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Abstract 

Owing to the rapid developments to improve the accuracy and efficiency of both experimental 

and computational investigative methodologies, the massive amounts of data generated have led 

the field of materials science into the fourth paradigm of data-driven scientific research. This 

transition requires the development of authoritative and up-to-date frameworks for data-driven 

approaches for material innovation. This review presents a critical discussion on the current 

advances in the data-driven discovery of materials with a focus on frameworks, machine-learning 

algorithms, material-specific databases, descriptors, and targeted applications in the field of 

inorganic materials. Frameworks for rationalizing data-driven material innovation are described, and 

a critical review of essential sub-disciplines is presented, including (i) advanced data-intensive 

strategies and machine-learning algorithms; (ii) material databases and related tools and platforms 
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for data generation and management; (iii) commonly used molecular descriptors used in data-driven 

processes. Furthermore, an in-depth discussion on the broad applications of material innovation, 

such as energy conversion and storage, environmental decontamination, flexible electronics, 

optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how 

these sub-disciplines (with insights into the synergy of materials science, computational tools, and 

mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in 

data-driven material innovation are highlighted.  
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1. Introduction  

Data-driven innovation has transformed all aspects of our life. It typically involves the invention 

of novel products and systems based on the knowledge extracted from data by using advanced 

analysis tools. The adoption of data-driven approaches has led to data-based decision-making 

innovations in commerce and technology, such as autonomous vehicles, MuZero, and Alphafold 

(artificial intelligence for mastering games and predicting protein folding, respectively).[1-4] In 

particular, the massive amounts of data generated by employing both computational and 

experimental methods, in combination with advanced machine-learning (ML) techniques, have led 

the field of materials science into the fourth paradigm of scientific research (Figure 1).[5] This data-

driven paradigm has guided the development of the Material Genome Initiative (MGI), which has 

resulted in the advancement of experimental tools, computational techniques, and big-data 

analysis.[6, 7] The transformation from the trial-and-error to the data-driven paradigm requires a 

combination of authoritative and updated knowledge from the three domains of mathematics and 

statistics, computer science, and materials science.[8] The advancement and appropriate integration 

of these three domains will contribute to material data generation and analysis, uncertainty 

characterization, and efficient exploration of structure-property relationships, providing new 

knowledge and accelerating the discovery of innovative materials. 

Innovative materials are essential and indispensable to breakthroughs in numerous 

applications, from energy conversion and storage to flexible electronics and optoelectronics.[9-16] For 

instance, novel photovoltaic materials that are cheap, stable, and environmentally friendly, easy to 

synthesize, and exhibit a high power conversion efficiency are being investigated.[17] Moreover, 

researchers are identifying highly active electrocatalysts that are selective towards the reduction of 

carbon dioxide.[18] The development of effective data-driven approaches is essential to meet the 

rapidly growing demand for innovative materials with improved and robust performance.[19, 20] A 

basic data-driven framework involves three fundamental stages: employment of data-intensive 
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strategies and ML algorithms,[21, 22] development of a comprehensive database and data generation 

approaches,[23, 24] and construction of descriptors that can link data-intensive and experimental 

strategies.[25, 26] The main objective is the rapid and efficient discovery of high-performance 

innovative materials by applying data-driven approaches. To achieve this goal, the fundamental 

stages of the data-driven framework must be utilized and integrated highlight and the relationships 

between a material’s composition, structure, process, and properties implicit in the data must be 

examined. 

Data-driven approaches for discovering innovative materials have certain advantages: (1) they 

outperform conventional trial-and-error approaches in terms of efficiency and accuracy;[27-29] (2) 

they can rapidly learn and extract the complex and implicit inner correlations and knowledge from 

the massive amounts of material data;[30-33] (3) they can achieve tailored material design based on 

desired functionalities because of their ability to obtain composition-structure-process-property 

relations;[27, 34] (4) they use ML models and descriptors to utilize complex features such as electron 

density and molecular graphs for improving the performance of combinatorial generalization and 

relational reasoning.[25, 35] Because of these advantages, many data-driven approaches exhibit high 

accuracy and efficiency in the prediction of properties and the exploration of property 

relationships.[36] Furthermore, the potential of dynamic and iterative meta-optimization data-driven 

processes, which represent an active learning loop that incorporates the fundamental stages, has 

been shown in some recent studies.[18, 37] Thus, the recent advances in data-driven innovative 

material discovery must be reviewed. 

Comprehensive reviews have detailed the applicability of data-driven approaches to energy 

materials[9, 30, 38] structural materials,[39], polymeric materials,[40] and porous materials,[32] with the 

help of high-throughput approaches such as density functional theory (DFT) and ML.[5] The 

applications of ML in synthetic chemistry[41] and the prediction of material properties[29] have also 

been published. However, the focus of these reviews has typically been on a particular type of 
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material or ML technique; the interdependence between the fundamental stages, including ML 

algorithms, material-related databases, key descriptors, and their practical applications, of a data-

driven framework for material innovation has not been reviewed. The recent advancements of each 

fundamental stage have also necessitated the development of the relationship between these 

stages, such as between ML algorithms for data augmentation and descriptor generation. Thus, a 

timely review of data-driven material innovation and the emerging broad applications, including in 

energy conversion and storage, environmental decontamination, flexible electronics, 

optoelectronics, superconductors, metallic glasses, and magnetic materials, is expected to promote 

further research and development in academia and industry.  

This review presents a summary of the recent advances in data-driven discovery of materials 

and their innovative applications. First, we introduce the various components of the conceptual 

framework, including the important stages that guide the data-driven process. Next, we discuss 

advanced data-intensive strategies and ML algorithms and review material databases and relevant 

programming tools and platforms used for high-throughput computations. Then, we critically review 

the descriptors used in the discovery of innovative materials. We present a critical discussion on how 

data-driven processes are applied to material innovation. Finally, we conclude by providing a 

perspective on the opportunities and challenges in the field.  
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Figure 1. The four paradigms of science evolved along with time, including empirical science, 

theoretical science, computational science and data-driven science. 

 

2. Frameworks in Data-Driven Innovative Materials Discovery  

The development of the data-driven framework for material innovation has been extensively 

studied by using ML algorithms,[30] material databases,[23, 24, 42] and molecular descriptors.[33, 43] A 

classical data-driven framework for innovative material discovery typically consists of five 

fundamental stages: goal identification, data processing, feature engineering, ML and analysis, and 

application (Figure 2).[44] This section describes commonly used frameworks for data-driven 

processes, including direct design,[27, 45] inverse design,[27, 34] and active learning.[18, 27, 37] Critical 

stages such as data processing, feature engineering, and ML model training facilitate the utilization 

and processing of material data and molecular descriptors and the effective implementation of ML 

algorithms.[46, 47]  
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Figure 2. The schematic of a ML workflow in the data-driven innovative material discovery process. 

Reproduced with permission.[44] Copyright 2020, ACS Publications. 

 

The design and selection of the data-driven framework depend on the application and the 

material. Although ML can be potent and effective in a data-driven process, it is not the panacea to 

solve all challenges in materials science.[46] ML models cannot find solutions to questions that are ill-

posed or not appropriately expressed. An in-depth and comprehensive understanding of the chemistry 

phenomena is necessary to accurately describe the question and relate it to a clear goal. The goal of a 

data-driven process should be specific, measurable, attainable, relevant, and timely.[5] Different ways of 

defining the goal will lead to varying outcomes of the data-driven process. For example, for the 

discovery of high-performance photovoltaic materials, Lu et al.[36] employed ML to predict the bandgap 

of candidate materials, whereas Padula et al.[48] predicted the power conversion efficiency. The nature 

of the question is also vital for designing the data-driven framework; using a classification model to 

explore the correlation between target properties and input features or a regression model to 

distinguish between several categories of materials is difficult. For instance, Jin et al.[17] applied a 

classification ML model to screen two-dimensional photovoltaic materials with suitable power 

conversion efficiencies, whereas Sahu et al.[49] employed a regression ML model to predict the power 

conversion efficiency of candidate photovoltaic materials. Thus, the design of a suitable data-driven 

framework requires the customization of data processing, feature engineering, and ML model 

deployment based on the questions being appropriately posed. 

 

2.1. Frameworks for the Overall Data-Driven Process 

The data-driven process framework organizes and integrates the fundamental stages of 

processing data,[50] generating molecular descriptors [33] and deploying the ML model.[44] Such 

frameworks determine the data flow and the interaction style between the theory and experiments 

or computations.[27, 34, 38] In this section, we introduced the most commonly employed frameworks to 

support the discovery of innovative materials including direct design, inverse design and active 

learning. As illustrated in Figure 3a and 3b, direct and inverse design differ from one another in 

terms of the direction assumed by predictions between material structure and target functionality. 
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Active learning (Figure 3c) focuses primarily on data flow in the dynamic iteration loop to improve 

and accelerate the search and prediction process.[18, 37] Alternative data-driven frameworks have also 

been reported in light of specific material phenomena to be addressed. For example, regression and 

classification models could be assembled into a single framework to enable high-throughput 

materials screening.[31] A transfer learning model could also be integrated into the framework to 

solve for a small data problem data within the broader the data-driven process.[51]  

It is worth noting that the ML techniques in such data-driven frameworks extend far beyond 

property prediction and pattern recognition.[26, 52, 53] They can be utilized in other fundamental stages 

to generate features,[54] evaluate feature importance,[10] and visualize data.[18] In both direct and 

inverse design, the selection of ML algorithms influences the framework architecture.[34] 

2.1.1. Direct Design 

Direct design is the conventional approach to material discovery and primarily involves 

measurement and theoretical interpretation of the target property.[27] This trial-and-error approach 

involves searching for the material demonstrating the targeted functionality within the chemical 

space, which the prior knowledge can help constrain.[5] Analogous to the structure-property 

relations derived by data-driven approaches, the direct design approach typically employs the 

structural features of known materials to predict target properties. Though direct design is widely 

employed, it presents obstacles to deliberate discovery. For example, as the direct design initiates 

from a known structure, it is unable to arrive at materials whose structure is not known a priori but 

may possess the desired properties.[27] The case-by-case searching characteristic of direct design is 

both time- and cost-intensive when extensive structure screening is employed to involve as many 

materials as possible.[55, 56] 

As asserted by Zunger,[27] direct design could be classified into descriptive and predictive 

approaches. Descriptive direct design employs both modeling and theory to interpret and confirm 

experimental observations. The predictive direct design, however, can be sub-divided into property 

prediction for a specific material, or candidate material search in a material space. For example, Jin 

et al.[17] applied a data-driven predictive direct design framework, screeing 26 out of 187,093 

inorganic crystal structures as potential photovoltaic candidates. The blue squares at the bottom of 

the graph of Figure 3a illustrate known compounds with specified compositions (presented by atom 

numbers ZA and ZB), while question mark-labeled region corresponds to unreported compounds. The 

upper plot of Figure 3a represents the value of specific material properties as a function of ZA and ZB. 

In a direct-design-based data-driven framework, the materials discovery journey follows the path 

from the bottom part of the graph to the top part. 

2.1.2. Inverse Design 

Inverse design can be regarded as the opposite of direct design.[56] In an inverse-design-based 

data-driven framework, the workflow is initiated in the functional space and terminates in the 

chemical space.[27] Its objective is to discover tailored materials with desired properties without the 

exploration of large material space.[56] In the inverse design framework, the target functionality is 

used as the input to predict the corresponding material structure. Rather than arriving at a unique 

structure with the desired functionality, the goal is to determine a distribution of probable 



 

This article is protected by copyright. All rights reserved. 

12 

structures. For instance, Dudiy et al.[57] employed inverse design in conjunction with specified target 

properties (e.g. deepest nitrogen level), followed by a search for a desirable material structure.  

High-throughput virtual screening (HTVS) is one of the earliest employed methods in inverse 

design. However, HTVS analysis is generally applied to a smaller number of structures in the course 

of exploring various functionalities.[27] More recently, generative models, a class of ML method 

involving the implementation advanced algorithms, including variational autoencoders (VAEs),*58+ 

generative adversarial networks (GANs),*59+ recurrent neural network (RNN),*60+ and reinforcement 

learning,*61+ are commonly employed in inverse design to determine the molecular structure and the 

probability distribution both of material elemental parameters and desired target properties (Figure 

3b). For example, Jin et al.[62] propose a VAE-based inverse design framework to generate graphs of 

molecular structure. Inverse design represents an advanced, effective data-driven framework for the 

discovery of novel materials; open research questions remain, including formulation of the 

molecular presentation in the inverse design process.[34] 

 
Figure 3. a) Direct and inverse methods for the design and discovery of materials. Reproduced with 

permission.[27] Copyright 2018, Springer Nature Publications. b) The schematic of direct design and 

inverse design with different targets in material design and discovery. Reproduced with 

permission.[34] Copyright 2018, AAAS Publications. c) The active learning framework for the discovery 
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of materials with high electrostrains. Reproduced with permission.[37] Copyright 2018, Wiley 

Publications. 

 

2.1.3. Active Learning 

The essential idea of active-learning-based data-driven frameworks is to provide high-

performance ML models with less training; the machine selects its own training dataset[63] In an 

active learning framework, the stages of ML training, data processing, and the generation of new 

training sets are iteratively combined.[18, 37, 64] For instance, Zhong et al.[18] proposed a random-forest-

based active ML framework that iteratively trained more than 300 ML models to predict the binding 

energy of carbon monoxide on the surface of catalyst for the carbon dioxide reduction reaction 

(CRR). The trained ML model indicated promising adsorption sites during their active learning 

workflow, which guided the DFT computation for the subsequent iteration. The DFT results 

evaluated in the latest iteration were combined with the original data to construct a new training 

dataset, which would yield an updated ML model.  

In general, an active learning framework contains an inquiry loop to guide further experiments 

or computations.[63, 64] Active learning is most applicable when numerous data instances and their 

labels are easily collected, synthesized or computed to address queries in iterative training.[63] In an 

active learning framework proposed by Yuan et al.,[37] the electrostrain of piezoelectric candidates 

were iteratively queried. Such active learning frameworks are suitable for dynamic optimization 

problems and sequential design in innovative material discovery. 

 

2.2. Fundamental Stages in Data-Driven Framework 

A complete data-driven material discovery framework involves fundamental stages including raw 

data processing,[32, 50] feature engineering,[33] and ML model training (Figure 2).[44] In the data processing 

stage, there are two major steps: data acquisition and data pre-processing.[65] Generally, there are two 

types of data utilized in a data-driven material discovery process: experimental data and computational 

data.[5] Both could be either self-generated or queried from existing databases. Relevant, sufficient, 

consistent and complete data is the foundation of a successful data-driven process.[32] Collected data 

may contain a number of issues including missing, redundant, abnormal or imbalanced data.[32] Data 

pre-processing ensures that the ML model performs satisfactorily. Data pre-processing generally 

consists of four main stages: outlier detection, data complementation, discretization, and 

normalization.[47] Data may exist in various forms, including numerical values, structure graphs, images, 

text, or signals. For example, Lee et al.[22] trained a deep learning model to predict potential defects in 

electron microscopy images with aberration-corrected scanning transmission taken as the model input. 

Both the quantity and quality of data influence the selection and performance of ML models. For 

instance, neural network models typically require more data to be reliably implemented.[44] It is critical 

to acquire material data from reliable sources; commonly used material databases and relevant data 

management tools are systematically discussed in Section 4. 

Feature engineering is the process of constructing the descriptor space, which mainly consists of 

two steps: the selection or generation of descriptors; construction of the descriptor space.[66] The 

selection of descriptors depends on the goal of the data-driven process and is characterized by the 
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greatest extent of human intervention. The target of this step is to identify and extract the most 

appropriate and critical descriptors from the pre-processed data to construct descriptor space. Problem-

specific domain knowledge is essential here, for example, to specify the relevant properties and 

determine the proper scale length (atomistic, coarse-grained, and global).[32] However, there may be 

situations in which no suitable descriptor is available, or the basic descriptors are not sufficient to 

describe the environment or frame the materials with respect specific targets. Thus, an alternative is 

to generate high-performance descriptors from the original ML training dataset. A good descriptor 

space is one that is sufficient for the prediction and resolution of the target functional space.[5] 

Therefore, an in-depth review of molecular descriptors is presented in Section 5 to offer insights on the 

construction of descriptor space.  

ML model training, which follows the construction of the descriptor space, includes model 

selection, evaluation, and optimization.[67] The implementation of the majority ML algorithms 

requires the specification of hyperparameters which determine the ML model configuration of 

ML.[68] Various hyperparameters result in different model formulations; model selection aims at 

identifying with the appropriate hyperparameter formulation which results in the best model 

performance. Therefore, hyperparameter tuning is critical to model optimization; it controls the 

complexity and flexibility of the model to identify the balance between overfitting and underfitting 

by handling the variance-bias trade-off.[32] More complex models tend to fit training data better but 

also exhibit a higher variance on the test data, whereas a simpler models (such as regularized linear 

regression) tends to exhibit a higher bias on the test data. Hyperparameter tuning and model 

selection can be classified as a meta-optimization task,[68] where validation techniques are employed 

to evaluate the performance in terms of the ML algorithm objective function.  

 

2.3 Model Performance Evaluation and Uncertainty Quantification 

The ultimate goal of the ML model deployment stage is to train the model such that offeres 

accurate predictions for both test and unseen data; therefore, it becomes essential to effectively 

assess the performance while characterizing the inherent uncertainty of the model.[32, 69] A review by 

Morgan and Jacob[69] gives an excellent overview and sample cases of best practices in ML model 

development, assessment and uncertainty quantification. In this subsection, we will discuss model 

performance evaluation methods and uncertainty quantification in the context of model 

deployment, focusing on commonly employed validation techniques and performance evaluation 

metrics. 

2.3.1. Performance Evaluation Techniques 

Three techniques are commonly employed for model performance evaluation: holdout,[68] 

cross-validation (CV),[70] and bootstrap.[32] In most ML deployment processes, the data are divided 

into training data, validation data, and test data.[69] The holdout approach statically splits the 

available data for training, validation, and testing at a fixed ratio. Though the holdout approach is 

straightforward, it may introduce pessimistic bias when the size of the original dataset is small; such 

splitting further reduces the size while potentially impacting the statistics of the training data. CV 

represents a continuous, iterative, crossing-over training and validation process that can be regarded 

as the ensemble of the holdout approach, sampling data without replacement.[68] For a typical k-fold 
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CV process, the dataset is divided equally into k parts, one of which is adopted as the validation set; 

the remaining k – 1 parts are combined into a new training subset. When the number of folds is 

equal to the data points (k = n), a special case of CV is manifested (the leave-one-out cross-validation 

(LOOCV), which, though computationally expensive, is useful when the dataset is small.[32] Sahu et 

al.[71] applied the LOOCV to 280 data points of small molecule OPV systems to evaluate ML model 

predictions of power conversion efficiency. Unlike CV, bootstrap samples data with replacement 

result in only approximately 63.2% of the data points being sampled[72] and potentially a high bias 

given that the sampled data is not representative of the complete dataset. To correct this bias, 

Efron[73] has proposed a 0.632(+) bootstrap approach. In general, CV provides a nearly unbiased 

estimator with high variance, while bootstrap approaches tend to yield estimators with low variance 

for a small dataset.[73, 74] 

 

2.3.2. Performance Evaluation Metrics 

The determination of performance metrics is essential for ML model evaluation and 

optimization. For regression models, commonly employed metrics are the mean absolute error 

(MAE), mean square error (MSE), root mean square error (RMSE) and coefficient of dependence 

    , which are expressed as follows:[5, 29]  
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where   refers to the number of sample data points,     ̂       ̅ represent the actual value, 

predicted value, and mean value, respectively. The MAE treats the errors equally, whereas larger 

errors are allocated a higher weight in the MSE and RMSE. The MSE and RMSE are differentiable and 

commonly used to identify minima optimization processes.    represents the proportion of the 

variance in true values relative to the predicted values.  

The predictivity of classification models can be described by the value of four indicators: true 

positive (TP), true negative (TN), false positive (FP), and false negatives (FN).[75] Frequently employed 

evaluation metrics, including Accuracy, Precision, Recall, and F1, can be derived based on the four 

indicators. Numerous misjudgments resulting in false positives contribute to low precisions, whereas 

missing of positives correspond to low recalls. A combined metric, called the F1 score, balances 

these two metrics and is beneficial for cases in which the data is imbalanced. 
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The receiver operating characteristic (ROC) curve and the area under the curve (AUC) are also 

effective performance metrics in binary classification. The ROC represents the plot of the true 

positive rate (TPR) versus the false positive rate (FPR), where the formulas for TPR and FPR are 

presented as follows: 

      
  

     
        

      
  

     
        

A perfect binary classifier would demonstrate an AUC=1; AUC = 0.5 indicates that the binary 

classifier is no better than random guessing.[30] 

 

2.3.3. Domain of Applicability and Uncertainty Quantification 

The reliability and accuracy of the trained models must be evaluated by considering domain 

applicability and quantifying uncertainties.[69] to the determination of domain applicablity relates to 

distance metrics between the potential and training data points. Though many methods have been 

proposed to measure such distances,[76, 77] they are relatively difficult to implement to obtain 

qualitative guidance on model applicability. All such methods rely upon calculated distance metrics 

whose validity has not been determined for the particular problem, while also requiring the 

definition of suitable thresholds.[69]  

Predicted value uncertainties are more intuitive and readily quantified to enable the evaluation 

of model performance. Evaluating error bars is an important tool to support model comparisons, 

stability estimation and of the reliability of model predictions.[32] Ensemble approaches are 

commonly employed to quantify uncertainties; a popular methodology involves training the same 

model via bootstrap or CV, and then treating the ensemble variance as a surrogate for the error 

bars.[78] An alternative approach involves utilizing the same training data while refitting the model by 

adjusting the model architecture.[69] A large variance between these predictions in a specific 

chemical domain indicates that the ML models are still tangling and require additional training 

data.[79] The two types of ensemble methods can also be combined in random forest decision tree 

models, for which Morgan and Jacobs provide an in-depth example.[69] The ensemble approaches are 

more computationally expensive; however, their flexibility enables them to be employed in 

numerous models. 

Prediction uncertainty can also be quantified by distance-based approaches, which are based 

on the concept that such uncertainties correlate with the distance between the potential 

corresponding training data points. Hirschfeld et al.[80] employed log-scaled Tanimoto distance[81] 

and Euclidean distance[82] to quantify the displacement between potential points from training data 

and predictions of molecular properties, respectively. Bayesian approaches [83] can also automatically 

quantify uncertainty while potentially avoiding iterations, though this requires the adoption of 

specific ML models making it less generally applicable.[32, 69] 

 

3. Data-Intensive Strategies and Algorithms for Innovative Materials Discovery 

Recent developments in materials science have corresponded to a large amount of accumulated 



 

This article is protected by copyright. All rights reserved. 

17 

data from both theoretical and experimental studies.*84+ However, how to identify appropriate 

techniques to process this accumulated data to shed light on implicit correlations and guide the 

course of future studies remains an open question, impeding the advancement of materials science. 

To address this, various algorithms have been proposed in previous decades for obtaining solutions 

to practical data-processing problems in materials science.*85+ As the foundation of the data-driven 

study of materials science, these algorithms were introduced with various intentions. In this section, 

several algorithms and methods, including supervised learning,*85+ unsupervised learning,*86+ and 

deep learning,*87+ for materials science study are discussed with relevant examples. 

 

3.1. Supervised Learning: Regression and Classification 

Supervised learning is a learning strategy for problems in which both inputs and outputs are 

given. The goal of supervised learning is to identify the function which best maps inputs to outputs 

consistent with the given data.*85+ The methods of supervised learning can be categorized into 

regression and classification, including linear regression, logistic regression, support vector machine 

(SVM), and decision tree.  

3.1.1. General Linear Regression Algorithms 

Linear regression algorithms are a common component of ML*88+ and are widely used to build 

prediction models which connect input scalars to continuous output values. The most common 

regularized models of multivariate linear regression are: ridge regression; least absolute shrinkage 

and selection operator (LASSO).  

(Multivariate) Linear Regression  

First, we discuss a common form of (multivariate) linear regression, which is the basis for 

advanced versions.*88+ Linear regression is based on the assumption that the relationship between 

the input data matrix 𝑿 and dependent variable 𝒚 is linear: 

   𝛽  𝛽 𝑋   𝛽 𝑋   ⋯ 𝛽𝑝𝑋 𝑝  𝜀       

which can be more succintly expressed as 

𝒚  𝜷𝑿  𝜺       

where 𝑿 is the input (or sometimes called the design matrix), which could either be a row matrix or 

  dimensional matrix. 𝜷 is the vector of regression coefficients, which is usually estimated from the 

least square method; hence, 

�̂�    𝑔min
𝜷

‖𝒚  𝜷𝑿‖ 
    𝑔min

𝜷
∑(𝛽  𝛽 𝑋   𝛽 𝑋   ⋯ 𝛽𝑝𝑋 𝑝    )

 
𝑛

   

       

with ‖∙‖ 
  denoting the square of the L2 norm and can be expanded as: 

‖𝒚  𝜷𝑿‖ 
   𝒚  𝜷𝑿 𝑻 𝒚  𝜷𝑿  𝐲𝑻𝐲  𝐲𝑻𝜷𝑿 𝜷𝑻𝑿𝑻𝐲  𝜷𝑻𝑿𝑻𝜷𝑿       

The optimal solution is obtained by taking the partial derivative of the aforementioned expression 

with respect to 𝜷: 



 

This article is protected by copyright. All rights reserved. 

18 

𝜕 ‖𝒚  𝜷𝑿‖ 
  

𝜕𝜷
 

𝜕(𝐲𝑻𝐲  𝐲𝑻𝜷𝑿 𝜷𝑻𝑿𝑻𝐲  𝜷𝑻𝑿𝑻𝜷𝑿)

𝜕𝜷
  𝟐𝐲𝑻𝑿  𝟐𝜷𝑻𝑿𝑻𝑿       

Setting       equal to zero yields the optimal 𝜷, such that 

�̂�  (𝑿𝑻𝑿)
−𝟏

𝑿𝑻𝒚       

This approach to linear regression has been widely used in materials science in cases where the 

predicted values are linearly associated with the input features. For instance, Winkler et al. employed 

linear regression to construct nano quantitative structure-activity relationship (nano-QSAR) models 

of the biological effects of nanoparticles.*89+ Fernandez et al. also utilized linear regression to explore 

the electronic properties of graphene.*90, 91+ Jinnouchi et al. developed a linear regression model to 

predict the catalytic activity associated with direct NO decomposition on the surface of RhAu alloy 

nanoparticles.*92+ 

Ridge Regression 

Introducing a regulizer to the linear regression model prevents overfitting while reducing the 

overall complexity of the model. In linear regression, when the input matrix X is a singular matrix 

(the number of features is larger than the number of samples), errors may emerge when calculating 

(XTX)-1. Hence, the ridge regression approach was proposed, which adds small positive quantities λI 

to XTX,*93+ yielding: 

�̂�  (𝑿𝑻𝑿  λ𝑰)
−𝟏

𝑿𝑻𝒚     𝑔min
𝜷

(‖𝒚  𝜷𝑿‖𝟐
𝟐  λ‖𝜷‖𝟐

𝟐)       

The improved performance of ridge regression has enabled the prediction of various material 

properties. For example, González et al. utilized ridge regression (as one of the three methods) to 

predict the surface plasmon resonance of perfect and concave Au nanocubes.*94+ 

 

LASSO 

Another regularized linear regression method is the LASSO. Unlike the ridge regression based on 

the L2 norm, the LASSO employs the L1 norm as a regularizer.*95+ 

�̂�  (𝑿𝑻𝑿  λ𝑰)
−𝟏

𝑿𝑻𝒚     𝑔min
𝜷

(‖𝒚  𝜷𝑿‖𝟐
𝟐  λ‖𝜷‖𝟏)       

When the λ is small enough, some of the coefficients will be forced to reduce to 0, making the 

LASSO sparsity to rapidly filter the input features. For instance, when predicting the bandgap of 

functionalized MXenes, Singh et al. employed the LASSO to reduce the number of input features 

from 47 to 15, which significantly enhanced the efficiency of the ML model.*96+ 

3.1.2. Logistic Regression 

The logistic regression is based on logit function   log 
𝑦

 −𝑦
  as a link function.  

log
𝒚

𝟏  𝒚
 𝜷𝑿       
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This is a classical binary classification model to simulate the probability or possibility of a certain 

event or class. The combination of multiple logistic regression models can achieve the multiclass 

classification.*97+ Instead of being embedded into other algorithms as a classifier, the logistic 

regression can directly be used as a classifier within a materials study, such as in the study of the 

relationship between Fermi energy and structural/morphological features of Ag nanoparticles,*98+ or 

as a control group to predict the structure-property relationship of Pt nanoparticle catalysts.*99+ 

3.1.3. Support Vector Machine (SVM) 

The SVM algorithm is widely used in materials science owing to its excellent performance in 

data pattern recognition and classification.*100+ The SVM implements the structural risk minimization 

principle to the upper limit of the generalization error (eq. (3.10))*101+ and demonstrates excellent 

performance for samples based on high-dimensional data, or when the sample size is small. SVM 

models effectively overcome the "overlearning" problem.*29+ The SVM can also be utilized to solve 

regression problems by introducing an alternative loss function;*102+ the SVM-based regression model 

is referred to as support vector regression (SVR). Fang et al.*103+ combined the genetic algorithm (GA) 

with SVR to predict the extent of atmospheric corrosion in metals such as steel and zinc. Compared 

with other algorithms, the (GASVR) hybrid method has exhibited improved predictive performance. 

