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Abstract

Owing to the rapid developments to improve the accuracy and efficiency of both experimental
and computational investigative methodologies, the massive amounts of data generated have led
the field of materials science into the fourth paradigm of data-driven scientific research. This
transition requires the development of authoritative and up-to-date frameworks for data-driven
approaches for material innovation. This review presents a critical discussion on the current
advances in the data-driven discovery of materials with a focus on frameworks, machine-learning
algorithms, material-specific databases, descriptors, and targeted applications in the field of
inorganic materials. Frameworks for rationalizing data-driven material innovation are described, and
a critical review of essential sub-disciplines is presented, including (i) advanced data-intensive
strategies and machine-learning algorithms; (ii) material databases and related tools and platforms
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for data generation and management; (iii) commonly used molecular descriptors used in data-driven
processes. Furthermore, an in-depth discussion on the broad applications of material innovation,
such as energy conversion and storage, environmental decontamination, flexible electronics,
optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how
these sub-disciplines (with insights into the synergy of materials science, computational tools, and
mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in
data-driven material innovation are highlighted.
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1. Introduction

Data-driven innovation has transformed all aspects of our life. It typically involves the invention
of novel products and systems based on the knowledge extracted from data by using advanced
analysis tools. The adoption of data-driven approaches has led to data-based decision-making
innovations in commerce and technology, such as autonomous vehicles, MuZero, and Alphafold
(artificial intelligence for mastering games and predicting protein folding, respectively).™ In
particular, the massive amounts of data generated by employing both computational and
experimental methods, in combination with advanced machine-learning (ML) techniques, have led
the field of materials science into the fourth paradigm of scientific research (Figure 1).[5] This data-
driven paradigm has guided the development of the Material Genome Initiative (MGI), which has
resulted in the advancement of experimental tools, computational techniques, and big-data
analysis.” 7' The transformation from the trial-and-error to the data-driven paradigm requires a
combination of authoritative and updated knowledge from the three domains of mathematics and
statistics, computer science, and materials science.” The advancement and appropriate integration
of these three domains will contribute to material data generation and analysis, uncertainty
characterization, and efficient exploration of structure-property relationships, providing new
knowledge and accelerating the discovery of innovative materials.

Innovative materials are essential and indispensable to breakthroughs in numerous
applications, from energy conversion and storage to flexible electronics and optoelectronics.**® For
instance, novel photovoltaic materials that are cheap, stable, and environmentally friendly, easy to
synthesize, and exhibit a high power conversion efficiency are being investigated."”! Moreover,
researchers are identifying highly active electrocatalysts that are selective towards the reduction of
carbon dioxide."® The development of effective data-driven approaches is essential to meet the
rapidly growing demand for innovative materials with improved and robust performance.[lg' 200 A
basic data-driven framework involves three fundamental stages: employment of data-intensive

This article is protected by copyright. All rights reserved.
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strategies and ML algorithms,m' 2 development of a comprehensive database and data generation

approaches,?* 2%

and construction of descriptors that can link data-intensive and experimental
strategies.”™ *® The main objective is the rapid and efficient discovery of high-performance
innovative materials by applying data-driven approaches. To achieve this goal, the fundamental
stages of the data-driven framework must be utilized and integrated highlight and the relationships
between a material’'s composition, structure, process, and properties implicit in the data must be
examined.

Data-driven approaches for discovering innovative materials have certain advantages: (1) they
outperform conventional trial-and-error approaches in terms of efficiency and accuracy;'?’ % (2)
they can rapidly learn and extract the complex and implicit inner correlations and knowledge from
the massive amounts of material data;®*>¥ (3) they can achieve tailored material design based on
desired functionalities because of their ability to obtain composition-structure-process-property
relations;?”>* (4) they use ML models and descriptors to utilize complex features such as electron
density and molecular graphs for improving the performance of combinatorial generalization and
relational reasoning.”>*! Because of these advantages, many data-driven approaches exhibit high
accuracy and efficiency in the prediction of properties and the exploration of property
relationships.®® Furthermore, the potential of dynamic and iterative meta-optimization data-driven
processes, which represent an active learning loop that incorporates the fundamental stages, has
been shown in some recent studies.™® 3! Thus, the recent advances in data-driven innovative
material discovery must be reviewed.

Comprehensive reviews have detailed the applicability of data-driven approaches to energy

530, 381 ctryctural materials,[39], polymeric materials,[4°] and porous materials,m] with the

materials
help of high-throughput approaches such as density functional theory (DFT) and ML The

applications of ML in synthetic chemistry™*" and the prediction of material properties”” have also

been published. However, the focus of these reviews has typically been on a particular type of

This article is protected by copyright. All rights reserved.
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material or ML technique; the interdependence between the fundamental stages, including ML
algorithms, material-related databases, key descriptors, and their practical applications, of a data-
driven framework for material innovation has not been reviewed. The recent advancements of each
fundamental stage have also necessitated the development of the relationship between these
stages, such as between ML algorithms for data augmentation and descriptor generation. Thus, a
timely review of data-driven material innovation and the emerging broad applications, including in
energy conversion and storage, environmental decontamination, flexible electronics,
optoelectronics, superconductors, metallic glasses, and magnetic materials, is expected to promote
further research and development in academia and industry.

This review presents a summary of the recent advances in data-driven discovery of materials
and their innovative applications. First, we introduce the various components of the conceptual
framework, including the important stages that guide the data-driven process. Next, we discuss
advanced data-intensive strategies and ML algorithms and review material databases and relevant
programming tools and platforms used for high-throughput computations. Then, we critically review
the descriptors used in the discovery of innovative materials. We present a critical discussion on how
data-driven processes are applied to material innovation. Finally, we conclude by providing a

perspective on the opportunities and challenges in the field.

This article is protected by copyright. All rights reserved.
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The Emerging of Data-Driven Science
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Figure 1. The four paradigms of science evolved along with time, including empirical science,
theoretical science, computational science and data-driven science.

2. Frameworks in Data-Driven Innovative Materials Discovery

The development of the data-driven framework for material innovation has been extensively

[30] [23, 24, 42] [33, 43] A

studied by using ML algorithms,””™ material databases, and molecular descriptors.

classical data-driven framework for innovative material discovery typically consists of five
fundamental stages: goal identification, data processing, feature engineering, ML and analysis, and
application (Figure 2).** This section describes commonly used frameworks for data-driven

(27, 48] (27341 and active learning."® 2" 3" Critical

processes, including direct design, inverse design,
stages such as data processing, feature engineering, and ML model training facilitate the utilization
and processing of material data and molecular descriptors and the effective implementation of ML

algorithms. & #"!
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Figure 2. The schematic of a ML workflow in the data-driven innovative material discovery process.
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Reproduced with permission.™!! Copyright 2020, ACS Publications.

The design and selection of the data-driven framework depend on the application and the
material. Although ML can be potent and effective in a data-driven process, it is not the panacea to
solve all challenges in materials science.” ML models cannot find solutions to questions that are ill-
posed or not appropriately expressed. An in-depth and comprehensive understanding of the chemistry
phenomena is necessary to accurately describe the question and relate it to a clear goal. The goal of a
data-driven process should be specific, measurable, attainable, relevant, and timely.[S] Different ways of
defining the goal will lead to varying outcomes of the data-driven process. For example, for the

discovery of high-performance photovoltaic materials, Lu et al.Bl

employed ML to predict the bandgap
of candidate materials, whereas Padula et al.*® predicted the power conversion efficiency. The nature
of the question is also vital for designing the data-driven framework; using a classification model to
explore the correlation between target properties and input features or a regression model to
071 applied a
classification ML model to screen two-dimensional photovoltaic materials with suitable power

conversion efficiencies, whereas Sahu et al."*

distinguish between several categories of materials is difficult. For instance, Jin et al.

employed a regression ML model to predict the power
conversion efficiency of candidate photovoltaic materials. Thus, the design of a suitable data-driven
framework requires the customization of data processing, feature engineering, and ML model
deployment based on the questions being appropriately posed.

2.1. Frameworks for the Overall Data-Driven Process
The data-driven process framework organizes and integrates the fundamental stages of

B3 and deploying the ML model.* Such

processing data,®™ generating molecular descriptors
frameworks determine the data flow and the interaction style between the theory and experiments
or computations.m' 3438 | this section, we introduced the most commonly employed frameworks to
support the discovery of innovative materials including direct design, inverse design and active
learning. As illustrated in Figure 3a and 3b, direct and inverse design differ from one another in

terms of the direction assumed by predictions between material structure and target functionality.

This article is protected by copyright. All rights reserved.
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Active learning (Figure 3c) focuses primarily on data flow in the dynamic iteration loop to improve
and accelerate the search and prediction process.™ 3" Alternative data-driven frameworks have also
been reported in light of specific material phenomena to be addressed. For example, regression and
classification models could be assembled into a single framework to enable high-throughput
materials screening.®Y A transfer learning model could also be integrated into the framework to
solve for a small data problem data within the broader the data-driven process.™"

It is worth noting that the ML techniques in such data-driven frameworks extend far beyond
property prediction and pattern recognition.””®>>>* They can be utilized in other fundamental stages

(91 3nd visualize data.™ In both direct and

[34]

to generate features,® evaluate feature importance,
inverse design, the selection of ML algorithms influences the framework architecture.

2.1.1. Direct Design

Direct design is the conventional approach to material discovery and primarily involves
measurement and theoretical interpretation of the target property.”” This trial-and-error approach
involves searching for the material demonstrating the targeted functionality within the chemical
space, which the prior knowledge can help constrain.” Analogous to the structure-property
relations derived by data-driven approaches, the direct design approach typically employs the
structural features of known materials to predict target properties. Though direct design is widely
employed, it presents obstacles to deliberate discovery. For example, as the direct design initiates
from a known structure, it is unable to arrive at materials whose structure is not known a priori but
may possess the desired properties.m] The case-by-case searching characteristic of direct design is
both time- and cost-intensive when extensive structure screening is employed to involve as many
materials as possible.** *®

As asserted by Zunger,m] direct design could be classified into descriptive and predictive
approaches. Descriptive direct design employs both modeling and theory to interpret and confirm
experimental observations. The predictive direct design, however, can be sub-divided into property
prediction for a specific material, or candidate material search in a material space. For example, Jin
et al."”! applied a data-driven predictive direct design framework, screeing 26 out of 187,093
inorganic crystal structures as potential photovoltaic candidates. The blue squares at the bottom of
the graph of Figure 3a illustrate known compounds with specified compositions (presented by atom
numbers Z, and Zg), while question mark-labeled region corresponds to unreported compounds. The
upper plot of Figure 3a represents the value of specific material properties as a function of Z, and Z.
In a direct-design-based data-driven framework, the materials discovery journey follows the path
from the bottom part of the graph to the top part.

2.1.2. Inverse Design

Inverse design can be regarded as the opposite of direct design.”® In an inverse-design-based
data-driven framework, the workflow is initiated in the functional space and terminates in the
chemical space.m] Its objective is to discover tailored materials with desired properties without the
exploration of large material space.® In the inverse design framework, the target functionality is
used as the input to predict the corresponding material structure. Rather than arriving at a unique
structure with the desired functionality, the goal is to determine a distribution of probable

This article is protected by copyright. All rights reserved.
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structures. For instance, Dudiy et al.®”

employed inverse design in conjunction with specified target
properties (e.g. deepest nitrogen level), followed by a search for a desirable material structure.
High-throughput virtual screening (HTVS) is one of the earliest employed methods in inverse
design. However, HTVS analysis is generally applied to a smaller number of structures in the course
of exploring various functionalities.”’”! More recently, generative models, a class of ML method
involving the implementation advanced algorithms, including variational autoencoders (VAEs),[Ss]
generative adversarial networks (GANs),* recurrent neural network (RNN),* and reinforcement
learning,'®” are commonly employed in inverse design to determine the molecular structure and the
probability distribution both of material elemental parameters and desired target properties (Figure
3b). For example, Jin et al.le propose a VAE-based inverse design framework to generate graphs of
molecular structure. Inverse design represents an advanced, effective data-driven framework for the
discovery of novel materials; open research questions remain, including formulation of the

molecular presentation in the inverse design process.”
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Figure 3. a) Direct and inverse methods for the design and discovery of materials. Reproduced with
permission.””! Copyright 2018, Springer Nature Publications. b) The schematic of direct design and
inverse design with different targets in material design and discovery. Reproduced with
permission.®” Copyright 2018, AAAS Publications. c) The active learning framework for the discovery
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of materials with high electrostrains. Reproduced with permission.ml Copyright 2018, Wiley
Publications.

2.1.3. Active Learning

The essential idea of active-learning-based data-driven frameworks is to provide high-
performance ML models with less training; the machine selects its own training dataset’®® In an
active learning framework, the stages of ML training, data processing, and the generation of new
training sets are iteratively combined.!® *” ! For instance, Zhong et al.*® proposed a random-forest-
based active ML framework that iteratively trained more than 300 ML models to predict the binding
energy of carbon monoxide on the surface of catalyst for the carbon dioxide reduction reaction
(CRR). The trained ML model indicated promising adsorption sites during their active learning
workflow, which guided the DFT computation for the subsequent iteration. The DFT results
evaluated in the latest iteration were combined with the original data to construct a new training
dataset, which would yield an updated ML model.

In general, an active learning framework contains an inquiry loop to guide further experiments
or computations.’ % Active learning is most applicable when numerous data instances and their
labels are easily collected, synthesized or computed to address queries in iterative training.[63] In an
active learning framework proposed by Yuan et al.,®”) the electrostrain of piezoelectric candidates
were iteratively queried. Such active learning frameworks are suitable for dynamic optimization
problems and sequential design in innovative material discovery.

2.2. Fundamental Stages in Data-Driven Framework
A complete data-driven material discovery framework involves fundamental stages including raw

B3 and ML model training (Figure 2).** In the data processing

data processing,m' >0 feature engineering,
stage, there are two major steps: data acquisition and data pre—processing.[ssl Generally, there are two
types of data utilized in a data-driven material discovery process: experimental data and computational
data.” Both could be either self-generated or queried from existing databases. Relevant, sufficient,
consistent and complete data is the foundation of a successful data-driven process.®? Collected data
may contain a number of issues including missing, redundant, abnormal or imbalanced data.® Data
pre-processing ensures that the ML model performs satisfactorily. Data pre-processing generally
consists of four main stages: outlier detection, data complementation, discretization, and
normalization.””? Data may exist in various forms, including numerical values, structure graphs, images,
text, or signals. For example, Lee et al.?? trained a deep learning model to predict potential defects in
electron microscopy images with aberration-corrected scanning transmission taken as the model input.
Both the quantity and quality of data influence the selection and performance of ML models. For
instance, neural network models typically require more data to be reliably implemented.”‘” It is critical
to acquire material data from reliable sources; commonly used material databases and relevant data
management tools are systematically discussed in Section 4.

Feature engineering is the process of constructing the descriptor space, which mainly consists of
two steps: the selection or generation of descriptors; construction of the descriptor space.™ The
selection of descriptors depends on the goal of the data-driven process and is characterized by the
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greatest extent of human intervention. The target of this step is to identify and extract the most
appropriate and critical descriptors from the pre-processed data to construct descriptor space. Problem-
specific domain knowledge is essential here, for example, to specify the relevant properties and
determine the proper scale length (atomistic, coarse-grained, and global).m] However, there may be
situations in which no suitable descriptor is available, or the basic descriptors are not sufficient to
describe the environment or frame the materials with respect specific targets. Thus, an alternative is
to generate high-performance descriptors from the original ML training dataset. A good descriptor
space is one that is sufficient for the prediction and resolution of the target functional space.”
Therefore, an in-depth review of molecular descriptors is presented in Section 5 to offer insights on the

construction of descriptor space.

ML model training, which follows the construction of the descriptor space, includes model
selection, evaluation, and optimization.””” The implementation of the majority ML algorithms
requires the specification of hyperparameters which determine the ML model configuration of
ML."® various hyperparameters result in different model formulations; model selection aims at
identifying with the appropriate hyperparameter formulation which results in the best model
performance. Therefore, hyperparameter tuning is critical to model optimization; it controls the
complexity and flexibility of the model to identify the balance between overfitting and underfitting
by handling the variance-bias trade-off.?% More complex models tend to fit training data better but
also exhibit a higher variance on the test data, whereas a simpler models (such as regularized linear
regression) tends to exhibit a higher bias on the test data. Hyperparameter tuning and model
selection can be classified as a meta-optimization task,® where validation techniques are employed
to evaluate the performance in terms of the ML algorithm objective function.

