recently, a special type of data poisoning (DP) attack, known as a backdoor (or Trojan), was proposed. These attacks do not seek to degrade classification accuracy, but rather to have the classifier learn to classify t...
Classifiers, e.g., those based on Naive Bayes, a support vector machine, or even a neural network, are highly susceptible to a data-poisoning attack. The attack objective is to degrade classification accuracy by covertly embedding malicious (labeled) samples into the training set. Such attacks can be mounted by an insider, through an outsourcing pr...
Backdoor attacks (BAs) are an emerging form of adversarial attack typically against deep neural network image classifiers. The attacker aims to have the classifier learn to classify to a target class when test images from one or more source classes contain a backdoor pattern, while maintaining high accuracy on all clean test images. Reverse-Enginee...
Backdoor data poisoning is an emerging form of adversarial attack usually against deep neural network image classifiers. The attacker poisons the training set with a relatively small set of images from one (or several) source class(es), embedded with a backdoor pattern and labeled to a target class. For a successful attack, during operation, the tr...
With wide deployment of machine learning (ML)-based systems for a variety of applications including medical, military, automotive, genomic, multimedia, and social networking, there is great potential for damage from adversarial learning (AL) attacks. In this article, we provide a contemporary survey of AL, focused particularly on defenses against a...
Recently, a special type of data poisoning (DP) attack, known as a backdoor, was proposed. These attacks aimto have a classifier learn to classify to a target class whenever the backdoor pattern is present in a test sample. In thispaper, we address post-training detection of perceptible backdoor patterns in DNN image classifiers, wherein thedefende...
Recently, a special type of data poisoning (DP) attack targeting Deep Neural Network (DNN) classifiers, known as a backdoor, was proposed. These attacks do not seek to degrade classification accuracy, but rather to have the classifier learn to classify to a target class whenever the backdoor pattern is present in a test example. Launching backdoor...
With the wide deployment of machine learning (ML) based systems for a variety of applications including medical, military, automotive, genomic, as well as multimedia and social networking, there is great potential for damage from adversarial learning (AL) attacks. In this paper, we provide a contemporary survey of AL, focused particularly on defens...
Naive Bayes spam filters are highly susceptible to data poisoning attacks. Here, known spam sources/blacklisted IPs exploit the fact that their received emails will be treated as (ground truth) labeled spam examples, and used for classifier training (or re-training). The attacking source thus generates emails that will skew the spam model, potentia...