Other SVR-based hybrid algorithms have also been utilized for various applications; in Ref.*104+ a 

feature-selection-based two-stage SVR (FSTS-SVR) was utilized to develop a predictive model for the 

GexSe1-x glass transition temperature. Because of the structural variations at the turning point, a two-

stage onset glass transition temperature   𝑔  model was constructed based on FSTS-SVR to achieve 

the highest accuracy. This hybrid method has also show potential as an efficient algorithm for the 

multistage simulation and prediction of characteristic  𝑔. Chen et al.
*105+ proposed the use of an SVM 

algorithm to predict the exposure temperatures of fire-damaged concrete structures. Their SVM 

simulation demonstrated that the concrete ultrasonic pulse velocity was the most effective 

parameter in improving the accuracy of estimations. SVM models have been used to predict various 

other material properties such as ionic conductivities,*106, 107+ glass transition temperatures,*108-110+ 

catalyst active sites*111+ and adsorption energies,*112+ and various other properties of innovative 

materials.*113, 114+ 

[
𝟏

𝒏
∑𝐦𝐚𝐱(𝟎 𝟏  𝒚𝒊(𝜷

𝑻𝒙𝒊  𝒃))

𝒏

𝒊 𝟏

]  𝝀‖𝜷‖𝟐     0  

 

3.1.4. Kernel Ridge Regression (KRR) 

Kernel ridge regression (KRR), which combines ridge regression and the kernel trick, is a 

simplified version of SVR*115, 116+ but utilizes a different loss function. Although both KRR and SVR are 

based on L2 regularization, KRR employs a loss function based on the squared error loss while SVR 

utilizes the epsilon-intensive loss. In addition, fitting a KRR model can yield a closed-form solution 

and is faster than SVR for medium-sized datasets. However, KRR is slower than SVR when learning a 

sparse model because its learned model is non-sparse. To transfer ridge regression to KRR, the matrix 

inverse lemma (eq. (3.11)) was introduced to eq. (3.8), yielding eq. (3.12). After a dual variable, α, is 

specified (eq. (3.13)), the original primal variable, β, evolves to eq. (3.14); an updated prediction y* 
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can be constructed for new set x* (eq. (3.15)). KRR has been widely used in materials analysis. For 

instance, Sheremetyeva et al. applied KRR to study the correlation between the stimulated Raman 

spectrum and twist angle of twisted bilayer graphene.*117+ Singh et al. employed different ML models, 

including KRR, with multiple input features to estimate the bandgaps of MXenes.*96+ 

 𝑷−𝟏  𝑩𝑻𝑹−𝟏𝑩 −𝟏𝑩𝑻𝑹−𝟏  𝑷𝑩𝑻 𝑩𝑷𝑩𝑻  𝑹 −𝟏        

𝜷  𝑿𝑻(λ𝑰  𝑿𝑿𝑻)
−𝟏

𝒚        

𝜶   𝑲𝑿  λ𝑰𝑵 −𝟏𝒚        

𝜷  𝑿𝑻𝜶  ∑ 𝜶𝒊𝒙𝒊

𝑵

𝒊 𝟏
        

𝒚∗  𝜷𝑻𝒙∗  ∑ 𝜶𝒊𝒙𝒊
𝑻𝒙∗

𝑵

𝒊 𝟏
 ∑ 𝜶𝒊𝒌 𝒙

∗ 𝒙𝒊 
𝑵

𝒊 𝟏
        

3.1.5. Gaussian Process Regression (GPR) 

Gaussian process regression (GPR), also know as Kriging, is a non-parameteric model that 

utilizes Gaussian process priors to perform regression analysis. Instead of directly generating the 

regression function f(x), GPR generates a distribution of an infinite number of functions f(x). For a 

given dataset D: (X, Y), let f(xi) = yi, yielding the vector f = *f(x1), f(x2), f(x3), …, f(xn)+. Defining the set of 

xi as X*, and the corresponding prediction value as f*, eq. (3.16) can be constructed based on Bayes’ 

theorem. 

𝒑 𝒇 ∗ |𝒇  
𝒑 𝒇|𝒇 ∗ 𝒑 𝒇 ∗ 

𝒑 𝒇 
 

𝒑 𝒇 𝒇 ∗ 

𝒑 𝒇 
        

GPR has gained significant traction in computational materials science, including in the 

prediction of atomistic properties such as interatomic potentials.*118+ For instance, Singh et al. 

implemented GPR to position the band edges of MXenes, achieving a minimum root-mean-squared 

error (rmse) of 0.12 eV.*119+ Wee et al. developed an electron-phonon averaged GPR (EPA-GPR) 

method to efficiently estimate and fast-screen the thermoelectric properties of materials for pre-

defined applications.*120+ 

 

3.1.6. Decision Tree (DT) 

Decision trees (Figure 4) are a classic supervised ML algorithm, which have been widely used for 

classification and regression in the material design process. Decision trees break up a complex 

decision into a union of several simpler decisions which, when synthesized, form an operable final 

solution. Through a series of ‘yes’ or ‘no’ questions pertaining to the input descriptors, the decision 

tree can arrive at the internal relationship between descriptors with relative ease, subdividing the 

discrete function values into classes with a common label.*66+ Decision trees can handle interactions 

between descriptors as well as various classes of input data (such as numbers and text). The three 

core steps of decision tree learning are feature selection, decision tree generation, and the pruning 

of decision tree. Training datasets may offer an abundance of features which offer contribute to 
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varying extents to the final decision. The goal is to identify highly-related features corresponding to 

improved classification performance. This step is followed by tree generation; originating from the 

so-called the root node, the information gain at each subsequent node is calculated. The feature 

corresponding to the largest information gain will be specified as the node feature; the sub-node will 

subsequently be established with respect to each value of the feature. However, this approach 

engenders a high risk of overfitting, which can be mitigated by tree pruning to improve performance. 

The earliest decision tree model was referred to as the iterative dichotomiser 3 (ID3) algorithm,*121+ 

which was developed by utilizing information gain to select features. A decision tree can also be 

constructed for regression based on ID3 by replacing information gain with standard deviation 

reduction.*122+ The C4.5 decision tree model was the successor of ID3; it utilized the information gain 

ratio as the criterion of feature selection.*123+ Other than algorithms which have been developed 

based on information theory, models such as classification and regression trees (CART)*124+ utilize Gini 

impurity, which measures the frequency incorrectly labeled selected elements. Decision trees are 

have been used extensively in materials science, such as in the analysis of the cytotoxicity of 

nanoparticles,*125+ the prediction of the exciton valley polarization landscape of two dimensional (2D) 

semiconductors,*126+ and the synthesis of metal-organic nanocapsules.*127+ 

 

Figure 4. Schematic illustration of decision tree for a) classification and b) regression. 

 

3.1.7. k-Nearest Neighbor (kNN) 

The k-nearest neighbor (kNN) algorithm is a non-parametric method for classification and 

regression.*128+ kNN is based that an concept that an unlabeled sample can be represented by the 

nearest k labelled samples in feature space. The benefits of kNN can be realized without pre-

estimation of parameters or training; however, this poses a significant trade-off. The dominance of 

certain types of samples in the datasets (i.e., an unbalanced distribution of samples) will influence 

the accuracy of kNN. This method is also computationally expensive given that the distances 

between large numbers of labeled and unlabeled samples are needed. However, kNN has found wide 

application in materials science; for example, Padula et al. applied kNN to predict the photovoltaic 

parameters and efficiency of organic solar cells;*48+ Byun et al. employed kNN as a basis to build a 

predictive model for the toxicity of oxide nanomaterials.*129+ 
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3.2. Unsupervised Learning: Clustering and Dimension Reduction 

Counter to supervised learning, unsupervised learning focuses on datasets with little or no pre-

existing labels.*86+ Unsupervised learning can be deconstructed into two primary methods: principal 

component and cluster analysis. In contexts where the structure-property relationships of materials 

have not been fully defined, unsupervised learning offers an effective approach to identifying such 

implicit correlations. Detailed algorithms are be summarized in this section as an overview to 

unsupervised learning in materials science. 

3.2.1. Principal Component Analysis (PCA) 

Principal component analysis (PCA) aims to simplify data.*130+ PCA can be characterized as an 

orthogonal linear transformation method that projects data onto a new coordinate system. The first 

component is yielded according to the eq. (3.17): 

𝒘     𝑔 max
‖𝑤‖  

(‖𝑿𝒘‖𝟐
𝟐)     𝑔 max

‖𝑤‖  
(𝒘T𝑿T𝑿𝒘)        

where 𝒘  is an array of 1 × m dimensional weights. 

Subsequent components can be obtained based on eq. (3.18): 

𝒘𝑘     𝑔 max
‖𝑤‖  

(‖�̂�𝑘𝒘‖
𝟐

𝟐
)     𝑔 max

‖𝑤‖  
(𝒘T�̂�𝑘

T
�̂�𝑘𝒘)        

where  

�̂�𝑘  𝑿  ∑ 𝑿𝒘 𝒘 
𝐓

𝑘− 

   

        

The power of PCA is in extracting the most important information from datasets to reduce the 

dimensionality of input features and further compress the size of datasets.*131+ In exploring the 

structure-property relationships of materials, a large number of structural features will be initially 

considered, whereas a relatively small subset of these features contribute meaningfully to the 

particular material property. The utilization of PCA to reduce the dimensionality of structural 

features has been demonstrated to significantly enhance the efficiency of investigations of structure-

property relationships.*52, 117, 132+ 

3.2.2. Expectation Maximization (EM) 

Expectation maximization (EM) is an iterative strategy to estimate the maximum posterior 

(MAP) (i.e. maximum likelihood) of parameters in statistical models that depend on latent 

variables.*133+ EM algorithms can be used for data processing; for example, Benammar et al. 

integrated the EM algorithm with split spectrum processing to develop ultrasonic methods to 

process signals for the detection of delamination defects in carbon-fiber-reinforced polymer-

multilayered composite materials. 

3.2.3. k-means Clustering 

k-means clustering is another unsupervised learning method that has been widely applied. The 
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aim of k-means clustering is to assign M data points in N dimensions into k clusters.*134+ The clustering 

process is designed to find the minimum sum of the distance between each data point and its 

corresponding cluster center. Hence, the selection of k is critical to the success of the k-means 

clustering algorithm. PCA can be introduced to guide the selection of k by reducing the dimension of 

features. Since k-means clustering does not rely on the prior knowledge to assign data, it is suitable 

for the identification of implicit structure-property relationships by clustering unlabeled data. Such 

methods have been utilized to great effect in various studies: Darr et al. utilized k-means clustering 

for high throughput data collection and characterization for synthesized nanomaterials;*135+ 

Neumayer et al. employed k-means clustering to group data processed by PCA to support the study 

of ferroelectric properties of layered CuInP2S6.
*132+ 

3.2.4. t-Distributed Stochastic Neighbor Embedding (t-SNE) 

t-distributed stochastic neighbor embedding (t-SNE) is a type of ML method that is compatible 

with data visualization*53+ by reducing high-dimensional data to two or three dimensions for 

visualization. t-SNE is a popular method for data analysis in various domains. Given that multiple 

structural features are investigated in ML-based materials investigation, the most common 

application of t-SNE is to visualize the high dimensional features as low dimension images.*136+ 

However, t-SNE has also been extensively utilized more substansively, such as for the prediction of 

nanoparticle structure-property relationships *137+ and the exploration of optimal microstructures for 

targeted properties.*138+ 

 

3.3 Deep Learning 

Deep learning, as a new branch of ML, has been widely used for various applications, including 

natural language processing (NLP), computer vision, and data mining.*87+ Data can be represented 

with multiple levels of abstraction based on computational models consisting of multiple processing 

layers. Various deep learning methods (Figure 5) have been effectively applied to the investigation of 

materials properties. This section presents relevant algorithms.  
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Figure 5. Schematic illustration of basic models of a) ANN, b) CNN, c) RNN, d) GAN, e) VAE, and f) 

RBM. 

 

3.3.1. Artificial Neural Network (ANN) 

As a nonlinear statistical analysis approach, the ANN (Figure 5a) algorithm is capable of self-

learning and adaption.*139+ The ANN is the most common neural network and is applicable to a wide 

range of problems. Back propagation (BP), an example of the ANN, has been widely used to predict 

various material properties: tensile and temperature responses, wastage, elongation, compressive 

properties, and corrosion properties.*140-142+ Chen et al.*143+ compared the performance of linear 

regression and BP-ANN for the prediction of polymer glass transition temperatures, finding that BP-

ANN has a much lower average prediction error (17K) than that of linear regression (30K). Because 

BP-ANN does not require extensive background knowledge of structural properties, it is 

advantageous in the development of solutions with a specified degree of prediction error tolerance 

and good generalizability. However, BP-ANNs are characterized by a slow convergence rate and 

sometimes may be trapped into the local, rather than global, minima. These shortcomings can be 

overcome by combining ANN with the radial basis function (RBF-ANNs) to enable high convergence 

rates while avoiding local minima trapping. Gajewski and Sadowski*144+ applied RBF-ANN to 

investigated crack propagation in layered bituminous pavement, ultimately detecting a strong 

positive correlation between B2 bituminous layer thickness and extent of cracking. ANN algorithms 
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have also found a place in other applications; for example, such algorithms have been successfully 

applied to predict the density and viscosity of biofuel compounds.*145+ Scott et al.*146+ demonstrate the 

effectiveness of ANN in predicting the oxygen diffusion properties of ceramic materials to support 

the development of new materials suitable for environmental applications (such as clean energy 

production and technologies for the reduction of greenhouse gas emissions). ANN has also been 

applied to accurately predict excited-state energies,*147+ melting points,*148+ diffusion barriers,*149+ and 

other functional features.*150-152+  

3.3.2. Convolutional Neural Network (CNN) 

CNNs (Figure 5b) represent another class of deep neural network and are most commonly used 

for visual imaginary analysis.*153, 154+ An advantage of the CNN is weight sharing, indicating its ability 

to process high dimensional data; another important advantage is automatic feature extraction, 

corresponding to favorable performance for feature classification. In materials science, CNNs can be 

directly used to process the images generated using various techniques to enable the analysis of 

materials structures. For example, Schiøtz et al. applied a CNN to atomic-resolution transmission 

electron microscopy (TEM) images identify material local atomic structures;*155+ Ziatdinov et al. 

trained a CNN model to analyze images generated from real-time monitoring by scanning 

transmission electron microscopy (STEM) to identify lattice defects in WS2 and map its solid-state 

reactions and transformations.*156+ By transforming crystal structures to crystal graphs, CNN can also 

be used to accelerate materials discovery*157+ and predict novel material properties.*158+ Zhang et al. 

have demonstrated a method that uses CNN trained by periodic table attributes to predict a variety 

of material properties including lattice parameters, enthalpy of formation, and compound 

stability.*159+ 

3.3.3. Recurrent Neural Network (RNN) 

Recurrent neural networks (RNN, Figure 5c) differs from ANN and CNN, by accounting for 

temporal sequences.*60+ The current status of an RNN cell is influenced not only by the current inputs, 

but also by its previous status. RNN is usually used for the study of NLP,*160+ image generation,*161+ etc. 

RNN has been extensively used to study the kinetics of chemical reactions,*162+ which are 

fundamentally path-dependent. Recently, Shin et al. employed RNN to accelerate the generation of 

atomic data in traditional ab initio molecular dynamics (AIMD).*163+ The RNN model trained by AIMD 

enabled the prediction of atomic velocities and Si atomic positions. 

3.3.4. GAN 

A GAN (Figure 5d) was first proposed by Goodfellow et al. in 2014.*59+ The objective of GAN is to 

build a generative model, G (capture the data distribution), and a discriminative model, D 

(distinguish the sample from either the training set or model G with an estimated probability), and 

find an equilibrium solution between G and D; here, G recovers the training set and D is equal to 0.5 

for every sample. GAN is well suited to supporting applications in additive manufacturing, which 

requires a large number of architectural materials. However, traditional materials design methods, 

such as bioinspiration, the Edisonian approach, theoretical analysis, and topology optimization, are 

based on prior knowledge possessed by designers. In contrast, Mao et al. presented an experience-

free method based on the GAN algorithm to study Hashin-Shtrikman upper bounds on isotropic 

elasticity to design complex architecture materials.*164+ In another study, Hu et al. employed a GAN-
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based method to generate novel hypothetical inorganic materials (which are not recorded in existing 

databases), to enable the inverse design of such materials.*165+ Aspuru-Guzik et al. have also 

demonstrated numerous cases that utilize generative models for inverse materials design.*34, 166-168+ 

They employed a GAN-based method to study the crystal structures of Mg-Mn-O ternary materials, 

successfully predicting 23 new crystal structures.*169+ 

3.3.5. VAE 

An autoencoder is a type of ANN that consists of an encoder and decoder.*58+ Unlike complete 

and regularized autoencoders (which are discriminative models), VAEs (Figure 5e) represent a class 

of generative model.*170+ Compared with the GAN, VAE models can be trained with greater ease given 

their more complete mathematical basis. VAE has demonstrated broad applicability to chemistry and 

materials science, including in the design of small molecules.*171, 172+ Batra et al. employed VAE to 

study the properties/performance of polymers, especially geared towards the discovery of polymers 

that are robust under extreme conditions (e.g., high temperatures and electric fields).*173+ Stein et al. 

developed a materials image autoencoder based on the VAE to investigate the optical properties of 

materials, including prediction of spectra from images and vice versa.*174+ 

3.3.6. Restricted Boltzmann Machine (RBM) 

The restricted Boltzmann machine (RBM, Figure 4f) is a generative stochastic ANNs that can 

learn the probability distribution of input datasets.*175+ The RBM has been widely used for reducing 

the dimensionality of data,*176+ classification,*177+ feature learning,*178+, etc. The RBM is a special 

topological structure of the Boltzmann machine (BM) originating from statistical physics. Hence, the 

RBM can be used to solve the problems in quantum physics.*179+ Kais et al. reported a hybrid quantum 

algorithm based on the RBM to accurate characterize the molecular potential energy surfaces of a 

small molecule system.*180+ Recently, Nomura et al. employed RBM to investigate the synthesis of 

MoS2 via chemical vapor deposition (CVD), while obtaining insights into metallic 1T- and 

semiconducting 2H-MoS2, and the generation of defects during the growth of MoS2 by employing the 

CVD method.*181+ 

 

3.4. Ensemble Methods 

Ensemble learning is characterized by the construction of a high-performance algorithm by 

combining a collection of weaker models. Rather than developing new algorithms, existing 

algorithms are combined to achieve improve results. A collection of simple, basic models is selected 

for ensemble learning. There are two main approaches to assemble such models: boosting (Figure 

6a)*182+ and bagging (bootstrap aggregating, Figure 6b).*183+ The primary difference between the two is 

the approach to assigning vote weights to sub-models. In boosting, elite models are identified 

through training and testing; higher vote weights are subsequently assigned to the models with 

better performance. In contrast, the bagging method is much more democratic in that each model 

has equal vote weight. In general, results obtained by boosting method are characterized by a lower 

bias, while those obtained by bagging will be characterized by a lower variance. This section presents 

various boosting and bagging methods in detail. 
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Figure 6. Schematic illustration of general structures of a) Boosting and b) Bagging. 

 

3.4.1. Boosting 

Boosting is an algorithm that can be used to reduce the variance in supervised learning,*182+ 

while converting weak learners to strong learners.*184+ In boosting, each weak classifier possesses 

connections to other weak classifiers, collectively yielding a strong classifier. However, the inherent 

flaw of traditional boosting is that the minimum learning accuracy of a single weak classifier is 

required as a basis for the improvement mechanism. 

AdaBoost 

To improve the boosting algorithm, Freund and Schapire developed AdaBoost, which is short for 

adaptive boosting.*185+ The advantage of AdaBoost is that it does not require prior knowledge of weak 

learners to realize the boosting efficiency. Hence, compared to traditional boosting, AdaBoost is 

more suitable for practical problems. When training an AdaBoost model, the weight of a sample that 

is not correctly classified in a current round will be increased in the subsequent round of training, 

enabling the evolution of a stronger classifier over several iterations. As AdaBoost is easy to operate 

and resists overfitting, it is liberally used in various contexts. Tonezzer et al. applied AdaBoost to 

classify different gases detected by a carbon-modified SnO2 nanowire sensor.
*186+ Wang et al. 

implemented AdaBoost to classify carbon nanomaterials based on their TEM images.*136+ AdaBoost 

has also played a key role in the recent rise of artificial chemists. For instance, Abolhasani et al. 

developed an artificial chemist for the synthesis of quantum dots, in conjunction with the 

implementation of AdaBoost to enhance performance.*187+ 

Gradient Boosting 

Gradient boosting is also applicable to classification and regression.*188+ Gradient boosting 

utilizes the negative gradient (response) of the cost function of the current model to train the 
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successive model by iteratively combining weak classifiers, ultimately yielding an optimized model. 

Gradient boosting has been employed in a number of materials studies. Ma et al. utilized gradient 

boosting to predict the power conversion efficiency of organic solar cells based on 13 descriptors 

extracted from the microscopic properties of organic materials.*71+ The gradient boosting model 

demonstrated excellent performance (with a Pearson's coefficient of 0.79). Fazzio et al. implemented 

gradient boosting to determine the thermodynamic stability of 2D materials,*31+ while Wei et al. also 

implemented a gradient boosting classifier to identify novel 2D photovoltaic materials.*17+ 

3.4.2. Bagging 

Bagging, also referred to as bootstrap aggregating, is another common ensemble method.*183+ In 

contrast with the boosting method, weak classifiers in bagging are individual (not correlated). During 

the training process, samples are randomly selected and trained for each weak classifier; weak 

classifiers are then aggregated into a strong classifier. However, the performance of bagging is highly 

dependent upon the datasets, such that a large bias in the dataset will introduce large bias into the 

bagging model. The random forest*189+ method was developed to address this shortcoming. 

Random Forest 

The most widely used ensemble learning method is random forest, *189+ which is composed of 

many individual (i.e., not correlated) decision trees to improve prediction accuracy and prevent 

overfitting. For example, when executing classification tasks, each decision tree in the forest will 

execute the classification operation for each new input sample. The most classified result will be 

deemed the final overall result of random forest. The random forest algorithm has been widely 

utilized in the field of materials science. Zhong et al.*18+ trained a random forest model to predict the 

adsorption energy of CO on the surface of the designed catalysts. Artrith et al.*190+ implemented 

random forest in conjunction with a Gaussian process regression to predict the transition state 

energy, activity, and selectivity of a bimetallic catalyst for ethanol reforming. 

 

3.5. Intelligent Optimization Algorithms 

Intelligent optimization algorithms have undergone significant development over the past 40 

years.*191+ They also represent an important domain of artificial intelligence research. Detailed 

algorithms, (Figure 7) including the genetic algorithm, particle swarm optimization, and simulated 

annealing algorithm, will be discussed in this section. 
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Figure 7. Schematic illustration of flowcharts of a) GA, b) PSO (pbest refers to best fitness value in 

history, and gbest refers to global best value), and c) SAA. 

 

3.5.1. Genetic Algorithm (GA)  

The genetic algorithm (GA, Figure 7a) is a widely used optimization method inspired by the 

process of natural selection.*192+ The main function of GA is to identify the globally optimal solution 

by simulating a process analogous to natural evolution. During the GA process, an initialized 

population is first randomly generalized first; as the iterations progress, individuals which are more 

“fit” will be selected to represent their generation; individual genomes are then recombined or 

mutated to produce the next generation. GA has been utilized to great effect in materials science. 

Morgan et al. implemented GA to optimize the defect structures in bulk crystalline materials, with 

the objective of predicting the stable cluster structures in an automated fashion.*193+ Fernandez et al. 

used GA as one of the algorithms to investigate the electronic properties of graphene based on 

either atomic radial distribution function scores*194+ or topological information.*91+ Cherukara et al. 

employed GA to enhance the simulation efficiency for predicting the thermal conductivity of 

stanene.*195+ 

3.5.2. Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO, Figure 7b) was developed for the optimization of non-linear 

functions.*196+ PSO is designed to solve problems by utilizing a population of candidate solutions (also 

referred to as particles) and iteratively moving these particles within the solution space until a 

globally optimal solution is identified or the iteration limit is reached. PSO has been applied to study 

various problems in materials science. For instance, Ma et al. developed a PSO based method, coined 
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Crystal Structure Analysis by Particle Swarm Optimization (CALYPSO), to efficiently study the 

multidimensional potential energy surfaces of materials.*197+ This method was used to predict the 

structure of single layered, multi-layered, and quasi-2D materials.*198+ Lin et al. also developed a PSO-

based strategy to control the microstructure formation in Ni-based superalloys during hot forging.*199+ 

3.5.3. Simulated Annealing Algorithm (SAA) 

To solve local optimization problems, the simulated annealing algorithm (SAA, Figure 7c), which 

includes the Metropolis algorithm and annealing process, was developed by Kirkpatrick et al. in 

1983.*200+ During the process of searching for an optimum, a worse solution can be accepted based 

on the probabilistic equation. Therefore, in contrast with the traditional gradient descent, the 

random process in SAA offers an opportunity to jump out of the local optimum to reach the global 

optimum. SAA has been employed in various contributions to materials science, for example, 

Erchiqui combined SAA and GA to optimize the shaping of thermoplastics during the thermoforming 

process.*201+ AlRashidi et al. used SAA to extract and identify the photovoltaic parameters of different 

types of solar cells.*202+ Recently, Major et al. integrated the Monte Carlo method and SAA to predict 

the cation ordering in different mixed transition metal oxides materials.*203+ 

 

3.6. Data-Processing and Data-Mining Methods 
Data is fundamental to the data-driven study of materials. Data processing and data mining 

methods can directly influence the results of the materials study. We detail several data processing 

and data mining methods, including transfer learning, Bayesian global optimization, and adaptive ML 

in this section. 

3.6.1. Transfer Learning 

Transfer learning (TL) is a branch of ML that focuses on the use of pre-existing 

knowledge/models to solve a new but relevant problem.*204+ Due to this nature of TL, it has been 

used to study materials based on small dataset, which is critical since large dataset for such materials 

may not always be available. Agrawal et al. leveraged TL in conjunction with large DFT computational 

datasets, other small DFT datasets, and experimental data to build a reliable predictive model for 

material formation energies, ultimately achieving a low mean absolute error of 0.07 eV/atom (Figure 

8a).*205+ Yoshida et al. developed a library containing more than 140,000 pre-trained models for 

various properties based on large datasets; they subsequently used TL in conjunction with this library 

to predict various material properties.*206+ In another case, Reed et al. used TL based on small 

datasets to screen billions of compositions for potential application as lithium-ion conductors.*207+ 

3.6.2. Bayesian Optimization 

Bayesian optimization (BO) is a sequential decision-making approach to gradient-free global 

optimization.*208+ It is conventionally implemented for computationally expensive functions. BO has 

been used in materials studies for the determination of physical parameters, experimental design, 

material discovery, and optimization of atomic structures.*209+ For example, Osada et al. employed the 

BO method to investigate optimal conditions for the growth of Si thin films based on several 

parameters and their interactions (Figure 8b).*210+ After optimization, the growth rate of Si films was 

twice as high as that prior to optimization. 
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3.6.3. Adaptive ML 

Adaptive ML (AML) refers to ML algorithms in which model parameters can be automatically 

optimized during the execution of the algorithm. AML covers a wide range of algorithms, including 

the aforementioned AdaBoost and adaptive SAA. For most practical applications, AIMD offers 

accurate simulation results; however, its computational expense prohibits extensive application. 

Ramprasad and Botu implemented AML to identify fingerprints mapping atomic configurations to 

material properties , thereby accelerating the AIMD simulation.*211+ In another study, Xin et al. 

developed an AML strategy to identify ABO3-type cubic perovskite-based catalysts (Figure 8c) for 

highly efficient electrocatalytic oxygen evolution reaction (OER).*212+ 

3.7. Reinforcement Learning 

Reinforcement learning (RL), along with supervised and unsupervised learning, represent the 

three basic ML categories.*61+ The common RL model is based on the Markov decision process, which 

pursues the best long-term reward (Figure 8d). RL can be used for the optimization of organic 

synthesis routes*162+ and the design of drug molecules.*213+ In the realm of materials science, Rho et al. 

utilized RL as a model to search for the most suitable optical nanomaterials.*214+ Whitelam and 

Tamblyn have also demonstrated the favorable performance of RL in controlling self-assembly, from 

small molecules to large porous 2D materials.*215+ 

 

Figure 8. a) TL approach for the study of materials property prediction. OQMD: big DFT-computed 

source dataset Reproduced with permission.*205+ Copyright 2019, Springer Nature Publications. b) 

Flowchart of BO process in the optimization for epitaxial growth of Si thin films. SQCBO: single 

quality constraint Bayesian optimization; MQCBO: multiple quality constraint Bayesian optimization. 

Reproduced with permission.*210+ Copyright 2020, Elsevier Publications. c) Schematic illustration of 

AML in discovery of perovskite electrocatalysts. Reproduced with permission.*212+ Copyright 2020, 

ACS Publications. d) Schematic illustration of RL process. 
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4. Available Chemical Databases for Innovative Material Discovery 

Recent developments in data-centric approaches are expected to dramatically accelerate the 

progress in materials science because experimental and computational methods generate massive 

amounts of data, causing increasing complexity.[216] databases pertaining to both computational and 

experimental materials have been established to serve various specialized activities, rather than for 

dissemination or to enable contributions from the broader community.[217] The primary challenge in 

choosing and comparing databases is identifying the specific function that the database uniquely 

support, while also being able to compare various databases on the same structural basis.[218] Table 

1 lists the properties of dominant databases and their various attributes including data types, 

materials of focus, number of entries, data source, license, and a simple database descriptor.  