2.3 Model Performance Evaluation and Uncertainty Quantification

The ultimate goal of the ML model deployment stage is to train the model such that offeres
accurate predictions for both test and unseen data; therefore, it becomes essential to effectively
assess the performance while characterizing the inherent uncertainty of the model.?*®% A review by
Morgan and Jacob™ gives an excellent overview and sample cases of best practices in ML model
development, assessment and uncertainty quantification. In this subsection, we will discuss model
performance evaluation methods and uncertainty quantification in the context of model
deployment, focusing on commonly employed validation techniques and performance evaluation
metrics.

2.3.1. Performance Evaluation Techniques

Three techniques are commonly employed for model performance evaluation: holdout,®

7% and bootstrap.? In most ML deployment processes, the data are divided

cross-validation (CV),
into training data, validation data, and test data.®™ The holdout approach statically splits the
available data for training, validation, and testing at a fixed ratio. Though the holdout approach is
straightforward, it may introduce pessimistic bias when the size of the original dataset is small; such
splitting further reduces the size while potentially impacting the statistics of the training data. CV
represents a continuous, iterative, crossing-over training and validation process that can be regarded
as the ensemble of the holdout approach, sampling data without replacement.®® For a typical k-fold
This article is protected by copyright. All rights reserved.
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CV process, the dataset is divided equally into k parts, one of which is adopted as the validation set;
the remaining k — 1 parts are combined into a new training subset. When the number of folds is
equal to the data points (k = n), a special case of CV is manifested (the leave-one-out cross-validation
(LOOCV), which, though computationally expensive, is useful when the dataset is small.*? Sahu et
al.”" applied the LOOCV to 280 data points of small molecule OPV systems to evaluate ML model
predictions of power conversion efficiency. Unlike CV, bootstrap samples data with replacement
result in only approximately 63.2% of the data points being sampledm] and potentially a high bias
given that the sampled data is not representative of the complete dataset. To correct this bias,
Efron” has proposed a 0.632(+) bootstrap approach. In general, CV provides a nearly unbiased
estimator with high variance, while bootstrap approaches tend to yield estimators with low variance

for a small dataset.”*> 7

2.3.2. Performance Evaluation Metrics

The determination of performance metrics is essential for ML model evaluation and
optimization. For regression models, commonly employed metrics are the mean absolute error
(MAE), mean square error (MSE), root mean square error (RMSE) and coefficient of dependence

(R?), which are expressed as follows:* *

N
1
MAE = 2 |y = 91l #Q2.)
i=0

N
1
MSE = NZ(yi — )%, RMSE = \|MSE, #(2.2)
i=0

_ XiLoOi — 97
I =32’
where N refers to the number of sample data points, y;, J;, andy represent the actual value,

RZ=1 #(2.3)

predicted value, and mean value, respectively. The MAE treats the errors equally, whereas larger
errors are allocated a higher weight in the MSE and RMSE. The MSE and RMSE are differentiable and
commonly used to identify minima optimization processes. R? represents the proportion of the
variance in true values relative to the predicted values.

The predictivity of classification models can be described by the value of four indicators: true
positive (TP), true negative (TN), false positive (FP), and false negatives (FN).”® Frequently employed
evaluation metrics, including Accuracy, Precision, Recall, and F1, can be derived based on the four
indicators. Numerous misjudgments resulting in false positives contribute to low precisions, whereas
missing of positives correspond to low recalls. A combined metric, called the F1 score, balances

these two metrics and is beneficial for cases in which the data is imbalanced.
TP+ TN

A —
Couracy =Tp ¥ TN + FP + FN

Precision = —— #(2.5)
recision = TP + FP .

Recall = — 1 #(2.6)
= TP AN T

2 X Precision X Recall
F1 =

#(2.4)

#(2.7)

Precision + Recall
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The receiver operating characteristic (ROC) curve and the area under the curve (AUC) are also
effective performance metrics in binary classification. The ROC represents the plot of the true
positive rate (TPR) versus the false positive rate (FPR), where the formulas for TPR and FPR are
presented as follows:

TPR = TP #(2.8
R
FPR = — 8 #(2.9

= Fprrn D)

A perfect binary classifier would demonstrate an AUC=1; AUC = 0.5 indicates that the binary

classifier is no better than random guessing.BO]

2.3.3. Domain of Applicability and Uncertainty Quantification

The reliability and accuracy of the trained models must be evaluated by considering domain
applicability and quantifying uncertainties.”® to the determination of domain applicablity relates to
distance metrics between the potential and training data points. Though many methods have been
proposed to measure such distances,”® 77! they are relatively difficult to implement to obtain
qualitative guidance on model applicability. All such methods rely upon calculated distance metrics
whose validity has not been determined for the particular problem, while also requiring the
definition of suitable thresholds.*

Predicted value uncertainties are more intuitive and readily quantified to enable the evaluation
of model performance. Evaluating error bars is an important tool to support model comparisons,
stability estimation and of the reliability of model predictions.*? Ensemble approaches are
commonly employed to quantify uncertainties; a popular methodology involves training the same
model via bootstrap or CV, and then treating the ensemble variance as a surrogate for the error
bars.’® An alternative approach involves utilizing the same training data while refitting the model by
adjusting the model architecture.™ A large variance between these predictions in a specific
chemical domain indicates that the ML models are still tangling and require additional training
data.”” The two types of ensemble methods can also be combined in random forest decision tree
models, for which Morgan and Jacobs provide an in-depth example.[GQ] The ensemble approaches are
more computationally expensive; however, their flexibility enables them to be employed in
numerous models.

Prediction uncertainty can also be quantified by distance-based approaches, which are based
on the concept that such uncertainties correlate with the distance between the potential

1. employed log-scaled Tanimoto distance!®"

corresponding training data points. Hirschfeld et a
and Euclidean distance® to quantify the displacement between potential points from training data
and predictions of molecular properties, respectively. Bayesian approaches ¥ can also automatically
quantify uncertainty while potentially avoiding iterations, though this requires the adoption of

specific ML models making it less generally applicable.®* !

3. Data-Intensive Strategies and Algorithms for Innovative Materials Discovery

Recent developments in materials science have corresponded to a large amount of accumulated
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data from both theoretical and experimental studies.®™ However, how to identify appropriate
techniques to process this accumulated data to shed light on implicit correlations and guide the
course of future studies remains an open question, impeding the advancement of materials science.
To address this, various algorithms have been proposed in previous decades for obtaining solutions
to practical data-processing problems in materials science.®® As the foundation of the data-driven
study of materials science, these algorithms were introduced with various intentions. In this section,

[86]

several algorithms and methods, including supervised Iearning,lss] unsupervised learning,” and

deep Iearning,[87] for materials science study are discussed with relevant examples.

3.1. Supervised Learning: Regression and Classification

Supervised learning is a learning strategy for problems in which both inputs and outputs are
given. The goal of supervised learning is to identify the function which best maps inputs to outputs
consistent with the given data.® The methods of supervised learning can be categorized into
regression and classification, including linear regression, logistic regression, support vector machine
(SVM), and decision tree.

3.1.1. General Linear Regression Algorithms

Linear regression algorithms are a common component of ML®¥ and are widely used to build
prediction models which connect input scalars to continuous output values. The most common
regularized models of multivariate linear regression are: ridge regression; least absolute shrinkage
and selection operator (LASSO).

(Multivariate) Linear Regression

First, we discuss a common form of (multivariate) linear regression, which is the basis for
advanced versions.® Linear regression is based on the assumption that the relationship between
the input data matrix X and dependent variable y is linear:

Vi = Bo + B1Xix + B2 Xip + -+ BpXip + £#(3.1)
which can be more succintly expressed as

y = BX + £#(3.2)

where X is the input (or sometimes called the design matrix), which could either be a row matrix or
n dimensional matrix. B is the vector of regression coefficients, which is usually estimated from the
least square method; hence,

n
5 . . 2
p=arg m&n”y —BX||5 =arg ml;nZ(ﬂo + B1Xin + B2 Xiz + -+ BpXip — Yi) #(3.3)
i=1

with ||||2 denoting the square of the L2 norm and can be expanded as:

ly — BX|I5 = (y — BX)"(y — BX) = y"y — y"BX—B"X"y + BTX" BX#(3.4)

The optimal solution is obtained by taking the partial derivative of the aforementioned expression
with respect to f8:
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dly —BX13) _o(y"y—y"BX-B"X"y + B'X"BX) _
o8 - o8 -

Setting (3.5) equal to zero yields the optimal 8, such that

2yTX + 2BTXTX#(3.5)

B = (XTX) "' XTy#(3.6)

This approach to linear regression has been widely used in materials science in cases where the
predicted values are linearly associated with the input features. For instance, Winkler et al. employed
linear regression to construct nano quantitative structure-activity relationship (nano-QSAR) models
of the biological effects of nanoparticles.® Fernandez et al. also utilized linear regression to explore
the electronic properties of graphene.[9°' 1 Jinnouchi et al. developed a linear regression model to
predict the catalytic activity associated with direct NO decomposition on the surface of RhAu alloy
nanoparticles.®”

Ridge Regression

Introducing a regulizer to the linear regression model prevents overfitting while reducing the
overall complexity of the model. In linear regression, when the input matrix X is a singular matrix
(the number of features is larger than the number of samples), errors may emerge when calculating
(X'X)™. Hence, the ridge regression approach was proposed, which adds small positive quantities A/
to X'X,"°* yielding:

—~ -1 .
B=(X"X+M) X"y= arg mﬁm(lly — BX|15 +MIBIIZ) #(3.7)

The improved performance of ridge regression has enabled the prediction of various material
properties. For example, Gonzélez et al. utilized ridge regression (as one of the three methods) to

predict the surface plasmon resonance of perfect and concave Au nanocubes.”®”

LASSO
Another regularized linear regression method is the LASSO. Unlike the ridge regression based on

the L, norm, the LASSO employs the L, norm as a regularizer.[gs]

—~ -1 )
B=(X"X+M) X'y=arg mﬂm(lly — BX|15 + AlIBll1) #(3.8)

When the A is small enough, some of the coefficients will be forced to reduce to 0, making the
LASSO sparsity to rapidly filter the input features. For instance, when predicting the bandgap of
functionalized MXenes, Singh et al. employed the LASSO to reduce the number of input features
from 47 to 15, which significantly enhanced the efficiency of the ML model.”®

3.1.2. Logistic Regression

The logistic regression is based on logit function u = log(%) as a link function.

log = BX#(3.9)

1-y
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This is a classical binary classification model to simulate the probability or possibility of a certain
event or class. The combination of multiple logistic regression models can achieve the multiclass
classification.®” Instead of being embedded into other algorithms as a classifier, the logistic
regression can directly be used as a classifier within a materials study, such as in the study of the
relationship between Fermi energy and structural/morphological features of Ag nanoparticles,®® or
as a control group to predict the structure-property relationship of Pt nanoparticle catalysts."*
3.1.3. Support Vector Machine (SVM)

The SVM algorithm is widely used in materials science owing to its excellent performance in
data pattern recognition and classification.!”® The SVM implements the structural risk minimization

) and demonstrates excellent

principle to the upper limit of the generalization error (eq. (3.10)
performance for samples based on high-dimensional data, or when the sample size is small. SVM
models effectively overcome the "overlearning" problem.?” The SVM can also be utilized to solve

regression problems by introducing an alternative loss function;™* the SVM-based regression model

is referred to as support vector regression (SVR). Fang et al.l**

combined the genetic algorithm (GA)
with SVR to predict the extent of atmospheric corrosion in metals such as steel and zinc. Compared
with other algorithms, the (GASVR) hybrid method has exhibited improved predictive performance.
Other SVR-based hybrid algorithms have also been utilized for various applications; in Ref.'®! a
feature-selection-based two-stage SVR (FSTS-SVR) was utilized to develop a predictive model for the
Ge,Seq., glass transition temperature. Because of the structural variations at the turning point, a two-
stage onset glass transition temperature (T;) model was constructed based on FSTS-SVR to achieve
the highest accuracy. This hybrid method has also show potential as an efficient algorithm for the
multistage simulation and prediction of characteristic T;. Chen et al."®! proposed the use of an SVM
algorithm to predict the exposure temperatures of fire-damaged concrete structures. Their SVM
simulation demonstrated that the concrete ultrasonic pulse velocity was the most effective
parameter in improving the accuracy of estimations. SVM models have been used to predict various

other material properties such as ionic conductivities,™* *°” [108-110]

[111] [112]

glass transition temperatures,

catalyst active sites
[113, 114]

and adsorption energies, and various other properties of innovative

materials.

1 n
[;; maX(O, 1-— }’i(ﬁTxi — b)) + ,1”[;”2#(3.10)

3.1.4. Kernel Ridge Regression (KRR)

Kernel ridge regression (KRR), which combines ridge regression and the kernel trick, is a
simplified version of SVR™> ¢! put utilizes a different loss function. Although both KRR and SVR are
based on L2 regularization, KRR employs a loss function based on the squared error loss while SVR
utilizes the epsilon-intensive loss. In addition, fitting a KRR model can yield a closed-form solution
and is faster than SVR for medium-sized datasets. However, KRR is slower than SVR when learning a
sparse model because its learned model is non-sparse. To transfer ridge regression to KRR, the matrix
inverse lemma (eq. (3.11)) was introduced to eq. (3.8), yielding eq. (3.12). After a dual variable, a, is
specified (eq. (3.13)), the original primal variable, 8, evolves to eq. (3.14); an updated prediction y*
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can be constructed for new set x* (eq. (3.15)). KRR has been widely used in materials analysis. For
instance, Sheremetyeva et al. applied KRR to study the correlation between the stimulated Raman
spectrum and twist angle of twisted bilayer graphene.[m] Singh et al. employed different ML models,

including KRR, with multiple input features to estimate the bandgaps of MXenes."®

(P 1+ BTR™1B)"1BTR™! = PBT(BPB” + R)"1#(3.11)
B = XT(M + XXT) ' y#(3.12)

a= (Ky+ My) 1y#(3.13)

N
B=X"a= Z a;x; #(3.14)
i=1

y =pTx" = ZN aixlx* = ZN a;k(x*, x;) #(3.15)
i=1 i=1
3.1.5. Gaussian Process Regression (GPR)

Gaussian process regression (GPR), also know as Kriging, is a non-parameteric model that
utilizes Gaussian process priors to perform regression analysis. Instead of directly generating the
regression function f(x), GPR generates a distribution of an infinite number of functions f(x). For a
given dataset D: (X, Y), let fix;) = y; yielding the vector f = [f(x1), f(x2), f(X3), ..., f(x,)]. Defining the set of
X; as X*, and the corresponding prediction value as f*, eq. (3.16) can be constructed based on Bayes’
theorem.

_pUIf9pf*) _pd.f*)
r(H) r(H)

GPR has gained significant traction in computational materials science, including in the

p(f*1f) #(3.16)

prediction of atomistic properties such as interatomic potentials.™*® For instance, Singh et al.
implemented GPR to position the band edges of MXenes, achieving a minimum root-mean-squared
error (rmse) of 0.12 eV."'¥ Wee et al. developed an electron-phonon averaged GPR (EPA-GPR)
method to efficiently estimate and fast-screen the thermoelectric properties of materials for pre-

defined applications.™*”

3.1.6. Decision Tree (DT)

Decision trees (Figure 4) are a classic supervised ML algorithm, which have been widely used for
classification and regression in the material design process. Decision trees break up a complex
decision into a union of several simpler decisions which, when synthesized, form an operable final
solution. Through a series of ‘yes’ or ‘no’ questions pertaining to the input descriptors, the decision
tree can arrive at the internal relationship between descriptors with relative ease, subdividing the
discrete function values into classes with a common label.®® Decision trees can handle interactions
between descriptors as well as various classes of input data (such as numbers and text). The three
core steps of decision tree learning are feature selection, decision tree generation, and the pruning
of decision tree. Training datasets may offer an abundance of features which offer contribute to
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varying extents to the final decision. The goal is to identify highly-related features corresponding to
improved classification performance. This step is followed by tree generation; originating from the
so-called the root node, the information gain at each subsequent node is calculated. The feature
corresponding to the largest information gain will be specified as the node feature; the sub-node will
subsequently be established with respect to each value of the feature. However, this approach
engenders a high risk of overfitting, which can be mitigated by tree pruning to improve performance.
The earliest decision tree model was referred to as the iterative dichotomiser 3 (ID3) algorithm,[m]
which was developed by utilizing information gain to select features. A decision tree can also be
constructed for regression based on ID3 by replacing information gain with standard deviation
reduction.? The C4.5 decision tree model was the successor of ID3; it utilized the information gain
ratio as the criterion of feature selection.'”® Other than algorithms which have been developed
based on information theory, models such as classification and regression trees (CART)™* utilize Gini
impurity, which measures the frequency incorrectly labeled selected elements. Decision trees are
have been used extensively in materials science, such as in the analysis of the cytotoxicity of

[125]

nanoparticles,” = the prediction of the exciton valley polarization landscape of two dimensional (2D)

[126] [127]

semiconductors, "™ and the synthesis of metal-organic nanocapsules.

a b
Question B? Question C? Question B? Question C?
YES NO YES NO YES NO YES NO
( Option A ] [ Option B ] [Question D? J [ Option C J ‘ Value A ] [ Value B J [ Question D?J [ Value C ]
YES NO YES NO

a3 &5 B9 B3

Figure 4. Schematic illustration of decision tree for a) classification and b) regression.

3.1.7. k-Nearest Neighbor (kNN)

The k-nearest neighbor (kNN) algorithm is a non-parametric method for classification and
regression."® kNN is based that an concept that an unlabeled sample can be represented by the
nearest k labelled samples in feature space. The benefits of kNN can be realized without pre-
estimation of parameters or training; however, this poses a significant trade-off. The dominance of
certain types of samples in the datasets (i.e., an unbalanced distribution of samples) will influence
the accuracy of kKNN. This method is also computationally expensive given that the distances
between large numbers of labeled and unlabeled samples are needed. However, kNN has found wide
application in materials science; for example, Padula et al. applied kNN to predict the photovoltaic
parameters and efficiency of organic solar cells;*® Byun et al. employed kNN as a basis to build a
predictive model for the toxicity of oxide nanomaterials.!**”!
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3.2. Unsupervised Learning: Clustering and Dimension Reduction

Counter to supervised learning, unsupervised learning focuses on datasets with little or no pre-
existing labels.®® Unsupervised learning can be deconstructed into two primary methods: principal
component and cluster analysis. In contexts where the structure-property relationships of materials
have not been fully defined, unsupervised learning offers an effective approach to identifying such
implicit correlations. Detailed algorithms are be summarized in this section as an overview to
unsupervised learning in materials science.

3.2.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) aims to simplify data.”*® PCA can be characterized as an
orthogonal linear transformation method that projects data onto a new coordinate system. The first
component is yielded according to the eq. (3.17):

_ 2\ _ TyT
w, = arg ”rvrvlﬁile(IIlelz) arg max (w XTXw) #(3.17)

where w; is an array of 1 x m dimensional weights.

Subsequent components can be obtained based on eq. (3.18):

o 2 o To
wy, = arg ||rvrvl|?§1(||ka||2) = arg max (WTXk ka) #(3.18)

where

k-1
R =X— Z Xw,wT #(3.19)
i=1

The power of PCA is in extracting the most important information from datasets to reduce the
dimensionality of input features and further compress the size of datasets.”®" In exploring the
structure-property relationships of materials, a large number of structural features will be initially
considered, whereas a relatively small subset of these features contribute meaningfully to the
particular material property. The utilization of PCA to reduce the dimensionality of structural
features has been demonstrated to significantly enhance the efficiency of investigations of structure-
property relationships.®% 7132
3.2.2. Expectation Maximization (EM)

Expectation maximization (EM) is an iterative strategy to estimate the maximum posterior
(MAP) (i.e. maximum likelihood) of parameters in statistical models that depend on latent
variables."® EM algorithms can be used for data processing; for example, Benammar et al.
integrated the EM algorithm with split spectrum processing to develop ultrasonic methods to
process signals for the detection of delamination defects in carbon-fiber-reinforced polymer-
multilayered composite materials.

3.2.3. k-means Clustering

k-means clustering is another unsupervised learning method that has been widely applied. The
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aim of k-means clustering is to assign M data points in N dimensions into k clusters.!®*! The clustering
process is designed to find the minimum sum of the distance between each data point and its
corresponding cluster center. Hence, the selection of k is critical to the success of the k-means
clustering algorithm. PCA can be introduced to guide the selection of k by reducing the dimension of
features. Since k-means clustering does not rely on the prior knowledge to assign data, it is suitable
for the identification of implicit structure-property relationships by clustering unlabeled data. Such
methods have been utilized to great effect in various studies: Darr et al. utilized k-means clustering
for high throughput data collection and characterization for synthesized nanomaterials;!***
Neumayer et al. employed k-means clustering to group data processed by PCA to support the study
of ferroelectric properties of layered CulnP,Ss.!**%
3.2.4. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-distributed stochastic neighbor embedding (t-SNE) is a type of ML method that is compatible
with data visualization® by reducing high-dimensional data to two or three dimensions for
visualization. t-SNE is a popular method for data analysis in various domains. Given that multiple
structural features are investigated in ML-based materials investigation, the most common
application of t-SNE is to visualize the high dimensional features as low dimension images.[BG]
However, t-SNE has also been extensively utilized more substansively, such as for the prediction of

[137]

nanoparticle structure-property relationships and the exploration of optimal microstructures for

targeted properties.!**®

3.3 Deep Learning

Deep learning, as a new branch of ML, has been widely used for various applications, including
natural language processing (NLP), computer vision, and data mining.’”’ Data can be represented
with multiple levels of abstraction based on computational models consisting of multiple processing
layers. Various deep learning methods (Figure 5) have been effectively applied to the investigation of
materials properties. This section presents relevant algorithms.
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3.3.1. Artificial Neural Network (ANN)

As a nonlinear statistical analysis approach, the ANN (Figure 5a) algorithm is capable of self-
learning and adaption.!”*” The ANN is the most common neural network and is applicable to a wide
range of problems. Back propagation (BP), an example of the ANN, has been widely used to predict
various material properties: tensile and temperature responses, wastage, elongation, compressive
properties, and corrosion properties.!****? Chen et al.?*® compared the performance of linear
regression and BP-ANN for the prediction of polymer glass transition temperatures, finding that BP-
ANN has a much lower average prediction error (17K) than that of linear regression (30K). Because
BP-ANN does not require extensive background knowledge of structural properties, it is
advantageous in the development of solutions with a specified degree of prediction error tolerance
and good generalizability. However, BP-ANNs are characterized by a slow convergence rate and
sometimes may be trapped into the local, rather than global, minima. These shortcomings can be
overcome by combining ANN with the radial basis function (RBF-ANNs) to enable high convergence
rates while avoiding local minima trapping. Gajewski and Sadowski™*” applied RBF-ANN to
investigated crack propagation in layered bituminous pavement, ultimately detecting a strong
positive correlation between B2 bituminous layer thickness and extent of cracking. ANN algorithms

This article is protected by copyright. All rights reserved.

24



WILEY-VCH

have also found a place in other applications; for example, such algorithms have been successfully
applied to predict the density and viscosity of biofuel compounds.™ Scott et al.**®! demonstrate the
effectiveness of ANN in predicting the oxygen diffusion properties of ceramic materials to support
the development of new materials suitable for environmental applications (such as clean energy
production and technologies for the reduction of greenhouse gas emissions). ANN has also been

[147)

applied to accurately predict excited-state energies, melting points,[”s] diffusion barriers,™* and

other functional features.!****2

3.3.2. Convolutional Neural Network (CNN)

CNNs (Figure 5b) represent another class of deep neural network and are most commonly used
for visual imaginary analysis.">>*** An advantage of the CNN is weight sharing, indicating its ability
to process high dimensional data; another important advantage is automatic feature extraction,
corresponding to favorable performance for feature classification. In materials science, CNNs can be
directly used to process the images generated using various techniques to enable the analysis of
materials structures. For example, Schigtz et al. applied a CNN to atomic-resolution transmission
electron microscopy (TEM) images identify material local atomic structures;'™ Ziatdinov et al.
trained a CNN model to analyze images generated from real-time monitoring by scanning
transmission electron microscopy (STEM) to identify lattice defects in WS, and map its solid-state
reactions and transformations.*® By transforming crystal structures to crystal graphs, CNN can also

57 and predict novel material properties.'*® Zhang et al.

be used to accelerate materials discovery
have demonstrated a method that uses CNN trained by periodic table attributes to predict a variety
of material properties including lattice parameters, enthalpy of formation, and compound

stability.™

3.3.3. Recurrent Neural Network (RNN)
Recurrent neural networks (RNN, Figure 5c) differs from ANN and CNN, by accounting for
temporal sequences.”® The current status of an RNN cell is influenced not only by the current inputs,

[161] et

but also by its previous status. RNN is usually used for the study of NLP,"*” image generation, c.

(1621 \which are

RNN has been extensively used to study the kinetics of chemical reactions,
fundamentally path-dependent. Recently, Shin et al. employed RNN to accelerate the generation of
atomic data in traditional ab initio molecular dynamics (AIMD).*®* The RNN model trained by AIMD

enabled the prediction of atomic velocities and Si atomic positions.

3.3.4. GAN

A GAN (Figure 5d) was first proposed by Goodfellow et al. in 2014.5% The objective of GAN is to
build a generative model, G (capture the data distribution), and a discriminative model, D
(distinguish the sample from either the training set or model G with an estimated probability), and
find an equilibrium solution between G and D; here, G recovers the training set and D is equal to 0.5
for every sample. GAN is well suited to supporting applications in additive manufacturing, which
requires a large number of architectural materials. However, traditional materials design methods,
such as bioinspiration, the Edisonian approach, theoretical analysis, and topology optimization, are
based on prior knowledge possessed by designers. In contrast, Mao et al. presented an experience-
free method based on the GAN algorithm to study Hashin-Shtrikman upper bounds on isotropic
elasticity to design complex architecture materials."®” In another study, Hu et al. employed a GAN-
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based method to generate novel hypothetical inorganic materials (which are not recorded in existing
databases), to enable the inverse design of such materials.'®® Aspuru-Guzik et al. have also
demonstrated numerous cases that utilize generative models for inverse materials design.* 166168
They employed a GAN-based method to study the crystal structures of Mg-Mn-O ternary materials,

successfully predicting 23 new crystal structures.™®

3.3.5. VAE

An autoencoder is a type of ANN that consists of an encoder and decoder."® Unlike complete
and regularized autoencoders (which are discriminative models), VAEs (Figure 5e) represent a class
of generative model."”” Compared with the GAN, VAE models can be trained with greater ease given
their more complete mathematical basis. VAE has demonstrated broad applicability to chemistry and
materials science, including in the design of small molecules.’* % Batra et al. employed VAE to
study the properties/performance of polymers, especially geared towards the discovery of polymers
that are robust under extreme conditions (e.g., high temperatures and electric fields).[m] Stein et al.
developed a materials image autoencoder based on the VAE to investigate the optical properties of

materials, including prediction of spectra from images and vice versa.t’¥

3.3.6. Restricted Boltzmann Machine (RBM)
The restricted Boltzmann machine (RBM, Figure 4f) is a generative stochastic ANNs that can
learn the probability distribution of input datasets.™”® The RBM has been widely used for reducing

(781 classification,™”! feature Iearning,ms]

the dimensionality of data, , etc. The RBM is a special
topological structure of the Boltzmann machine (BM) originating from statistical physics. Hence, the
RBM can be used to solve the problems in quantum physics.™” Kais et al. reported a hybrid quantum
algorithm based on the RBM to accurate characterize the molecular potential energy surfaces of a
small molecule system.“go] Recently, Nomura et al. employed RBM to investigate the synthesis of
MoS, via chemical vapor deposition (CVD), while obtaining insights into metallic 1T- and
semiconducting 2H-MoS,, and the generation of defects during the growth of MoS, by employing the

CVD method.!*8!

3.4. Ensemble Methods

Ensemble learning is characterized by the construction of a high-performance algorithm by
combining a collection of weaker models. Rather than developing new algorithms, existing
algorithms are combined to achieve improve results. A collection of simple, basic models is selected
for ensemble learning. There are two main approaches to assemble such models: boosting (Figure
6a)® and bagging (bootstrap aggregating, Figure 6b).”®¥ The primary difference between the two is
the approach to assigning vote weights to sub-models. In boosting, elite models are identified
through training and testing; higher vote weights are subsequently assigned to the models with
better performance. In contrast, the bagging method is much more democratic in that each model
has equal vote weight. In general, results obtained by boosting method are characterized by a lower
bias, while those obtained by bagging will be characterized by a lower variance. This section presents
various boosting and bagging methods in detail.
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3.4.1. Boosting

Boosting is an algorithm that can be used to reduce the variance in supervised learning,**?
while converting weak learners to strong learners.® In boosting, each weak classifier possesses
connections to other weak classifiers, collectively yielding a strong classifier. However, the inherent
flaw of traditional boosting is that the minimum learning accuracy of a single weak classifier is

required as a basis for the improvement mechanism.

AdaBoost

To improve the boosting algorithm, Freund and Schapire developed AdaBoost, which is short for
adaptive boosting."®! The advantage of AdaBoost is that it does not require prior knowledge of weak
learners to realize the boosting efficiency. Hence, compared to traditional boosting, AdaBoost is
more suitable for practical problems. When training an AdaBoost model, the weight of a sample that
is not correctly classified in a current round will be increased in the subsequent round of training,
enabling the evolution of a stronger classifier over several iterations. As AdaBoost is easy to operate
and resists overfitting, it is liberally used in various contexts. Tonezzer et al. applied AdaBoost to
classify different gases detected by a carbon-modified SnO, nanowire sensor.’*® Wang et al.
implemented AdaBoost to classify carbon nanomaterials based on their TEM images.*® AdaBoost
has also played a key role in the recent rise of artificial chemists. For instance, Abolhasani et al.
developed an artificial chemist for the synthesis of quantum dots, in conjunction with the
implementation of AdaBoost to enhance performance.lm]
Gradient Boosting

Gradient boosting is also applicable to classification and regression."®® Gradient boosting
utilizes the negative gradient (response) of the cost function of the current model to train the
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successive model by iteratively combining weak classifiers, ultimately yielding an optimized model.
Gradient boosting has been employed in a number of materials studies. Ma et al. utilized gradient
boosting to predict the power conversion efficiency of organic solar cells based on 13 descriptors
extracted from the microscopic properties of organic materials.”" The gradient boosting model
demonstrated excellent performance (with a Pearson's coefficient of 0.79). Fazzio et al. implemented

B while Wei et al. also
[17)

gradient boosting to determine the thermodynamic stability of 2D materials,
implemented a gradient boosting classifier to identify novel 2D photovoltaic materials.

3.4.2. Bagging

Bagging, also referred to as bootstrap aggregating, is another common ensemble method."®¥ |n
contrast with the boosting method, weak classifiers in bagging are individual (not correlated). During
the training process, samples are randomly selected and trained for each weak classifier; weak
classifiers are then aggregated into a strong classifier. However, the performance of bagging is highly
dependent upon the datasets, such that a large bias in the dataset will introduce large bias into the
bagging model. The random forest™® method was developed to address this shortcoming.

Random Forest

(189 \which is composed of

The most widely used ensemble learning method is random forest,
many individual (i.e., not correlated) decision trees to improve prediction accuracy and prevent
overfitting. For example, when executing classification tasks, each decision tree in the forest will
execute the classification operation for each new input sample. The most classified result will be
deemed the final overall result of random forest. The random forest algorithm has been widely
utilized in the field of materials science. Zhong et al.”® trained a random forest model to predict the

199 implemented

adsorption energy of CO on the surface of the designed catalysts. Artrith et al.
random forest in conjunction with a Gaussian process regression to predict the transition state

energy, activity, and selectivity of a bimetallic catalyst for ethanol reforming.

3.5. Intelligent Optimization Algorithms

Intelligent optimization algorithms have undergone significant development over the past 40
years.'™ They also represent an important domain of artificial intelligence research. Detailed
algorithms, (Figure 7) including the genetic algorithm, particle swarm optimization, and simulated
annealing algorithm, will be discussed in this section.
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3.5.1. Genetic Algorithm (GA)

The genetic algorithm (GA, Figure 7a) is a widely used optimization method inspired by the
process of natural selection.”™ The main function of GA is to identify the globally optimal solution
by simulating a process analogous to natural evolution. During the GA process, an initialized
population is first randomly generalized first; as the iterations progress, individuals which are more
“fit” will be selected to represent their generation; individual genomes are then recombined or
mutated to produce the next generation. GA has been utilized to great effect in materials science.
Morgan et al. implemented GA to optimize the defect structures in bulk crystalline materials, with
the objective of predicting the stable cluster structures in an automated fashion.”*® Fernandez et al.
used GA as one of the algorithms to investigate the electronic properties of graphene based on

[194]

either atomic radial distribution function scores or topological information.” Cherukara et al.

employed GA to enhance the simulation efficiency for predicting the thermal conductivity of
stanene."®!
3.5.2. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO, Figure 7b) was developed for the optimization of non-linear
functions.!”®® PSO is designed to solve problems by utilizing a population of candidate solutions (also
referred to as particles) and iteratively moving these particles within the solution space until a
globally optimal solution is identified or the iteration limit is reached. PSO has been applied to study
various problems in materials science. For instance, Ma et al. developed a PSO based method, coined
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Crystal Structure Analysis by Particle Swarm Optimization (CALYPSO), to efficiently study the
multidimensional potential energy surfaces of materials.""*”! This method was used to predict the
structure of single layered, multi-layered, and quasi-2D materials."™* Lin et al. also developed a PSO-

based strategy to control the microstructure formation in Ni-based superalloys during hot forging.!**®!