Relatively simple analytical tasks pose challenges unique to the data-driven era because we are 

unable to capture, curate, store, search, share, analyze, and visualize the data in the absence of 

proper tools.[219] Thus, the identification of large numbers of correlations and patterns complex 

datasets has necessarily been carried out by high-throughput implementations of ML algorithms for 

decades to generate predictive and classification models for targeted physical properties. We have 

summarized representative high throughput tools (pymatgen,[220] qmpy,[221] ASE,[222] and 

atomate[223]) and workflow management tools (FireWorks,[224] AFLOWπ,[225] matminer,[226] and 

AiiDA[227, 228]). This class of high-throughput and workflow management tools is generally available in 

an open-source, Python infrastructure, with data connectivity implemented in RESTful API. These 

components aid in automating, managing, persisting, sharing, and reproducing the complex 

workflows associated with modern computational science and all associated data, reducing the cost 

and enhancing the efficiency of data summarization approaches with respect to the popular “five 

V’s”: volume, velocity, variety, veracity, and value.[229] Representative databases and the high-

throughput management toolkits have been summarized in Figure 9. We also introduce the 

powerful QSTEM[230] tool for quantitative image simulation in electron microscopy. 

More specifically, individual databases each solve one specific problem by relaying the specific 

descriptors which have been extracted from other existing databases. For instance, database 

formulation may be motivated by the need to synthesize specific materials for a specific application, 

such as the accelerated discovery of stable lead-free hybrid organic-inorganic perovskites (HOIP)[36], 

accurate prediction of battery life[231], and various catalysis applications[232]. The potential of data-

driven strategies to uncover complex phenomena and design novel, high-performance materials is 

dependent on the quality and accessibility of databases and high-throughput tools, and which would 

otherwise not be possible with conventional trial-and-error approaches. 

 

4.1. Databases 

The continued advancement of science depends on shared and reproducible data. In the 

context of both computational and experimental materials science and rational materials design, this 

entails constructing large (open) databases of materials properties.[216] Several representative 

databases are presented as follows. 
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Figure 9. The representative theoretical (experimental) databases and high-throughput packages 

with management framework. 

4.1.1. Computational Databases  

Open Quantum Materials Database (OQMD) 

The OQMD[233, 234] is a DFT database containing calculated thermodynamic and structural 

properties of 815,654 materials, developed by Chris Wolverton’s group at Northwestern University. 
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The OQMD contains approximately 300,000 calculated structures, mainly from two sources: ~10% 

from the Inorganic Crystal Structure Database (ICSD)[235] and ~90% from the iteration of many 

chemistries for some of simple prototypes. For the crystal structures in the ICSD, ~44,000 structures 

are calculable, of which the OQMD contains DFT calculations of 32,559 ICSD structures. The 

remaining calculable ICSD structures are continually being calculated and added to the OQMD. 

Additionally, 259,511 hypothetical compounds have been generated based on 16 elemental 

prototypes, 12 binary prototypes with their compositions, and three ternary prototypes with their 

compositions.[236] [237] [234] Moreover, OQMD provides a qhull algorithm for establishing DFT ground-

state phase diagrams at ambient (high) pressure and Grand Canonical Linear Programming (GCLP) to 

analyze the complex ground state thermodynamics of metal hydrides[238] [239] [240]. The OQMD 

provides the entirety of the underlying database to be freely downloaded at oqmd.org/download/, 

in addition to a Representational State Transfer (REST) Application Programming Interface (RESTful 

API) for programmatic access, which allows scientists and engineers to use simple Hyper Text 

Transfer Protocol (HTTP) requests to access all living data [218].  

For instance, Tiantian Hu et al. used the Wasserstein GAN model in conjunction with the OQMD 

database to generate novel hypothetical materials (Figure 10a).[241] Victor Fung et al. predicted 

adsorption energies using the density of state data from the OQMD and Materials Project (MP) 

database combined with CNNs, targeting the accelerated discovery of catalytic materials (Figure 

10b).[242] The MP database is introduced in the subsequent section. 

 
Figure 10. a) The Wasserstein Generative Adversarial Network (WGAN) model using the OQMD 

database to generate novel hypothetical materials. Reproduced with permission.[241] Copyright 2020, 

MDPI Publications. b) Using the density of state data from the OQMD and MP database by 

convolutional neural networks (CNNs) for the accelerated discovery of catalytic materials. 

Reproduced with permission.[242] Copyright 2021, Springer Nature Publications.  

 

Materials Project (MP) 

The Materials Project (MP) provides open web-based access to computed information on 

known and predicted materials to inspire and design novel materials.[24] Most of the MP data pertain 

to chemical compounds in the ICSD.[235, 243] A significant challenge is the generation of novel 

compositions and compounds to perform calculations[24] even though there already exist multiple 

algorithmic, e.g., Optimization-based, [243-246] and data-driven approaches[247-249] to tackle this 

problem. For materials included in the MP database, selected properties such as total energies[250], 

electronic structure[250], thermodynamic equations of state parameters[251], phonons[252], 
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piezoelectricity[253], elasticity[254], dielectricity[255], and thermoelectricity[256] have been calculated and 

included. In addition, MP includes apps to visualize phase diagrams[257, 258] and Pourbaix diagrams[259]. 

Several other convenient applications such as Materials Explorer[253, 254], Battery Explorer[260], 

Reaction Explorer[257], Structure Predictor[261], Crystal Toolkit[220], Nanoporous Materials Explorer[220], 

Molecules Explorer[262, 263], Redox Flow Battery Dashboard[264], X-Ray Absorption Spectra (XAS)[265], 

Interface Reactions[266], and Synthesis Description Explorer[267] have also been included in MP. Both 

Python Materials Genomics (pymatgen)[220] and FireWorks[224] open-source libraries are available for 

materials analysis and high-throughput application. Note that all the underlying data for the 

calculations of ~530,000 nanoporous materials and 130,000 inorganic compounds are accessible via 

the Materials API[268] based on REST principles.  

Although the MP database was originally developed to predict the adsorption energy of the 

catalytic materials,[242] it has supported many other applications such as the accelerated discovery of 

stable spinel material[269] and carbon dioxide electrocatalysis[18]. Additionally, the MP and OQMD 

databases' magnetization properties are nearly comparable.[218] However, the Automatic-FLOWLIB 

(AFLOW) skews to larger magnetizations compared with MP and OQMD.[218]  

Automatic-FLOWLIB (AFLOW) 

AFLOW provides a globally available database of 3,312,125 material compounds with over 

566,373,375 calculated properties and growing[270]; it is a powerful tool for materials discovery and 

property predictions using ML, the prototype encyclopedia, and the generation of convex hulls. As a 

multi-purpose repository, AFLOW comprises of 323,516 electronic structures, 125,496 Bader charges, 

6,049 elastic and 6,038 thermal properties. This continuously updated compilation currently 

contains over 1,724 binary systems with more than 356,343 binary entries, 30,071 ternary systems 

with more than 2,400,160 ternary entries, and 150,621 quaternary systems with more than 450,567 

quaternary entries. For convenience, several apps and documents have been customized for specific 

applications. For instance, AFLOW-ML contains three functional modules only requiring structural 

information: the Property Labeled Material Fragments (PLMF[271]) provides the bandgap, energy, 

modulus, heat capacity etc.; the Molar Fragment Descriptor (MFD[272]) predicts vibrational free 

energies and entropies; AFLOW Superconductor (ASC)[273] can classify material as superconductors 

while also estimating the critical temperature. AFLOW-CHULL, powered by the AFLUX Search-API, is 

a cloud-oriented platform for autonomous phase stability analysis, a valuable tool for guiding 

synthesis based on high-throughput and even autonomous approaches[274]. AFLOW-AAPL (Automatic 

Anharmonic Phonon Library) is an efficient and accurate framework for calculating lattice thermal 

conductivity of solids, which was developed to compute the third-order interatomic force constants 

and solve the Boltzmann transport equation within the high throughput AFLOW framework.[275] 

We introduce the high-throughput first-principle-calculation framework of PAOFLOW and 

AFLOWπ. The key components of PAOFLOW involve managing sets of calculations to determine 

band structures, the density of states, complex dielectric constants, diffusive and anomalous spin 

and charge transport coefficients, etc. using a methodology that generates finite basis Hamiltonians 

from the projection of first principles plane-wave pseudopotential wavefunctions on atomic orbitals. 

The critical components of AFLOWπ involve robust data generation, real-time feedback and error 

control, curation and archival of data, and post-processing tools for analysis and visualization. 

AFLOWLIB API[276] following REST principles is introduced for the AFLOWLIB.org materials data 

repositories consortium and provides a powerful tool for accessing a large set of simulated material 
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properties data. For instance, Valentin Sranev et al. apply the random forest ML strategy as a 

classification and regression model in conjunction with the AFLOW database and ISCD, providing 35 

compounds with critical temperatures above 20 K as experimental candidates.[277] 

Novel Material Discovery (NOMAD) 

The concept of the NOMAD was developed in 2014, independently and in parallel to the “FAIR 

Guiding Principles.”[278] The Novel Materials Discovery (NOMAD) Laboratory is a user-driven platform 

for sharing and exploiting computational materials science data.[279] With the NOMAD repository and 

its code-independent canonicalized NOMAD archive, NOMAD consists of the world's most extensive 

data collection in this area. Based on a searchable, accessible, interoperable, and reusable data 

infrastructure, it offers a variety of services, including advanced visualization, NOMAD 

encyclopedias, and artificial intelligence. Further, the NOMAD CoE established an innovative tool for 

mining this data to locate structure, correlations, and novel information that would otherwise be 

difficult to identify through the study of a small database.  

Note that usable and clearly defined metadata is a prerequisite for this normalization step to a 

code-independent format, rendering even the development of the NOMAD Meta Info[280] a 

significant challenge. In addition, the Open Databases Integration for Materials Design (OPTIMADE) 

consortium aims to promote materials databases interoperation by developing a standard REST API. 

Recently, Acosta et al. established the materials map of two-dimensional (2D) honeycomb structures 

for analyzing and identifying 2D topological insulators based on the NOMAD concept.[280, 281] Unlike 

the OQMD, MP, AFLOW, and NOMAD databases, the Computational Materials Repository (CMR) has 

many independent projects that consist of the Atomic Simulation Environment (ASE)[222] dataset, 

such as the computational 2D materials database (C2DB) [282] (Figure 9), and the detailed information 

is as follows. 

Computational Materials Repository (CMR) 

CMR[283] has resulted from a collaboration under the Quantum Materials Informatics Project 

(www.qmip.org) to establish core technologies for integrated computational materials design[283]. 

CMR addresses data challenges to enhance the possibility of designing new materials based on 

quantum physics calculations. CMR provides software infrastructure (such as the Computational 2D 

Materials Database[282], Bondmin optimization algorithm,[284] and CatApp database[285]) that support 

the collection, storage, retrieval, analysis, and sharing of data generated by numerous electronic 

structure simulators. Furthermore, CMR provides some basic functionality for processing large 

amounts of data, though more software development in this area is being implemented to facilitate 

large-scale collaboration in the future. We present representative computational and free-of-charge 

databases in Figure 9. However, the subsequent section introduces a number of reputable databases 

with historical significance (Figure 9) focusing primarily on the collection of experimental data. 

 

4.1.2. Experimental Databases 

ICSD 

The ICSD[235] is the world's largest database of fully evaluated and published data containing 

inorganic crystal structures primarily derived from experimental results. Currently, the ICSD[286] has 

more than 232,012 entries, including ~2,902 elemental crystal, ~38,506 binary compounds, ~73,048 
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ternary compounds, and ~73,688 quarternary and quintenary compounds. The database is updated 

twice a year based on over 80 leading scientific journals and more than 1,400 other scientific 

journals; data sources have been expanded to include experimental inorganic structures, 

experimental metal-organic structures, and theoretical inorganic structures. 

To be included in the database, the structure must be fully characterized. For instance, atomic 

coordinates can be determined or derived from known structure types, and the composition must 

be fully specified. Typical entries include chemical names, formulas, unit cells, space groups, 

complete atomic parameters (including atomic displacement parameters if available), site 

occupancy, titles, authors, and literature citations. For published data, many items (such as Wykov 

sequences, molecular formulas, weights, ANX formulas, and mineral groups) are introduced through 

expert evaluation or generated by computer programs.  

The keyword-based search in the ICSD can be specified in terms of physical properties, 

analytical methods used, and technical application. Note that the ISCD data has been used to 

indicate promising novel applications of new ionic conductors, solar cell adsorbers, advanced 

ceramic materials, nature’s missing compounds, and structural relations between the crystalline 

compounds. In addition, ICSD data have been included in almost all other computational databases, 

such as OQMD, MP, and AFLOW. Organic and inorganic compounds are two of the main categories 

of chemical materials. Thus, we introduce the Cambridge Structural Database (CSD) for organic 

materials. 

CSD 

The CSD[287] is the world’s largest and most comprehensive collection for small-molecule 

organic and organometallic crystal structures, containing over one million structures from X-ray and 

neutron diffraction analyses. For comprehensive coverage of single-crystal data, cell parameters and 

all available data are included even if no coordinates are available. Similarly, powder structures are 

available from the International Centre for Diffraction Data (ICDD)[288] even though the coordination 

information is missing. Note that there is a slight overlap between the CSD and the ICSD in the area 

of molecular inorganics, but that purely inorganic structure is not contained in the CSD.  

The CSD database has provides data in two distinct ways. The first is pertains only to structural 

aggregation and standardization, making it easier to access individual entries. The second is based 

on further study of data collection and the discovery of new knowledge transcending the results 

from individual experiments. Python-based API[289] has also been introduced to enable end-users to 

query CSD using customized script. Accessing data via scripts in conjunction with other packages 

such as RDKit[290] is very useful for more advanced structural data analysis. For instance, users will be 

able to use ML more conveniently in conjunction with APIs for solvate prediction, implementing 

fragment pocket analysis using structural information, and supporting crystal (co-crystal) structure 

prediction.[291] More detailed insights could be developed as the scale of data increased, having a 

profound impact across the scientific community with specific consequences for drug discovery and 

development.[289] However, the ICSD and CSD have paid licenses (as shown in Table 1), affecting a 

number of institutions or members who cannot access the data. We subsequently introduce the 

open-access Crystallography Open Database (COD)[42] database, including both organic and inorganic 

materials.  
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COD 

The COD[42] is the most extensive open-access collection of minerals, metal organics, 

organometallics, and small organic crystal structures, excluding biomolecules which are otherwise 

stored in Protein Data Bank. The COD currently contains over 385,000 records and is constantly 

growing in size and quality. The COD has introduced a new data deposition website that allows the 

manual and automatic uploading of data and structures to the COD. This automation is greatly 

facilitated by the introduction of the Crystallographic Interchange Framework (CIF). In addition to 

web access, the COD provides a RESTful interface which allows the querying of information about 

COD entries based on specific criteria or the crystal structure file itself. Additionally, SQL (Structure 

Query Language) is the most powerful mechanism to query these relational databases, providing 

more functionality than COD web pages and COD RESTful interfaces.  

A widely accepted application of the COD is for material identification with the help of the 

powder diffraction method and search-match procedure. The largest diffractometer vendors 

(including Bruker, PANalytical, and Rigaku) ship COD collection software that are compatible with 

their equipment and provide regular updates on the COD website or on their own pages. In 

bioinformatics and drug design, the COD is used as a source of open data for restraint libraries[292]. 

Finally, the COD is also used in basic research to support investigations into hydrogen storage, 

characterization of 2D materials, etc.[293]  

4.1.3. Data Infrastructure 

Citrination Platform 

The Citrination Platform*294+ takes an intermediate view on the challenge of materials data 

infrastructure, driven by the goal to make vast quantities of cross-disciplinary materials data both 

human-searchable and machine-readable for data mining. In the design of material data 

infrastructure, the Citrination Platform offers convenient technology for data import, storage, and 

access. It can be used in various fields such as extracting knowledge through catalysis informatics[295], 

screening of inorganic materials synthesis parameters[296], and finding novel thermal materials[297]. 

Materials Data Facility (MDF) 

Materials Data Facility (MDF) *298, 299+ services are uniquely differentiated to support the 

publishing, discovery, and access to materials datasets using distributed data publication and 

discovery models, which are built on and leverage production services provided by Globus, a 

nonprofit software-as-a-service (SaaS).[298]
 MDF supports this vision by providing interconnection 

points that allow producers of material data to dispatch a wide range of results which is discovered 

and aggregated by data consumers from each independent source. Currently, MDF stores 30 TB of 

data from simulation and experiment, and also indexes hundreds of datasets contained in external 

repositories, with millions of individual MDF metadata records created from these datasets to aid 

fine-grained discovery.” 

4.2. High-Throughput (HT) Programming Packages and Workflow Management 

Frameworks 

The constant availability of computing power and the sustainable development of advanced 

computing methods have contributed significantly to recent scientific advances. The data-driven era 
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for materials science has dramatically impacted novel materials discovery, physical properties 

prediction, and the underlying patterns of numerous materials. Consequently, mass computational 

and experimental material databases have been established to serve various specialized purposes 

rather than sharing and enabling contributions to the materials science community based on “FAIR 

Guiding Principles.”[278] These developments present new challenges posed by the vast amount of 

computations and data to manage.[219] Selecting the most appropriate database to address specific 

scientific problems remains the primary challenge. It is critical to identify the key differences 

between various databases while being cognizant of the ways in which they overlap.[219] 

Next-generation exascale supercomputers will exacerbate these challenges, implying that 

automated and scalable solutions will be essential. For instance, Cronin et al. reported the 

convergence of multiple synthetic paradigms for a universally programmable chemical synthesis 

machine[300] and summarized the current process for universal chemical synthesis and discovery 

using ML[301]. Cooper et al. used a mobile robot to search the most efficient photocatalysts for 

hydrogen production from water.[302] Thus, it is vital to summarize the high throughput tools and 

workflow management frameworks that can conveniently handle data obtained from various 

databases. Figure 9 presents a summary of the representative high throughput tools (pymatgen,[220] 

qmpy, [221] ASE,[222] and atomate[223]) and workflow management frameworks (FireWorks, [224] 

AFLOWπ, [225] matminer, 11] and AiiDA[227, 228]). 

4.2.1. Programming Packages 

Python Materials Genomics (pymatgen) 

Pymetgen[220] is a robust, open-source Python library for materials analysis. A major enabler in 

high-throughput computational materials science efforts is a robust set of software for performing 

computational initialization (structure generation, required input files, etc.) and post-computational 

analysis to derive useful material properties from raw computational data. As mentioned in f MP 

section, the pymetgen library provides a convenient tool for obtaining useful materials data via MP’s 

REST API for structure generation, manipulation, and thermodynamic analysis.  

The pymatgen library provides (1) a core Python object for material data representation, (2) a 

well-tested set of structures and thermodynamic analyses relevant to a number of applications, and 

(3) targeting researcher needs by establishing an open platform for collaboration and developing a 

sophisticated analysis of material data obtained from both first-principles calculations and 

experiments. The overview of a typical workflow for pymatgen is presented in Figure 11a. For 

example, Ceder et al.[303] utilized pymatgen to map the body-centered cubic-like anion framework to 

solid-state lithium superionic conductors (Figure 11b). Additionally, The grand potential phase 

diagram was used to identify the domain phase in the Li7La2.75Ca0.25Zr1.75Nb0.25O12 system (Figure 

11c).[304] Analogous to the use of pymatgen in conjunction with MP, qmpy has also been developed 

to support workflows based on data from OQMD.  

The OQMD running and maintenance toolkit (qmpy) 

The qmpy[221] toolkit stores crystal structure data, automates DFT calculations, handles 

computational resources, and performs thermodynamic analysis. Moreover, qmpy is a package 

containing many computational materials science tools, bundled with two executable scripts: qmpy 

and oqmd.  
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qmpy is used to run and maintain the OQMD. The ultimate reference for the searching model is 

based on ‘filter’, ‘exclude’, and ‘get’ methods. There are many advanced functions such as advanced 

searching, using qmpy to manage a high-throughput calculations, and the ability to create 

customized Python scripts which takes advantage of qmpy features. For instance, Wolverton et al. 

use qmpy to develop accurate formation energy comparisons between the DFT and experimental 

data (Figure 11d).[23] Difference between OQMD and experimental for the fit-none, fit-partial, and 

fit-all chemical-potential sets have been presented. Specifically, in the fit-none case, the average 

difference is 0.105 eV/atom, with a MAE of 0.136 eV/atom; the average error is reduced to 0.020 

eV/atom with a MAE of 0.096 eV/atom using chemical potentials from the fit-partial set; finally, the 

average error is 0.002 eV/atom with a MAE of 0.081 eV/atom using the chemical potentials of all 

elements (fit-all), which is the slightly better fitting than both fit-none and fit-partial chemical 

potential case.*23+ 

 
Figure 11. a) overview of a typical workflow for pymatgen. Reproduced with permission.[220] 

Copyright 2013, Elsevier Publications. b) Mapping the body-centered cubic-like anion framework to 

solid-state lithium superionic conductor. Reproduced with permission.*303+ Copyright 2015, Springer 

Nature Publications. c) The grand potential phase diagram was used for identifying the domain phase 

in the Li7La2.75Ca0.25Zr1.75Nb0.25O12 system at potentials (µLi) of i. 0 eV, ii. -0.06 eV and iii. -1.23 eV, 

respectively. Reproduced with permission.*304+ Copyright 2017, Springer Nature Publications. d) 

Schematic illustration of comparison between the OQMD and 1670 experimentally measured 
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formation energies for i. fit-none, ii. fit-partial and iii. fit-all sets of the elemental potential. 

Reproduced with permission.*23+ Copyright 2015, Springer Nature Publications. 

 

Atomic Simulation Environment (ASE) 

ASE[222] is a collection of Python modules to set up, control, visualize, and analyze simulations 

on an atomic and electronic scale. ASE acts as a front-end for atomistic simulation, where both the 

atomic structures and parameters that control the simulation are easily defined. Simultaneously, the 

full functionality of the Python language is also available, giving users interactive and detailed 

control over several interrelated simulations.  

To perform many complex atomic-scale simulations, ASE relies on three powerful libraries 

(Numpy, SciPy, and matplotlib). For the top of the atoms-calculator interface, ASE provides 

algorithms for various atomistic simulation tasks (30 different atomic-scale codes such as structure 

optimization, molecular dynamics, the nudged elastic band simulation (Figure 12a). For example, 

Tran and Ulissi identified suitable electrocatalysts for CO2 reduction and H2 evolution by using an 

active learning method through VASP implemented by ASE with FireWorks managed frameworks[224] 

(Figure 12b).[13] In addition to the pymatgen, qmpy, and ASE (Figure 9), the last representative HT 

package that we introduce is Atomate; the detailed framework to manage HT automation is as 

follows. 

 
Figure 12. a) The overview of the platform of the support from ASE. b) discover the suitable 

electrocatalysts for CO2 reduction and H2 evolution by using an active learning method through VASP 

implemented by ASE with FireWorks managed frameworks. Reproduced with permission.[13] 

Copyright 2018, Springer Nature Publications. c) Example of GaP band structure (left) computed via 

atomate/VASP and La0.7Sr0.3MnO3 ELNES spectra (right) computed via atomate/FEFF using Atomate. 

Reproduced with permission.[223] Copyright 2017, Elsevier Publications. d) The basics workflows for 

band structure using Atomate. Reproduced with permission.[223] Copyright 2017, Elsevier 

Publications. 
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Atomate  

Atomate[223], an open-source Python framework for the simulation, analysis, and design of 

materials focuses on the automation and extensibility of conventional software applications which 

may other otherwise be difficult to use or implement at scale. Atomate offers powerful theory and 

calculation tools for the analysis and design of novel materials. Atomate makes it possible to 

perform complex materials science computations using very straightforward statements. The FEFF 

software integration was recently introduced (Figure 12c), and other computational packages are 

under development. 

Atomate aims to gather knowledge about the computational procedures of different methods 

of material analysis into easy-to-use workflows and workflow components that can be modified and 

reconfigured as needed. Workflows currently available in atomate include band structure, bulk 

modulus, elastic tensors, Raman spectra, permittivity, , and various types of spectral calculations 

(XAS, EELS). Atomate is built on top of state-of-the-art open-source libraries such as pymatgen, 

custodian, and FireWorks. Building these libraries not only serves as a friendly and straightforward 

introduction to computational materials science but is also powerful enough for the most 

demanding theoretical users who require precise control and large-scale execution. Specification of 

the crystal structure is all that is required to allow atomate set up a complete workflow to provide 

properties of interest (Figure 12d); this can be accomplished for a single material, 100 materials, or 

100,000 materials. For instance, Wu et al. calculated the band structure and elastic properties for 

polycrystalline SnSe2 with various amounts of Br dopant using the Atomate package.[305] Zheng et al. 

automatically generated an ensemble-learned matching of XAS using the Atomate package in 

conjunction with the workflow management framework of FireWorks (Figure 13a).[306] 

 
Figure 13. a) Overview of generation and ensemble-learned matching of X-ray absorption spectra 

using the Atomate package with the workflow management frameworks of FireWorks. Reproduced 

with permission.[306] Copyright 2018, Springer Nature Publications. b) To making the structure's 

relationship with heterogeneous catalysis using workflows of FireWorks. Reproduced with 

permission.[307] Copyright 2021, Wiley Publications. 
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4.2.2. Workflow Management Frameworks 

FireWorks (FWS) 

FWS is a ML library for Python that provides a DataFrame implementation compatible with 

PyTorch Tensors.[224] The user can build a model that references the input by column name 

consistent with tabular data formats applicable to all data analysis software and languages such as 

SQL, Stata, Excel, R DataFrames, and Python Pandas. The operation makes it easier to track variables 

when working with data in this format and integrating these models into existing Pandas-based data 

science workflows. Fireworks consists of a number of modules designed to work together to 

facilitate various aspects of deep learning and data processing. As illustrated in Figure 12b and Figure 

13a, in addition to working with other codes such as ASE and Atomate, FWS can work in conjunction 

with VASP workflows to create, track, and stop the work or process. For instance, Sergio et al. 

utilized this strategy to develop the structure's relationship with investigations in heterogeneous 

catalysis (Figure 13b).[307] AFLOWπ integrates with the AFLOW, which is also a popular HT framework. 

AFLOWπ 

AFLOWπ,[225] a minimalist approach to high-throughput ab initio calculations, including the 

generation of tight-binding hamiltonians without any additional input, is easily portable, simple to 

use, and integrated with the AFLOW.org repositories. AFLOWπ was initially developed for 

verification and testing purposes but has evolved into a modular software infrastructure that 

provides an automation workflow for tight-binding Hamiltonian ab initio generation within a 

projected atomic orbital. The simulations for elastic constant, complex dielectric constant, diffusive 

transport coefficient, phonon dispersions with Hubbard U correction and optic spectra are included. 

For instance, Emmanuel et al. calculated the band structure (Figure 14a) and phono dispersion 

(Figure 14b) for thermoelectric bulk colusite using AFLOWπ, which is otherwise a challenging process 

to implement with traditional DFT simulation.[308] 

Automated Interactive Infrastructure and Database (AiiDA) 

AiiDA[227, 228] is an open-source python infrastructure platform to support and streamline the 

four core pillars of the ADES model: Automation, Data, Environment, and Sharing (Figure 15a). 

Leveraging the AiiDA Workflow Manager and its plugin ecosystem, developers can access simulation 

code that scales through the Python API combined with automatic simulation tracking for full 

reproducibility. As a core principle of AiiDA's design, its focus on data provenance represents a 

significant departure from the other management systems mentioned earlier.  
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Figure 14. The a) band structure and b) phonon dispersion of thermoelectric bulk colusite using 

AFLOWπ. Reproduced with permission.[308] Copyright 2018, ACS Publications. 
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Figure 15. a) the ADES infrastructure in AiiDA. b) Schematic overview of the AiiDA.1.0 c) Provenance 

graph automatically generated by AiiDA. Reproduced with permission.[309] Copyright 2020, Springer 

Nature Publications. 

AiiDA aims to provide a framework that enables the design and execution of complex high-

throughput computational workflows with a fully automated history and built-in support for high-

performance computing on remote supercomputers (Figure 15b).[228] Additionally, the main goal of 
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the AiiDAlab[228] platform is to provide an environment where users with varying expertise can 

access and perform computational workflows embedded into the AiiDAlab apps. Each user has a 

separate AiiDAlab account which grants them access to the AiiDAlab instance through a web 

browser. AiiDA is a flexible tool interoperable with any simulation software due to its plugin system, 

making computational science more transparent, user-friendly, and ultimately fully reproducible, in 

full compliance with FAIR principles. For instance, Valerio et al. have used AiiDA to automate the 

Maximally-localised Wannier functions and synthesize the corresponding Provenance graph (Figure 

15c). 

Matminer 

Matminer[226] is an open-source toolkit for materials data mining based on the Python library, 

which provides a comprehensive library implementation of feature extraction routines developed by 

the materials community and features 47 feature classes that can generate thousands of individual 

descriptors and combine them into mathematical functions. The general workflow and overview of 

Matminer are shown in Figure 16a. 

Matminer works with Panda's data formats to convert complex material attributes into numeric 

descriptors for data mining functionality (Figure 16b). It can then perform data mining on materials 

and make various downstream ML libraries and tools available for materials science applications. For 

example, low-modulus Ti-Nb-Zr alloys were discovered with the aid of the MP database in 

conjunction with the matminer library (Figure 16c).[310] 

ChemML 

ChemML
[311, 312]

 is an open machine learning and informatics program suite for 

analyzing, mining, and modeling chemical and materials data. Specifically, ChemML is 

developed in the Python 3 programming language and uses a host of data analysis, ML 

libraries (accessible through the Anaconda distribution), and domain-specific libraries. 