3.5.3. Simulated Annealing Algorithm (SAA)

To solve local optimization problems, the simulated annealing algorithm (SAA, Figure 7c), which
includes the Metropolis algorithm and annealing process, was developed by Kirkpatrick et al. in
1983.22%0 During the process of searching for an optimum, a worse solution can be accepted based
on the probabilistic equation. Therefore, in contrast with the traditional gradient descent, the
random process in SAA offers an opportunity to jump out of the local optimum to reach the global
optimum. SAA has been employed in various contributions to materials science, for example,
Erchiqui combined SAA and GA to optimize the shaping of thermoplastics during the thermoforming
process.m” AlRashidi et al. used SAA to extract and identify the photovoltaic parameters of different
types of solar cells.”®? Recently, Major et al. integrated the Monte Carlo method and SAA to predict

the cation ordering in different mixed transition metal oxides materials.?*

3.6. Data-Processing and Data-Mining Methods

Data is fundamental to the data-driven study of materials. Data processing and data mining
methods can directly influence the results of the materials study. We detail several data processing
and data mining methods, including transfer learning, Bayesian global optimization, and adaptive ML
in this section.

3.6.1. Transfer Learning

Transfer learning (TL) is a branch of ML that focuses on the use of pre-existing
knowledge/models to solve a new but relevant problem.[ml Due to this nature of TL, it has been
used to study materials based on small dataset, which is critical since large dataset for such materials
may not always be available. Agrawal et al. leveraged TL in conjunction with large DFT computational
datasets, other small DFT datasets, and experimental data to build a reliable predictive model for
material formation energies, ultimately achieving a low mean absolute error of 0.07 eV/atom (Figure
8a).2% Yoshida et al. developed a library containing more than 140,000 pre-trained models for
various properties based on large datasets; they subsequently used TL in conjunction with this library
to predict various material properties.[2°6] In another case, Reed et al. used TL based on small
datasets to screen billions of compositions for potential application as lithium-ion conductors.?*”!
3.6.2. Bayesian Optimization

Bayesian optimization (BO) is a sequential decision-making approach to gradient-free global
optimization.?® It is conventionally implemented for computationally expensive functions. BO has
been used in materials studies for the determination of physical parameters, experimental design,
material discovery, and optimization of atomic structures.”® For example, Osada et al. employed the
BO method to investigate optimal conditions for the growth of Si thin films based on several
parameters and their interactions (Figure 8b).2*” After optimization, the growth rate of Si films was
twice as high as that prior to optimization.
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3.6.3. Adaptive ML

Adaptive ML (AML) refers to ML algorithms in which model parameters can be automatically
optimized during the execution of the algorithm. AML covers a wide range of algorithms, including
the aforementioned AdaBoost and adaptive SAA. For most practical applications, AIMD offers
accurate simulation results; however, its computational expense prohibits extensive application.
Ramprasad and Botu implemented AML to identify fingerprints mapping atomic configurations to
material properties , thereby accelerating the AIMD simulation.”™ In another study, Xin et al.
developed an AML strategy to identify ABOs-type cubic perovskite-based catalysts (Figure 8c) for
highly efficient electrocatalytic oxygen evolution reaction (OER).?*?

3.7. Reinforcement Learning

Reinforcement learning (RL), along with supervised and unsupervised learning, represent the
three basic ML categories.™ The common RL model is based on the Markov decision process, which
pursues the best long-term reward (Figure 8d). RL can be used for the optimization of organic
synthesis routes!®? and the design of drug molecules.”* In the realm of materials science, Rho et al.
utilized RL as a model to search for the most suitable optical nanomaterials.”*” Whitelam and
Tamblyn have also demonstrated the favorable performance of RL in controlling self-assembly, from

small molecules to large porous 2D materials.”?*”!
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Figure 8. a) TL approach for the study of materials property prediction. OQMD: big DFT-computed
source dataset Reproduced with permission.”®! Copyright 2019, Springer Nature Publications. b)
Flowchart of BO process in the optimization for epitaxial growth of Si thin films. SQCBO: single
quality constraint Bayesian optimization; MQCBO: multiple quality constraint Bayesian optimization.
Reproduced with permission.”'® Copyright 2020, Elsevier Publications. c) Schematic illustration of
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ACS Publications. d) Schematic illustration of RL process.
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4. Available Chemical Databases for Innovative Material Discovery

Recent developments in data-centric approaches are expected to dramatically accelerate the
progress in materials science because experimental and computational methods generate massive
amounts of data, causing increasing complexity.”*®! databases pertaining to both computational and
experimental materials have been established to serve various specialized activities, rather than for
dissemination or to enable contributions from the broader community.?*”! The primary challenge in
choosing and comparing databases is identifying the specific function that the database uniquely
support, while also being able to compare various databases on the same structural basis.?* Table
1 lists the properties of dominant databases and their various attributes including data types,
materials of focus, number of entries, data source, license, and a simple database descriptor.

Relatively simple analytical tasks pose challenges unique to the data-driven era because we are
unable to capture, curate, store, search, share, analyze, and visualize the data in the absence of
proper tools.”* Thus, the identification of large numbers of correlations and patterns complex
datasets has necessarily been carried out by high-throughput implementations of ML algorithms for
decades to generate predictive and classification models for targeted physical properties. We have
summarized representative high throughput tools (pymatgen,® qgmpy,?" ASE,**? and

[225] [226] and

atomate®?) and workflow management tools (FireWorks,** AFLOWmR, matminer,
AiiDA??” 228) This class of high-throughput and workflow management tools is generally available in
an open-source, Python infrastructure, with data connectivity implemented in RESTful API. These
components aid in automating, managing, persisting, sharing, and reproducing the complex
workflows associated with modern computational science and all associated data, reducing the cost
and enhancing the efficiency of data summarization approaches with respect to the popular “five
V’s”: volume, velocity, variety, veracity, and value.”?® Representative databases and the high-
throughput management toolkits have been summarized in Figure 9. We also introduce the
powerful QSTEM™®? tool for quantitative image simulation in electron microscopy.

More specifically, individual databases each solve one specific problem by relaying the specific
descriptors which have been extracted from other existing databases. For instance, database
formulation may be motivated by the need to synthesize specific materials for a specific application,
such as the accelerated discovery of stable lead-free hybrid organic-inorganic perovskites (HOIP)®®,

[231]

accurate prediction of battery life!”®”, and various catalysis applications™?. The potential of data-

driven strategies to uncover complex phenomena and design novel, high-performance materials is
dependent on the quality and accessibility of databases and high-throughput tools, and which would
otherwise not be possible with conventional trial-and-error approaches.

4.1. Databases
The continued advancement of science depends on shared and reproducible data. In the

context of both computational and experimental materials science and rational materials design, this
entails constructing large (open) databases of materials properties.[m] Several representative
databases are presented as follows.
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4.1.1. Computational Databases

Open Quantum Materials Database (OQMD)
The 0QMD™* % is a DFT database containing calculated thermodynamic and structural
properties of 815,654 materials, developed by Chris Wolverton’s group at Northwestern University.
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The OQMD contains approximately 300,000 calculated structures, mainly from two sources: ~10%
from the Inorganic Crystal Structure Database (ICSD)*** and ~90% from the iteration of many
chemistries for some of simple prototypes. For the crystal structures in the ICSD, ~44,000 structures
are calculable, of which the OQMD contains DFT calculations of 32,559 ICSD structures. The
remaining calculable ICSD structures are continually being calculated and added to the OQMD.
Additionally, 259,511 hypothetical compounds have been generated based on 16 elemental
prototypes, 12 binary prototypes with their compositions, and three ternary prototypes with their
compositions.Z% 3711234 Mo reover, OQMD provides a ghull algorithm for establishing DFT ground-
state phase diagrams at ambient (high) pressure and Grand Canonical Linear Programming (GCLP) to
analyze the complex ground state thermodynamics of metal hydrides?*® 29 2% The oqmD
provides the entirety of the underlying database to be freely downloaded at ogmd.org/download/,
in addition to a Representational State Transfer (REST) Application Programming Interface (RESTful
APIl) for programmatic access, which allows scientists and engineers to use simple Hyper Text
Transfer Protocol (HTTP) requests to access all living data 2%,

For instance, Tiantian Hu et al. used the Wasserstein GAN model in conjunction with the OQMD
database to generate novel hypothetical materials (Figure 10a).”*Y Victor Fung et al. predicted
adsorption energies using the density of state data from the OQMD and Materials Project (MP)
database combined with CNNs, targeting the accelerated discovery of catalytic materials (Figure
10b).?*? The MP database is introduced in the subsequent section.
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Figure 10. a) The Wasserstein Generative Adversarial Network (WGAN) model using the OQMD
database to generate novel hypothetical materials. Reproduced with permission.?*" Copyright 2020,
MDPI Publications. b) Using the density of state data from the OQMD and MP database by
convolutional neural networks (CNNs) for the accelerated discovery of catalytic materials.
Reproduced with permission.**? Copyright 2021, Springer Nature Publications.

Materials Project (MP)

The Materials Project (MP) provides open web-based access to computed information on
known and predicted materials to inspire and design novel materials.*” Most of the MP data pertain
to chemical compounds in the ICSD.123> 2431 A significant challenge is the generation of novel

.y . 2
compositions and compounds to perform calculations®”

[243-246]

even though there already exist multiple

and data-driven approaches®”**¥ to tackle this
[250]

algorithmic, e.g., Optimization-based,

problem. For materials included in the MP database, selected properties such as total energies

electronic  structure”™, thermodynamic equations of state parameters™, phonons®?,
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[253] [255]

, and thermoelectricity[zse] have been calculated and
[257, 258] [259]

piezoelectricity'®®®, elasticity®", dielectricity

and Pourbaix diagrams
[253, 254]

included. In addition, MP includes apps to visualize phase diagrams

[260]

Several other convenient applications such as Materials Explorer , Battery Explorer<™",
[220]

Reaction Explorer[257], Structure Predictor[zel], Crystal TooIkit[m], Nanoporous Materials Explorer <=,

Molecules Explorer® 2631 Redox Flow Battery Dashboard®*, X-Ray Absorption Spectra (XAS)?®*,

2661 and Synthesis Description Explorer[267] have also been included in MP. Both

[224]

Interface Reactions
Python Materials Genomics (pymatgen)[m] and FireWorks
materials analysis and high-throughput application. Note that all the underlying data for the
calculations of ~530,000 nanoporous materials and 130,000 inorganic compounds are accessible via
the Materials API?*® based on REST principles.

Although the MP database was originally developed to predict the adsorption energy of the
[242]

open-source libraries are available for

catalytic materials, it has supported many other applications such as the accelerated discovery of
stable spinel material®® and carbon dioxide electrocatalysis'*®.. Additionally, the MP and OQMD
databases' magnetization properties are nearly comparable.”*® However, the Automatic-FLOWLIB

(AFLOW) skews to larger magnetizations compared with MP and 0QMD."?*®!

Automatic-FLOWLIB (AFLOW)

AFLOW provides a globally available database of 3,312,125 material compounds with over
566,373,375 calculated properties and growing™?; it is a powerful tool for materials discovery and
property predictions using ML, the prototype encyclopedia, and the generation of convex hulls. As a
multi-purpose repository, AFLOW comprises of 323,516 electronic structures, 125,496 Bader charges,
6,049 elastic and 6,038 thermal properties. This continuously updated compilation currently
contains over 1,724 binary systems with more than 356,343 binary entries, 30,071 ternary systems
with more than 2,400,160 ternary entries, and 150,621 quaternary systems with more than 450,567
guaternary entries. For convenience, several apps and documents have been customized for specific
applications. For instance, AFLOW-ML contains three functional modules only requiring structural
information: the Property Labeled Material Fragments (PLMF?"") provides the bandgap, energy,
modulus, heat capacity etc.; the Molar Fragment Descriptor (MFD'¥’?) predicts vibrational free
energies and entropies; AFLOW Superconductor (ASC)®?”!
while also estimating the critical temperature. AFLOW-CHULL, powered by the AFLUX Search-API, is
a cloud-oriented platform for autonomous phase stability analysis, a valuable tool for guiding

can classify material as superconductors

synthesis based on high-throughput and even autonomous approaches?’*. AFLOW-AAPL (Automatic
Anharmonic Phonon Library) is an efficient and accurate framework for calculating lattice thermal
conductivity of solids, which was developed to compute the third-order interatomic force constants
and solve the Boltzmann transport equation within the high throughput AFLOW framework.!?””!

We introduce the high-throughput first-principle-calculation framework of PAOFLOW and
AFLOWm. The key components of PAOFLOW involve managing sets of calculations to determine
band structures, the density of states, complex dielectric constants, diffusive and anomalous spin
and charge transport coefficients, etc. using a methodology that generates finite basis Hamiltonians
from the projection of first principles plane-wave pseudopotential wavefunctions on atomic orbitals.
The critical components of AFLOWT involve robust data generation, real-time feedback and error
control, curation and archival of data, and post-processing tools for analysis and visualization.
AFLOWLIB API®"® following REST principles is introduced for the AFLOWLIB.org materials data
repositories consortium and provides a powerful tool for accessing a large set of simulated material
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properties data. For instance, Valentin Sranev et al. apply the random forest ML strategy as a
classification and regression model in conjunction with the AFLOW database and ISCD, providing 35

compounds with critical temperatures above 20 K as experimental candidates.”’”!

Novel Material Discovery (NOMAD)

The concept of the NOMAD was developed in 2014, independently and in parallel to the “FAIR
Guiding Principles.”’?’® The Novel Materials Discovery (NOMAD) Laboratory is a user-driven platform
for sharing and exploiting computational materials science data.?”® With the NOMAD repository and
its code-independent canonicalized NOMAD archive, NOMAD consists of the world's most extensive
data collection in this area. Based on a searchable, accessible, interoperable, and reusable data
infrastructure, it offers a variety of services, including advanced visualization, NOMAD
encyclopedias, and artificial intelligence. Further, the NOMAD CoE established an innovative tool for
mining this data to locate structure, correlations, and novel information that would otherwise be
difficult to identify through the study of a small database.

Note that usable and clearly defined metadata is a prerequisite for this normalization step to a
code-independent format, rendering even the development of the NOMAD Meta Info®? a
significant challenge. In addition, the Open Databases Integration for Materials Design (OPTIMADE)
consortium aims to promote materials databases interoperation by developing a standard REST API.
Recently, Acosta et al. established the materials map of two-dimensional (2D) honeycomb structures
for analyzing and identifying 2D topological insulators based on the NOMAD concept.'?®> %" Unlike
the OQMD, MP, AFLOW, and NOMAD databases, the Computational Materials Repository (CMR) has
many independent projects that consist of the Atomic Simulation Environment (ASE)**? dataset,
such as the computational 2D materials database (C2DB) 1**? (Figure 9), and the detailed information
is as follows.

Computational Materials Repository (CMR)

CMR™? has resulted from a collaboration under the Quantum Materials Informatics Project
(www.gmip.org) to establish core technologies for integrated computational materials design'®.
CMR addresses data challenges to enhance the possibility of designing new materials based on
guantum physics calculations. CMR provides software infrastructure (such as the Computational 2D
[284]

Materials Database!”?, Bondmin optimization algorithm,"?®* and CatApp database'?®”)) that support
the collection, storage, retrieval, analysis, and sharing of data generated by numerous electronic
structure simulators. Furthermore, CMR provides some basic functionality for processing large
amounts of data, though more software development in this area is being implemented to facilitate
large-scale collaboration in the future. We present representative computational and free-of-charge
databases in Figure 9. However, the subsequent section introduces a number of reputable databases

with historical significance (Figure 9) focusing primarily on the collection of experimental data.

4.1.2. Experimental Databases

ICSD

The 1CSD*** is the world's largest database of fully evaluated and published data containing
inorganic crystal structures primarily derived from experimental results. Currently, the ICSD'*®*® has
more than 232,012 entries, including ~2,902 elemental crystal, ~38,506 binary compounds, ~73,048
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ternary compounds, and ~73,688 quarternary and quintenary compounds. The database is updated
twice a year based on over 80 leading scientific journals and more than 1,400 other scientific
journals; data sources have been expanded to include experimental inorganic structures,
experimental metal-organic structures, and theoretical inorganic structures.

To be included in the database, the structure must be fully characterized. For instance, atomic
coordinates can be determined or derived from known structure types, and the composition must
be fully specified. Typical entries include chemical names, formulas, unit cells, space groups,
complete atomic parameters (including atomic displacement parameters if available), site
occupancy, titles, authors, and literature citations. For published data, many items (such as Wykov
sequences, molecular formulas, weights, ANX formulas, and mineral groups) are introduced through
expert evaluation or generated by computer programs.

The keyword-based search in the ICSD can be specified in terms of physical properties,
analytical methods used, and technical application. Note that the ISCD data has been used to
indicate promising novel applications of new ionic conductors, solar cell adsorbers, advanced
ceramic materials, nature’s missing compounds, and structural relations between the crystalline
compounds. In addition, ICSD data have been included in almost all other computational databases,
such as OQMD, MP, and AFLOW. Organic and inorganic compounds are two of the main categories
of chemical materials. Thus, we introduce the Cambridge Structural Database (CSD) for organic
materials.

CsSD

The CSD™” is the world’s largest and most comprehensive collection for small-molecule
organic and organometallic crystal structures, containing over one million structures from X-ray and
neutron diffraction analyses. For comprehensive coverage of single-crystal data, cell parameters and
all available data are included even if no coordinates are available. Similarly, powder structures are

available from the International Centre for Diffraction Data (ICDD)"?®!

even though the coordination
information is missing. Note that there is a slight overlap between the CSD and the ICSD in the area
of molecular inorganics, but that purely inorganic structure is not contained in the CSD.

The CSD database has provides data in two distinct ways. The first is pertains only to structural
aggregation and standardization, making it easier to access individual entries. The second is based
on further study of data collection and the discovery of new knowledge transcending the results
from individual experiments. Python-based API"”®¥ has also been introduced to enable end-users to
query CSD using customized script. Accessing data via scripts in conjunction with other packages
such as RDKit>" is very useful for more advanced structural data analysis. For instance, users will be
able to use ML more conveniently in conjunction with APIs for solvate prediction, implementing
fragment pocket analysis using structural information, and supporting crystal (co-crystal) structure
prediction.”®” More detailed insights could be developed as the scale of data increased, having a
profound impact across the scientific community with specific consequences for drug discovery and
development.® However, the ICSD and CSD have paid licenses (as shown in Table 1), affecting a
number of institutions or members who cannot access the data. We subsequently introduce the
open-access Crystallography Open Database (COD)"? database, including both organic and inorganic
materials.
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CoD

The COD™ is the most extensive open-access collection of minerals, metal organics,
organometallics, and small organic crystal structures, excluding biomolecules which are otherwise
stored in Protein Data Bank. The COD currently contains over 385,000 records and is constantly
growing in size and quality. The COD has introduced a new data deposition website that allows the
manual and automatic uploading of data and structures to the COD. This automation is greatly
facilitated by the introduction of the Crystallographic Interchange Framework (CIF). In addition to
web access, the COD provides a RESTful interface which allows the querying of information about
COD entries based on specific criteria or the crystal structure file itself. Additionally, SQL (Structure
Query Language) is the most powerful mechanism to query these relational databases, providing
more functionality than COD web pages and COD RESTful interfaces.

A widely accepted application of the COD is for material identification with the help of the
powder diffraction method and search-match procedure. The largest diffractometer vendors
(including Bruker, PANalytical, and Rigaku) ship COD collection software that are compatible with
their equipment and provide regular updates on the COD website or on their own pages. In
bioinformatics and drug design, the COD is used as a source of open data for restraint libraries'*%.
Finally, the COD is also used in basic research to support investigations into hydrogen storage,

characterization of 2D materials, etc.***

4.1.3. Data Infrastructure

Citrination Platform

The Citrination Platform™®? takes an intermediate view on the challenge of materials data
infrastructure, driven by the goal to make vast quantities of cross-disciplinary materials data both
human-searchable and machine-readable for data mining. In the design of material data
infrastructure, the Citrination Platform offers convenient technology for data import, storage, and

access. It can be used in various fields such as extracting knowledge through catalysis informatics®,

[296] [297]

screening of inorganic materials synthesis parameters'=™™, and finding novel thermal materials

Materials Data Facility (MDF)

Materials Data Facility (MDF) 2% 2% services are uniquely differentiated to support the
publishing, discovery, and access to materials datasets using distributed data publication and
discovery models, which are built on and leverage production services provided by Globus, a
nonprofit software-as-a-service (SaaS).””® MDF supports this vision by providing interconnection
points that allow producers of material data to dispatch a wide range of results which is discovered
and aggregated by data consumers from each independent source. Currently, MDF stores 30 TB of
data from simulation and experiment, and also indexes hundreds of datasets contained in external
repositories, with millions of individual MDF metadata records created from these datasets to aid
fine-grained discovery.”

4.2. High-Throughput (HT) Programming Packages and Workflow Management

Frameworks
The constant availability of computing power and the sustainable development of advanced
computing methods have contributed significantly to recent scientific advances. The data-driven era
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for materials science has dramatically impacted novel materials discovery, physical properties
prediction, and the underlying patterns of numerous materials. Consequently, mass computational
and experimental material databases have been established to serve various specialized purposes
rather than sharing and enabling contributions to the materials science community based on “FAIR
Guiding Principles.”’”’®! These developments present new challenges posed by the vast amount of
computations and data to manage.[m] Selecting the most appropriate database to address specific
scientific problems remains the primary challenge. It is critical to identify the key differences
between various databases while being cognizant of the ways in which they overlap.**!
Next-generation exascale supercomputers will exacerbate these challenges, implying that
automated and scalable solutions will be essential. For instance, Cronin et al. reported the
convergence of multiple synthetic paradigms for a universally programmable chemical synthesis

machinel*®

and summarized the current process for universal chemical synthesis and discovery
using MLP®Y. Cooper et al. used a mobile robot to search the most efficient photocatalysts for
hydrogen production from water.®*? Thus, it is vital to summarize the high throughput tools and
workflow management frameworks that can conveniently handle data obtained from various

databases. Figure 9 presents a summary of the representative high throughput tools (pymatgen,?*

ampy, Y ASE,”? and atomate®®) and workflow management frameworks (FireWorks, 22!

AFLOWT, ! matminer, *" and AiiDA??"2%#)),
4.2.1. Programming Packages

Python Materials Genomics (pymatgen)

(2201 is a robust, open-source Python library for materials analysis. A major enabler in

Pymetgen
high-throughput computational materials science efforts is a robust set of software for performing
computational initialization (structure generation, required input files, etc.) and post-computational
analysis to derive useful material properties from raw computational data. As mentioned in f MP
section, the pymetgen library provides a convenient tool for obtaining useful materials data via MP’s
REST API for structure generation, manipulation, and thermodynamic analysis.

The pymatgen library provides (1) a core Python object for material data representation, (2) a
well-tested set of structures and thermodynamic analyses relevant to a number of applications, and
(3) targeting researcher needs by establishing an open platform for collaboration and developing a
sophisticated analysis of material data obtained from both first-principles calculations and
experiments. The overview of a typical workflow for pymatgen is presented in Figure 11a. For
example, Ceder et al.”*! utilized pymatgen to map the body-centered cubic-like anion framework to
solid-state lithium superionic conductors (Figure 11b). Additionally, The grand potential phase
diagram was used to identify the domain phase in the Li;La,75Cag252r1 75Nbg 2504, system (Figure
11¢).”* Analogous to the use of pymatgen in conjunction with MP, gmpy has also been developed
to support workflows based on data from OQMD.

The OQMD running and maintenance toolkit (gmpy)

The gmpy™Y toolkit stores crystal structure data, automates DFT calculations, handles
computational resources, and performs thermodynamic analysis. Moreover, gmpy is a package
containing many computational materials science tools, bundled with two executable scripts: gmpy
and ogmd.
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gmpy is used to run and maintain the OQMD. The ultimate reference for the searching model is
based on ‘filter’, ‘exclude’, and ‘get’ methods. There are many advanced functions such as advanced
searching, using gmpy to manage a high-throughput calculations, and the ability to create
customized Python scripts which takes advantage of gmpy features. For instance, Wolverton et al.
use gmpy to develop accurate formation energy comparisons between the DFT and experimental
data (Figure 11d).”® Difference between OQMD and experimental for the fit-none, fit-partial, and
fit-all chemical-potential sets have been presented. Specifically, in the fit-none case, the average
difference is 0.105 eV/atom, with a MAE of 0.136 eV/atom; the average error is reduced to 0.020
eV/atom with a MAE of 0.096 eV/atom using chemical potentials from the fit-partial set; finally, the
average error is 0.002 eV/atom with a MAE of 0.081 eV/atom using the chemical potentials of all
elements (fit-all), which is the slightly better fitting than both fit-none and fit-partial chemical

; [23]
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Figure 11. a) overview of a typical workflow for pymatgen. Reproduced with permission.
Copyright 2013, Elsevier Publications. b) Mapping the body-centered cubic-like anion framework to
solid-state lithium superionic conductor. Reproduced with permission.®®® Copyright 2015, Springer
Nature Publications. c) The grand potential phase diagram was used for identifying the domain phase
in the Li;La,75Cag25Zr175Nbg 2501, system at potentials () of i. 0 eV, ii. -0.06 eV and iii. -1.23 eV,
respectively. Reproduced with permission.®* Copyright 2017, Springer Nature Publications. d)
Schematic illustration of comparison between the OQMD and 1670 experimentally measured
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formation energies for i. fit-none, ii. fit-partial and iii. fit-all sets of the elemental potential.
Reproduced with permission.'?*! Copyright 2015, Springer Nature Publications.

Atomic Simulation Environment (ASE)

ASE®* is a collection of Python modules to set up, control, visualize, and analyze simulations
on an atomic and electronic scale. ASE acts as a front-end for atomistic simulation, where both the
atomic structures and parameters that control the simulation are easily defined. Simultaneously, the
full functionality of the Python language is also available, giving users interactive and detailed
control over several interrelated simulations.

To perform many complex atomic-scale simulations, ASE relies on three powerful libraries
(Numpy, SciPy, and matplotlib). For the top of the atoms-calculator interface, ASE provides
algorithms for various atomistic simulation tasks (30 different atomic-scale codes such as structure
optimization, molecular dynamics, the nudged elastic band simulation (Figure 12a). For example,
Tran and Ulissi identified suitable electrocatalysts for CO, reduction and H, evolution by using an
active learning method through VASP implemented by ASE with FireWorks managed frameworks??"
(Figure 12b).“3] In addition to the pymatgen, gmpy, and ASE (Figure 9), the last representative HT
package that we introduce is Atomate; the detailed framework to manage HT automation is as

follows.
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Figure 12. a) The overview of the platform of the support from ASE. b) discover the suitable
electrocatalysts for CO, reduction and H, evolution by using an active learning method through VASP
implemented by ASE with FireWorks managed frameworks. Reproduced with permission.™
Copyright 2018, Springer Nature Publications. c) Example of GaP band structure (left) computed via
atomate/VASP and Lag ;Sr;3MnO; ELNES spectra (right) computed via atomate/FEFF using Atomate.
Reproduced with permission.[223] Copyright 2017, Elsevier Publications. d) The basics workflows for
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band structure using Atomate. Reproduced with permission. Copyright 2017, Elsevier

Publications.

This article is protected by copyright. All rights reserved.

41



WILEY-VCH

Atomate

Atomate!?*®

, an open-source Python framework for the simulation, analysis, and design of
materials focuses on the automation and extensibility of conventional software applications which
may other otherwise be difficult to use or implement at scale. Atomate offers powerful theory and
calculation tools for the analysis and design of novel materials. Atomate makes it possible to
perform complex materials science computations using very straightforward statements. The FEFF
software integration was recently introduced (Figure 12c), and other computational packages are
under development.

Atomate aims to gather knowledge about the computational procedures of different methods
of material analysis into easy-to-use workflows and workflow components that can be modified and
reconfigured as needed. Workflows currently available in atomate include band structure, bulk
modulus, elastic tensors, Raman spectra, permittivity, , and various types of spectral calculations
(XAS, EELS). Atomate is built on top of state-of-the-art open-source libraries such as pymatgen,
custodian, and FireWorks. Building these libraries not only serves as a friendly and straightforward
introduction to computational materials science but is also powerful enough for the most
demanding theoretical users who require precise control and large-scale execution. Specification of
the crystal structure is all that is required to allow atomate set up a complete workflow to provide
properties of interest (Figure 12d); this can be accomplished for a single material, 100 materials, or
100,000 materials. For instance, Wu et al. calculated the band structure and elastic properties for
polycrystalline SnSe, with various amounts of Br dopant using the Atomate package.?®™ Zheng et al.
automatically generated an ensemble-learned matching of XAS using the Atomate package in

conjunction with the workflow management framework of FireWorks (Figure 13a).2%®
a -~ =
/' identity Y | b ’00 Qe
f | se °
=y — 35 r
7 O Wl -zl o
| : Ay (1a) Host Slab e (1b) Guest Slab
1 I ]
] 3
| L 1 X N
: , , earner ° ° °
Spectra Norm.

6) Adsorption
Length

Figure 13. a) Overview of generation and ensemble-learned matching of X-ray absorption spectra
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using the Atomate package with the workflow management frameworks of FireWorks. Reproduced
with permission.[3°6] Copyright 2018, Springer Nature Publications. b) To making the structure's
relationship with heterogeneous catalysis using workflows of FireWorks. Reproduced with
permission.[3°7] Copyright 2021, Wiley Publications.
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4.2.2. Workflow Management Frameworks

FireWorks (FWS)

FWS is a ML library for Python that provides a DataFrame implementation compatible with
PyTorch Tensors.”?” The user can build a model that references the input by column name
consistent with tabular data formats applicable to all data analysis software and languages such as
SQL, Stata, Excel, R DataFrames, and Python Pandas. The operation makes it easier to track variables
when working with data in this format and integrating these models into existing Pandas-based data
science workflows. Fireworks consists of a number of modules designed to work together to
facilitate various aspects of deep learning and data processing. As illustrated in Figure 12b and Figure
1343, in addition to working with other codes such as ASE and Atomate, FWS can work in conjunction
with VASP workflows to create, track, and stop the work or process. For instance, Sergio et al.
utilized this strategy to develop the structure's relationship with investigations in heterogeneous
catalysis (Figure 13b).[3°7] AFLOWT integrates with the AFLOW, which is also a popular HT framework.

AFLOWR

AFLOW,**! a minimalist approach to high-throughput ab initio calculations, including the
generation of tight-binding hamiltonians without any additional input, is easily portable, simple to
use, and integrated with the AFLOW.org repositories. AFLOWm was initially developed for
verification and testing purposes but has evolved into a modular software infrastructure that
provides an automation workflow for tight-binding Hamiltonian ab initio generation within a
projected atomic orbital. The simulations for elastic constant, complex dielectric constant, diffusive
transport coefficient, phonon dispersions with Hubbard U correction and optic spectra are included.
For instance, Emmanuel et al. calculated the band structure (Figure 14a) and phono dispersion
(Figure 14b) for thermoelectric bulk colusite using AFLOWmR, which is otherwise a challenging process
to implement with traditional DFT simulation.*%®
Automated Interactive Infrastructure and Database (AiiDA)

AiiDAP? 228 is an open-source python infrastructure platform to support and streamline the
four core pillars of the ADES model: Automation, Data, Environment, and Sharing (Figure 15a).
Leveraging the AiiDA Workflow Manager and its plugin ecosystem, developers can access simulation
code that scales through the Python APl combined with automatic simulation tracking for full
reproducibility. As a core principle of AiiDA's design, its focus on data provenance represents a
significant departure from the other management systems mentioned earlier.
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Figure 14. The a) band structure and b) phonon dispersion of thermoelectric bulk colusite using
AFLOWT. Reproduced with permission.® Copyright 2018, ACS Publications.
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AiiDA aims to provide a framework that enables the design and execution of complex high-
throughput computational workflows with a fully automated history and built-in support for high-
performance computing on remote supercomputers (Figure 15b).”?®! Additionally, the main goal of
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the AiiDAlab!?*® platform is to provide an environment where users with varying expertise can
access and perform computational workflows embedded into the AiiDAlab apps. Each user has a
separate AiiDAlab account which grants them access to the AiiDAlab instance through a web
browser. AiiDA is a flexible tool interoperable with any simulation software due to its plugin system,
making computational science more transparent, user-friendly, and ultimately fully reproducible, in
full compliance with FAIR principles. For instance, Valerio et al. have used AiiDA to automate the
Maximally-localised Wannier functions and synthesize the corresponding Provenance graph (Figure
15c).