ChemML allows its users to perform various data science tasks and execute machine learning 

workflows adapted specifically for the chemical and materials context. In addition, ChemML 

is designed to facilitate methodological innovation; it is one of the cornerstones of the 

software ecosystem for data-driven in silico research.
[311] 

MAterials Simulation Toolkit for Machine Learning (MAST-ML)  

MAST-ML[313] is an open-source Python package designed to broaden and accelerate the use of 

machine learning in materials science research, particularly for non-experts without programming 

ability. It provides flexible access to the most important algorithms while codifying best-in-class 

machine learning model development and evaluation practices. MAST-ML provides predefined 

routines for many input setup, model fitting, and post-analysis tasks, as well as a simple structure for 

executing a multi-step machine learning model workflow, such as lattice for thermal conductivity[314] 

and magnesite flotation studies.[315]  



 

This article is protected by copyright. All rights reserved. 

47 

 
Figure 16. a) The general workflow and overview of matminer. b) Obtaining materials data from 

various sources into the panda's data format. c) Low-modulus Ti-Nb-Zr alloys were discovered with 

the aid of the MP database and the matminer library. Reproduced with permission.[310] Copyright 

2020, ACS Publications. d) The QSTEM simulation of high-resolution-STEM ADF imaging. Reproduced 

with permission.[316] Copyright 2020, AAAS Publications. 

 

4.2.3. Simulations 

Quantitative TEM/STEM Simulations (QSTEM) 

QSTEM[230] is a program for quantitative image simulation in electron microscopy, including 

TEM, STEM, and CBED image simulations based on the multislice algorithm. Several features of 

QSTEM are notable. First, QSTEM has the potential to work with arbitrary samples and orientations 

(such as interfaces, defects, and imperfect crystals and not only low-index zone axes of the single 

crystal) because of the principle of the multislice algorithm. Second, the atomic scatter coefficient 

must be accurate to the large angles required for STEM simulations. For instance, Lopatin et al. 

investigated the correlation of atomic simulation images using QSTEM with HR-STEM ADF images to 

reveal the false T phase of transition metal dichalcogenides (Figure 16d).[316] Finally, pyqstem has 

been created as an open-source python library based on QSTEM. The pyqstem project interfaces 

with QSTEM code through Python and ASE to provide a single environment for model building, 

image simulation, and analysis. 
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Table 1. The database including the name, data type, materials types , simple key description, 

number of the entries, data sources, and license. 

Database Types Materials Descriptor No. Entries  Data Source License Ref 

Open Quantum 

Materials Database 

(OQMD) 

Computational Inorganic Solids Multi-purpose repository ~300,000 ICSD, 

Hypothesis 

Free [221, 

233, 

234] 

Materials Project (MP) Computational Inorganic Solids;  

Nanoporous Materials 

Multi-purpose repository >130,000 

~530,000 

ICSD  Free [24] 

Automatic-FLOW 

(AFLOW) 

Computational Inorganic Solids,  

Alloys 

Multi-purpose repository 3,312,125 ICSD Free [317] 

Novel Material 

Discovery (NOMAD) 

Computational Inorganic Solids Multiple-source 

repository 

-- Literarues Free [280] 

The Computational 

Materials Repository 

(CMR) 

Computational Perovskites, 2D 

Materials 

Multi-purpose (3D and 

2D materials)repository 

-- OQMD Free [283] 

Inorganic Crystal 

Structure Database 

(ICSD) 

Experimental Inorganic Crystal 

Structures 

Structural Properties  >232.012 Literarues Non-

Free 

[235] 

Cambridge Structural 

Database (CSD) 

Experimental Metal Organic 

Frameworks, Orgaincs 

Molecure 

Organic and Inorganic 

experimental 

>800.239 Literatures, 

ICDD 

Non-

Free 

[318] 

Crystallography Open 

Database (COD) 

Experimental, 

Computational 

 Structural Properties >385,000 Literatures,  [42] 

The Computational 2D 

Materials Database 

(C2DB) 

Computational 2D Materials  Structural, 

Thermodynamic, Elastic, 

Electronic, Magnetic, And 

Optical Properties 

~4,000 MP, 

CMR 

Free [319] 

Clean Energy Project 

(CEP) 

Computational Organic Photovoltaics Multiple source 

repository for solar cells 

>2,000,000 Literatures, 

Hypothesis 

Free [320] 

Organic Materials 

Database (OMDB) 

Computational Organic Materials Electronic Structrue,  

Density of States 

~12,500 COD Free [321] 

Joint Automated Computational 2D/Solid Inorganics  Structural, ~40,000 MP, OQMD, Free [322] 
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Repository For Various 

Integrated Simulations 

(JARVIS)-DFT 

Thermodynamic, 

Electronic, Elastic, 

Properties 

AFLOW, 

Literatures. 

Citrination Experimental, 

Computational 

Inorganic Solids, 

Molecules 

Multi-purpose repository -- Literatures, 

 

Free [217] 

Materials Cloud Experimental, 

Computational 

All Materials Multiple-source 

repository 

-- ICSD,COD, 

Literatures 

Free [323] 

Alloy Database Computational Intermetallics Structrue, Cohesive 

Energies 

-- ISCD Free [324] 

CatApp Computational Molecules on Surfaces Reaction/activation 

Energies 

-- -- Free [285] 

Computational 

Chemistry Comparison 

and Benchmark 

DataBase (CCCBDB) 

Computational Atoms, Moleculres Thermochemical 

Properties 

~2069 -- Free [325] 

Computational 

Electronic Structure 

Database (CompES-X) 

Computational Inorganic Solids Electronic Structure >100 -- Free -- 

Crystalium Computational Elemental Solids Surface, Grain Boundary 

Energetics 

>145 Literatures Free [326] 

Phonondb Computational Inorganic Solids Phonons, Thermal 

Properties 

-- MP Free  

TE Design Lab Computational Semiconductors Electronic,  

Thermoelectric 

Properties 

~2701 Literatures Free [327] 

AIST Research 

Information Databases 

Experimental General Materials 

Data 

Substances, Chemical 

Accidents, 

Geological Information 

-- Literatures Free [328] 

American Mineralogist 

Crystal Structure 

Database 

Experimental Minerals Structural Properties 2627 Literatures Free [329] 

ASM Alloy Center 

Database 

Experimental Alloys Composition, Structue,  

Physical Properties 

-- Literatures Non-

Free 

-- 

ASM Phase Diagrams Experimental Alloys Thermodynamic 6200 Literatures Non- -- 
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Properties Free 

CALPHAD databases Experimental Alloys Thermodynamic, Kinetic, 

And Properties Databases 

-- Literatures Non-

Free 

-- 

ChemSpider Experimental Chemical Materials Multiple-Source 

Repository 

99,000,000 Literatures Free [330] 

CINDAS High-

Performance Alloys 

Database 

Experimental Alloys Physical Properties 298 Literatures Non-

Free 

-- 

CRC Handbook Experimental General Materials 

Data 

Multi-purpose repository -- -- Non-

Free 

-- 

CrystMet Experimental Metals Chemical and physical 

information 

70,000 Literatures Non-

Free 

[331] 

DOE Hydrogen Storage 

Materials Database 

Experimental General Materials 

Data 

Hydrogen storage -- Literatures Free -- 

Granta CES Selector Experimental Metals, Polymers, 

Composites, Medical 

Materials, Coatings, 

Aerospace Materials 

Multi-purpose repository >4000 Literatures Non-

Free 

-- 

Handbook of Optical 

Constants of 

Solids, Palik 

Experimental General Materials 

Data 

Hard-copy sources -- Hard-copy 

sources 

Non-

Free 

[332] 

International Glass 

Database System 

(INTERGLAD) 

Experimental Glass Structrues Properties 350,000 -- Non-

Free 

-- 

Knovel Experimental General Materials 

Data 

Multi-purpose repository -- Literatures Non-

Free 

[333] 

Matbase Experimental General Materials 

Data 

Transcription Factors and 

The Corresponding 

Weight Matrices 

-- Literatures Free -- 

MatDat Experimental General Materials 

Data 

Physical Properties >4000 Literatures Non-

Free 

-- 

MatNavi (NIMS) Experimental Polymers, Inorganic 

and Metallic Materials 

Multi-purpose repository -- Literatures Free [334] 

MatWeb Experimental Carbon, Ceramis, Multi-purpose repository 140,000 Literatures Free [335] 
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Fluid, Metal, 

Polymer, Wood and 

Natural Products 

Mindat Experimental Minerals, rocks, 

Meteorites 

Multi-purpose repository -- Literatures Free -- 

NanoHUB Experimental Nanomaterials Multi-purpose repository -- Literatures Free [336] 

NIST Materials Data 

Repository (DSpace) 

Experimental, 

Computational 

General Materials 

Data 

Multi-purpose repository -- Literatures Free -- 

NIST Interatomic 

Potentials Repository 

Computational Meatals, 

Semiconductors, 

Oxides, and Carbon-

containing systems 

interatomic potentials -- Literatures Free [337, 

338] 

NIST Standard 

Reference Database 3 

(NIST SRD 3) 

Experimental, 

Computational 

Inorganic Solids Multi-purpose repository 210,000 Literatures Non-

Free 

-- 

Open Knowledge 

Database Of 

Interatomic Models 

(Open KIM) 

Computational Moleculars interatomic potential 

repository 

-- -- Free [339] 

Pauling File Experimental, 

Computational 

Inorganic Solids Phase-Disgrams, 

Crystal Structures, 

Physical Properteis 

357,612 Literatures Non-

Free 

[340] 

Pearson’s Crystal Data 

(PCD) 

Experimental 

 

Inorganic Solids Multi-purpose repository 350,000 Literatures Non-

Free 

[341] 

Pearson’s Handbook: 

Crystallographic Data 

Experimental 

 

Intermetallic phases Crystallographic Data -- Hard-copy 

sources 

Non-

Free 

-- 

Powder Diffraction File 

(PDF) 

Experimental Inorganic Solids Crystallographic Data -- Literatures Non-

Free 

[342] 

PubChem Experimental Molecures Multiple-source 

repository 

32,000 Literatures Free [343] 

Reaxys Experimental Chemical data Multi-purpose repository >118,000 Literatures, 

Patents 

Non-

Free 

[344] 

SciFinder Experimental Chemical data Multi-purpose repository 47,000,000 Literatures, 

Patents 

Non-

Free 

[345] 
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SciGlass Experimental Glasses Multi-purpose repository 360,293 Literatures, 

Patents 

Non-

Free 

-- 

SpringerMaterials Experimental General Materials 

Data 

Multi-purpose repository -- Literatures, 

Patents 

Non-

Free 

-- 

Total Materia Experimental Metallic Materials 

Data 

Multi-purpose repository 350,000 Literatures, 

Patents 

Non-

Free 

-- 

UCSB-MRL 

thermoelectric 

database 

Experimental Thermoelectric 

Materials 

Thermoelectric 

Properties 

18,000 Literatures Free [346] 

NRELMatDB Computational Inorganic Solids Quasiparticle Energies, 

Renewable Energy 

Application 

--  Literatures, 

Patents 

Free [347] 

Metallurgical 

Thermochemistry, 

Kubaschewski 

Experimental Thermoelectric 

Materials 

Thermoelectric 

Properties 

--  Hard-copy 

sources 

Non-

Free 

-- 

3D Materials Atlas Experimental General Materials 

Data 

3D Characterization -- -- Free -- 

Inorganic Material 

Database (AtomWork) 

Experimental Inorganic Solids, 

Metals 

Material Properties,  

Phase Diagrams 

82,000 Literatures, 

 

Non-

Free 

-- 

Mineralogy Database Experimental Minerals Structure Properties, 

physical and optical 

Properties 

4714 Literatures Free [348] 

CSD Teaching Database Experimental Organic Materials Structure Properties, 

physical and optical 

Properties 

>750 CSD Free -- 

Database of Zeolite 

Structures 

Computational zeolites Multi-purpose repository -- Literatures, 

Hypothesis 

Free [349] 

RCSB Protein Data Bank 

 

Experimental biological 

macromolecular 

structures 

Multi-purpose repository >173,005 Literatures, 

 

Free  
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5. Key Descriptors Bridging Data Intensive Discoveries and Experimental 

Strategies for Innovative Materials  

The key premise of the ML framework is that learning can be viewed as a reasonable model to 

explain the observed data.[350] Descriptors are the carriers of information exchange between humans 

and machines. In the context of materials science, they deliver information about molecular 

properties to machines in digital form. Key to the efficient use of ML in the field of chemical 

materials is the "descriptor selection" tool, which takes the entire descriptor set as an input, or 

combines it into a new reduced, but more reliable, descriptor set through correlation analysis while 

providing a mapping to a Key Performance Indicator (KPI) fingerprint [50]. In this section, the strategy 

of transforming material data to ML through descriptors is introduced; descriptors can be divided 

into five main types: constitutional descriptors [20, 36, 351-359]; geometric descriptors [36, 50, 353-361]; 

quantum chemistry descriptors[11, 12, 20, 36, 50, 190, 351-371]; electrostatic descriptors [36, 50, 352, 355, 361, 363, 365, 

369, 370]; combinational descriptors. These will be elaborated upon in the relevant subsections. Finally, 

we describe some of the extension packages of descriptors in the field of AI for materials science. 

 

5.1. Information Bridging: from Chemical Structures to ML Models 

5.1.1. Descriptor Importance 

The selection of descriptors directly determines the feasibility of introducing ML to solve the 

posed question. When the scientific connection between the descriptor and the actuation 

mechanism is not clear, the causal relationship of the learned descriptor-attribute relationship is 

uncertain. Therefore, the reliable prediction, identification, and scientific development of new 

materials are called into question. Analyzing the problem and defining a suitable descriptor is a 

meaningful and necessary step.[372] 

A number of studies have emphasized the importance of material descriptors in accelerating 

the calculation of material properties or material design. Ghiringhelli, L. M. et al. [372] detail the 

required characteristics of a set of descriptors: the calculation of descriptors should not be as 

intensive as that of KPIs; they uniquely characterize materials and the basic processes which pertain 

to properties; very different materials should be characterized by very different descriptor values 

(and vice versa); their size should be as small as possible. Sahu et al.,[71] utilized 13 microscopic 

properties of organic materials as descriptors to build a PCE prediction model. The results indicated 

that such descriptors can effectively be applied in the context of promising high-throughput virtual 

screening of new donor molecules for efficient organic photovoltaics. Implementing descriptors with 

appropriate features plays an important role in accelerating outcomes of material design, or the 

study of material characteristics. 

5.1.2. Bridging and Transferring Process 

Data bridging and transfer processes often introduce uncertainty to ML predictions. The 

evaluation of this uncertainty indicates whether the required prediction accuracy has been satisfied. 
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The MGI[24] aims to capture, manage, and utilize material structure/property information on a large 

scale to enable the rapid, cost-effective, and efficient development of new materials with 

predictable properties. Although the use of such "genome" methods (to promote attribute 

prediction, virtual design, and material discovery) is relatively new, the concepts driving the 

development of materials informatics are firmly grounded in previous lessons learned from the fields 

of chemoinformatics and bioinformatics.  

The management and utilization of material structure/attribute information have increased the 

significance of cheminformatics to ML; a number of new methods have emerged for information and 

data conversion. Behler describes some of the ways in which chemoinformatics and ML methods 

have been adapted for materials science and engineering applications, including methodologies to 

create, verify, and use material quantitative structure and property relationship (MQSPR) 

models[373]. Friederich et al.[354] used full autocorrelation (FA) functions to transfer the features of 

chemical complexes. Combining DFT and ML methods, the obtained predictions of reactivity within 

large chemical spaces containing thousands of complexes. Affordable descriptors were transferred 

as functions and demonstrated as fingerprints for each complex by considering a specified product 

of atomic properties (PiPj) calculated in terms of all atoms. Compound compositions were guided by 

the properties of atoms i and j (Figure 17a). These atomic properties include electronegativity, 

atomic number, identity topology, and size. Each descriptor is multiplied as a function of Diracδδ to 

encode the structure and properties of the compound. 

The selection of the descriptor, removal of redundant features, and establishment of 

relationships are crucial to the process of transferring information. As shown in Figure 17b, the 

prediction strategy integrates input HOIP data with the ML algorithm and DFT calculation [36]. Based 

on the ML program, an input HOIP dataset is established; each input item is described by a signature 

that is used to train and test the ML model. Element design analysis is required as a prerequisite to 

remove redundant features and establish structure-attribute relationships. After the input feature 

set is fixed, grid search technology and 5-fold CV are utilized to select the best descriptor. The 

network is subsequently 
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Figure 17. a) Schematic diagram of molecular graph in the calculation of autocorrelation and 

deltametric functions. Reproduced with permission.[354] Copyright 2020, RSC Publications. b) The 

schematic diagram of designing lead-free HOIP based on ML combined with DFT. The blue box 

represents the process of screening through the ML algorithm from the HOIP database. The green 

box indicates the use of DFT to calculate the electronic performance and stability evaluation of the 

candidate. Reproduced with permission.[36] Copyright 2018, Springer Nature Publications. 

 

trained to predict the electronic performance and stability of the HOIPs. In this work, the 14 most 

important descriptors were sorted and selected to collectively describe HOIPs in the chemical space. 

These descriptors included structural features and elemental properties of A-, B-, and X-site ions. 

Based on linear correlations for features analysis, redundant or irrelevant features could improve 
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the accuracy and efficiency of the ML model and achieve accurate predictions based on relatively 

small training datasets. This work successfully predicted the bandgaps of thousands of HOIPs by 

using the trained ML model. The evaluation of the bridging and transfer process of characteristic 

information represented by the descriptor is key to successful ML model predictions. In the process 

of information transfer, it is also essential to provide more accurate descriptors without losing the 

original information characteristics. Some descriptors, though assigned a large weight, do not 

contribute to reliable model predictions (i.e. the phenomenon of over-egging the pudding). 

 

5.1.3. Properties of Ideal Descriptors 

Descriptors that can train predictive models to adapt to target attributes are highly desirable. 

Figure 18a presents a representative graphical summary of the workflow of the descriptor design, 

which is usually applicable throughout the development of a novel strategy. This summary 

represents a general processing method suitable for any application involving the main dataset, 

descriptor, training model, etc. Traditional methods rely on chemical intuition to determine the key 

descriptors for a specific application and develop a relationship which best represents observed 

material properties. It is more desirable, however, to automate the generation of interesting 

chemical insights through a rational design approach which does not rely on chemical intuition. 

 
Figure 18. a) The relationship between data, descriptors, and models. Reproduced with 

permission.[50] Copyright 2017, ACS Publications. It involves the following steps: preprocessing, data 

analysis, fingerprinting descriptors, statistical model or linear/nonlinear model building and 

validations, and insights from a subject matter expert. b) Heat map of the Pearson correlation 
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coefficient matrix among the selected features for DMSCs. c) Comparison of DFT-computed ΔGOH* 

values with those predicted by GBR algorithm. d) Feature importance based on the Mean Impact 

Value (MIV). b-d) Reproduced with permission.[374] Copyright 2019, ACS Publications. 

 

Regression fitting, correlation coefficient statistics, dataset partitioning, the establishment of 

new functions, and other methods have been widely applied to locate and rank ideal descriptors 

which correspond to the most relevant performance features. Meredig and Wolverton[375] 

introduced a "cluster ranking model" (CRM) framework to identify unique descriptors that can 

predict the properties of new dopants. They used the X-means algorithm to cluster various dopants 

together, followed by regression fitting to rank the descriptors, ultimately utilizing the unique 

descriptors to model the behavior within each cluster. The existence of clusters in various sample 

datasets (four dopant clusters were present in this study) improves the effectiveness of the method. 

Given that all descriptors are ranked by using a regression model, they must necessarily fit to the 

prediction model of the target attribute. Selected descriptors are those that can best predict the 

target attributes; they are not necessarily indicative of the phenomenological mechanism. Ward et 

al.[33] generated an extensible set of attributes that can be used for materials with any number of 

constituent elements. This set of attributes can broadly capture enough diverse physical/chemical 

properties of materials to form the basis of accurate predictive models. The group used a total of 

145 attribute sets, including stoichiometric attributes, elemental property statistics, electronic 

structure attributes, and ionic compound attributes. They proved that these attributes are sufficient 

for describing various properties, while also proposing a novel method to divide the dataset into 

groups of similar materials to improve prediction accuracy. This work demonstrated the applicability 

of this novel method to the prediction of various physical properties of crystalline and amorphous 

materials. Zhu et al.[374] employed DFT calculations, with the assistance of ML, to screen highly 

efficient dual-metal-site catalysts (DMSCs) for oxygen reduction reaction (ORR). They evaluated the 

correlation coefficient for selected DMSC features, as shown in Figure 18b. The performance of the 

ML model can be significantly improved by selecting features that are independent from one 

another (i.e., not redundant), based on an analysis of linear correlations of several features. The 

speed at which ML-based approaches can be used to arrive at valuable material property insights, 

including the identification of descriptors, has significantly improved in recent years. To obtain 

accurate descriptor relevant to the catalytic activity of DMSC, this work reported the seven 

characteristics which were deemed most relevant to the catalytic performance of DMSCs in terms of 

Mean Impact Value (MIV) (Figure 18d). These characteristics include: the electron affinity between 

two metal atoms; Van der Waals radius; Pauling electronegativity difference; the product of 

ionization energy and the distance between two metal atoms; the relationship between Pauling 

electronegativity and atomic distance. 

 

5.2. Categories of Descriptors  
In recent years, a large number of articles have demonstrated the importance of material 

descriptors in accelerating the discovery and design of novel materials. When identifying descriptors 

which are compatible with ML methods for material discovery, the initial set of descriptors should 

generally be broad/diverse. Both the choice of fingerprint descriptors and the methods employed to 

discover/estimate unique mappings are critical, especially when dealing with small datasets. From 
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the perspective of ML, fingerprint descriptors are a subset (or offspring) of a superset of parent 

descriptors; they are unique to attributes and materials. The dimensionality or cardinality of the 

descriptor should be kept as low as possible, while the original descriptor space should be sufficient. 

This mathematical mapping is also unique to the construction model that maps fingerprint 

descriptors to attributes or KPIs[50]. The key descriptors used in recent studies for training models in 

materials science are summarized in Table 2 and are detailed further in subsequent sections. 

Table 2. Key Descriptors used for the model training in material science. 

 Notation Description Class Ref 

 Atomic Number Constitutional [351-356]
 

 Atomic Weight Constitutional [353, 356, 357]
 

  Numbers of and orbital electron Constitutional [36, 352, 355]
 

 Numbers of and valence electron Constitutional [352, 353, 355-357]
 
[36]

  

MN Mendeleev number Constitutional [356, 357]
 

 Melting Temperature  [356, 357]
 

 Bond Number Constitutional [358]
 

 Space Group Number Constitutional [356, 357]
 

CN the number of atoms of that element coordinated  Constitutional [20, 351, 354, 359]
 

 Pauling electronegativity Quantum chemical [351]
 
[36, 356]

 

[190, 352, 354, 355, 357]
 

 The median monometallic adsorption energy Quantum chemical [351]
 

IC Ionic Charge Quantum chemical [36]
 

EA Electron Affinity Quantum chemical [36, 50, 352, 355, 361, 362]
 

IE Ionization Energy Quantum chemical [36, 50, 352, 361-363]
 

HOMO The highest occupied molecular orbital  Quantum chemical [36, 356, 363]
 

LUMO The lowest unoccupied molecular orbital  Quantum chemical [36, 356, 363]
 

 Bandgap Energy Quantum chemical [356, 357, 360, 364]
 

WF Work Function Quantum chemical [50, 361]
 

 Binding Energy Quantum chemical [20, 50, 190, 363, 365-368]
 

 Adsorption Energy Quantum chemical [11, 20, 50, 190, 353, 355, 358, 359, 365-
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369]
 

 Local Pauling electronegativity Quantum chemical [50, 361]
 

 Cohesive energy Quantum chemical [355]
 

DOS Density of states Quantum chemical [370, 371]
 

PDOS Partial Density of states Quantum chemical [358]
 

 Bader Charge Transfer Quantum chemical [355]
 

 Fermi Energy Quantum chemical [50, 370, 371]
 

 Gibbs Free Energy Quantum chemical [12, 353, 355, 358]
 

G Surface Energy Density Quantum chemical  

 Total energy of surface slab obtained Quantum chemical [12]
 

 Bulk energy per atom Quantum chemical [12]
 

H Over potential Quantum chemical [12, 360, 370, 376]
 

 Current density  [376]
 

 Activation energy Quantum chemical [190, 354, 370]
 

 Transition-state energy Quantum chemical [190, 354, 363, 370]
 

 Atomic nearest-neighbor distances  [190]
 

 Optical gap energy Quantum chemical [362, 363]
 

 Width of a band Electrostatic [50, 365]
 

 Centre of a band Electrostatic [50, 355, 365, 369, 370]
 

 Skewness of a band Electrostatic [50, 365]
 

 Kurtosis of a band Electrostatic [50, 365]
 

 Filling of a band Electrostatic [50, 365]
 

 Spatial Extent of -orbitals Electrostatic [50, 361]
 

 Adsorbate-metal coupling matrix element Electrostatic [50, 361, 370]
 

 Metal -metal coupling matrix element Electrostatic [370]
 

 Partial distribution function Geometric [359]
 

 Polarizability Electrostatic [36, 363]
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 First ionization potential  Electrostatic [36, 352, 355]
 

 Magnetic Moment Electrostatic [357]
 

 Bond Length Position Geometric [358]
 

 Atomic Identity Geometric [354]
 

 Optical Transmittance  [362]
 

 Lattice parameters Geometric [355]
 

 Molar Ratio  [355]
 

 Dipole moment Electrostatic [363]
 

 Atomic Radius Geometric [50, 353, 355, 361]
 

 Rotational angles Geometric [360]
 

 Distance between two layers Geometric [360]
 

 Bond Length Geometric [353, 355, 358, 360]
 

 Bond Angle Geometric [353]
 

 Distance to alloy atoms Geometric [359]
 

 Estimation for the interatomic distance using Vegard’s 

law 

Geometric [359]
 

 Covalent Radius Geometric [354, 356, 357]
 

 Specific Volume Geometric [356, 357]
 

 Van der Waals radii Geometric [352]
 

 Tolerance Factor Geometric [36]
 

 Octahedral Factor  Geometric [36]
 

 Iron Radii Geometric [36]
 

 Sum of the of and orbital radii Geometric [36]
 

 Atomic Radius Geometric [50, 353, 355, 361]
 

 Cutoff radius  [11, 377]
 

 Bond distance  [11, 354]
 

 Atom pair distance  [11]
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5.2.1. Constitutional Descriptors  

Constitutional descriptors are the simplest and most commonly used descriptors in materials 

science. They contain compositional information about materials without their geometric or 

topological information. Hence, constitutional descriptors are also known as 0D or 1D descriptors. 

The most widely used constitutional descriptors are the numbers of atoms, bonds, electrons, and 

rings; molecular weight; and atomic composition indices. Constitutional descriptors are not sensitive 

to conformational changes and are easily calculated. Constitutional descriptors, which are easy to 

obtain, often appears as part of combined descriptors. Despite their simplicty, such descriptors can 

convey essential information, generally in combination with other classes of descriptors.[10, 18] 

 

5.2.2. Geometric Descriptors  

Geometric descriptors, also known as 3D descriptors, are molecular representations that 

convey structural information about the material. Common geometric descriptors include the 3D-

Wiener index, gravitational indices, molecular surface area, molecular volume, radial distribution 

function, and WHIM descriptors. Topographic indices can be regarded as a special subset of 

geometric descriptors. For instance, Ruck et al.[19] proposed a ML framework that can accurately 

predict strain, while rationalizing the impact of strain on a Pt core-shell nano-catalyst’s oxygen 

reduction activity. This work predicted the strain coordination on core-shell nanoparticle atoms by 

applying geometric descriptors to ML, including coordination number, partial distribution function, 

distance to alloy atoms, and interatomic distance (from Vegard's law). The generalized coordination 

number under strain was the basis for the linear relationship between the strain and the adsorption 

energy of *OH and *OOH. The formulation of this descriptor enabled the identification of the most 

favorable active site on the core-shell nanoparticles. The novel generalized strain coordination 

number descriptor proposed in this work furnished accurate predictions of strain within 3%. Zhang 

et al. [11] assess the local structural environment in the vicinity of a selected adsorption site on an 

amorphous Ni2P catalyst. The bond distance between each sub-pair from the seven designated 

atoms was selected as the primary indicator. In this manner, the adsorption energy can be 

characterized more accurately by first specifying the surface structure attributes. In addition, use of 

the bond distance within the specified local structure as a feature may implicitly ignore the influence 

of other chemical environments. In this study, a chemical environment representation method 

based on the symmetry function of the atomic center is also presented, which is suitable for periodic 

systems and is independent of bonding properties. The symmetric function transforms Cartesian 

coordinates into a set of symmetric functions that describe the chemical environment of atoms; this 

approach has been proven to successfully fit the potential energy surface (PES).  

 

5.2.3. Quantum Chemical Descriptors  

Quantum chemical descriptors are widely used in the screening of catalysts, and are commonly 

sub-divided into energy- and electron-based descriptors. Energy descriptors include common system 

total energy, electron energy, bandgap, valence band top (VBM), conduction band bottom (CBM), d-

band center energy, formation energy, binding energy, Gibbs free energy, highest occupied 

molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and other descriptors. 

Electronic descriptors typically include electron affinity (EA), electron density, localization, charge 
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transfer and distribution, and other descriptors. Standard first-principles calculations based on DFT 

can be used to generate the aforementioned quantum chemical descriptors. The acquisition of such 

descriptors is usually combined with DFT calculations (or extracted from existing databases); in this 

manner, new material properties are discovered through a synergy between quantum chemistry and 

ML. 

DFT-based calculations of metal surface adsorption and reaction are now mature enough to 

contribute to our understanding of the complexity of the catalytic surface and the adsorbate. Such 

calculations are also accurate enough to characterize the bonding mechanism, determine the 

reaction path, and compare different systems relevant to heterogeneous catalysis. Though 

experimentation is irreplaceable, such calculations may offer a simple (or, in some cases, the only) 

approach to assessing potential catalyst properties. [378] Peterson et al. [366] compared the binding 

energy trends of intermediates during the electrochemical reduction of CO2 and proposed the novel 

“active volcano" descriptor for the first time. This descriptor effectively describes experimentally 

observed trends in transition metal catalysts, including offering specific interpretations as to the 

dominance of copper as an electrocatalyst. This study also proposes a new strategy for discovering 

catalysts that can operate at reduced overpotentials. Extending classic theoretical calculations 

introduces avenues for the accelerated discovery of high-performance electrocatalysts. Owing to the 

significant heterogeneity of exposed active sites and the variations in the crystal structure with 

composition, the exposed surface may be different from that of normal single metal nanoparticles; 

this surface heterogeneity must be captured by further DFT calculations. Traditional methods, which 

are more suited to single-metal catalyst, cannot effectively handle this complexity. This work 

systematically considered all active sites to address this problem. The number of DFT calculations, 

though large, is feasible to implement for a small number of composites. Ulissi et al.[20] implemented 

a neural network potential fitted with DFT to greatly reduce the thousands of DFT calculations which 

would otherwise have been required to obtain the relaxation adsorption energy of each adsorption 

site on each surface. However, this method does not consider surface segregation or apparent 

disorder of crystal components, demonstrating a discrepancy with respect to the real experimental 

environment. Artrith et al. [190] constructed an ML model to predict the transition state energy from 

the thermochemical reaction energy (model 1). The descriptors selected for model 1 included 

geometric descriptors, chemical species, binding energies, and reaction energies. A second ML 

model (model 2) was then trained to capture the behavior of catalytic activity and selectivity based 

on all transition state energies. Descriptors selected for model 2 included the results and descriptors 

from model 1 (shown in Figure 19a). Both models could directly predict catalytic activity/selectivity 

from chemical properties and attributes which can be determined from high-throughput DFT 

calculations. Integrating a large DFT calculation datasets into the trained ML model (applying a 

simple linear regression model between experimental catalytic activity and selectivity) the key C-C 

bond scission reaction step involved in the ethanol reforming reaction was determined. Ma et al.[379] 

determined the reactivity descriptors that characterize effectiveness of alloy electrocatalysts in 

selectively converting CO2 to C2 species. Based on the reactive descriptor (ie CO adsorption energy), 

the theoretical limits of the potentials of essential CO2 electroreduction reaction steps (along the C1 

and C2 paths) were calculated. Inspired by d-band chemisorption theory, input features pertaining to 

bimetallic surfaces included characteristics of the d-states distribution. Physical constants related to 

the host metal were treated as secondary characteristics to better describe the tendency of 
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chemical bonding on a series of metal surfaces. Having developed a comprehensive descriptor-based 

catalyst design method based on ML, the study has identified a promising 001-terminated Cu 

polymetal, which possesses a relatively low overpotential and high efficiency/selectivity for the 

reduction of CO2 to C2. The predicted rate obtained by combining DFT calculations with rate theory 

was found to be in good agreement with available experimental data pertaining to the formation of 

various products on several metal electrodes and within the potential range applied by J. et al.[367] A 

two-parameter is proposed in Figure 19b. This pre-screening tool is composed of various H-atom 

adsorption energies (at the top site) and CO adsorption energies to identify the most promising 

CO2RR catalyst candidates. The tool can also predict whether the electroreduction product is a 

hydrocarbon/alcohol, H2, CO, or HCOO--. However, to predict the selectivity of a given product, the 

activation energy in each fundamental step needs to be calculated to evaluate the relationship 

between the reaction rate and the applied potential. The insights gained from such calculations can 

be used to develop standards to identify new and improved catalysts for electrochemical reduction 

of CO2. Bai et al. [380] used ML to build a model that can correlate four attributes with hydrogen 

evolution rates. This was achieved by selecting ionization potential (IP, approximated by the energy 

of the highest occupied molecular orbital (HOMO)), electron affinity (EA, approximated by the 

energy of the lowest unoccupied molecular orbital (LUMO)), optical gap, and experimentally 

measured transmittance as the four descriptors (Figures 19c and d). The model was evaluated by 

using the LOOCV, indicating that the test data are applicable to copolymers that were not considered 

during training. The results indicated that the correlation between the HER of the polymer and each 

of the individual properties is relatively weak supporting the view that the photocatalytic activity is a 

composite property that cannot be encapsulated by only a few descriptors. The electrochemical 

reduction of CO2 often generates a variety of products determined by the reaction conditions and 

catalyst performance, including some that form valuable chemical substances (such as hydrocarbons 

and alcohols). Bagger et al. [368] calculated key binding energies for non-coupled intermediates,- EH*, 

ECOOH*, ECO*, and ECH3O*, to identify the “genes” of CO2 products. The extensive exploration of 

quantum chemistry descriptors makes the theory (in conjunction with ML approaches) better than 

experimental designs, considerably reducing the costs associated with experimentation. The 

identification of novel quantum chemistry descriptors will gradually increase our understanding of 

catalytic phenomena. 
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Figure 19. a) Flowchart of the combined ML approach consisting of two ML models. Reproduced 

with permission.[190] Copyright 2020, ACS Publications. b) Two-parameter descriptor of the 

electrocatalytic activity of metal electrodes. Reproduced with permission.[367] Copyright 2018, ACS 

Publications. c) Properties used to train the gradient-boosting model, where IP, EA, and optical gap 

are calculated, and transmittance is measured experimentally. d) Experimentally observed hydrogen 

evolution rates vs hydrogen evolution rates predicted using a gradient-boosted trees ML model. The 

model is evaluated by leave-one-out cross-validation, meaning the data shown are for co-polymers 

not considered during training. c-d) Reproduced with permission.[380] Copyright 2019, ACS 

Publications. 

 

5.2.4. Electronic Descriptors 

The categories of electronic descriptors often overlap with quantum chemical descriptors; 

classification of electronic descriptors, however, tend to be more detailed. They primarily include 

descriptors pertaining to atomic charges in the material, such as charge polarization, positive and 

negative of charges, number of charges, and electron density. The selection of electronic descriptors 

often also involves exploring the physical properties metals and alloys, transition metals, and metal 

atom doping materials. Electronic descriptors are most suited to contexts in which electronic 

transport influences material properties. Wexler et al. measured the relative importance of various 

descriptors in describing the HER activity of non-metal-doped Ni2P(0001) surfaces [10]. They compiled 

bond lengths, bond angles, charges, mass numbers, atomic weights, and atomic radii as geometry 

descriptors; other geometric parameters for pertaining to the DFT-relaxed structure were adopted 

as structural and charge descriptors. Key to this approach is defining the normalization ability of the 

descriptor based on ΔGH data. Figure 20b demonstrates the top 10 descriptors contained in the 
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dataset. The first two descriptors are: the selected Ni-Ni bond length (constituent atoms are 

distinguished by their respective distance from the first doping site; see Figure 20); the average Ni-Ni 

bond length. Among the 10 descriptors exhibiting the highest correlation, seven are geometric 

descriptors pertaining to the shape of the Ni3 hollow site. Another important characteristic is the 

standard deviation of the dopant charge. This study also utilized atomic charge as a descriptor, 

finding that its correlation with measured properties is relatively poor. This indicates that the 

electronic partition metric may not be important for the analysis of HER performance. This work 

highlighted unnecessary/potentially redundant descriptors which do not directly affect the bonding; 

in addition, this property change is already implicit in the Ni-P bond length descriptor. Sun et al.[112] 

successfully introduced metal atom Bader charge transfer, metal d-band center, and d-orbital 

electron number below the Fermi energy as part of the DFT-calculated descriptors to investigate the 

hydrogen evolution performance of MXene and MBenes, both doped and not doped with single 

atoms. Electrostatic descriptor can be interpreted as a type of cross-descriptor involving both 

physical and chemical properties of materials; they are often indispensable to ML-based frameworks 

to model material properties  

 

 
Figure 20. a) ΔGH predicted by RRFs vs DFT. b) Relative importance of descriptors calculated from 

RRF model. Only the top 10 features are shown. c) Definition of descriptors in b). We label the three 

Ni atoms α, β, and γ based on their distance from the first doping site. d) Effect of average Ni–Ni 

bond length on ΔGH as induced by chemical pressure and mechanical pressure. a-d) Reproduced with 

permission.[10] Copyright 2018, ACS Publications. 

 

5.2.5. Combinational Descriptors 

Recent trends have focused on the selection and development of combinational descriptors. 

Because the various classes of descriptors are complex and numerous, combined descriptors can 

often transcend this complexity, demonstrating better expression of material properties than 

descriptors of single type in of the. Zhong, et al.[18] incorporated DFT data into an ML workflow to 

predict CO adsorption energies for each adsorption site enumerated in Figure 21. DFT data for CO 

adsorption energies were saved in a database. Each element present in the bulk structure (the list of 

which originated from the Materials Project database) was described with a vector of four numbers: 

atomic number (Z), Pauling electronegativity (), number of atoms of the element coordinated with 

the CO molecule (CN) as determined by a cut-off radius of 5   and a Voronoi polyhedral angle cutoff 

tolerance of 0.8, and median monometallic adsorption energy of CO on that element (Δ ), as 

extracted from the database of CO adsorption energies.  
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The hydrogen evolution performance of MXenes and MBenes (doped or not doped with single 

atoms) was systematically investigated Sun et al.[112] based on a combined DFT and ML framework. 

Correlation analysis was employed to reduce the number of descriptors employed. Remaining 

descriptors (various element-specific attributes, structural energy, and lattice parameters) were 

obtained with relative ease and uniquely characterize corresponding physical and chemical 

properties. This work applied the following DFT-calculated descriptors: cohesive energies of MXenes 

and MBenes; Bader charge transfer of the metal atom, doping atom and C/N/B; d-band center of the 

metal; d-orbital electron number below Fermi energy; bond length between the metal/doping atom 

and the nearest metal of the same layer; bond length between the metal/doping atom and the 

nearest boron; molar ratio of metal; C/N/B lattice parameters. Elemental descriptors comprised the 

atomic mass, period number, group number, atomic radius, valence electron, electronegativity, 

electron affinity, first ionization energies of the metal, and doping atom. Ge et al.[381] utilized four 

combinational descriptors: cosine of the rotation angle, distance between the two secondary parts, 

ratio of the average bond length, and bandgap of MX2. These newly generated descriptor PL can 

encapsulate the electrocatalytic performance of NiOER and are effective for both HER and OER. 

Friederich, P., et al.[354] utilized full autocorrelation (FA) functions to combine features and overcome 

descriptor complexity. Combining descriptors will encapsulate a larger number material properties 

early on in the ML/DFT workflows, improving its accuracy and efficiency and analyzing ever more 

complex systems. 

 
Figure 21. a) two-dimensional activity volcano plot for CO2 reduction. TOF, turnover frequency. b) A 

two-dimensional selectivity volcano plot for CO2 reduction. CO and H adsorption energies in panels a 

and b were calculated using DFT. Yellow data points are average adsorption energies of 

monometallics; green data points are average adsorption energies of copper alloys; and magenta 
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data points are average, low-coverage adsorption energies of Cu-Al surfaces. c) t-SNE19 

representation of approximately 4,000 adsorption sites on which we performed DFT calculations 

with Cu-containing alloys. The Cu-Al clusters are labelled numerically. d) Representative coordination 

sites for each of the clusters labeled in the t-SNE diagram. Each site archetype is labelled by the 

stoichiometric balance of the surface, that is, Al-heavy, Cu-heavy or balanced, and the binding site of 

the surface. a-d) Reproduced with permission.[18] Copyright 2020, Springer Nature Publications. 

 

5.3. Descriptor-Related Tools 

Complementary tools have gradually been developed over the past year to support the 

application of advanced descriptors. In this section, we will introduce recent open-source descriptor-

related tools which are implemented with Python infrastructure and API-based frameworks for data 

sharing. Such tools are able to rapidly implement the complicated process of managing, transmitting, 

sharing and sending all ML relevant to a particular materials science problem. 

 

5.3.1. Programming Packages and Codes 

In this subsection, we summarize the following representative programming packages and 

codes: Fixed-Size Numeric Descriptor Generator (DScribe),[382] Sure Independence Screening and 

Sparsifying Operator (SISSO),[26] and LASSO.[383] These packages are widely used in materials science 

to generate appropriate ML descriptors. 

DScribe 

The application of ML in materials science is usually hindered by the lack of data conversion 

processing prior to training the model. Such data is usually converted into a specific descriptor, 

which is a key step in building an ML model for attribute prediction in materials science. DScribe is a 

convenient bridge between data and descriptors. DScribe[382] is a software package for ML that 

provides popular feature transformations ("descriptors") for atomic material simulation. DScribe 

accelerates the application of ML in atomic property prediction by providing user-friendly, ready-

made descriptors. Currently, the DScribe software package contains descriptors that can be 

represented in vector form and do not depend on any specific learning model. By decoupling 

descriptor creation from ML models, users can experiment with various descriptor/model 

combinations in parallel, and can directly apply emerging learning models to existing data. The 

software package currently contains implementations of the Coulomb matrix, Ewald sum matrix, 

sine matrix, multi-body tensor representation (MBTR), atomic center symmetry function (ACSF), and 

atomic position smooth overlap (SOAP). The library is based on the python interface, with 

computationally intensive routines written in C or C++. Source code, tutorials and documentation 

can be obtained online. These introductory materials use the following examples to illustrate use 

cases of the package: the prediction of solid formation energies; the prediction of the atom ion 

charges in organic molecules.  

SISSO 

The lack of a reliable method for identifying descriptors is one of the key factors hindering the 

development of effective materials. The SISSO[26] is a new systematic method for discovering 

material property descriptors in the framework of dimensionality reduction based on compressed 
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sensing. The SISSO solves the large and relevant feature space and converges to the best solution 

based on feature combinations most suited to the target material characteristics. In addition, the 

SISSO requires only a small amount of training to obtain stable results. This method is based on the 

quantitative prediction of the ground state enthalpy of octal binary materials (using ab initio data) 

and is applied in the illustrative example (with experimental data) to predict the classification of 

binary metals/insulators. In both cases, an accurate predictive model can be generated. The 

predictive ability of the metal-insulator classification model has been validated on test data and it 

rediscovers the transition from insulator to metal caused by the available pressure and allows the 

prediction of immature transition candidates, which has been laid for experimental verification of 

the foundation. Compared with previous model recognition methods, the SISSO can become an 

effective tool for automatic material development. 

LASSO 

The LASSO[383] typically penalizes high weights to avoid the occurrence of overfitting, while 

adjusting/reducing the coefficients of the regression model to finally generate the most reasonable 

number of optimal descriptor KPIs. To reduce the computational effort of employing DFT to calculate 

a large amount of combined data, the LASSO identifies only those physical descriptors that have a 

significant impact on adsorption performance. Ge et al.[381] generated 257,703 possible descriptors 

through calculations. Based on these descriptors, the LASSO fits an equation that best describes the 

linear relationship. This process was repeated 50 times, each instance standardizing the remaining 

90% of the training data prior to the LASSO step. By evaluating the predicted error characteristics of 

all possible descriptors, we considered the rotation angle of the TMDC heterojunction as a key 

descriptor describing catalytic performance. Four variables were used: cosine of the rotation angle, 

distance between the two secondary parts, ratio of the average bond length, and bandgap of MX2. 

The new generated descriptor PL can effectively capture the electrocatalytic performance of NiOER, 

and is effective for both HER and OER. 

5.3.2. Descriptor-Related Software 

In this subsection, representative descriptor-related software (Open-Source Cheminformatics 

Software (RDKit), Commercial Descriptor Generation Software (Dragon), Open-Source Descriptor 

Generation Software (PaDEL-Descriptor)[384]) is briefly discussed. 

Open-Source Cheminformatics Software (RDKit)  

RDKit (RDKit: Open-Source Cheminformatics Software. https://www.rdkit.org. Accessed 07 Aug 

2020) is an open-source toolkit for chemoinformatics, based on the 2D and 3D molecular 

manipulation of compounds, using ML methods for compound descriptor generation, fingerprint 

generation, compound structure similarity calculation, 2D and 3D molecular display, etc. RDKt is a 

very powerful open-source chemical information python toolkit. Its core data structure and 

algorithms are implemented in C++. It enables a large number of 2D/3D calculation operations on 

chemical molecules to generate molecular descriptors for ML. Many of the latest ML software 

packages are based on the use of RDKit’s open-source tool creation. 

Descriptors in RDKit contains properties such as the number of benzene rings, the number of 

functional groups, and LogP, which correspond to various properties reflected in the structure of the 
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molecule. It follows that a combined descriptor may also be proposed which can represent all the 

partial structures of the molecule. 

Commercial Descriptor Generation Software (Dragon) 

Dragon (https://chm.kode-solutions.net/products_dragon.php) is the most widely used 

application for molecular descriptor calculation. Its new version, Dragon 7.0, provides an improved 

user interface, new descriptors, and additional features such as fingerprint calculation and support 

for disconnected structures. Dragon can evaluate 5270 molecular descriptors, making it compatible 

with most theoretical methods. The list of descriptors includes: the simplest atom type, functional 

group, and fragment number; topology and geometric descriptors; three-dimensional descriptors; 

multiple attribute estimates (such as logP); drugs and lead-like alarms (such as Lipinski's alarm). 

Dragon has established an easy-to-operate graphical user interface and command line interface, 

which is very useful for batch processing of large amounts of data. Dragon now also enables the 

calculation of hash molecular fingerprints, which can completely customize several parameters and 

generate all molecular fragments used in the fingerprint process. The graphical user interface also 

includes more advanced tools to analyze the descriptors following data processing (extended 

univariate statistics, pairwise correlation, principal component analysis) and import user-defined 

variables (such as available experimental values) to perform the merge set operation. Starting from 

version 7.0, Dragon allows the calculation of descriptors for molecules with disconnected structures 

(such as salts, ionic liquids), thereby providing various theoretical methods to extend the descriptor 

algorithms for such structures. 

Open-Source Descriptor Generation Software (PaDEL-Descriptor) 

PaDEL-Descriptor[384] is software for calculating molecular descriptors and fingerprints. The 

software can calculate 797 descriptors (including 663 1D, 2D descriptors and 134 3D descriptors) and 

10 fingerprints. These evaluations of these descriptors and fingerprints is based on the Chemistry 

Development Kit. Descriptors and fingerprints include atomic type electron topological state 

descriptors, McGowan volume, molecular linear free energy relationship descriptors, ring numbers, 

counts of chemical substructures identified by Laggner, binary fingerprints, and Klekota Count of 

chemical substructures recognized by Roth. The PaDEL-Descriptor is developed in Java and consists 

of both library and interface components. The library component allows easy integration with 

quantitative structure-activity relationship software to furnish descriptor calculation functions, while 

the interface component allows it to be used as an independent software. The software implements 

a Master/Worker framework to speed up the calculation of molecular descriptors by utilizing 

multiple CPU cores in parallel. Therefore, this tool offers many key advantages relative to other 

independent software for the calculation of molecular descriptor. It is open source with both a 

graphical user interface and command line interface. It can run on all major platforms (Windows, 

Linux, MacOS) and supports more than 90 different molecular file formats. 

 

6. Applications of Data-Driven Innovative Materials 

The success of a large number of ML applications in materials science has preliminarily 

demonstrated the capability of data-driven approaches in the discovery of innovative materials. By 
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appropriately integrating ML techniques, material databases, and molecular descriptors, material 

properties can be efficiently and accurately predicted to support the focused design of innovative 

materials. Such approaches represent a synergy between materials science, computer science, and 

mathematics. In this section, recent advances in the applications of such synergies to the 

development of materials for energy conversion and storage,[9-13, 381, 385] environmental 

decontamination,[14] flexible electronics,[16] optoelectronics,[386] superconductors,[277] metallic 

glasses,[33] and magnet materials are investigated. The data-driven strategies, ML techniques, and 

corresponding performance are evaluated with respect to the specific material-focused question 

being addressed in each application. In addition, cases that employ ML techniques to implement 

data augmentation and feature generation are also discussed.[26] 

An overview of the applications of data-driven, innovative material discovery is represented in 

Table 3. These examples will be discussed in greater detail in the subsequent sections. It is striking 

that a number of the data-driven techniques described in the previous sections have not yet found 

application in innovative material discovery. A discussion on such possibilities will also be provided in 

greater detail, followed by an overall future outlook. 

  



 

This article is protected by copyright. All rights reserved. 

71 

Table 3. Data-driven innovative material applications. 

Applicat

ions  

Materials Target 

Propertie

s 

ML 

Model/A

lgorithms 

Data 

Source 

Most 

Related 

Descript

ors 

Type 

of 

Canon

ical 

Test 

Best 

Perform

ance on 

Test 

Data  

R

ef

. 

HER 

Ni3P2(0001

) of Ni2P 

Adsorpti

on free 

energy 

of H* 

(ΔGH) 

 Regular

ized 

Random 

Forests 

(RRFs) 

 DFT 

comput

ation 

 Ni-Ni 

bond 

length 

 Ni-Ni-

Ni bond 

angle 

 Hollow 

site area 

 Hollow 

site 

perimet

er 

3-fold 

CV 

ΔGH: 

RMSE 

of 0.09 

eV  

[1

0]
 

 

Amorphou

s Ni2P 

 Frozen 

adsorpti

on 

energy 

(Efrozen) 

 Relax 

adsorpti

on 

energy 

(Erelax) 

 ANN 

 Gradien

t 

boostin

g DT 

 GA 

 DFT 

comput

ation 

 Bond 

length 

 Symmet

ry 

function

s 

Holdo

ut 

 

 Efrozen: 

RMSE 

of 0.11 

eV  

 Erelax: 

RMSE 

of 0.10 

eV  

[1

1]
 

OER 

IrO2 and 

IrO3 

 Biding 

free 

 Convol

utional 

 DFT 

comput

 Atomic 

structur

Holdo

ut 

 Covera

ge: 

[1

2]
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Polymorph

s  

energy 

(ΔG) 

for 

coverag

e 

calculat

ions 

 Biding 

free 

energy 

(ΔG) 

for 

OER 

calculat

ions 

neural 

network 

(CNN) 

ation 

 Materi

al 

Project 

es  MAE, 

RMSE 

and R
2
 

of 0.07 

eV, 

0.10 

eV and 

0.93, 

respect

ively. 

 OER: 

MAE, 

RMSE 

and R
2
 

of 0.13 

eV, 

0.18 

eV and 

0.8, 

respect

ively 

 

Doped 

RuO2 and 

IrO2 

 Identify 

new 

descript

ors for 

calculat

ion of 

adsorpti

on 

enthalp

y of O* 

 SISSO  DFT 

comput

ation 

 SISSO 

Feature

s 

 Width 

of the 

d-band  

 Charge 

transfer 

energy  

 Filling 

5-fold 

CV 

 EO*: 

MAE 

and 

RMSE 

of 

0.65eV 

and 

0.18 

eV, 

respect

ively 

[3

85

]
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(EO*) of the 

d-band  

 Kurtosi

s of the 

d-band 

 

OWS 

Transition 

Metal 

Dichalcoge

nides 

(TMDC): 

MoS2, 

WS2, 

WSe2, 

MoSe2, 

MoTe2, and 

WTe2 

 HER 

Overpo

tentials 

(ηHER) 

 OER 

Overpo

tentials 

(ηOER) 

 LASSO  DFT 

comput

ation 

 Cosine 

of the 

rotation

al angle 

 The 

distance 

between 

two 

seconda

ry parts 

 The 

average 

mx2 

bond 

length 

 The 

bandga

p ratio 

of the 

two 

compon

ents 

Holdo

ut 

 

 ηHER: 

R
2
 of 

0.80 

 ηOER: 

R
2
 of 

0.83 

 

 

[3

81

]
 

PVs 

Lead-free 

hybrid 

organic-

inorganic 

 Bandga

p 

 GBR 

 

 ICSD  Toleran

ce 

factor 

 Number 

5-fold 

CV 

Bandga

p: 

RMSE 

and R
2
 

[3

6]
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perovskites of ionic 

charges 

 Octahed

ral 

factor 

 p-

orbital 

electron 

of 0.086 

eV and 

0.97, 

respecti

vely. 

 

 

Small 

molecule 

organic 

photovoltai

c materials 

 Power 

convers

ion 

efficien

cy 

(PCE) 

 Linear 

regressi

on (LR) 

 k-

nearest 

neighbo

ur 

(kNN) 

 Artificia

l neural 

network

s 

(ANN) 

 Random 

forest 

(RF) 

 Gradien

t 

boostin

g 

regressi

on tree 

(GBRT) 

 Experi

ment 

data 

 DFT 

comput

ation 

 Hole–

electron 

binding 

energy 

in donor 

molecul

es 

 The 

reorgani

zation 

energy 

for 

holes in 

donor 

molecul

es 

 The 

unsatur

ated 

atom 

number 

in the 

main 

10-

fold 

CV 

PCE: 

RMSE 

and 

MAPE 

of 

1.07% 

and 

17.1%, 

respecti

vely. 

 

[7

1]
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conjuga

tion 

path of 

donor 

molecul

es 

 Polariza

bility of 

donor 

molecul

es 

 

Organic 

photovoltai

cs 

materials 

 PCE  ANN 

 kNN 

 GBRT 

 Experi

ment 

data 

 DFT 

comput

ation 

 Hole–

electron 

binding 

energy 

in donor 

molecul

es 

 The 

reorgani

zation 

energy 

for 

holes in 

donor 

molecul

es 

 The 

unsatur

ated 

atom 

number 

10-

fold 

CV 

PCE: 

RMSE 

and 

MAPE 

of 

1.107% 

and 

21.0%, 

respecti

vely. 

 

[4

9]
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in the 

main 

conjuga

tion 

path of 

donor 

molecul

es 

 The 

number 

of 

hetero 

atoms 

 

Organic 

photovoltai

cs 

materials 

 PCE 

 Open 

circuit 

voltage 

(VOC) 

 Short 

circuit 

current 

(JSC) 

 k-

nearest 

neighbo

ur (k-

NN) 

 Kernel 

ridge 

regressi

on 

(KRR) 

 DFT 

comput

ation 

 Literat

ure 

data 

 HOMO 

energy 

for the 

donor 

 LUMO 

energy 

for the 

donor 

 LUMO 

energy 

for the 

accepto

r 

 The 

total 

internal 

reorgani

sation 

LOOC

V 

 PCE: 

RMSE 

of 

1.33%  

 VOC: 

RMSE 

of 

0.1037 

V 

 JSC: 

RMSE 

of 

3.0464 

mA/c

m
2
 

[4

8]
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energy 

 Dayligh

t 

fingerpr

int 

 Morgan 

fingerpr

int 

 

Metal 

oxides 

photovoltai

c materials 

 VOC  

 JSC  

 Internal 

quantu

m 

efficien

cy 

(IQE) 

 Principa

l 

Compo

nent 

Analysi

s (PCA) 

 k-NN 

 Genetic 

program

ming 

 Literat

ure 

data 

 Experi

ment 

data 

 The 

thicknes

s of the 

absorbe

r layer 

 Thickne

ss of the 

window 

layer 

 Bandga

p of 

abosorb 

layer 

 The 

distance 

between 

the cell 

and the 

center 

of 

depositi

on 

plume 

LOOC

V 

Holdo

ut 

 VOC: 

R
2
 of 

0.92 

 JSC: R
2
 

of 0.90 

 IQE: 

R
2
 of 

0.91 

[5

4]
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 Resista

nce of 

the 

absorbe

r layer 

 Maxim

um 

value of 

calculat

ed 

theoreti

cal 

photocu

rrent 

 

Two-

dimensiona

l 

photovoltai

c materials 

 Applica

bility in 

PV 

applicat

ions 

 Gradien

t 

boostin

g 

classifie

r 

(GBC),  

 Support 

vector 

machine 

(SVM) 

 Random 

forest 

classific

ation 

(RFC), 

 Ada 

 ICSD  Packing 

factor 

(Pf),  

 Averag

e 

sublatti

ce 

neighbo

ur count 

(SNC), 

 Mullike

n 

electron

egativit

y 

maximu

m and 

5-fold 

CV 

Accurac

y, 

recall, 

precisio

n, and 

AUC of 

1, 1, 1 

and 1, 

respecti

vely. 

[1

7]
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boostin

g (Ada),  

 Linear 

regressi

on 

 Stochast

ic 

gradient 

descent 

classifie

r 

(SGDC)

,  

 Decisio

n tree 

classifie

r 

(DTC). 

minimu

m value  

 average 

atomic 

volume 

 Lattice 

paramet

er 

 Averag

e bond 

ionicity 

of 

sublatti

ce 

 Anion 

framew

ork 

coordin

ation 

 

Kesterite 

I2-II-IV-

V4 

quaternary 

compounds 

 Bandga

p 

 LR 

 Support 

vector 

regressi

on 

(SVR)-

linear 

kernel 

 Support 

vector 

regressi

on 

 DFT 

comput

ation 

 MP 

 Electro

negativi

ty 

 Ionic 

radius 

 Row in 

the 

periodic 

table 

10-

fold 

CV 

 RMSE 

and R
2
 

of 

0.283 

eV and 

0.957 

for 

SVR-

RBF, 

respect

ively. 