Matminer

Matminer??°!

is an open-source toolkit for materials data mining based on the Python library,
which provides a comprehensive library implementation of feature extraction routines developed by
the materials community and features 47 feature classes that can generate thousands of individual
descriptors and combine them into mathematical functions. The general workflow and overview of
Matminer are shown in Figure 16a.

Matminer works with Panda's data formats to convert complex material attributes into numeric
descriptors for data mining functionality (Figure 16b). It can then perform data mining on materials
and make various downstream ML libraries and tools available for materials science applications. For
example, low-modulus Ti-Nb-Zr alloys were discovered with the aid of the MP database in

conjunction with the matminer library (Figure 16c).**

ChemML

ChemMLE™ 32 s an open machine learning and informatics program suite for
analyzing, mining, and modeling chemical and materials data. Specifically, ChemML is
developed in the Python 3 programming language and uses a host of data analysis, ML
libraries (accessible through the Anaconda distribution), and domain-specific libraries.
ChemML allows its users to perform various data science tasks and execute machine learning
workflows adapted specifically for the chemical and materials context. In addition, ChemML
is designed to facilitate methodological innovation; it is one of the cornerstones of the
software ecosystem for data-driven in silico research.™!

MAterials Simulation Toolkit for Machine Learning (MAST-ML)

MAST-ML2*! is an open-source Python package designed to broaden and accelerate the use of
machine learning in materials science research, particularly for non-experts without programming
ability. It provides flexible access to the most important algorithms while codifying best-in-class
machine learning model development and evaluation practices. MAST-ML provides predefined
routines for many input setup, model fitting, and post-analysis tasks, as well as a simple structure for

executing a multi-step machine learning model workflow, such as lattice for thermal conductivity"*"

and magnesite flotation studies. (3251
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the aid of the MP database and the matminer library. Reproduced with permission.®™® Copyright

2020, ACS Publications. d) The QSTEM simulation of high-resolution-STEM ADF imaging. Reproduced
with permission.*®! Copyright 2020, AAAS Publications.
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4.2.3. Simulations

Quantitative TEM/STEM Simulations (QSTEM)

QSTEM™ is a program for quantitative image simulation in electron microscopy, including
TEM, STEM, and CBED image simulations based on the multislice algorithm. Several features of
QSTEM are notable. First, QSTEM has the potential to work with arbitrary samples and orientations
(such as interfaces, defects, and imperfect crystals and not only low-index zone axes of the single
crystal) because of the principle of the multislice algorithm. Second, the atomic scatter coefficient
must be accurate to the large angles required for STEM simulations. For instance, Lopatin et al.
investigated the correlation of atomic simulation images using QSTEM with HR-STEM ADF images to
reveal the false T phase of transition metal dichalcogenides (Figure 16d).%*® Finally, pygstem has
been created as an open-source python library based on QSTEM. The pygstem project interfaces
with QSTEM code through Python and ASE to provide a single environment for model building,
image simulation, and analysis.
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Table 1. The database including the name, data type, materials types , simple key description,
number of the entries, data sources, and license.

Database Types Materials Descriptor No. Entries Data Source License Ref

Open Quantum Computational Inorganic Solids Multi-purpose repository ~300,000 ICSD, Free f221,

Materials Database Hypothesis e

(0QmD) =

Materials Project (MP)  Computational Inorganic Solids; Multi-purpose repository >130,000 ICSD Free 24l
Nanoporous Materials ~530,000

Automatic-FLOW Computational Inorganic Solids, Multi-purpose repository 3,312,125 ICSD Free 317]

(AFLOW) Alloys

Novel Material Computational Inorganic Solids Multiple-source -- Literarues Free 12801

Discovery (NOMAD) repository

The Computational Computational Perovskites, 2D Multi-purpose (3D and -- oQMD Free (2831

Materials  Repository Materials 2D materials)repository

(CMR)

Inorganic Crystal Experimental Inorganic Crystal Structural Properties >232.012  Literarues Non- 235]

Structure Database Structures Free

(ICSD)

Cambridge  Structural Experimental Metal Organic Organic and Inorganic >800.239 Literatures, Non- B8]

Database (CSD) Frameworks, Orgaincs experimental ICDD Free
Molecure

Crystallography Open Experimental, Structural Properties >385,000 Literatures, 12l

Database (COD) Computational

The Computational 2D Computational 2D Materials Structural, ~4,000 MP, Free 291

Materials Database Thermodynamic, Elastic, CMR

(C2DB) Electronic, Magnetic, And

Optical Properties

[320]

Clean Energy Project Computational Organic Photovoltaics Multiple source >2,000,000 Literatures, Free

(CEP) repository for solar cells Hypothesis

Organic Materials Computational Organic Materials Electronic Structrue, ~12,500 CoD Free [321]
Database (OMDB) Density of States

Joint Automated Computational 2D/Solid Inorganics Structural, ~40,000 MP, oQMD, Free 221

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the VVersion of Record. Please cite this article as doi:
10.1002/adma.202104113.
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Repository For Various Thermodynamic, AFLOW,

Integrated Simulations Electronic, Elastic, Literatures.

(JARVIS)-DFT Properties

Citrination Experimental, Inorganic Solids, Multi-purpose repository  -- Literatures, Free 217]

Computational Molecules

[323]

Materials Cloud Experimental, All Materials Multiple-source - ICSD,COD, Free
Computational repository Literatures

Alloy Database Computational Intermetallics Structrue, Cohesive -- ISCD Free 24l
Energies

CatApp Computational Molecules on Surfaces Reaction/activation -- - Free (2851
Energies

Computational Computational Atoms, Moleculres Thermochemical ~2069 - Free  ©%

Chemistry Comparison Properties

and Benchmark

DataBase (CCCBDB)
Computational Computational Inorganic Solids Electronic Structure >100 - Free -
Electronic Structure

Database (CompES-X)

[326]

Crystalium Computational Elemental Solids Surface, Grain Boundary >145 Literatures Free
Energetics

Phonondb Computational Inorganic Solids Phonons, Thermal -- MP Free
Properties

TE Design Lab Computational Semiconductors Electronic, ~2701 Literatures Free (327)

Thermoelectric

Properties
AIST Research Experimental General Materials Substances, Chemical -- Literatures Free [328)
Information Databases Data Accidents,

Geological Information

[329]

American Mineralogist Experimental  Minerals Structural Properties 2627 Literatures Free
Crystal Structure

Database

ASM  Alloy Center Experimental Alloys Composition, Structue, -- Literatures Non- -
Database Physical Properties Free

ASM Phase Diagrams Experimental  Alloys Thermodynamic 6200 Literatures Non- --
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CALPHAD databases

ChemSpider

CINDAS
Performance
Database

CRC Handbook

CrystMet

High-

Alloys

DOE Hydrogen Storage

Materials Database

Granta CES Selector

Handbook of
Constants of
Solids, Palik
International
Database
(INTERGLAD)

Knovel

Matbase

MatDat

MatNavi (NIMS)

MatWeb

Optical

Glass

System

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Alloys

Chemical Materials

Alloys

General
Data

Metals

General
Data

Metals,

Composites,

Materials,

Materials

Materials

Polymers,
Medical

Coatings,

Aerospace Materials

General

Data

Glass

General
Data
General

Data

General
Data

Polymers,

Materials

Materials

Materials

Materials

Inorganic

and Metallic Materials

Carbon,

Ceramis,

Properties
Thermodynamic, Kinetic,
And Properties Databases
Multiple-Source
Repository

Physical Properties

Multi-purpose repository

Chemical and physical

information

Hydrogen storage

Multi-purpose repository

Hard-copy sources

Structrues Properties

Multi-purpose repository

Transcription Factors and

The Corresponding

Weight Matrices

Physical Properties

Multi-purpose repository

Multi-purpose repository

WILEY-VCH

99,000,000

298

70,000

>4000

350,000

>4000

140,000

Literatures

Literatures

Literatures

Literatures

Literatures

Literatures

Hard-copy

sources

Literatures

Literatures

Literatures

Literatures

Literatures
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Free

Non-

Free

Free

Non-

Free

Non-

Free

Non-

Free

Free

Non-

Free

Non-

Free

Non-

Free

Non-

Free

Free

Non-

Free

Free

Free

[330]

331

[332)

[333]

[334]

[335]



Mindat

NanoHUB

NIST Materials Data
Repository (DSpace)
NIST Interatomic

Potentials Repository

NIST Standard

Reference Database 3

(NIST SRD 3)
Open Knowledge
Database of
Interatomic Models
(Open KIM)
Pauling File

Pearson’s Crystal Data
(PCD)
Pearson’s  Handbook:
Crystallographic Data
Powder Diffraction File

(PDF)

PubChem

Reaxys

SciFinder

Experimental

Experimental

Experimental,

Computational

Computational

Experimental,

Computational

Computational

Experimental,

Computational

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Fluid, Metal,
Polymer, Wood and
Natural Products
Minerals, rocks,
Meteorites
Nanomaterials
General Materials
Data

Meatals,
Semiconductors,
Oxides, and Carbon-

containing systems

Inorganic Solids

Moleculars

Inorganic Solids

Inorganic Solids

Intermetallic phases

Inorganic Solids

Molecures

Chemical data

Chemical data

Multi-purpose repository

Multi-purpose repository

Multi-purpose repository

interatomic potentials

Multi-purpose repository

interatomic potential
repository
Phase-Disgrams,

Crystal Structures,

Physical Properteis

Multi-purpose repository

Crystallographic Data

Crystallographic Data

Multiple-source

repository

Multi-purpose repository

Multi-purpose repository

WILEY-VCH

210,000

357,612

350,000

32,000

>118,000

47,000,000

Literatures

Literatures

Literatures

Literatures

Literatures

Literatures

Literatures

Hard-copy
sources

Literatures

Literatures

Literatures,
Patents
Literatures,

Patents
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Free

Free

Free

Free

Non-

Free

Free

Non-

Free

Non-

Free

Non-

Free

Non-

Free

Free

Non-

Free

Non-

Free

[336]

337,

338]

[339]

[340]

[341]

[342]

[343]

[344]

[345]



SciGlass

SpringerMaterials

Total Materia

UCSB-MRL
thermoelectric
database

NRELMatDB

Metallurgical
Thermochemistry,
Kubaschewski

3D Materials Atlas
Inorganic Material
Database (AtomWork)

Mineralogy Database

CSD Teaching Database

Database of

Structures

Experimental

Experimental

Experimental

Experimental

Computational

Experimental

Experimental

Experimental

Experimental

Experimental

Zeolite Computational

RCSB Protein Data Bank Experimental

Glasses

General Materials
Data

Metallic Materials
Data

Thermoelectric

Materials

Inorganic Solids

Thermoelectric
Materials
General Materials
Data

Inorganic Solids,
Metals

Minerals

Organic Materials

zeolites

biological
macromolecular

structures

Multi-purpose repository

Multi-purpose repository

Multi-purpose repository

Thermoelectric

Properties

Quasiparticle Energies,
Renewable Energy
Application

Thermoelectric

Properties

3D Characterization

Material Properties,

Phase Diagrams

Structure Properties,
physical and  optical
Properties
Structure Properties,
physical and  optical
Properties

Multi-purpose repository

Multi-purpose repository

360,293

350,000

18,000

82,000

4714

>750

>173,005

WILEY-VCH

Literatures,
Patents
Literatures,
Patents
Literatures,
Patents

Literatures

Literatures,

Patents

Hard-copy

sources

Literatures,

Literatures

CSD

Literatures,
Hypothesis

Literatures,

Non-

Free

Non-

Free

Non-

Free

Free

Free

Non-

Free

Free

Non-

Free

Free

Free

Free

Free
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(347]

[348]

[349]
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5. Key Descriptors Bridging Data Intensive Discoveries and Experimental
Strategies for Innovative Materials

The key premise of the ML framework is that learning can be viewed as a reasonable model to
explain the observed data.*¥ Descriptors are the carriers of information exchange between humans
and machines. In the context of materials science, they deliver information about molecular
properties to machines in digital form. Key to the efficient use of ML in the field of chemical
materials is the "descriptor selection" tool, which takes the entire descriptor set as an input, or
combines it into a new reduced, but more reliable, descriptor set through correlation analysis while
providing a mapping to a Key Performance Indicator (KPI) fingerprint B9 In this section, the strategy
of transforming material data to ML through descriptors is introduced; descriptors can be divided

into five main types: constitutional descriptors 2% 3% 351359 gaometric descriptors 1% °% 3333611,

quantum chemistry descriptors!'" %2 3630-190. 351371 “gactrostatic descriptors 2% 5% 352 355 361,363,365

369,370, combinational descriptors. These will be elaborated upon in the relevant subsections. Finally,

we describe some of the extension packages of descriptors in the field of Al for materials science.

5.1. Information Bridging: from Chemical Structures to ML Models

5.1.1. Descriptor Importance

The selection of descriptors directly determines the feasibility of introducing ML to solve the
posed question. When the scientific connection between the descriptor and the actuation
mechanism is not clear, the causal relationship of the learned descriptor-attribute relationship is
uncertain. Therefore, the reliable prediction, identification, and scientific development of new
materials are called into question. Analyzing the problem and defining a suitable descriptor is a
meaningful and necessary step.*’?

A number of studies have emphasized the importance of material descriptors in accelerating
the calculation of material properties or material design. Ghiringhelli, L. M. et al. ¥’ detail the
required characteristics of a set of descriptors: the calculation of descriptors should not be as
intensive as that of KPIs; they uniquely characterize materials and the basic processes which pertain
to properties; very different materials should be characterized by very different descriptor values

71 utilized 13 microscopic

(and vice versa); their size should be as small as possible. Sahu et al.,
properties of organic materials as descriptors to build a PCE prediction model. The results indicated
that such descriptors can effectively be applied in the context of promising high-throughput virtual
screening of new donor molecules for efficient organic photovoltaics. Implementing descriptors with
appropriate features plays an important role in accelerating outcomes of material design, or the

study of material characteristics.

5.1.2. Bridging and Transferring Process
Data bridging and transfer processes often introduce uncertainty to ML predictions. The
evaluation of this uncertainty indicates whether the required prediction accuracy has been satisfied.

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the VVersion of Record. Please cite this article as doi:
10.1002/adma.202104113.
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The MGI® aims to capture, manage, and utilize material structure/property information on a large
scale to enable the rapid, cost-effective, and efficient development of new materials with
predictable properties. Although the use of such "genome" methods (to promote attribute
prediction, virtual design, and material discovery) is relatively new, the concepts driving the
development of materials informatics are firmly grounded in previous lessons learned from the fields
of chemoinformatics and bioinformatics.

The management and utilization of material structure/attribute information have increased the
significance of cheminformatics to ML; a number of new methods have emerged for information and
data conversion. Behler describes some of the ways in which chemoinformatics and ML methods
have been adapted for materials science and engineering applications, including methodologies to
create, verify, and use material quantitative structure and property relationship (MQSPR)
models®”. Friederich et al.®*¥ used full autocorrelation (FA) functions to transfer the features of
chemical complexes. Combining DFT and ML methods, the obtained predictions of reactivity within
large chemical spaces containing thousands of complexes. Affordable descriptors were transferred
as functions and demonstrated as fingerprints for each complex by considering a specified product
of atomic properties (PiPj) calculated in terms of all atoms. Compound compositions were guided by
the properties of atoms i and j (Figure 17a). These atomic properties include electronegativity,
atomic number, identity topology, and size. Each descriptor is multiplied as a function of Diracd6 to
encode the structure and properties of the compound.