 Accura

[3

87

]
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(SVR)-

radial 

bias 

function 

kernel 

 Boosted 

regressi

on tree 

 RF 

 Logistic 

regressi

on  

cy of 1 

for 

Logisti

c 

regress

ion 

 

16-atom 

constructed 

wurtzite 

nitrides in 

an 

orthorhom

bic cell 

 Bandga

p 

 Band 

offset 

 Linear 

regressi

on 

 Support 

vector 

regressi

on 

(SVR)-

linear 

kernel 

 Support 

vector 

regressi

on 

(SVR)-

poly 

kernel 

 Support 

vector 

 DFT 

comput

ation 

 Electro

negativi

ty 

 Covalen

t radius 

 Valence 

 First 

ionizati

on 

energy 

LOOC

V 

 Bandg

ap: 

RMSE 

of 

0.094 

eV 

 Band 

offset: 

RMSE 

of 

0.183 

eV 

[3

88

]
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regressi

on 

(SVR)-

radial 

kernel 

 ANN 

 Deep 

neural 

network 

(DNN) 

ORR 

Dual-

metal-site 

catalysts(D

MSC) 

 Adsorpt

ion free 

energy 

of OH* 

(ΔGOH) 

 Gradien

t 

Boosted 

Regress

ion 

(GBR) 

 DFT 

comput

ation 

 Electro

n 

affinity 

 Electro

negativi

ty 

 Sum of 

the van 

der 

Waals 

(vdW) 

radius 

of the 

two 

transitio

n-metal 

atoms. 

 Absolut

e value 

of the 

differen

Holdo

ut 

 ΔGOH: 

RMSE 

and R
2
 

of 

0.036 

eV and 

0.993, 

respect

ively. 

 

[3

74

]
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ce 

between 

the two 

transitio

n-metal 

atoms  

 Sum of 

the 

Pauling 

negativi

ty of the 

two 

transitio

n-metal 

atoms. 

 

Binary and 

ternary 

nanocataly

sts: PtCu, 

PtNi, 

CuNi, 

PtCuNi 

 Energy 

contrib

ution of 

atom i. 

(Ei) 

 Neural 

Networ

k 

Potentia

l (NNP) 

with 

Monte 

Carlo  

 Broyde

n-

Fletcher

-

Goldfar

b-

Shanno 

(BFGS) 

algorith

 DFT 

comput

ation 

 Molec

ular 

dynami

cs 

simulat

ions 

 Gaussia

n 

descript

or on 

the 

symmet

ry 

function

s of 

radial 

(G
2
) 

 Gaussia

n 

descript

or on 

the 

symmet

Holdo

ut 

Ei: 

RMSE 

of 0.007 

eV. 

[3

89

]
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m ry 

function

s of 

angular 

(G
4
) 

 

Bimetallic 

Pt core-

shell 

nanocataly

sts  

 Straine

d 

coordin

ation 

number 

(cn*(j)) 

 KRR  DFT 

comput

ation 

 EMT 

Calcul

ations 

 Coordin

ation 

number 

 General

ized 

coordin

ation 

number 

 Partial 

distribut

ion 

function 

 Distanc

e to 

alloy 

atoms 

 Interato

mic 

distance 

from 

Vegard’

s law 

Holdo

ut 

cn*: 

MAE of 

0.07% 

[1

9]
 

 

Titanium 

alloys: 

TiAl2O5 

 Kohn–

Sham 

density 

functio

 Behler−

Parrinel

lo 

neural 

 DFT 

comput

ation 

 

Behler−P

arrinello 

descripto

rs
[373]

 

Holdo

ut 

EBPNN: 

RMSE 

of 0.017 

eV 

[3

90

]
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nal 

theory 

energy 

of 

TiAl2O

5 

structur

es per 

atom 

(EBPNN) 

 Kohn–

Sham 

density 

functio

nal 

theory 

force of 

TiAl2O

5 

structur

es 

(FBPNN) 

network

s 

(BPNNs

) 

FBPNN: 

RMSE 

of 0.27 

eV/A 

CRR 

Intermetalli

cs 

 CO and 

H 

adsorpti

on 

energy 

on 

active 

sites 

 RF 

regressi

on 

 PCA 

 t-SNE 

 Materi

als 

Project  

 DFT 

comput

ation 

 

 Atomic 

number, 

 Coordin

ated 

number 

 Electro

negativi

ty 

 Adsorpt

 RMSE, 

MAE 

and 

MAD of 

0.46 eV, 

0.29 eV 

and 

0.17 eV, 

respecti

[1

3]
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ion 

energy 

vely. 

 

Bimetallic: 

Ni, NiGa, 

Ni3Ga, 

Ni5Ga3 

 CO 

adsorpti

on 

energy 

on 

active 

sites 

 Neural 

Networ

k 

Potentia

l (NNP) 

 Materi

als 

Project 

 DFT 

comput

ation 

 

 Adsorpt

ion 

energy 

relative 

to the 

unrelax

ed slab 

 The 

gas-

phase 

CO 

energy 

Holdo

ut 

RMSE 

is about 

0.2 eV 

[2

0]
 

 

Bimetallic 

or 

multimetall

ic: Cu-Al 

alloy 

 CO 

adsorpti

on 

energy 

on 

active 

sites 

(ΔECO) 

 Random 

Forest 

(RF) 

 t-SNE 

 Materi

als 

Project  

 DFT 

comput

ation 

 

 Atomic 

number, 

 Coordin

ated 

number 

 Electro

negativi

ty 

 Adsorpt

ion 

energy 

5-fold 

CV 

ΔECO: 

Both 

MAE 

and 

MAD 

are 0.1 

eV. 

[1

8]
 

 

Bimetallic 

or 

multimetall

ic: (100)-

terminated 

Cu 

 ΔECO  ANN  DFT 

comput

ation 

 

 Filling 

(f) of d-

band 

 Center 

(εd) of 

10-

fold 

CV 

 ΔECO: 

RMSE 

is 0.13 

eV. 

 

[3

79

]
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multimetall

ic alloys 

d-band 

 Width 

(wd) of 

d-band 

 Skewne

ss (γ1) 

d-band  

 Kurtosi

s (γ2) of 

d-band,  

 Local 

Pauling 

electron

egativit

y (χl)  

 

High-

entropy 

alloys 

CoCuGaNi

Zn and 

AgAuCuPd

Pt 

 ΔECO 

 ΔEH 

 Gaussia

n 

process 

regressi

on 

(GPR) 

 DFT 

comput

ation 

 CO and 

H 

adsorpti

on 

energy 

on local 

atomati

c 

environ

ment 

5-fold 

CV 

 ΔECO: 

MAE 

is 

0.046 

eV. 

 ΔEH: 

MAE 

is 

0.048 

eV 

[3

91

]
 

NRR 

IrO2, MoS2  Free 

energy 

of all 

possibl

e 

adsorba

 GPR  DFT 

comput

ation 

 

 Surface 

coverag

e 

configu

rations 

Holdo

ut 

ΔG: 

MAE of 

0.57 eV 

 

[3

92

]
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te 

coverag

es 

 

NRR 

electrocatal

ytic 

electrode 

 Total 

current 

density 

(|itotal|) 

 Faradai

c 

efficien

cy 

(F.E) 

 ANN  Self-

generat

ion 

 Overpot

ential 

 Electro

de 

morpho

rlogy 

 The 

kinetic 

predisp

osition 

of NRR 

3-fold 

CV 

|itotal|: 

RMSE, 

and R
2
 

of 2.6 

mA/cm
2
 

and 1, 

respecti

vely. 

F.E.: 

RMSE, 

and R
2
 

of 

1.676% 

and 

0.998, 

respecti

vely. 

[3

93

]
 

Thermoe

lectricity 

Ba(MgX)2, 

(X = P, As, 

Bi), X2YZ6 

(X = K, 

Rb, Y=Pd, 

Pt, Z = Cl, 

Br), 

K2PtX2 (X 

= S, Se), 

NbCu3X4 

(X = S, Se, 

 Types 

of 

Seebec

k 

factors 

(S) 

 Types 

of 

Power 

factors 

(σS
2
) 

 Gradien

t 

boostin

g 

decision 

tree 

(GBDT) 

 DT 

 RF 

 kNN 

 ANN 

 JARVI

S-DFT 

 BoltzT

rap 

calcula

tions 

 CFID 

descript

ors 

 Chemic

al 

descript

or 

 Radial 

distribut

ion 

function 

3-fold 

CV 

Holdo

ut 

 Types 

of S: 

AUC 

of 0.96 

 Types 

of σS
2
: 

AUC 

of 0.82 

[3

94

]
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Te), 

Sr2XYO6 

(X = Ta, 

Zn, Y=Ga, 

Mo), 

TaCu3X4 

(X = S, Se, 

Te), and 

XYN (X = 

Ti, Zr, 

Y=Cl, Br). 

 Angle-

distribut

ion up 

to first 

neighbo

urDihed

ral 

angle 

distribut

ion 

 

100 single 

crystal 

inorganic 

materials 

 The 

lattice 

thermal 

conduct

ivity 

(kl) 

 GPR  MP  Bulk 

modulu

s 

 Space 

group 

number 

 Maxim
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6.1. Energy Conversion 

The data-driven empowered material discovery process provides novel opportunities to bring 

about breakthroughs in the energy conversion field. Innovations in materials for energy conversion 

are both essential and urgent as a basis for solutions to a large number of challenges, from 

improving energy efficiency to carbon-neutral electricity generation.[9, 36, 381] In this section, we 

introduce the application of data-driven material design approaches in the field of energy conversion 

including water-splitting,[10-12] photovoltaics,[17, 36, 71] fuel cells,[374, 389] carbon dioxide reduction,[13, 18] 

nitrogen reduction,[392] thermoelectricity[394, 395], and pizezoelectricity[37, 397].  

6.1.1. Water-Splitting 

The most prevalent data-driven application for water-splitting is in facilitating the development 

of novel catalytic and cathode materials. Water-splitting is one of the most promising methods to 

produce hydrogen,[409] an ultimate clean energy resource. The water-splitting reaction (H2O  

H2+1/2O2) includes two half-reactions: the hydrogen evolution reaction (HER); the oxygen evolution 

reaction (OER). In this subsection, applications of ML techniques and related data-intensive 

strategies for the discovery of high-performance catalyst materials for HER,[10, 11] OER[12, 385] and 

overall water splitting (OWS)[381] are investigated. 

Hydrogen Evolution Reaction (HER) 

Data-driven approaches can promote the discovery of high-performance catalysts for efficient 

HER based on in-depth investigations of the structure-activity relations. Highly active noble-metal-

free catalysts play a vital role in high-efficiency HERs. In recent decades, various candidates such as 

NiP2
[410, 411]and MoS2

[412, 413] have been proposed. For instance, Wexler et al.[10] applied data-driven 

approaches to study the influence on HER activity of nonmetal dopants on the Ni3P2 termination of 

Ni2P(0001) surfaces. A regularized random forest (RRFs) ML model with 3-fold CV was applied to 

predict the adsorption free energy (ΔGH) of 55 training structures with 0.09 eV RMSE (Figure 22a). 
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The binding energy of H to the surface of Ni3-hollow is too strong for HER; thus, the surface P sites 

were replaced by nine nonmetal elements, including As, B, C, N, O, S, Se, Si, and Te, to tune the 

binding energy of H; the number of dopants (nX) varies from 1 to 6. The impact of the applied 

mechanical and chemical pressure (via nonmetal doping) on the ΔGH were also explored (Figure 

22b). The descriptor space was constructed with the descriptors compiled from DFT-relaxed 

structures, including the geometric structure parameters, the length of Ni-Ni bond, the angle of the 

Ni-Ni-Ni bond, L wdin charges, elemental data (mass number, atomic weight, and atomic radius), 

summary statistics (the mean and standard deviation of these descriptors), and other geometric 

structure parameters (the area and perimeter of the Ni3 hollow site). Based on the architecture of 

RRFs, it was found that the most related descriptors is the particular bond length of Ni-Ni, the 

constituent atoms of which are differentiated by their distance to the first doping site (Figure 22c). 

Moreover, as shown in Figure 22c, seven out of the 10 of the most essential descriptors are 

geometrically related to the Ni3-hollow adsorption site, indicating that the chemical pressure is the 

key driving force in altering the catalytic activity of HER. To confirm this insight obtained by ML 

model, further simulations investigating the effect of mechanical pressure executed, the results of 

which suggested that the optimal average bond length of Ni-Ni lies between 2.97 and 3.07 Å in a Ni3 

motif for electrocatalytic HER to enable ideal thermoneutral H adsorption. Optimal bond length 

could be set as a criterion for high-throughput screening of binary Ni-nonmetal bulk materials. In 

addition, the mixed doping of nonmetals could be further explored. Alternatively, the enhancement 

of the HER electrocatalytic activity through applied chemical pressure could be investigated for other 

doped and undoped TM phosphides, such as Fe2P and Co2P, which have a bulk structure similar to 

that of Ni2P. The trained ML model in this study could accurately (0.09 eV RMSE) predict the ΔGH; the 

results of this analysis strongly support the idea that the modified local geometry of the Ni3-hollow 

adsorption site significantly enhances the HER activity of Ni3P2(0001). Further experimental and 
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theoretical investigation of nonmetal doping on transition metal phosphides could also be 

conducted based on the insights rendered by ML model to identify high-performance HER catalysts. 

The catalytic performance of amorphous Ni2P has also been studied by Zhang et al.[11]; a data-

driven model was applied to facilitate the high-throughput prediction of adsorption energy of H (EH). 

A genetic algorithm (GA) was deployed as the global optimization method to search for favorable 

amorphous configurations. Two ML algorithms (feed-forward neural network (NN) and gradient 

boosting decision tree (GBDT)) were trained to predict the EH. However, since common descriptors, 

for the description of crystal structure materials (such as d-band and electronegativity) are not 

suitable for amorphous materials, it is challenging to characterize their chemical environment. The 

authors decomposed this problem by dividing the prediction of EH into two parts: the binding energy 

of H at the adsorption site i.e., the frozen adsorption energy (Efrozen); the relaxed energy (Erelax) 

produced by H adsorption. The ML model based on the GBDT algorithm used the hand-craft 

descriptors derived from the pristine surface of Ni2P. Within a set cutoff radius (Rc) (Figure 22d), the 

three closest P and Ni atoms (P1-3 and Ni1-3) to the Ni adsorption site (Niads) for H adsorption were 

specified. The distance of the bond between each pair of the seven atoms was taken as the primary 

descriptor. Based on Pearson coefficient correlation analysis, it was suggested that NiadsP3 possess a 

high negative inner relation with Efrozen (Figure 22e). The prediction of Efrozen achieved an RMSE of 

0.06 eV and 0.11 eV for the training and testing sets, respectively (Figure 22f). Thus the P content 

has a significant influence on the reactivity on the Niads site. The first model only focuses on the 

effects of the bond distance, which does not account for the remaining chemical environment. 

Hence, in the second model, the atom-centered symmetry function method was employed to form 

descriptors accounting for chemical environment to successfully fit the potential energy surface 

(PES). An Rc was also set to explore the adsorption site’s local chemical environment (Ni1) (Figure 

22g). The bond length of the five closest atoms to Ni1 represented by the symmetry functions in the 

Rc- local environment was constructed as the descriptor space. Here, a high-dimension neural 
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network composed of five sub-neural networks (correspond to the five atoms) was implemented to 

predict each atom’s contribution (Ei) to the Efrozen (Figure 22h). For the second model, the RMSE of of 

Efrozen prediction achieve values of 0.05 eV and 0.10 eV for the training and testing sets, respectively. 

In brief, the NN-based model possesses several advantages. It is more accurate than the first model 

and can be applied more generally to situations of similar or greater complexity based on the NN’s 

favorable extensibility. With the implementation of the symmetry function method, the NN model 

made full use of geometric information. The NN model also provided novel insights into the 

identification of adsorption patterns (hollow-site, bridge, and top) via embedding the high 

dimension descriptor vector into a low dimension vector. This work generated a ML model that 

could accurately predict the adsorption energy on a specific site of amorphous NiPx materials for 

HER based on local information about the chemical environment. With the employment of the 

trained ML model, 40 optimal active sites on amorphous Ni2P were screened out and divided into 

five main patterns. Rational analysis of the configuration of such patterns enables the control of 

catalytic activity via modifications of the surface atom configuration. 
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Figure 22. a) The prediction of ΔGH by the RRFs compare to the DFT computation results. The black 

dashed line indicates the perfect agreement. b) The variation of ΔGH under the change of average Ni-

Ni bond length induced by chemical and mechanical pressure. c) The importance ranking of 

descriptors derived from RRF model. a-c) Reproduced with permission.[10] Copyright 2018, ACS 

Publications. d) The local environment of the adsorption sites (Niads). Ni1-3 and P1-3 denote the first, 

second and third closest Ni and P atom to Niads. The solid line represents the real chemical bonds, 

and the dashed line represents the distance of atom pairs. e) The graph type visualization of 

Pearson’s correlation, where the thickness of lines represents the importance of the descriptors. The 
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red colour indicates a positive correlation and green for a negative relationship. f) The performance 

of GBDT on the prediction of Efrozen. g) The local environment of a sphere with a radius Rc centred by 

the adsorption sites (Ni1). (H) The scheme of the atomic neural network. d-g) Reproduced with 

permission.[11] Copyright 2020, ACS Publications. 

 

To conclude, the majority of data-driven HER applications have been implemented to predict 

the activity of HER catalysts. The two aforementioned studies shed light on the importance of 

descriptors in the data-driven ML process. Descriptors involved in these processes can be divided 

into geometric and electronic structure descriptors.[379, 414-417] The electronic structure descriptors are 

usually computationally-expensive to obtain via the quantum-chemical simulation and are relatively 

unsuitable for other applications. It is therefore advantageous that geometric descriptors 

demonstrate higher impact on the adsorption energy of catalyst active sites. 

 

Oxygen Evolution Reaction (OER) 

The majority of data-driven applications in OER are focus on the prediction of adsorption 

enthalpy. The adsorption enthalpies of transition metals (TMs) and their alloys can be successfully 

described by d-band theory[418] and related scaling relations.[419] However, this simplified correlation 

does not apply to other types of materials such as the TM oxides and, therefore, a theoretical study 

of numerous crystal structures, surfaces, and active sites of metal oxide materials has been reported 

by Back et al. (Figure 23a).[12] They systematically investigated the catalytic activity of Ir-containing 

oxides, one of the state-of-the-art OER catalytic materials. They employed a customized CNN 

model[158] (with crystal graphs including atomic and bonding information as an input) to predict 

binding free energies (ΔG). The crystal structures of IrO2 and IrO3 were taken from the Materials 

Project; two adopted structures of TiO2 polymorphs taken as surrogates for the structure of IrO2. The 

authors discovered that, in IrO2, the predicted overpotentials of all the active sites on the (121) 
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surface are lower than that on the (110) and (100) surfaces. Additionally, less stable low-index 

surfaces such as (100) and two unique terminations of the (111) surface possess higher OER activity 

than (110). The study achieved a test error of 0.10 eV (RMSE) and 0.07 eV (MAE) for 300 coverage 

calculation training data points (Figure 23b), and 0.18 eV (RMSE) and 0.13 eV (MAE) for OER 

calculations (Figure 23c). Their DFT results indicated that several sites on the low-index surface 

possess a higher activity than those on the rutile (110) surface. An increase in the number of active, 

high-index surfaces could be achieved by decreasing the size of Ir oxide nanoparticle. Moreover, 

surface Ir atoms with higher oxidation tend to be more active for OER. A graph-based predictive ML 

model of surface coverage and site activity of IrO2 and IrO3 has been presented as a reasonably 

accurate substitution for DFT computations. Such an integrated ML and DFT framework is a 

promising approach to reducing computational cost and achieving high-throughput screening of OER 

catalysts.  

Xu et al. [385] employed the compressed sensing method, called the SISSO,[26, 420, 421] to identify 

suitable activity descriptors for the prediction of OER adsorption enthalpies at doped RuO2 and IrO2. 

The validation set of OER adsorption enthalpies was computed by DFT computations (Quantum 

ESPRESSO[422] and BEEF-vdW functional[423]) with an uncertainty of approximately 0.5 V in the 

theoretical overpotentials (Figure 23d). The SISSO descriptors significantly surpass previous single 

descriptors in terms of both computational cost and accuracy. For primary descriptors, the width of 

the d-band (Wd) and charge transfer energy (CTE) demonstrate the highest Pearson correlation 

coefficient (0.744 and 0.734, respectively) with the simulated adsorption enthalpies, indicating that 

the adsorption enthalpies are unlikely to be characterized by a linear relationship of only one 

primary descriptor. The primary descriptors are then constructed by employing a series of 

algebraic/functional operators to the primary descriptor set. The operators are applied to generate 

descriptor space, where the iteration number (N) is used as a hypermeter and denoted as the rung 

(N). After the first iteration of the descriptor construction (1), the top five one-dimension SISSO 
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descriptors, such as the difference between the width of the d-band and the centre of the O2p-band 

(Wd-εO2p), show a higher correlation coefficient than the best primary descriptors mentioned earlier. 

The combination of a number of low primary features could produce a descriptor with a higher 

Pearson correlation coefficient. An even higher correlation coefficient could be achieved by 

increasing number of iterations employed for the descriptor construction. As presented in Figure 

23e, the remaining average uncertainty of SISSO-derived overpotential is approximately 0.2 V. The 

SISSO model provides explicit algebraic expressions for predicting adsorption enthalpies with the use 

of highly correlated descriptors. The ML results indicate that Co and Fe would be the ideal dopants 

to improve the activity of OER reactions, which is an observation that also agrees with the 

experimental data. The SISSO provides solutions for the generation of high-performance composite 

descriptors for ML training shows great promise other applications such as the ORR, HER, and CRR, 

characterized by both higher prediction accuracy and low computation cost. 
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Figure 23. a) Scheme of automated DFT analysis for the performance of catalysis on OER.  b) The 

prediction results of CNN model on the value of ΔG for coverage calculations. c) The prediction 

results of CNN model on the value of ΔG for OER calculations. a-c) Reproduced with permission.[12] 

Copyright 2019, ACS Publications. d) The relationship between the adsorption energy of OOH* and 

the adsorption of OH*. The solid line is based on the author’s DFT database, and the dashed line 

represents the ideal scaling relationships.[424] e) The volcano plot of the overpotential as a function of 
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the adsorption enthalpies of O*. The green points represent the selected DFT computation results, 

and the red points are the corresponded SISSO predictions. d-e) Reproduced with permission.[385] 

Copyright 2020, ACS Publications. 

 

For the OER catalysts, studying the activity of oxide catalysts is more complicated relative to 

that of transition-metal catalysts due to their abundance of facets and surface coverages. For the 

accurate predation of adsorption energy on the adsorption sites via data-driven approaches, the 

selection and generation of proper descriptors is critical. Although individual geometric and 

electronic primary features show relatively poor correlation, more related descriptors can be 

constructed by utilizing systematic methods such as the SISSO and symmetry functions. 

 

Overall Water-Splitting 

Researchers have focused on the use of ML to identify innovative bifunctional catalysts 

demonstrating high activity for simultaneous HER and OER reactions which constitute the overall 

electrocatalytic water splitting process. Ge et al.[381] implement the LASSO regression algorithm with 

quantum mechanics to generate predictive models to identify innovative structures with superior 

electrocatalytic performance towards both HER and OER. In this work, two-dimensional (2D) van der 

Waals heterostructure materials based on transition metal dichalcogenides (TMDCs) were studied 

(Figure 24a and 24b). The authors demonstrated that a significant improvement in performance 

could be achieved with the combination of two independent TMDCs such that the descriptor space 

was constructed from the cosine of the rotational angle (θ) (Figure 24c and 24d), the distance (d) 

between two secondary parts, the average MX2 (monolayered TMDC) bond length (l) and the 

bandgap ratio (λ) of the two components. The value of ΔG*OOH was used to compute other free 

energy variations to describe the reaction performance (Figure 24e and 24f). As the catalytic 

activities of the MX2 monolayer towards HER and OER are insufficient, the heterojunction system of 
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two MX2 layers has been proposed. The LASSO algorithm combines the four descriptors into a 

complex LASSO performance descriptor (PL), which exhibits a favorable linear relationship with the 

overpotentials of HER (ηHER) and OER(ηOER) (Figure 24g). In this study, the LASSO approach was used 

to determine performance descriptors combining four variables, and an equation was applied to 

predict the bifunctional catalytic performance of rotated TMDCs for both HER and OER without 

resorting to expensive computations or experiments. Among all the computed structures, the most 

favorable heterojunction system consisted of MoTe2 and WTe2 monolayers with a 300° rotation 

angle; ηHER and ηOER achieved values of 0.03 V and 0.17 V, respectively. 
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Figure 24. a) The illustration of the bifunctional electrocatalysts for HER and OER. b) Scheme of the 

heterostructure with 0° rotation angles for the catalyst. The atom of Mo, S and W are represented 

by purple, yellow and blue, respectively. c) The relationship between the rotation angle (θ) and the 

HER overpotentials. d) The relationship between the rotation angle and the OER overpotentials. e) 

The linear correlation relationship between ΔG*OH and ΔG*OOH. f) The linear correlation relationship 

between ΔGOOH* and ΔGO*. g) The relationship between the OER overpotential and the PL descriptor. 

a-g) Reproduced with permission.[381] Copyright 2020, ACS Publications. 

 

6.1.2. Photovoltaics (PV) 

Data-driven research in the PV field can facilitate a faster and more efficient route for the 

discovery of candidate materials. Sunlight is the most abundant clean and renewable energy source; 

in the field of energy conversion, PV effects provide the opportunity to effectively utilize solar 

energy.[425] The direct conversion of solar energy to electricity via PV cells, or thermal energy in 

integrated solar energy systems, has become the dominant approach to future green energy 

generation.[426] It is driven by the pursuit of innovative, high-performance PV materials and the 

optimization of deposition approaches for solar cell applications. In this sub-section, data-driven 

methods for the discovery of various PV materials, including perovskite-based,[36, 427] organic,[49, 71] 

metal oxide,[54] and other novels PVs,[17, 387] are reviewed. 

Perovskite-Based PV 

Perovskites-based solar cells have improved in efficiency in recent years; numerous data-driven 

studies have been conducted for the deeper investigation and discovery of PV candidate 

materials.[427] Lu et al. [36] developed a data-driven framework combining quantum-chemical 

simulation and ML to discover innovative and novel HOIPs for PV. HOIPs are one of the most 

favourable material classes for PV and have garnered tremendous interest. The essential 

characteristics of HOIPs include the high-performance power conversion efficiency (PCE), 

competitive experimental synthesis cost, and tunable bandgaps.[428-431] The authors specifically 

focused on discovering the stable Pb-free HOIPs with by employing of six different ML algorithms. As 

shown in Figure 17b, the data-driven framework consists of four critical processes: the construction 

of the descriptor space, training, application of the ML model, and validation of thermal and 
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environmental stability via DFT computations. The material space consisted of 212 HOIPs with the 

orthorhombic-like crystal structures completely belonging to the perovskites family with ABX3 

stoichiometry, where A+ denotes monovalent or organic molecular cations, B2+ denotes divalent 

metal cations, X represents c atoms. Thirty initial descriptors pertaining to the 212 HOIPs were 

processed by the Perdew-Burke-Ernzerh (PBE) functional[432] for further feature engineering. The 

importance of these descriptors to the target properties, such as bandgap (EPBE 
g ), was evaluated via 

the gradient boosting regression (GBR) and ‘last-place elimination’ methods. The descriptors with 

less impact on the bandgap were excluded to ultimately arrive at 14 of the most important 

descriptors. The geometric structure descriptors, tolerance factor (Tf) and octahedral factor (Of), 

were ranked as the first and third most important parameters to the bandgaps, respectively; the 

total number of ionic charges for B-sites (ICB) was the second most important descriptor (Figure 

25a). According to Figure 25b, the Pearson correlation coefficients’ heat map indicates low inner 

correlations between pairs of descriptors, suggesting that redundant descriptors have been 

successfully removed. The optimal descriptor set was employed to train of six different supervised 

ML regression models: GBR, kernel ridge regression (KRR),[433] decision tree regression (DTR), SVR,[434] 

Gaussian process regression (GPR), and multilayer perceptron regression. Three metrics were used 

to evaluate the model performance: R2, MSE, and the Pearson coefficient (r), which indicates the 

correlation between the predicted value (EML 
g ) and the real value (EPBE 

g ) of the bandgap. Further, 80% 

of the HOIP data was adopted as the training set, while the remaining was used for testing based on 

the hold-out method. The GBR model demonstrated superior values of R2 and RMSE of 97% and 

0.086, respectively. The bandgap of 5,504 different HOIP candidates (32 A-site monovalent or 

organic molecular cations, 43 B-site divalent cations and 4 X-site halogen anions) were predicted. 

Further screening was conducted based on geometric stability, toxicity, difficulty of synthesis, and 

the bandgap value (which would ideally lie in the range of 0.9-1.6 eV for PVs). Finally, six novel 

orthorhombic HOIPs (C2H5OInBr3, C2H5OSnBr3, C2H6NSnBr3, C2H6NInBr3 NH3NH2InBr3, and NH4InBr3) 
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were proposed as promising candidates for PVs. Further evaluation of thermal and environmental 

stability, and electronic properties of the six candidates has also been conducted via first-principle 

computation, indicating that C2H5OInBr3, C2H5OSnBr3 and C2H6NSnBr3 demonstrate higher stability 

against water and oxygen. The bandgap values predicted by ML models are in significant agreement 

with those computed by DFT (RMSE less than 0.1 eV), which proves the superiority of the ML 

approach. Based on a combination of DFT and ML techniques, an efficient workflow to screen stable, 

lead-free HOIP candidates with suitable bandgaps is proposed. In contrast with traditional high-

throughput screening processes, the recommended approach coincides with a lower computation 

cost as only the most promising HOIP candidates are characterized with DFT computations.  

Organic Materials Based PV 

Unlike HOIPs, organic photovoltaics (OPV) materials consist of conjugated molecules or 

polymers and have the advantages of low price, flexibility, light weight, and transparency.[48-51] 

Although a subset OPVs have achieved a PCE of 17.3%, [435] compared to other PV materials, most 

OPV PCE values are relatively low (usually around 10%). The Scharber model[436] is widely used to 

calculate OPV systems’ PCE,[437, 438]though its accuracy is is questionable given that it only takes the 

frontier orbital energies into consideration. 

Sahu et al.[71] constructed a dataset of 280 small molecule OPV systems and discovered that 

degeneration almost occurs on the frontier molecular orbitals of donor molecules for high-

performance unit devices; in such a case, orbitals other than only the HOMO and LUMO should be 

taken into consideration. They proposed a data-driven framework for the prediction of PCE by 

training several different models such as linear regression (LR), k-nearest neighbour (kNN), ANNs, 

random forest (RF), and gradient boosting regression tree (GBRT). Quantum chemical properties 

used to build descriptor space. Simple topological descriptors are not fully representative of the 

energy conversion process in an OPV and do not produce favorable results when applied to the 

conjugated molecules database for solar cell applications.[439] The Pearson correlation coefficients 
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were calculated to ensure the mutual independence of each feature, and a descriptor with 13 

features was constructed. Out of the 280 data points, 30 were adopted as the testing data, while 

employing LOOCV. With 10-fold CV over 250 data, the GB-based ML model yielded excellent results 

with a Pearson coefficient of 0.79 and an RMSE of 1.07% towards PCE for the test data, and a 

Pearson coefficient of 0.76and 1.09% RMSE towards PCE on all data points with LOOCV (Figure 25c). 

Within the GB and RF models, the hole–electron binding energy in donor molecules (Ebind) possessed 

the highest correlation coefficient to the PCE for both models (Figure 25d). However, as mentioned 

in the previous discussion, the evaluation of quantum chemical descriptors is usually 

computationally expensive. Though the predictive ML model in this study has not been employed to 

propose novel high-performance OPV materials, it has showed substantial potential in the 

preliminary high-throughput virtual screening of promising candidates and is able to capture the 

complexity of OPV devices to pinpoint the critical descriptors that affect the PCE. This ML application 

is helpful in understanding the operating mechanism and rational design of OPVs. 

In a data-driven OPV research, Sahu et al.[49] used similar descriptor spaces; the polarizability of 

donor molecules was replaced by the number of hetero atoms (ND 
het) to reduce the computational 

cost; 300 newly reported small-molecular OPVs were investigated, and 250 data points were used as 

the training set. As illustrated in Figure 25e,  
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Figure 25. a) The selected descriptors and their importance. b) The Pearson correlation heat map of 

the selected 14 descriptors. a-b) Reproduced with permission.[36] Copyright 2018, Springer Nature 

Publications. c)The prediction results of GB model on the PCE versus the experimental PCE on the 

testing set (left) and the whole data set with LOOCV (right). The inset represents the error’s 

probability density. d)The predicted importance of each descriptor on the GB (left) and RF (right) 

model. Descriptors are in following order: 1)ND 
atom, 2)polarizability, 3)the energetic difference of 

LUMO and LUMO+1, 4)the energetic difference of HOMO and HOMO-1, 5)IP(v), 6)λh, 7) Ebind, 8)EDA 
LL , 

9)EDA 
HL , 10)the energy of the electronic transition to a singlet excited state under the largest oscillator 

strength, 11)the dipole moment change in going from the ground state to the first excited state on 

donor molecules, 12)the energy of the electronic transition to the lowest-lying triplet state, 13)the 

energetic difference of LUMO and LUMO+1 on acceptors. c-d) Reproduced with permission.[71] 

Copyright 2018, Wiley Publications. e) Joint distributions derived from kernel density estimation for 

vital descriptors. Reproduced with permission.[49] Copyright 2019, RSC Publications. f) The donor 

distance matrices for the donors in the data set The upper and bottom triangular for both matrices 
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are the descriptors computed by Daylight fingerprints and Morgan fingerprints, respectively. 

Reproduced with permission.[48] Copyright 2019, Elsevier Publications. 

 

molecules with large reorganization energy for holes in donor molecules (λh) and Ebind were screened 

out effectively. Similar to their previous ML model training strategy and validation method,[71] the 

trained model based on GBRT and ANN demonstrated that donor units such as benzodithiophene, 

dithieno-benzodithiophene and naphtho-dithiophene, and acceptor units based on 

naphthobisthiadiazole and isoindigo possess great potential to construct high efficient materials for 

OPVs. An ML-based virtual screening of 10,170 molecules was performed; 126 molecules with PCE 

greater than 8% for both models were proposed. In addition, to predict accurate property values by 

ML, it is also of great significance to obtain implicit chemical knowledge to boost the design of 

molecules with excellent photo-physical properties for high-performance OPVs. Padula et al.[48] 

presented an ML workflow to identify efficient OPV materials based on chemical similarity. They 

acquired similarity metrics such as Euclidean distance[82] and Tanimoto similarity index[81] (Figure 25f) 

between donor pairs while considering structural and electronic parameters to verify the domain of 

applicability. ML models based on kernel ridge regression (KRR) and k-nearest neighbors (k-NN) 

algorithms were employed to verify the correlations between those metrics with target properties 

including PCE, JSC, and VOC. The best-performed KRR model yielded a Pearson’s correlation coefficient 

around 0.7, which lends insights for a highly-efficient and reliable approach to virtually screen OPVs 

via control of chemical topology and electronic structure. 

To sum up, a number of ML-based OPV studies have been conducted to screen out high PCE 

materials. The hole–electron binding energy in donor molecules (Ebind) is highly correlated with the 

PCE of OPVs. Well-trained ML models can enable the prediction of promising materials for both 

donors and acceptors as a basis for constructing high-performance OPVs. ML-based approaches are 

also key to extracting chemical knowledge to develop new OPV design principles. 
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Metal Oxides PV  

Metal oxides (MOs) meet most of the prerequisites of the solar cell materials, including high  

efficiency of electricity generation from solar power, low cost, stability over long periods, 

environmental friendliness, and ease of synthesis.[440] The employment of data-driven techniques 

could further improve the PCE of MO PVs. Yosipof et al.[54] have proposed a methodology (Figure 

26a) for the application of data mining techniques and an ML algorithm to explore the relationship 

between the properties and performance of two MO-based solar cell libraries, TiO2|Cu2O and 

TiO2|Cu-O libraries, where Cu-O denotes that the CuO was the metal oxide applicable to the library 

preparation but multiple oxides were found in the cell. The three PV properties of photocurrent 

density of the short circuit (JSC), photovoltage of the open circuit (VOC), and the internal quantum 

efficiency (IQE) were used to indicate the performance of the solar power cell. The structure of the 

photovoltaic cell is shown in Figure 26b. The descriptor space consists of seven experimentally 

measured material descriptors including the thickness of the window (Tw) and absorber layer (Ta), 

the ratio between Ta and (Ta+Tw), bandgap of the absorber layer (BGP), the distance between the cell 

and the center of the deposition plume (Dcenter), the resistance of the absorber layer (Ra), and the 

maximum value of calculated theoretical photocurrent (Jmax). The principal component analysis 

(PCA)[441] algorithm was applied to reduce the dimensionality of the descriptor space for the data 

visualization. Figures 26c and 26d present the value of the first and second principal component 

(PC), respectively, for each cell as a function of the position within the TiO2|Cu-O library, where 

outlier cells are circled. Comparing the function plot of the Cu-O and TiO2 layer thickness with the 

cell position within the TiO2|Cu-O library (Figures 26e and 26f, respectively), shows that the patterns 

highly coincide with the PC 
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Figure 26. a) The flow diagram of the ML assisted model to explore the relation between properties 

and performance of two MO-based solar cell libraries. b) The scheme of a combinatorial metal oxide 

photovoltaic library. c) The value of PC1 and d) PC2 for each cell with the variation of cell position 

within the TiO2|Cu-O library, where the outlier cells are circled. e) The value of Cu-O and f) TiO2 

layer thickness for each cell with the variation of cell position within the TiO2|Cu-O library. g) Solar 

cell distribution in PC space. a-g) Reproduced with permission.[54] Copyright 2015, Wiley Publications. 

 

plots. Figure 26g represents the solar cell distribution in the PC space, indicating that the cells are 

evenly distributed. k-NN and genetic programming (GP) algorithms were used for model generation 

to establish the relationship between the descriptors and activities indicated by JSC, VOC, and IQE, 

where LOOCV and standard CV were applied. The best k-NN model yields good prediction statics 

with an R2 of 0.92, which suggests that Ta was found to be the only significant predictor of JSC and 

IQE. Both Ta and Tw show comparable contributions to the prediction of VOC. In this study, the PCA 
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model extracted the implicit chemical information from the data; the generated PC plot is helpful for 

sample clustering and outlier detection. The obtained correlations were in good agreement with 

those in a previously published work,[442] indicating the applicability and reliability of the developed 

ML model. 

 

Other Novel PV 

2D materials, with their unique chemical structures, have fascinating and novel properties. 

Therefore, it is critical to employ a data-driven process to better understand structure-property 

relationships and determine more promising photovoltaic candidates. Jin et al.[17] ruled out 26 

potential 2D photovoltaic (2DPV) candidate materials from 187,093 inorganic crystal structures 

identified experimentally. The developed framework, based on integrating high-throughput material 

screening and the ML algorithms, achieved high accuracy and efficiency in identifying 2DPV (Figure 

27a). The established descriptor space consisted of 19 critical descriptors such as the packing factor 

(Pf), average sublattice neighbor count (SNC), and Mulliken electronegativity minimum value. The 

training dataset consisted of 98 experimentally identified PV materials as positive samples and 98 

non-PV materials as negative samples. To evaluate the model performance, 5-fold CV was employed, 

where four essential evaluation metrics, namely, accuracy, recall, precision, and AUC, were selected 

to examine the models. After the implementation of ML models, the best-performed gradient 

boosting classifier (GBC) model screened 3,011 out of the 187,093 PV candidates from the ICSD with 

all four of the performance evaluation metrics being approximately 1. Further screening was 

performed by considering the layered structure, leading to only 26 2DPV candidates ultimately being 

kept and further classified into 10 different prototypes based on their space groups (Figure 27b). The 

electrical and optical properties of these candidates, such as PCE and bandgaps, were investigated 

by DFT computation. Three out of the 26 2DPV candidates including Sb2Se2Te, Sb2Te3, and Bi2Se3 

were found to possess remarkable PCEs of 24.06%, 22.65%, and 15.85%, respectively. With the 
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analysis of the electronic and geometric structures, the author revealed two crucial factors that 

contributed to the high PCE: the long-pair s-orbital in the compound enables p-p optical transition 

(Figure 27c); asymmetric structures induce a built-in electric field (Figure 27d), which prolongs the 

exciton lifetime. The employed ML classifier efficiently discovered promising 2DPV candidates and 

revealed implicit structure-property relations. 

In another study, the bandgap properties of kesterite I2-II-IV-VI4 (Figure 27e) were studied by 

Weston et al.[387] by integrating first-principle computations with ML techniques. Regression ML 

models such as LR, SVR with different kernels, and tree-based regressions were trained with 184 I2-II-

IV-VI4 compounds to predict the magnitude of the bandgap. A logistic regression-based binary 

classifier was employed to identify whether the bandgap was direct or indirect. The performance of 

these regression models were determined via 10-fold CV and assessed using the RMSE and R2. An 

accuracy metric was employed to evaluate the performance of logistic regression classifier. The 

radial-bias-kernel-based SVR model outperformed the other models, with a low RMSE of 0.283 eV 

and R2 of 0.957 (Figure 27f). The descriptor space was initially constructed with 12 elemental 

properties for the regression models; further feature engineering was conducted for to improve the 

performance of the classification model, with a final prediction accuracy of 89%. The well-tuned 

regression models predicted the bandgap of 1,568 kesterite I2-II-IV-VI4 semiconductors, leading to 

the discovery of 243 materials whose bandgap falls in the optimal range of 1.2–1.8 eV. Cross-

checking with material thermodynamic properties in the MP database revealed that 34 of screened 

materials were synthesizable, 25 of which were at the ground state. Follow-up first-principle 

calculations further verified that 25 of the 34 potential candidates exhibited the optimal bandgap 

value. 

Huang et al.[388] used an ML model to predict the bandgap and band alignment of nitride-based 

semiconductors (Figure 27g). Based on the combination of HSE and DFT-PBE functionals, the value of 

bandgap and band offset towards the wurtzite GaN was accurately computed and then used to train 
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and test the ML models. Eighteen accessible elemental properties were taken as descriptors and 

several ML algorithms were employed( such as SVR with different kernels and NN). In the design 

space, the studied wurtzite nitrides consisted of 16 atoms in an orthorhombic supercell, and thus 

68,115 possible structures were taken into account in consideration of all possible cation-nitrogen 

combinations. 300 out of the 68,115 structures were randomly selected as the training set, and the 

LOOCV was implemented. The SVR algorithm with radial kernel outperformed other models with a 

predicted RMSE of 0.298 eV and 0.183 eV in terms of the bandgap and band offset (Figure 27h and 

27i), respectively. With further feature engineering, a descriptor space with 26 elemental properties 

was constructed, which decreased the RMSE of the bandgap prediction by around 0.005 eV. Two 

trends could be noticed: with the increase of cation types, the band sets tend to increase while the 

bandgap has an inclination to narrow. The prediction results of known nitrides models were in 

favorable agreement with corresponding first-principal calculations; a number of material 

candidates were explored with the potential to support novel discoveries in the domains of 

ultraviolet LEDs, infrared detectors and solar cell absorbers. 
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Figure 27. a) The framework of ML assisted material screening of SDPV candidates. b) The 10 

structural prototypes of the 26 2DPV candidates. c) Projected band structure of Sb2Se2Te. d) Top and 

side view of the Sb2Se2Te cell. a-d) Reproduced with permission.[17] Copyright 2020, ACS Publications. 

e) The illustration of the structure of Zinc-blende-based kesterite for a I2-II-IV-VI4 compound. f) The 

performance of the radial bias kernel support vector regression model on the prediction of the 

bandgap e-f) Reproduced with permission.[387] Copyright 2018, AIP Publications. g) The illustration of 

the nitride structure in the design space and position of 16 ions. The labelled atoms indicate cations 

and the rest represent nitrogen atoms. h) The performance of the radial bias kernel support vector 
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regression model on the prediction of the HSE bandgap and i) bandgap offset g-i) Reproduced with 

permission.[388] Copyright 2019, RSC Publications. 

 

In the ML-based applications of high-performance PV material discovery, several properties 

such as PCE, bandgap, VOC and JSC are critical to evaluate the performance of the potential PV 

material; therefore, ML models that can make efficient and accurate predictions are ultimately 

pursued. It is also vital to explore implicit relations between the material parameter and the target 

property via data-driven, ML techniques to acquire novel insights for the further development of PVs. 

 

6.1.3. Fuel Cells and Metal-Air Batteries 

Using data-driven technology to discover innovative, economical and efficient electrocatalysts 

has gradually become the focus of oxygen reduction reaction (ORR) research. ORR plays a vital role 

in chemical-electrical energy conversion in fuel cells and metal-air batteries, which is a promising 

and indispensable field in the development of renewable energy.[443] Recently, a new frontier ORR 

catalyst has emerged referred to as dual-metal-site catalysts (DMSCs). By employing ML techniques, 

Zhu et al. [374]identify the origin of ORR activity and reveal design principles that offer a universal 

description of the activity in relation to intrinsic properties for graphene-based DMSCs. In this 

research, they used DFT simulations to screen potential catalyst candidates by considering the two 

criteria of geometric structure and free energy for the reaction. Each candidate’s catalytic 

performance was quantified based on the theoretical potential of the rate-limiting step (UL); a value 

larger than 0.7V was regarded as favorable ORR activity. Their UL of such DMSCs can only be higher 

than 0.7V when the rate-limiting step is either the first or fourth electrochemical step. A linear 

scaling relationship between ΔGOOH* and ΔGOH* for the evaluated DMSCs were determined via 

regression(ΔGOOH* = 0.92 ΔGOH*+ 3.01); thus, the trends in ORR activity with the variations in ΔGOOH* 

and ΔGOH* can be plotted (Figure 28a). Based on the DFT computations, numerous primary 

physiochemical parameters were enumerated as possible descriptors for ML training. As the activity 

of catalysts is essentially dominated by electronic strictures, properties of localized d-orbital and 

continuum s- and p- orbitals were selected as the primary descriptors. Additionally, considering 

interactions between two transition-metal atoms, some geometric structure-related properties were 

set as descriptors. The Person correlation coefficient matrix was used to identify the inner 

correlation between random descriptor pairs to eliminate redundant descriptors (Figure 18b). With 

some simple mathematical transformations, the descriptor space was extended and optimized in 

accordance with the ML model’s prediction accuracy. Finally, a gradient boosting regression (GBR) 

model with an R2 of 0.993 and RMSE of 0.036 eV was obtained (Figure 18c). The mean impact value 

(MIV)[444] method was coupled with the trained ML model to evaluate each descriptor’s influence on 

the ORR activity (Figure 18d). The seven most related descriptors are: the electron affinity (EA1 and 
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EA2); the sum of the van der Waals (vdW) radius (R1 + R2); the absolute value of the difference 

between and the sum of the Pauling negativity (|P1-P2|, P1+P2) of the two transition-metal atoms; 

the product (IE1L) of the ionization energy of the first transition-metal atom (IE1); the distance (L) 

between the two transition-metal atoms; the average distance between the two transition-metal 

atoms and the surrounding N atoms ((d1+d2+d3+d4+d5+d6)/6). Among the seven descriptors, five 

are electronics properties. However, isolated individual descriptors may have their limitations and 

may not be sufficient to describe the effects of atoms on catalytic performance. In contrast, too 

many descriptors would lead to the dimensionality curse and disrupt the model’s predictive 

performance. Hence, it is essential to discover and identify new, high-dimensional descriptors which 

are highly related to the target results and carry the most information. Based on the data generated 

from DFT computations and microkinetic simulations, the trained ML model can accurately describe 

the ORR catalytic activity of DMSCs via fundamental parameters with acceptable error. 

To study the electrocatalytic performance of more complex, larger structures, traditional DFT 

calculations are limited due to their large computational expense and time. Researchers have 

gradually developed new strategies that combine ML with DFT and other computing methods. Kang 

et al.[389] used Gaussian descriptors[373, 445] to characterize local atomic structure. The authors applied 

an ML-based framework to explore the thermo-electrochemical properties of ternary nano-

electrocatalysts. A model of high-dimensional neural network potentials (NNPs) was trained with the 

employment of the atomistic ML package (AMP)[446] to describe the interactions between 

components (Figure 28b). The NNP method was then implemented in conjunction with Monte Carlo 

(MC) methods and molecular dynamics (MD) simulation to identify the effect of strain originating 

from surface segregation of selective components at the surface of the catalyst. 13,877 DFT 

calculated data for PtNi, PtCu, CuNi, and PtCuNi nanoparticles were used for the training sample. 

The training set of the model system was composed of nanoscale icosahedrons with transition-metal 

species mixed randomly. To distinguish the local structural environment, Gaussian descriptors on 

radial (G2) and angular (G4) symmetry functions were employed as the main parameters. The RMSE 

of the NNP model on the prediction of single-atom energy contribution converged to less than 7 

meV with the implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.[447, 448] 

The proposed candidate PtCuNi ternary that contains 60% Pt possesses a size of 2.6 nm 

demonstrates outstanding electrocatalytic ability toward ORR. According to the thermal-
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electrochemical stability analysis via MC and MD simulations under the canonical ensemble, the 

candidate is also consistently more stable than binary nanoparticle and pure Pt. The design principle 

that emerges from the ML model is that those ternary nanoparticles with 60% Pt composition and 

icosahedron configurations in which Cu/Ni and Pt assume the core and shell, respectively, possess 

superior ORR catalysis performance in terms of both activity and stability.  

The electrocatalytic performance of the core-shell catalysts is very attractive, but due to their 

impractical size, there still remain an insufficient number of mechanism studies having been 

reported. ML could further support the future development and exploration of core-shell catalysts. 

Rück[19] and his co-workers have further studied strained Pt-based core-shell electrocatalysts. They 

propose an ML-based framework for the prediction, with site-specific strain precision, to investigate 

how effect of strain on Pt core-shell nanocatalysts towards the ORR activity. The strained 

coordination number (cn*(j)), which describes the compressive and tensile strain on atom j with the 

variation of atomic coordination, was set as the target property of the ML model. The ML model was 

trained with a kernel ridge regression (KRR) algorithm, which applies a radial basis function (RBF) 

kernel to test nanoparticles whose structures are optimized for the minimum energy. The effective 

medium theory (EMT)[449] was used to calculate the structure energy by employing the ASAP 

calculator in the Atomic Simulation Environment.[450] The EMT-calculated energy was validated by 

DFT calculations on 1.9 nm sized core-shell nanoparticles. As is shown in Figure 28c, for each core, 

the ML model was trained with nanoparticle sizes from 1.6 nm to 5.4 nm at 0.2nm intervals. Five 

descriptors were selected: the coordination number (cn(j)) and generalized coordination 

number(CN(j)) to describe local-site structure, which has significant impact on the adsorption energy 

of the intermediates; the partial distribution function (PDF(j, r)); distance to alloy atoms(dalloy(j)); the 

interatomic distance from Vegard’s law (dveg(j)). The MAE of the ML prediction of the strain on single 

atoms varied from 0.0007 to 0.0159 with respect to different catalyst cores. In this study, the 

relation established by the ML model indicates that the size of the nanoparticle determines the 
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optimal strain. The mass activities could be enhanced by weakening compressive strain on PtAg and 

PtAu of sizes of 2.83 nm or by strengthening compressive strain on PtCu and PtNi of sizes of 1.92 nm.  

To summarize, data-driven techniques are primarily implemented to establish the relation 

between the intrinsic properties and catalytic activity in the field of ORR. Some fundamental factors, 

including electronegativity, electron affinity and radii of the embedded transition-metal atoms, 

exhibit a high correlation with the ORR activity of DMSCs. Furthermore, in the design of core-shell 

ORR nanocatalysts, ML models indicate that the bimetallic material composition, size, and shell 

thickness of nanoparticles control the mass activity. In addition to catalytic activity, the thermal-

electrochemical properties could also be predicted by ML models trained on descriptors generated 

by symmetric functions. 

 

Figure 28. a) The trends plot of ORR activity with the variation of ΔGOOH* and ΔGOH* of DMSCs. 

Reproduced with permission.[19] Copyright 2020, ACS Publications. b) The scheme of the high 

dimension NNP method. The symmetry functions are transformed from the Cartesian to represent 

chemical environments. The NN then predicts the contribution of energy based on the symmetry 

functions and the total energy is obtained by adding up all of the energy contributions. c) The size of 

nanoparticles used for training, testing and ML prediction, which are represented in green, red and 

blue colour, respectively. b-c) Reproduced with permission.[389] Copyright 2018, RSC Publications. 
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6.1.4. Carbon Dioxide Reduction Reaction 

CRR is considered to be a promising, clean, and environmentally friendly strategy to reduce 

greenhouse gas emissions and resolve the energy crisis; it has been broadly studied to improve 

reaction efficiency and selectivity.[451, 452] The introduction of ML for accelerating the discovery of 

CRR catalysts has been widely implemented in this domain, including the prediction of adsorption 

energies,[18] identification of active sites on the surface of catalysts,[20] optimization of reaction 

conditions for improving selectivity,[453] carbon dioxide capture ability, and design of catalysts. 

Tran and Ulissi [13] employed an active ML model to guide the DFT simulation to identify optimal 

intermetallic electrocatalysts for CO2 reduction and H2 evolution. A workflow was established to 

screen a chemical space of 1499 candidates across 31 different elements (33% p-block and 50% d-

block) of intermetallic materials acquired from the Materials Project. The open-source code 

pymatgen was implemented, by which 17,507 adsorption surfaces and 1,684,908 adsorption sites 

were enumerated. The vector employed to represent the environment of the coordination site 

contained four descriptors: atomic number (Z), Pauling electronegativity (χ) of the element, number 

of atoms of the element that coordinate (CN) with CO, and crude estimate of the adsorption energy 

on the site (ΔE) (Figure 29a). A framework of continuous, alternating iterations between ML 

screening and DFT computation was constructed, where the results of DFT simulation were fed back 

to the ML model, and newly predicted potential adsorption sites with near-optimal values (ΔECO = -

0.67 eV and ΔEH = -0.27 eV) were sent back for DFT calculations to generate new training data. 

Figure 29b represents the normalized distribution for the low coverage, DFT computed CO 

adsorption energies (ΔECO) of all of the DFT researched surfaces. The low coverage ΔECO computed by 

DFT for surface (131) and predicted by the ML model for surface (844) are shown in Figure 29c and 

28d, respectively. The RMSE, MAE, and MAD of the active learning model’s prediction were 0.46, 

0.29 and 0.17 eV, respectively. One reason for this considerable error could be the use of ideal 

structures rather than relaxed structures for DFT calculation, as it is faster and less computationally 

expensive, though with the trade-off of the prediction accuracy. 



 

This article is protected by copyright. All rights reserved. 

129 

Zhong et al.[18] used an ML model to predict the CO adsorption energies (ΔECO) on the 

adsorption sites of copper-containing intermetallic crystals, among which Cu-Al alloy was found to 

be the most promising electrocatalyst. The ML-predicted CO adsorption energy combined with the 

volcano scaling relationships[451] revealed the highest number of catalytic adsorption sites, where the 

CO adsorption value energies were near the optimal value of -0.67 eV (Figure 21a).[13, 18] A similar 

descriptor space was applied for each element type-coordinate with CO to characterize the first and 

second neighbouring shell of CO for each active site, with the difference that ΔE is replaced by the 

median adsorption energy (Δ ) between the pure element and CO, yielded from the prior DFT 

simulation. The constructed vector space was then sent to an automated ML tool called the Tree-

based Pipeline Optimization Tool (TPOT)[454] to implement the random forest regression (RFR) model. 

By using 19,644 DFT simulated data points of ΔECO and an extra tree regressor with 5-fold CV, the 

RFR model demonstrated both a median absolute deviation (MAD) and mean absolute error (MAE) 

of about 0.1 eV in predicting the ΔECO on the test data (5% of the whole data size), which is 

comparable to the accuracy of DFT simulation. The trained ML model was then coupled with the 

quantum chemical computation framework to construct an active ML system. The ML model 

predicted the ΔECO of all the adsorption sites enumerated by the DFT framework from Materials 

Project (MP); those sites whose predicted ΔECO was close to -0.6 eV were automatically collected and 

sent to the next stage. DFT simulations of ΔECO were subsequently executed for these sites, and the 

additional yielded data of ΔECO were then added in the training dataset to iterate a new ML model. 

The further optimized and improved ML model would identify new promising adsorption sites based 

on the value of predicted ΔECO, which could be fed back to the DFT framework to provide new ML 

training data. Thus an automatically, iteratively and systematically active ML workflow was 

established and a DFT database of ΔECO on promising adsorption sites was constructed. In this work, 

the structures established from MP were managed by Atomic Simulation Environment (ASE); [450] the 

Python Materials Genomics (pymatgen), which currently powers the MP, was used to enumerate all 
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the surfaces and adsorption sites. DFT calculations were performed with VASP, while software 

including Lungi and FireWorks were used to manage the computation framework and workflow. The 

active ML workflow finally trained more than 300 RFR models, and the guided DFT simulations were 

ultimately conducted for 4000 different candidates of adsorption sites with a near-optimal value of 

ΔECO on the Cu-containing surface quarter of which the majority were on Cu-Al Surfaces (Figure 21c). 

The integration of the volcano relationship, DFT simulation, and active ML achieved efficient and 

accurate prediction ideal electrocatalysts for active and selective CO2 reduction to C2H2. Based on 

the ML results, the author concluded that those Cu-Al alloys that contain higher Cu composition are 

more promising for CRR. A follow-up experimental validation was performed and the CO2-to-C2H4 

performance achieved ~55% PCE under 150 mA cm-2 at the cathode side. Although numerous DFT-

calculated adsorption energies are required for the training of ML model, this approach reveals the 

importance of the data-driven and active-ML-guided experimental exploration in overcoming the 

limitations of the conventional single-component catalysts in CRR. 

 

Figure 29. a) The sample of the numerical encoding for the adsorption site. The constructed 

descriptor space is employed as model input by the Tree-based Pipeline Optimization Tool (TPOT) to 

predict ΔECO. b) The normalized distribution of the low coverage, DFT derived ΔECO for all of the DFT 

computed surfaces. The sub-distribution for cooper containing surface is marked in orange, and the 
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black dashed lines indicate the range of for the optimal ΔECO (-0.67 eV). c) The low coverage ΔECO 

computed by DFT for surface (131) and d) predicted by ML model for surface (844). Reproduced with 

permission.[13] Copyright 2018, Springer Nature Publications. 