The selection of the descriptor, removal of redundant features, and establishment of
relationships are crucial to the process of transferring information. As shown in Figure 17b, the
prediction strategy integrates input HOIP data with the ML algorithm and DFT calculation *®. Based
on the ML program, an input HOIP dataset is established; each input item is described by a signature
that is used to train and test the ML model. Element design analysis is required as a prerequisite to
remove redundant features and establish structure-attribute relationships. After the input feature
set is fixed, grid search technology and 5-fold CV are utilized to select the best descriptor. The
network is subsequently
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Figure 17. a) Schematic diagram of molecular graph in the calculation of autocorrelation and
deltametric functions. Reproduced with permission.®** Copyright 2020, RSC Publications. b) The
schematic diagram of designing lead-free HOIP based on ML combined with DFT. The blue box

represents the process of screening through the ML algorithm from the HOIP database. The green

box indicates the use of DFT to calculate the electronic performance and stability evaluation of the

candidate. Reproduced with permission.[36] Copyright 2018, Springer Nature Publications.

trained to predict the electronic performance and stability of the HOIPs. In this work, the 14 most

important descriptors were sorted and selected to collectively describe HOIPs in the chemical space.

These descriptors included structural features and elemental properties of A-, B-, and X-site ions.

Based on linear correlations for features analysis, redundant or irrelevant features could improve
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the accuracy and efficiency of the ML model and achieve accurate predictions based on relatively
small training datasets. This work successfully predicted the bandgaps of thousands of HOIPs by
using the trained ML model. The evaluation of the bridging and transfer process of characteristic
information represented by the descriptor is key to successful ML model predictions. In the process
of information transfer, it is also essential to provide more accurate descriptors without losing the
original information characteristics. Some descriptors, though assigned a large weight, do not
contribute to reliable model predictions (i.e. the phenomenon of over-egging the pudding).

5.1.3. Properties of Ideal Descriptors

Descriptors that can train predictive models to adapt to target attributes are highly desirable.
Figure 18a presents a representative graphical summary of the workflow of the descriptor design,
which is usually applicable throughout the development of a novel strategy. This summary
represents a general processing method suitable for any application involving the main dataset,
descriptor, training model, etc. Traditional methods rely on chemical intuition to determine the key
descriptors for a specific application and develop a relationship which best represents observed
material properties. It is more desirable, however, to automate the generation of interesting
chemical insights through a rational design approach which does not rely on chemical intuition.
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Figure 18. a) The relationship between data, descriptors, and models. Reproduced with
permission.®® Copyright 2017, ACS Publications. It involves the following steps: preprocessing, data
analysis, fingerprinting descriptors, statistical model or linear/nonlinear model building and

validations, and insights from a subject matter expert. b) Heat map of the Pearson correlation
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coefficient matrix among the selected features for DMSCs. ¢) Comparison of DFT-computed AGgy«
values with those predicted by GBR algorithm. d) Feature importance based on the Mean Impact
Value (MIV). b-d) Reproduced with permission.®’* Copyright 2019, ACS Publications.

Regression fitting, correlation coefficient statistics, dataset partitioning, the establishment of
new functions, and other methods have been widely applied to locate and rank ideal descriptors
which correspond to the most relevant performance features. Meredig and Wolverton®”
introduced a "cluster ranking model" (CRM) framework to identify unique descriptors that can
predict the properties of new dopants. They used the X-means algorithm to cluster various dopants
together, followed by regression fitting to rank the descriptors, ultimately utilizing the unique
descriptors to model the behavior within each cluster. The existence of clusters in various sample
datasets (four dopant clusters were present in this study) improves the effectiveness of the method.
Given that all descriptors are ranked by using a regression model, they must necessarily fit to the
prediction model of the target attribute. Selected descriptors are those that can best predict the
target attributes; they are not necessarily indicative of the phenomenological mechanism. Ward et
al.®¥ generated an extensible set of attributes that can be used for materials with any number of
constituent elements. This set of attributes can broadly capture enough diverse physical/chemical
properties of materials to form the basis of accurate predictive models. The group used a total of
145 attribute sets, including stoichiometric attributes, elemental property statistics, electronic
structure attributes, and ionic compound attributes. They proved that these attributes are sufficient
for describing various properties, while also proposing a novel method to divide the dataset into
groups of similar materials to improve prediction accuracy. This work demonstrated the applicability
of this novel method to the prediction of various physical properties of crystalline and amorphous
materials. Zhu et al.F’" employed DFT calculations, with the assistance of ML, to screen highly
efficient dual-metal-site catalysts (DMSCs) for oxygen reduction reaction (ORR). They evaluated the
correlation coefficient for selected DMSC features, as shown in Figure 18b. The performance of the
ML model can be significantly improved by selecting features that are independent from one
another (i.e., not redundant), based on an analysis of linear correlations of several features. The
speed at which ML-based approaches can be used to arrive at valuable material property insights,
including the identification of descriptors, has significantly improved in recent years. To obtain
accurate descriptor relevant to the catalytic activity of DMSC, this work reported the seven
characteristics which were deemed most relevant to the catalytic performance of DMSCs in terms of
Mean Impact Value (MIV) (Figure 18d). These characteristics include: the electron affinity between
two metal atoms; Van der Waals radius; Pauling electronegativity difference; the product of
ionization energy and the distance between two metal atoms; the relationship between Pauling
electronegativity and atomic distance.

5.2. Categories of Descriptors

In recent years, a large number of articles have demonstrated the importance of material
descriptors in accelerating the discovery and design of novel materials. When identifying descriptors
which are compatible with ML methods for material discovery, the initial set of descriptors should
generally be broad/diverse. Both the choice of fingerprint descriptors and the methods employed to

discover/estimate unique mappings are critical, especially when dealing with small datasets. From
This article is protected by copyright. All rights reserved.
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the perspective of ML, fingerprint descriptors are a subset (or offspring) of a superset of parent
descriptors; they are unique to attributes and materials. The dimensionality or cardinality of the
descriptor should be kept as low as possible, while the original descriptor space should be sufficient.
This mathematical mapping is also unique to the construction model that maps fingerprint
descriptors to attributes or KPIs®®. The key descriptors used in recent studies for training models in
materials science are summarized in Table 2 and are detailed further in subsequent sections.

Table 2. Key Descriptors used for the model training in material science.

Notation Description Class Ref
Atomic Number Constitutional 1351-356]
Atomic Weight Constitutional [353, 356, 357]
Numbers of and orbital electron Constitutional [36, 352, 355]
Numbers of and valence electron Constitutional [352, 353, 355-357] [36]

MN Mendeleev number Constitutional [356, 357]
Melting Temperature [356, 357]
Bond Number Constitutional (358]
Space Group Number Constitutional 1356, 357]

CN the number of atoms of that element coordinated Constitutional [20, 351, 354, 359]
Pauling electronegativity Quantum chemical [351] [36, 356]
[190, 352, 354, 355, 357]
The median monometallic adsorption energy Quantum chemical 1351]
IC lonic Charge Quantum chemical 136]
EA Electron Affinity Quantum chemical [36, 50, 352, 355, 361, 362]
IE lonization Energy Quantum chemical [36, 50, 352, 361-363]
HOMO The highest occupied molecular orbital Quantum chemical [36, 356, 363]
LUMO The lowest unoccupied molecular orbital Quantum chemical [36, 356, 363]
Bandgap Energy Quantum chemical 356, 357, 360, 364]
WF Work Function Quantum chemical [50, 361]
Binding Energy Quantum chemical [20, 50, 190, 363, 365-368]
Adsorption Energy Quantum chemical [11, 20, 50, 190, 353, 355, 358, 359, 365-
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DOS

PDOS

Local Pauling electronegativity

Cohesive energy

Density of states

Partial Density of states

Bader Charge Transfer

Fermi Energy

Gibbs Free Energy

Surface Energy Density

Total energy of surface slab obtained

Bulk energy per atom

Over potential

Current density

Activation energy

Transition-state energy

Atomic nearest-neighbor distances

Optical gap energy

Width of a band

Centre of a band

Skewness of a band

Kurtosis of a band

Filling of a band

Spatial Extent of -orbitals

Adsorbate-metal coupling matrix element

Metal -metal coupling matrix element

Partial distribution function

Polarizability

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Quantum chemical

Electrostatic

Electrostatic

Electrostatic

Electrostatic

Electrostatic

Electrostatic

Electrostatic

Electrostatic

Geometric

Electrostatic

WILEY-VCH

369]

[50, 361]
[355]

[370, 371]
[358]

[355]

[50, 370, 371]

[12, 353, 355, 358]

[12]

[12]

[12, 360, 370, 376]
[376]

[190, 354, 370]
[190, 354, 363, 370]
[190]

[362, 363]

[50, 365]

[50, 355, 365, 369, 370]
[50, 365]

[50, 365]

[50, 365]

[50, 361]

[50, 361, 370]

[370]

[359]

[36, 363]
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First ionization potential

Magnetic Moment

Bond Length Position

Atomic Identity

Optical Transmittance

Lattice parameters

Molar Ratio

Dipole moment

Atomic Radius

Rotational angles

Distance between two layers

Bond Length

Bond Angle

Distance to alloy atoms

Estimation for the interatomic distance using Vegard’s
law

Covalent Radius

Specific Volume

Van der Waals radii

Tolerance Factor

Octahedral Factor

Iron Radii

Sum of the of and orbital radii

Atomic Radius

Cutoff radius

Bond distance

Atom pair distance

Electrostatic

Electrostatic

Geometric

Geometric

Geometric

Electrostatic

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric

Geometric
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[36, 352, 355]
[357]

[358]

[354]

[362]

[355]

[355]

[363]

[50, 353, 355, 361]
[360]

[360]

[353, 355, 358, 360]
[353]

[359]

[359)

[354, 356, 357)
356, 357]

1352

[36]

[36]

[36]

[36]

[50, 353, 355, 361]
[11,377)

[11, 354]

[11]
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5.2.1. Constitutional Descriptors

Constitutional descriptors are the simplest and most commonly used descriptors in materials
science. They contain compositional information about materials without their geometric or
topological information. Hence, constitutional descriptors are also known as OD or 1D descriptors.
The most widely used constitutional descriptors are the numbers of atoms, bonds, electrons, and
rings; molecular weight; and atomic composition indices. Constitutional descriptors are not sensitive
to conformational changes and are easily calculated. Constitutional descriptors, which are easy to
obtain, often appears as part of combined descriptors. Despite their simplicty, such descriptors can

convey essential information, generally in combination with other classes of descriptors.[lo' 18]

5.2.2. Geometric Descriptors

Geometric descriptors, also known as 3D descriptors, are molecular representations that
convey structural information about the material. Common geometric descriptors include the 3D-
Wiener index, gravitational indices, molecular surface area, molecular volume, radial distribution
function, and WHIM descriptors. Topographic indices can be regarded as a special subset of
geometric descriptors. For instance, Ruck et alld proposed a ML framework that can accurately
predict strain, while rationalizing the impact of strain on a Pt core-shell nano-catalyst’s oxygen
reduction activity. This work predicted the strain coordination on core-shell nanoparticle atoms by
applying geometric descriptors to ML, including coordination number, partial distribution function,
distance to alloy atoms, and interatomic distance (from Vegard's law). The generalized coordination
number under strain was the basis for the linear relationship between the strain and the adsorption
energy of *OH and *OOH. The formulation of this descriptor enabled the identification of the most
favorable active site on the core-shell nanoparticles. The novel generalized strain coordination
number descriptor proposed in this work furnished accurate predictions of strain within 3%. Zhang

et al. !

assess the local structural environment in the vicinity of a selected adsorption site on an
amorphous Ni,P catalyst. The bond distance between each sub-pair from the seven designated
atoms was selected as the primary indicator. In this manner, the adsorption energy can be
characterized more accurately by first specifying the surface structure attributes. In addition, use of
the bond distance within the specified local structure as a feature may implicitly ignore the influence
of other chemical environments. In this study, a chemical environment representation method
based on the symmetry function of the atomic center is also presented, which is suitable for periodic
systems and is independent of bonding properties. The symmetric function transforms Cartesian
coordinates into a set of symmetric functions that describe the chemical environment of atoms; this

approach has been proven to successfully fit the potential energy surface (PES).

5.2.3. Quantum Chemical Descriptors

Quantum chemical descriptors are widely used in the screening of catalysts, and are commonly
sub-divided into energy- and electron-based descriptors. Energy descriptors include common system
total energy, electron energy, bandgap, valence band top (VBM), conduction band bottom (CBM), d-
band center energy, formation energy, binding energy, Gibbs free energy, highest occupied
molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and other descriptors.
Electronic descriptors typically include electron affinity (EA), electron density, localization, charge
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transfer and distribution, and other descriptors. Standard first-principles calculations based on DFT
can be used to generate the aforementioned quantum chemical descriptors. The acquisition of such
descriptors is usually combined with DFT calculations (or extracted from existing databases); in this
manner, new material properties are discovered through a synergy between quantum chemistry and
ML.

DFT-based calculations of metal surface adsorption and reaction are now mature enough to
contribute to our understanding of the complexity of the catalytic surface and the adsorbate. Such
calculations are also accurate enough to characterize the bonding mechanism, determine the
reaction path, and compare different systems relevant to heterogeneous catalysis. Though
experimentation is irreplaceable, such calculations may offer a simple (or, in some cases, the only)
approach to assessing potential catalyst properties. ®’® Peterson et al. ®® compared the binding
energy trends of intermediates during the electrochemical reduction of CO, and proposed the novel
“active volcano" descriptor for the first time. This descriptor effectively describes experimentally
observed trends in transition metal catalysts, including offering specific interpretations as to the
dominance of copper as an electrocatalyst. This study also proposes a new strategy for discovering
catalysts that can operate at reduced overpotentials. Extending classic theoretical calculations
introduces avenues for the accelerated discovery of high-performance electrocatalysts. Owing to the
significant heterogeneity of exposed active sites and the variations in the crystal structure with
composition, the exposed surface may be different from that of normal single metal nanoparticles;
this surface heterogeneity must be captured by further DFT calculations. Traditional methods, which
are more suited to single-metal catalyst, cannot effectively handle this complexity. This work
systematically considered all active sites to address this problem. The number of DFT calculations,
though large, is feasible to implement for a small number of composites. Ulissi et al.2% implemented
a neural network potential fitted with DFT to greatly reduce the thousands of DFT calculations which
would otherwise have been required to obtain the relaxation adsorption energy of each adsorption
site on each surface. However, this method does not consider surface segregation or apparent
disorder of crystal components, demonstrating a discrepancy with respect to the real experimental
environment. Artrith et al. 2% constructed an ML model to predict the transition state energy from
the thermochemical reaction energy (model 1). The descriptors selected for model 1 included
geometric descriptors, chemical species, binding energies, and reaction energies. A second ML
model (model 2) was then trained to capture the behavior of catalytic activity and selectivity based
on all transition state energies. Descriptors selected for model 2 included the results and descriptors
from model 1 (shown in Figure 19a). Both models could directly predict catalytic activity/selectivity
from chemical properties and attributes which can be determined from high-throughput DFT
calculations. Integrating a large DFT calculation datasets into the trained ML model (applying a
simple linear regression model between experimental catalytic activity and selectivity) the key C-C
bond scission reaction step involved in the ethanol reforming reaction was determined. Ma et al.2!
determined the reactivity descriptors that characterize effectiveness of alloy electrocatalysts in
selectively converting CO, to C, species. Based on the reactive descriptor (ie CO adsorption energy),
the theoretical limits of the potentials of essential CO, electroreduction reaction steps (along the C;
and C, paths) were calculated. Inspired by d-band chemisorption theory, input features pertaining to
bimetallic surfaces included characteristics of the d-states distribution. Physical constants related to
the host metal were treated as secondary characteristics to better describe the tendency of
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chemical bonding on a series of metal surfaces. Having developed a comprehensive descriptor-based
catalyst design method based on ML, the study has identified a promising 001-terminated Cu
polymetal, which possesses a relatively low overpotential and high efficiency/selectivity for the
reduction of CO, to C,. The predicted rate obtained by combining DFT calculations with rate theory
was found to be in good agreement with available experimental data pertaining to the formation of
various products on several metal electrodes and within the potential range applied by J. et al.®*! A
two-parameter is proposed in Figure 19b. This pre-screening tool is composed of various H-atom
adsorption energies (at the top site) and CO adsorption energies to identify the most promising
CO,RR catalyst candidates. The tool can also predict whether the electroreduction product is a
hydrocarbon/alcohol, H,, CO, or HCOO--. However, to predict the selectivity of a given product, the
activation energy in each fundamental step needs to be calculated to evaluate the relationship
between the reaction rate and the applied potential. The insights gained from such calculations can
be used to develop standards to identify new and improved catalysts for electrochemical reduction
of CO,. Bai et al. ®* used ML to build a model that can correlate four attributes with hydrogen
evolution rates. This was achieved by selecting ionization potential (IP, approximated by the energy
of the highest occupied molecular orbital (HOMO)), electron affinity (EA, approximated by the
energy of the lowest unoccupied molecular orbital (LUMO)), optical gap, and experimentally
measured transmittance as the four descriptors (Figures 19c and d). The model was evaluated by
using the LOOCV, indicating that the test data are applicable to copolymers that were not considered
during training. The results indicated that the correlation between the HER of the polymer and each
of the individual properties is relatively weak supporting the view that the photocatalytic activity is a
composite property that cannot be encapsulated by only a few descriptors. The electrochemical
reduction of CO, often generates a variety of products determined by the reaction conditions and
catalyst performance, including some that form valuable chemical substances (such as hydrocarbons

and alcohols). Bagger et al. 5@

calculated key binding energies for non-coupled intermediates,- AEy+,
AEcoons, AEcox, and AEcuso+ to identify the “genes” of CO, products. The extensive exploration of
quantum chemistry descriptors makes the theory (in conjunction with ML approaches) better than
experimental designs, considerably reducing the costs associated with experimentation. The
identification of novel quantum chemistry descriptors will gradually increase our understanding of

catalytic phenomena.
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Figure 19. a) Flowchart of the combined ML approach consisting of two ML models. Reproduced
with permission.fﬂl Copyright 2020, ACS Publications. b) Two-parameter descriptor of the
electrocatalytic activity of metal electrodes. Reproduced with permission.[am Copyright 2018, ACS
Publications. c) Properties used to train the gradient-boosting model, where IP, EA, and optical gap
are calculated, and transmittance is measured experimentally. d) Experimentally observed hydrogen
evolution rates vs hydrogen evolution rates predicted using a gradient-boosted trees ML model. The
model is evaluated by leave-one-out cross-validation, meaning the data shown are for co-polymers
not considered during training. c-d) Reproduced with permission.*® Copyright 2019, ACS
Publications.

5.2.4. Electronic Descriptors

The categories of electronic descriptors often overlap with quantum chemical descriptors;
classification of electronic descriptors, however, tend to be more detailed. They primarily include
descriptors pertaining to atomic charges in the material, such as charge polarization, positive and
negative of charges, number of charges, and electron density. The selection of electronic descriptors
often also involves exploring the physical properties metals and alloys, transition metals, and metal
atom doping materials. Electronic descriptors are most suited to contexts in which electronic
transport influences material properties. Wexler et al. measured the relative importance of various
descriptors in describing the HER activity of non-metal-doped N,P(0001) surfaces *°!. They compiled
bond lengths, bond angles, charges, mass numbers, atomic weights, and atomic radii as geometry
descriptors; other geometric parameters for pertaining to the DFT-relaxed structure were adopted
as structural and charge descriptors. Key to this approach is defining the normalization ability of the
descriptor based on AGH data. Figure 20b demonstrates the top 10 descriptors contained in the
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dataset. The first two descriptors are: the selected Ni-Ni bond length (constituent atoms are
distinguished by their respective distance from the first doping site; see Figure 20); the average Ni-Ni
bond length. Among the 10 descriptors exhibiting the highest correlation, seven are geometric
descriptors pertaining to the shape of the Ni3 hollow site. Another important characteristic is the
standard deviation of the dopant charge. This study also utilized atomic charge as a descriptor,
finding that its correlation with measured properties is relatively poor. This indicates that the
electronic partition metric may not be important for the analysis of HER performance. This work
highlighted unnecessary/potentially redundant descriptors which do not directly affect the bonding;
in addition, this property change is already implicit in the Ni-P bond length descriptor. Sun et al.'*?
successfully introduced metal atom Bader charge transfer, metal d-band center, and d-orbital
electron number below the Fermi energy as part of the DFT-calculated descriptors to investigate the
hydrogen evolution performance of MXene and MBenes, both doped and not doped with single
atoms. Electrostatic descriptor can be interpreted as a type of cross-descriptor involving both
physical and chemical properties of materials; they are often indispensable to ML-based frameworks
to model material properties
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Figure 20. a) AGH predicted by RRFs vs DFT. b) Relative importance of descriptors calculated from
RRF model. Only the top 10 features are shown. c) Definition of descriptors in b). We label the three
Ni atoms a, B, and y based on their distance from the first doping site. d) Effect of average Ni—Ni
bond length on AG,, as induced by chemical pressure and mechanical pressure. a-d) Reproduced with
permission.’ Copyright 2018, ACS Publications.

5.2.5. Combinational Descriptors

Recent trends have focused on the selection and development of combinational descriptors.
Because the various classes of descriptors are complex and numerous, combined descriptors can
often transcend this complexity, demonstrating better expression of material properties than

1."® incorporated DFT data into an ML workflow to

descriptors of single type in of the. Zhong, et a
predict CO adsorption energies for each adsorption site enumerated in Figure 21. DFT data for CO
adsorption energies were saved in a database. Each element present in the bulk structure (the list of
which originated from the Materials Project database) was described with a vector of four numbers:
atomic number (Z), Pauling electronegativity (x), number of atoms of the element coordinated with
the CO molecule (CN) as determined by a cut-off radius of 5 A and a Voronoi polyhedral angle cutoff
tolerance of 0.8, and median monometallic adsorption energy of CO on that element (AE), as

extracted from the database of CO adsorption energies.
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The hydrogen evolution performance of MXenes and MBenes (doped or not doped with single
atoms) was systematically investigated Sun et al.**?! based on a combined DFT and ML framework.
Correlation analysis was employed to reduce the number of descriptors employed. Remaining
descriptors (various element-specific attributes, structural energy, and lattice parameters) were
obtained with relative ease and uniquely characterize corresponding physical and chemical
properties. This work applied the following DFT-calculated descriptors: cohesive energies of MXenes
and MBenes; Bader charge transfer of the metal atom, doping atom and C/N/B; d-band center of the
metal; d-orbital electron number below Fermi energy; bond length between the metal/doping atom
and the nearest metal of the same layer; bond length between the metal/doping atom and the
nearest boron; molar ratio of metal; C/N/B lattice parameters. Elemental descriptors comprised the
atomic mass, period number, group number, atomic radius, valence electron, electronegativity,
electron affinity, first ionization energies of the metal, and doping atom. Ge et al.®® utilized four
combinational descriptors: cosine of the rotation angle, distance between the two secondary parts,
ratio of the average bond length, and bandgap of MX,. These newly generated descriptor PL can
encapsulate the electrocatalytic performance of NiOER and are effective for both HER and OER.

Friederich, P., et al.**¥

utilized full autocorrelation (FA) functions to combine features and overcome
descriptor complexity. Combining descriptors will encapsulate a larger number material properties
early on in the ML/DFT workflows, improving its accuracy and efficiency and analyzing ever more

complex systems.
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Figure 21. a) two-dimensional activity volcano plot for CO, reduction. TOF, turnover frequency. b) A
two-dimensional selectivity volcano plot for CO, reduction. CO and H adsorption energies in panels a
and b were calculated using DFT. Yellow data points are average adsorption energies of
monometallics; green data points are average adsorption energies of copper alloys; and magenta
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data points are average, low-coverage adsorption energies of Cu-Al surfaces. c) t-SNE19
representation of approximately 4,000 adsorption sites on which we performed DFT calculations
with Cu-containing alloys. The Cu-Al clusters are labelled numerically. d) Representative coordination
sites for each of the clusters labeled in the t-SNE diagram. Each site archetype is labelled by the
stoichiometric balance of the surface, that is, Al-heavy, Cu-heavy or balanced, and the binding site of
the surface. a-d) Reproduced with permission.™® Copyright 2020, Springer Nature Publications.

5.3. Descriptor-Related Tools

Complementary tools have gradually been developed over the past year to support the
application of advanced descriptors. In this section, we will introduce recent open-source descriptor-
related tools which are implemented with Python infrastructure and API-based frameworks for data
sharing. Such tools are able to rapidly implement the complicated process of managing, transmitting,
sharing and sending all ML relevant to a particular materials science problem.

5.3.1. Programming Packages and Codes

In this subsection, we summarize the following representative programming packages and
codes: Fixed-Size Numeric Descriptor Generator (DScribe),”®? Sure Independence Screening and
Sparsifying Operator (SISSO),? and LASSO.?®¥! These packages are widely used in materials science
to generate appropriate ML descriptors.

DScribe

The application of ML in materials science is usually hindered by the lack of data conversion
processing prior to training the model. Such data is usually converted into a specific descriptor,
which is a key step in building an ML model for attribute prediction in materials science. DScribe is a

(82 s a software package for ML that

convenient bridge between data and descriptors. DScribe
provides popular feature transformations ("descriptors") for atomic material simulation. DScribe
accelerates the application of ML in atomic property prediction by providing user-friendly, ready-
made descriptors. Currently, the DScribe software package contains descriptors that can be
represented in vector form and do not depend on any specific learning model. By decoupling
descriptor creation from ML models, users can experiment with various descriptor/model
combinations in parallel, and can directly apply emerging learning models to existing data. The
software package currently contains implementations of the Coulomb matrix, Ewald sum matrix,
sine matrix, multi-body tensor representation (MBTR), atomic center symmetry function (ACSF), and
atomic position smooth overlap (SOAP). The library is based on the python interface, with
computationally intensive routines written in C or C++. Source code, tutorials and documentation
can be obtained online. These introductory materials use the following examples to illustrate use
cases of the package: the prediction of solid formation energies; the prediction of the atom ion
charges in organic molecules.

SISSO
The lack of a reliable method for identifying descriptors is one of the key factors hindering the
development of effective materials. The SISSO?® is a new systematic method for discovering
material property descriptors in the framework of dimensionality reduction based on compressed
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sensing. The SISSO solves the large and relevant feature space and converges to the best solution
based on feature combinations most suited to the target material characteristics. In addition, the
SISSO requires only a small amount of training to obtain stable results. This method is based on the
guantitative prediction of the ground state enthalpy of octal binary materials (using ab initio data)
and is applied in the illustrative example (with experimental data) to predict the classification of
binary metals/insulators. In both cases, an accurate predictive model can be generated. The
predictive ability of the metal-insulator classification model has been validated on test data and it
rediscovers the transition from insulator to metal caused by the available pressure and allows the
prediction of immature transition candidates, which has been laid for experimental verification of
the foundation. Compared with previous model recognition methods, the SISSO can become an
effective tool for automatic material development.

LASSO

The LASSOP®! typically penalizes high weights to avoid the occurrence of overfitting, while
adjusting/reducing the coefficients of the regression model to finally generate the most reasonable
number of optimal descriptor KPls. To reduce the computational effort of employing DFT to calculate
a large amount of combined data, the LASSO identifies only those physical descriptors that have a
significant impact on adsorption performance. Ge et al.?®" generated 257,703 possible descriptors
through calculations. Based on these descriptors, the LASSO fits an equation that best describes the
linear relationship. This process was repeated 50 times, each instance standardizing the remaining
90% of the training data prior to the LASSO step. By evaluating the predicted error characteristics of
all possible descriptors, we considered the rotation angle of the TMDC heterojunction as a key
descriptor describing catalytic performance. Four variables were used: cosine of the rotation angle,
distance between the two secondary parts, ratio of the average bond length, and bandgap of MX,.
The new generated descriptor PL can effectively capture the electrocatalytic performance of NiOER,
and is effective for both HER and OER.

5.3.2. Descriptor-Related Software

In this subsection, representative descriptor-related software (Open-Source Cheminformatics
Software (RDKit), Commercial Descriptor Generation Software (Dragon), Open-Source Descriptor
Generation Software (PaDEL-Descriptor)®®¥) is briefly discussed.

Open-Source Cheminformatics Software (RDKit)

RDKit (RDKit: Open-Source Cheminformatics Software. https://www.rdkit.org. Accessed 07 Aug
2020) is an open-source toolkit for chemoinformatics, based on the 2D and 3D molecular
manipulation of compounds, using ML methods for compound descriptor generation, fingerprint
generation, compound structure similarity calculation, 2D and 3D molecular display, etc. RDKt is a
very powerful open-source chemical information python toolkit. Its core data structure and
algorithms are implemented in C++. It enables a large number of 2D/3D calculation operations on
chemical molecules to generate molecular descriptors for ML. Many of the latest ML software
packages are based on the use of RDKit’s open-source tool creation.

Descriptors in RDKit contains properties such as the number of benzene rings, the number of
functional groups, and LogP, which correspond to various properties reflected in the structure of the

This article is protected by copyright. All rights reserved.

68



WILEY-VCH

molecule. It follows that a combined descriptor may also be proposed which can represent all the
partial structures of the molecule.

Commercial Descriptor Generation Software (Dragon)

Dragon (https://chm.kode-solutions.net/products_dragon.php) is the most widely used
application for molecular descriptor calculation. Its new version, Dragon 7.0, provides an improved
user interface, new descriptors, and additional features such as fingerprint calculation and support
for disconnected structures. Dragon can evaluate 5270 molecular descriptors, making it compatible
with most theoretical methods. The list of descriptors includes: the simplest atom type, functional
group, and fragment number; topology and geometric descriptors; three-dimensional descriptors;
multiple attribute estimates (such as logP); drugs and lead-like alarms (such as Lipinski's alarm).
Dragon has established an easy-to-operate graphical user interface and command line interface,
which is very useful for batch processing of large amounts of data. Dragon now also enables the
calculation of hash molecular fingerprints, which can completely customize several parameters and
generate all molecular fragments used in the fingerprint process. The graphical user interface also
includes more advanced tools to analyze the descriptors following data processing (extended
univariate statistics, pairwise correlation, principal component analysis) and import user-defined
variables (such as available experimental values) to perform the merge set operation. Starting from
version 7.0, Dragon allows the calculation of descriptors for molecules with disconnected structures
(such as salts, ionic liquids), thereby providing various theoretical methods to extend the descriptor
algorithms for such structures.

Open-Source Descriptor Generation Software (PaDEL-Descriptor)
PaDEL—Descriptong‘”
software can calculate 797 descriptors (including 663 1D, 2D descriptors and 134 3D descriptors) and

is software for calculating molecular descriptors and fingerprints. The

10 fingerprints. These evaluations of these descriptors and fingerprints is based on the Chemistry
Development Kit. Descriptors and fingerprints include atomic type electron topological state
descriptors, McGowan volume, molecular linear free energy relationship descriptors, ring numbers,
counts of chemical substructures identified by Laggner, binary fingerprints, and Klekota Count of
chemical substructures recognized by Roth. The PaDEL-Descriptor is developed in Java and consists
of both library and interface components. The library component allows easy integration with
guantitative structure-activity relationship software to furnish descriptor calculation functions, while
the interface component allows it to be used as an independent software. The software implements
a Master/Worker framework to speed up the calculation of molecular descriptors by utilizing
multiple CPU cores in parallel. Therefore, this tool offers many key advantages relative to other
independent software for the calculation of molecular descriptor. It is open source with both a
graphical user interface and command line interface. It can run on all major platforms (Windows,
Linux, MacOS) and supports more than 90 different molecular file formats.

6. Applications of Data-Driven Innovative Materials

The success of a large number of ML applications in materials science has preliminarily
demonstrated the capability of data-driven approaches in the discovery of innovative materials. By
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appropriately integrating ML techniques, material databases, and molecular descriptors, material
properties can be efficiently and accurately predicted to support the focused design of innovative
materials. Such approaches represent a synergy between materials science, computer science, and
mathematics. In this section, recent advances in the applications of such synergies to the

(513, 381 381 apvironmental

[277]

development of materials for energy conversion and storage,
decontamination,™* (16] (386]
glasses,**

corresponding performance are evaluated with respect to the specific material-focused question

flexible electronics, optoelectronics, superconductors, metallic

and magnet materials are investigated. The data-driven strategies, ML techniques, and

being addressed in each application. In addition, cases that employ ML techniques to implement
data augmentation and feature generation are also discussed.?

An overview of the applications of data-driven, innovative material discovery is represented in
Table 3. These examples will be discussed in greater detail in the subsequent sections. It is striking
that a number of the data-driven techniques described in the previous sections have not yet found
application in innovative material discovery. A discussion on such possibilities will also be provided in
greater detail, followed by an overall future outlook.
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PCE:
RMSE
and
MAPE
of
1.107%
and
21.0%,
respecti

vely.
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PCE:
RMSE
of
1.33%

*Voc:
RMSE
of
0.1037

oJsc:
RMSE
of
3.0464
mA/c

[4
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*Voc:
R? of
0.92

oJsc: R?
0f 0.90

¢|QE:
R? of
0.91

[5
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*RMSE
and R?
of
0.283
eV and
0.957
for
SVR-
RBF,
respect
ively.

eAccura
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o AGoH:
RMSE
and R?
of
0.036
eV and
0.993,
respect

ively.
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