 

Pedersen et al.[455] have explored a probabilistic and unbiased method to research high-entropy 

alloy performance as the electrocatalysts for the reduction of CO2 and CO. The authors integrated 

the quantum chemical simulations and ML model to predict the ΔECO and adsorption energy of 

hydrogen (ΔEH) of all the adsorption sites on the surface of the disordered CoCuGaNiZn and 

AgAuCuPdPt HEAs. The disordered surface consists of different metal atoms that would naturally 

provide many distinct adsorption sites with each adsorbate’s unique adsorption properties, as 

determined by the site’s microstructure. Hence, a Gaussian process regression (GPR) model was 

established that uses the adsorption energy of CO and H in the local atomic environment around the 

adsorption sites (computed by DFT) to predict the ΔECO and ΔEH. The training data size was ca. 1000, 

where 5-fold CV was applied with MAEs of 46-64 meV (Figure 30a). The predictive model allows the 

optimization of HEA compositions to increase the probability of catalyzing performance 

improvement. Every local adsorption site contributes to the HEAs’ global catalytic properties; some 

of the local optimal compositions such as Co9Ga42Ni7Zn42, Ga83Ni17, Ag69Cu31, and Ag84Pd16/Au84Pd16 

were predicted. The best five-metal alloy candidates that contain at least of 10% of each elements 

are Co10Cu10Ga60Ni10Zn10 and Ag30Au33Cu17Pd10Pt10. A concurrent and independent work published by 

Nellaiappan et al.[456] have experimentally investigated the CRR performance on the AgAuCuPdPt 

HEA, where the results are in favorable agreement with the predictions in this work. 

Important descriptors for the performance of CRR catalysts are also a necessary means to 

improve the accuracy of ML. Ma et al.[379] pioneered the use of a feed-forward ANN ML model via 

open-source PyBrain code to establish a nonlinear correlation between the descriptor vector and the 

ΔECO. The descriptor vector consisted of 13 electronic properties which were determined 
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theoretically, among which characterize the properties of the clean adsorption surface (such as d-

states distribution) including the filling (f), center (εd), width (Wd), skewness (γ1) and kurtosis (γ2) of a 

d-band, in conjunction with the local Pauling electronegativity (χl) determined by delocalized sp-

states, were taken as the primary descriptors. The secondary descriptors such as work function (W), 

atomic radius (r0), the spatial extent of d-orbitals (rd), ionization potential (IE), electron affinity (EA), 

Pauling electronegativity (χ) and the square of adsorbate-metal interatomic d coupling matrix 

element (V2 
ad), were also fed into the ML model. All the input features were standardized to improve 

the performance of the ANN model, and a 10-fold CV was performed; the ML-predicted adsorption 

energy of CO was shown to agree well with the DFT simulations, where the average RMSE achieved a 

value of 0.13 eV (Figure 30b). The outperformed candidate {100}-terminated Cu multimetallic alloys 

were discovered to have lower overpotentials but potentially higher selectivity towards the 

reduction of CO2 to C2 species. After a perturbation to the input descriptors was performed and the 

model responses were compared, the importance of the descriptors was examined (Figure 30c). The 

developed ML model demonstrated a novel methodology for capturing complexity in electrocatalytic 

CRR and acquiring accurate values of adsorption energies without expensive quantum chemical 

computations, providing in-depth understanding and strategies for catalysts design. 

The majority of applications of data-driven innovation in CRR are for predicting the adsorption 

energy of CO and H to evaluate the activity and selectivity of the catalyst candidates. The atom 

environment of the local adsorption site plays a dominant role in the catalyst performance, and 

descriptors, such as electronegativity and coordination numbers, have high impact on adsorption 

energy. The exploration of the catalytic performance and material structure by using data-driven 

techniques provides the possibility of a rational design of high-performance materials to boost the 

CRR. 
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Figure 30. a) The performance of the GBR ML model for adsorption energy prediction. The ML 

predicted and DFT computed adsorption energies for on-top CO (i,iv), fcc-hollow H (ii,v) and hcp-

hollow H (iii,vi) on the CoCuGaNiZn (i-iii) and AgAuCuPdPt (iv-vi) HEAs. Reproduced with 

permission.[455] Copyright 2020, ACS Publications. b) The performance of the NN ML model for 

adsorption energy prediction Cu monolayer alloys. c) The nominalized sensitivity coefficient of the d-

band descriptors. Reproduced with permission.[379] Copyright 2015, ACS Publications. 

 

6.1.5. Nitrogen Reduction Reaction (NRR) 

The ML-assisted discovery of innovative catalysts for the NRR is the core of the alternative 

techniques to the Haber-Bosch process[457-460] for synthesizing NH3 and are expected to yield 

excellent selectivity, activity, and efficiency. The traditional Haber-Bosch ammonia synthesis poses a 

significant environmental impact given that its reaction conditions are inherently energy-intensive, 

while primarily using natural gas as the hydrogen precursor .[457] Considerable attention has been 

paid to identifying noble metal-free catalysts to enable electrocatalytic N2 fixation.[461-463]  

Ulissi et al.[392] employed a Gaussian process regression (GPR) model to predict the free energy of 

all the possible adsorbate coverages on the target surface ((110) IrO2 and four site edge of MoS2 

stripe) for NRR, by which the complexity was reduced to generate the corresponding Pourbaix 
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diagram (Figure 31a). Starting with 10 sample points, the GPR model iteratively predicted the free 

energies of unknown configurations, and the required electronic structure DFT relaxations were 

significantly reduced from about 90 to 20 points (Figure 31b). This study proposed a rational and 

systematic approach to obtain accurate free-energy diagrams with less computational cost. Hoar et 

al.[393] trained two feed-forward multilayer perceptron neural networks, accounting for the 

microkinetic model and electrode geometry, to evaluate the performance of the electrochemical 

NRR process (Figure 31c). Finite element methods were coupled with NN to guide the interrogation 

of the relationship between electrode geometry and electrocatalytic performance to extract insights 

for design principles. The total current density (itotal) and Faradaic efficiency (F.E.) were taken to 

measure the performance, whose training data was gathered from their previous work.[464] The wire 

length (l), diameter (d), and array periodicity in a square lattice (p) were used to define the 

microwire/nanowire array morphologies. The microkinetic variables for NRR were presented by the 

equivalent exchange current density of the first electron-transfer and first proton-transfer step. The 

framework proposed in this research provided a methodology to rapidly optimize wire-array 

morphology for reported catalysts and explore the effect of electrode geometry on catalytic 

performance. Four high-performance catalysts were predicted, whose F.E. and itotal were higher than 

90% and 2 mA/cm2, respectively. Although these results have not been experimentally validated, 

they indicate the feasibility of rational electrocatalysis design for optimal morphology. The reported 

insights and extracted knowledge from this framework could be extended to other catalytic 

applications such as ORR and CRR, which will guide effective morphology optimization. 

 
Figure 31. a) The final free energy diagram generated by ML models. b) The visualized network and 

exploration process of possible surface configurations for IrO2. a-b) Reproduced with permission.[392] 

Copyright 2016, ACS Publications. c) The schematic diagram for the microkinetic model with MLPNN, 

four stages are involved: i. the measurement of efficiency. ii. the microkinetic modelling of NRR and 

HER. iii. the geometry parameter of the electrode and iv. the feature set and labels of MLPNNs. 

Reproduced with permission.[393] Copyright 2020, ACS Publications. 
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6.1.6. Thermoelectricity 

The development of thermoelectric applications has long been limited by material 

performance, which could be addressed by ML techniques to identify high-performance 

thermoelectric materials. Converting heat into electricity (and vice versa) using thermoelectric 

materials[465-467] is of significant industrial and technological interest for numerous applications such 

as electricity regeneration from waste heat,[468] refrigeration[469], and other applications.[470, 471] The 

performance of a thermoelectric material can be quantified by either a dimensionless figure of merit 

(zT=σS2T/(kl+ke)) or the power factor (σS2),[472-475] where σ, S, T, kl and ke denote the electrical 

conductivity, Seebeck coefficient, the absolute temperature, the lattice thermal conductivity and 

electronic part of thermal conductivity, respectively. 

Choudhary et al.[394] designed a systematic data-driven framework for high-efficiency 

identification of thermoelectric materials by combining quantum chemical computation with ML 

models. With the utilization of the JARVIS-DFT database, 2,932 out of 36,000 three-dimensional (3D) 

and 148 out of 900 two-dimensional (2D) materials were identified as promising candidates for 

thermoelectric applications. In the multi-step screening process, material properties such as the 

Seebeck coefficient, power factors, and bandgaps were computed and selected as the thresholds. In 

Figure 32a, we show the possibility that a compound containing given elements has a high-power 

factor. The transport properties of materials were calculated by applying the Boltzmann transport 

equation with the BoltzTrap code implementation.[476, 477] Several ML models, including the GBDT, 

RF, k-NN, and ANN were trained to rapidly screen out thermoelectric materials for further quantum 

computation validation. A complete chemo-structure descriptor set called the classical force-field 

inspired descriptors (CFID)[478] was used for the ML model training. Though the CFID provides 1,557 

descriptors for each material, the low-variance descriptors were removed and the descriptor space 

was standardized by using preprocessing techniques such as “VarienceThreshold” and 

“StandardScaler” in the scikit-learn Python package.[479] With the employment of their data-driven 

framework, they found that the materials in the family of ZrBrN possess ultra-low lattice thermal 

conductivity. The database and tool utilized for the evaluation and prediction of thermoelectric 

performance would significantly promote the discovery and characterization of thermoelectric 

materials.  

The lattice thermal conductivity κl determines nonmetal components’ ability to conduct heat 

and serves as a vital design parameter. Chen et al.[395] have developed a GPR model to instantly and 

accurately predict κl of inorganic materials with an experimental 29-dimensional descriptor space 

that contains 100 inorganic materials. It was discovered that the space group is one of the most 

critical descriptors that influence predictions. The average factor difference of kl by the GPR model is 

1.36, which is in agreement with reported values from semi-empirical models such as Slack[480] and 

Debye-Callaway.[481] In another property prediction task, Hou et al.[396] developed a data-driven 

framework to optimize the σS2 of the off-stoichiometric Al23.5+xFe36.5Si40-x (Figure 32c) component of 

Al2Fe3Si3 while controlling Al/Si ratio. The determined optimal ratio x=0.9 yielded a 40% 

improvement of σS2 (670 μW/mK2) compared with that of the sample with x=0. Both of the two ML-

based research are helpful for the rational design and initial screening of novel thermoelectric 

materials with desigred target properties, including κl, S, and σS2, for specific applications. In 

addition, the explored relations via ML can enable better understanding of heat transport in 

inorganic materials. 
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To conclude, the thermal conductivity, power factor, and Seebeck coefficient are the critical 

properties that determine the conversion efficiency between heat and electricity. The ML-assisted 

data-driven approaches are capable of accelerating the pre-screening process, enhancing the 

understanding of performance, and providing insights for material rational design. A Pre-existing 

thermoelectricity database and data-intensive tools[394] for predicting thermal electricity 

performance would significantly reduce the time for data acquisition and thermoelectric material 

characterization. 
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Figure 32. a) The heat map for elements that could form high power factor compounds. Reproduced 

with permission.[394] Copyright 2020, IOP Publications. b). Relationship between space group and 

experimental measured κl of the selected inorganic compounds.[395] Reproduced with permission.[396] 

Copyright 2019, Elsevier Publications. c) Framework for the ML-assisted design of Al23.5+xFe36.5Si40-x 

toward an optimized power factor (PF) and the relationship exploration between power factor and 

temperature. Reproduced with permission.[396] Copyright 2019, ACS Publications. 

 

6.1.7. Piezoelectricity 

Data-driven processes are necessary to discover novel groups of piezoelectric materials and to 

support relation exploration between structures and piezoelectricity. The mutual coupling 

mechanical strain and electrical fields of piezoelectric materials leads to numerous applications such 

as actuators, transducers and sensors.[482-484] Many materials exhibit piezoelectricity, such as 

crystalline materials (quartz, langasite), ceramics (lead zirconate titanate), lead-free piezoelectricity 

(barium titanate)[37] and polymers (polyvinylidene fluoride).[37, 397, 485, 486] Though intensive research 

on the lead zirconate titanate (PZT) family has been conducted based their large piezoelectric 

coefficients [487] and vertical morphotropic phase boundary (MPB),[488] they are facing global 

restrictions attributable to the toxicity of Pb2+; as a result, there is an urgent demand for other 

families of piezoelectric materials.[489-491]  

Yuan et al.[37] applied an active learning framework with the coupling of ML models and 

optimization algorithms to accelerate the discovery of innovative, lead-free BaTiO3 (BTO)-based 

piezoelectric materials with high electrostrains. The core concept of the active learning loop (Figure 

3c) is that the ML model could be iteratively tuned and optimized according to prior predictions and 

feedback. This approach balances the trade-off between the fitting of regression and uncertainty in 

predictions,[492] which yields an optimal strategy for determining criteria to guide the rational design 

of materials. Pearson correlation coefficients were employed to eliminate highly-correlated 

descriptor pairs to construct the descriptor space. To enable a greater degree of feature engineering, 

the boosting gradient method was employed to rank each descriptor’s importance to the 

electrostrains, and the seven highest-ranked descriptors, including electronegativity, ionic radius, 

volume, ionic displacements, polarization and dopant effects on transition, were used in the 

construction of the descriptor space. Six different ML models were trained for the prediction and 

optimization, and the advanced active learning framework indicated that the 

(Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3 possessed the largest electrostrain of 0.23% in the BTO family. Based 

on further DFT investigation, the authors indicated that the presence of Sn lead to an improvement 

in electrostrain. Follow-up experiments yield comparable results to the ML prediction of 

electrostrains. In this data-driven study, an active learning framework was developed to accurately 

and efficiently predict material target properties and guide experiments based on the optimal 

criteria derived from the trade-off between exploitation and exploration.[492] The core idea of the 

iterative framework is to find the next candidate by employing uncertainty to explore chemical 

space.[493] This method may have the potential to be applied to other specific applications given that 

the identified candidate can be experimentally or computationally validated following the 

recommendation. Similar to other key properties, the MPB has also been researched via data-driven 

approaches by Xue et al.[397] With the Bayesian learning algorithm’s utilization, they predicted, 
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synthesized, and characterized a solid solution of (Ba0.50Ca0.50)TiO3-Ba(Ti0.70Zr0.30Sn0.03)O3 with 

outstanding temperature reliability.  

 

6.2. Energy Storage 
In recent years, data-driven innovation has resulted in outstanding breakthroughs in the theory 

and calculation of the energy storage. Rechargeable alkali-ion batteries possess portability and high 

energy density, and are advanced energy storage candidates for clean energy and transportation. 

For studies focusing on alkali-ion batteries, the modification of electrolytes and electrodes has been 

the goal of extensive development. Data-driven and ML-aided approaches have aroused interest in 

the design of key parameters for alkali-ion battery such as voltage, capacity, volume, and other 

electrochemical-related battery performance parameters. In addition, because of their higher power 

density, long-cycle stability and high safety, supercapacitors are regarded as an alternative (or 

supplementary) rechargeable battery in applications that require high-power transmission or fast 

storage of energy.[494] This section will briefly introduce the application of data-driven material 

innovation in the theoretical design and development of rechargeable alkali-ion batteries and 

supercapacitors. 

6.2.1. Rechargeable Alkali-Ion Battery 

This sub-section will discuss the accelerated discovery of potential material candidates for 

electrolytes and electrodes based on data-driven strategies. As a key component of electrochemical 

energy storage, rechargeable batteries are extremely vital for various applications, including new 

energy vehicles, consumer electronics, and aerospace. To meet the growing needs of these 

applications, larger volumes of rechargeable batteries are being demanded with higher energy 

density, higher power density, longer cycle life, greater safety, and at an acceptable cost. Thus, it is 

essential to develop key rechargeable battery materials, including those for electrodes and 

electrolytes, to improve the performance of rechargeable batteries [4]. Data-driven screening of 

electrolytes often quickly identifies promising electrolytes through indicators such as chemical and 

structural stability[398], electronic properties[398], mechanical properties[399], and coordination 

energy[400]. For electrodes, voltage[402], volume[87] and redox potential[401] are essential for ML to 

successfully predict and evaluate the performance of electrodes. 

Electrolytes 

Electrolytes are vital components of rechargeable batteries; it is essential to find high-

performance electrolytes in the development of advanced rechargeable batteries.[495, 496] With the 

significant advance of quantum chemical computations and ML learning techniques, some 

researchers have applied high-throughput data-driven approaches to discover innovative, next-

generation battery electrolytes.[28, 497-501] Sendek et al.[398] have proposed a workflow of large scale 

computational material screening for solid electrolytes in lithium-ion batteries (Figure 33a). The 

authors first acquired atomistic and electronic structure parameters for 12,831 lithium-containing 

candidates from the MP database, including the equilibrium atom position, the energy above the 

convex hull, the bandgaps, and the Gibbs free energy, utilizing the Python package Pymatgen.[220] 

This was followed by a primary screening stage using four prerequisite criteria: low electronic 

conductivity, high chemical and structural stability, and low material cost. A logistic regression model 
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was trained to identify the structures that are most likely to exhibit excellent lithium conduction 

based on five features including the average number of Li neighbors for each Li, the average 

sublattice bond ionicity, the average anion coordination number in the anion framework, the 

average shortest Li–anion and Li–Li distance in angstroms. The training set consisted of 40 crystal 

structures whose ionic conductivity values were available in the literature. The threshold of 

superionic conductive behavior was set as 0.1 mS/c;, finally, 21 structures demonstrated potential as 

high-performance electrolytes, some of which have been experimentally investigated.[502-505] This 

method is applicable to confirming the ionic conductivity of unreported inorganic materials. 

Similarly, Ahmad et al.[399] conducted a high-throughput data-driven search over for solid 

electrolytes with outstanding dendrite suppression capability of Li on the anode. A crystal graph-

based convolutional neural network (CGCNN)[158] was trained to predict the moduli of shear and bulk 

given a large, available, low noise dataset obtained from low uncertainty first-principle-calculated 

values. The CGCNN model was trained by only structural descriptors, which bypass first-principles 

calculations. Additional ML models based on GBR and KRR were also employed to predict the elastic 

constants of cubic materials (Figure 33d). Those predicted mechanical properties are critical in 

stabilizing the interface and computationally expensive to obtain via first-principle methods. Those 

properties were taken as the input of the theoretical framework utilizing the stability parameter[506, 

507] to figure out the dendrite initiation on the Li metal anode. The stiffness of the material was found 

to be positively correlated with the mass density and the ratio of bond iconicity between Li and the 

sublattice, whereas a negative correlation was obtained with the sublattice electronegativity and 

volume per atom. Further investigations of thermodynamic stability and electronic conductivity 

were performed. Additionally, the method proposed by Sendek et al.[398] was employed to confirm 

the ionic conductivity. Over 20 mechanically anisotropic interfaces and 4 electrolytes including 

Li2WS4-P4
_

2m, Li2WS4-I4
_

2m, LiBH4-P
_

1 and LiOH-P4/nmm were predicted as promising to be employed 

to suppress dendrite growth. The screened candidates were highly anisotropic and generally soft, 

which indicate opportunities for acquiring innovative solid electrolytes with both high ionic 

conductivity and dendrite suppression. The R2 on the predictions of elastic constants C11, C12, and C44 

were 0.60, 0.79, and 0.6, respectively; this might be due to the uncertainty inherent in the DFT-

calculated values;[508, 509] the use of low uncertainity might improve the model performance. With 

the ability of data handling and feature generation, the proposed methodology in this study is 

readily applicable the screening of other inorganic materials for properties of interest. 

Existing studies have mainly concentrated on solid electrolytes. Investigations of liquid 

electrolytes hav barely been reported,[510, 511] mainly because the molecular structure of a liquid 

system is more flexible, which makes it challenging to extract structural information. Ishikawa et 

al.[400] integrated a data-driven method with quantum chemistry computations to predict the 

coordination energy (Ecoord)[512, 513] of alkali group metal ions (Li, Na, K, Rb, and Cs) in battery 

electrolyte solvents. The Ecoord is closely related to ion transfer at the interface of 

electrolyte/electrode, which is first obtained by quantum chemical computations. The calculated  
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Figure 33. a) Flow diagram of the ML assisted material screening process for Li-contained 

candidates. b) (top) The training misclassification rate (TMR) and cross-validation misclassification 

rate (CVMR) via LOOCV. The dashed lines in the top diagram describe the mean value of the 

performed X-randomization analysis which is applied to ensure the model is not built on chance 

correlation. (bottom) The performance of ML models compare with chance correlations, the black 

dashed line indicates the threshold. c) The performance of the training data using logistical 

regression with LOOCV. a-c) Reproduced with permission.[398] Copyright 2017, RSC Publications. d) 

The comparison diagram of elastic properties between the ML predicted and DFT computed value: 

(1) shear modulus and elastic constants (2) C11 (3) C12 and (4) C44. Reproduced with permission.[399] 

Copyright 2018, ACS Publications. e) Ecoord of 70 solvents and the five alkali metal ions. f) The 

performance of the ES-GP model for the prediction of Ecoord. g) The performance of the ES-LiR model 

for the prediction of Ecoord. Reproduced with permission.[400] Copyright 2019, RSC Publications. 

 

Ecoord for 5 alkali ions is shown in Figure 33e. Three ML regression methods, namely, MLR, LASSO, and 

exhaustive search with linear regression (ES-LiR),[514-516] were implemented to identify the 

relationship between Ecoord and selected descriptors. The descriptor space consists of both ion and 
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solvent properties, such as the ions’ atomic weight and boiling point of the solvents. The results 

revealed that the most critical descriptors are the ionic radius and the oxygen atom’s charge 

connected to the metal ion. The ES-LiR model yielded a CV error[514-516] of 0.127 eV for the prediction 

accuracy of Ecoord (Figure 33f). By implementing the exhaustive search with Gaussian process (ES-GP) 

(Figure 33g), a further improvement of the prediction accuracy with a CV error of 0.016 eV was 

achieved. This study demonstrated that the integrated data-driven techniques and quantum 

chemistry calculations can accurately predict Ecoord of any alkali metal ion coordination. The trained 

ML model could be employed to search for battery electrolyte materials, where several descriptors 

including ionic radius and NBO charge of the O atom are identified as critical in developing next-

generation post-Li batteries. 

Electrodes 

Accelerating the discovery of suitable materials for high-power, safe, and stable electrodes is 

essential for developing improved rechargeable batteries. Because of the development of first-

principles computations, the properties of unknown electrode materials can be obtained to support 

the research of complex phenomena.[517-520] Nevertheless, the advancement of ML techniques can 

enable more efficient discovery of innovative materials to identify the complex, implicit correlations 

between crystal structure and various properties of electrode materials such as voltage, capacity, 

ionic and electronic mobility, stability, redox potential, and volume changes in the battery.[517-521] 
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Figure 34. The plot of different properties pairs of Li–(Mn, Fe, Co)–Si–O cathodes according to the 

extracted data from MP database. The red, yellow and blue dots indicate the monoclinic, 

orthorhombic and triclinic crystal systems, respectively. Reproduced with permission.[401] Copyright 

2016, Elsevier Publications. 

 

Five ML classification models, including ANN, SVM, k-NN, RF, and extremely randomized trees 

(ERT) were implemented by Shandiz et al.[401] to categorize the crystal systems of silicate-based 

cathodes with the composition of Li–Si–(Mn, Fe, Co)–O into three major types: monoclinic; triclinic; 

orthorhombic. The training dataset contained 339 cathode material data points obtained from 

MP,[24, 522] with 5 descriptors including formation energy (Ef), energy above hull (EH), bandgap (Eg), 

number of sites (Ns), and volume of unit cell (Vuc) (Figure 34). The prediction results indicated that 

the ensemble methods (RF and ERT) gave the highest accuracy of over 75% under Monte Carlo 

validation,[523] where the Ns and Vuc were dominant in determining the crystal system type. More 

recently, Joshi et al.[402] developed an ML-based tool to predict the voltage of electrode materials in 

metal-ion batteries. A total of 3,977 samples were collected from the MP database, where 237 

features, such as the elemental properties of their constituents[33] and properties of chemical 

compounds,[372] were initially added to the descriptor vector. A PCA[524, 525] model was then 

performed to reduce the dimensionality of the descriptor vector to 80. The deep neural network 

(Figure 35a)[87], SVM[526], and KRR[116] model yield an R2 value of 0.84, 0.86, and 0.86, respectively, on 

the prediction of voltage, therefore offering an alternative way to generate voltage profile diagrams 

instead of DFT methods[527] (Figure 35b). Additionally, nearly 5,000 electrode material candidates 

were proposed for Na- and Ki-ion batteries via these ML models, some of which were comparable 

with published experimental and DFT values.[528-530] Further improvement of the model performance 

could be implemented via the employment of different algorithms, more data, and novel ways of 

characterizing intercalation reactions. 
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Figure 35. a) Schematic diagram of the neural network employed in this study. xi represents the 

input of the NN and Hi represents the nodes in the hidden layers. b) The obtained voltage profile 

diagram from several ML models and DFT computation for NaxCo2SbO6. a-b) Reproduced with 

permission.[402] Copyright 2019, ACS Publications. c) The scheme of crystal structures for (left) spinel 

LiX2O4 and (right) layered LiXO2. d) (top) The model coefficient plot and (bottom) variable 

importance plot of the independent variables for the modeling PLS. c-d) Reproduced with 

permission.[531] Copyright 2017, Elsevier Publications. 

 

Small volume changes of cathodes are critical for extending the cycle life of batteries.[532] Wang 

et al.[531] reported a methodology integrating first-principles calculations and partial least square (PLS) 

regression to formulate the quantitative structure-activity relationship (QSAR) of the volume change 

for cathode materials in Li-ion batteries. The scheme of crystal structures of the material is shown in 

Figure 35c. A total of 34 descriptors in five types, including element, crystal structure, composition, 

local distortion and electronic level, were selected to acquire the QSAR formulation (Figure 35d). It 

was found that the radius of X4+ ion and the octahedron descriptors of X contributed the most to 

cathode volume change. The established QSAR could be applied to a broader range of real or 

simulated materials. It is still challenging to design the low-strain cathode with the determined 

optimal combination of the descriptors, which might be realized via codoping at various atomic sites. 
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Data-driven innovation has emerged as a significant driver of material discovery and 

fundamental knowledge exploration in rechargeable alkali-ion batteries. This is typically 

accompanied by the integration of first-principles computation and ML techniques, which reveal 

implicit structure-property correlations and accelerate the high-throughput screening of electrolyte 

and electrode materials.[399] Although some of the trained ML models discussed earlier might have 

relatively weak prediction accuracy,[399] which might be caused by the uncertainty of DFT 

computation,[508] they still reflect the correct trends in target properties with with respect to 

material parameters. The selection of descriptors is of great significance to model performance. In 

some cases, geometric attributes and electronic properties can sufficiently describe the material and 

are relatively (computationally) cheap to obtain.[398, 399, 531] 

6.2.2. Supercapacitors 

Data-driven based sophisticated systems could promote the discovery of electrode materials to 

further enhance the performance of supercapacitors.[403] As a class of advanced energy storage, 

supercapacitors enjoy long circle life and high power density .[533] The carbon-based electrode, a 

critical component of a supercapacitor, is most widely used due to its extraordinary chemical and 

physical properties.[533, 534] For instance, Zhu et al.[403] adopt several ML models, such as the LR, 

LASSO, and ANN (Figure 36a), to predict the capacitance of the carbon-based electrodes. Specifically, 

681 training data points were obtained from the literature with five selected supercapacitor 

descriptors: specific surface area,[533, 534] voltage window, calculated pore size,[535] N-doping level,[536] 

and intensity ratio of the D-band to G-band (ID/IG) (Figure 36b).[537] The ANN model exhibited the 

best accuracy with an R2 of 0.91 and adaptability with respect to the capacitance prediction (Figure 

36c), revealing the potential of the ML model (especially of ANN) to accelerate and assist the 

innovation of electrode materials in the domain of supercapacitors.  
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Figure 36. a) The relationship between capacitance and i. specific surface area, ii. pore size, iii. Pore 

volume, iv. N-doping, v. ID/IG, and vi. voltage window. b) The schematic of the ANN architecture used 

in this study. c) The i. performance and ii. results of different ML models of the capacitances 

prediction. Reproduced with permission.[403] Copyright 2018, Elsevier Publications. 

 

6.3. Environmental Decontamination 

Advanced oxidation processes (AOPs) are essential for treating industrial wastewater and 

decontaminating dyes, which are an emerging concern.[538] Data-driven techniques on AOPs have 

focused on experimental design, reaction condition optimization, process modeling, and oxidation 

performance prediction.[539-545] Notably, compared to the conventional AOPs such as Fenton's 

process, radiolysis, ozonation, and ultrasonic process, the photoelectrochemical oxidation process is 

an innovative and promising AOP technique for the degradation of water pollutants.[546-551] 

Dondapati et al.[14] established a quantitative structure-property relationship (QSPR) (Figure 37a) to 

predict the degradation rate of phenolic pollutants on modified nanoporous titanium oxide 

electrode (TiO2) in advanced photoelectrochemical (PEC) oxidation. The multiple linear regression 

(MLR) model was employed to elucidate the QSPR, and the best predictive model achieved an R2 and 

RMSE of 0.9625 and 0.1073, respectively, under LOOCV. The descriptors used in this study were 

mainly collected from PaDEL[43] or calculated by Gaussian 16W.[552] The determined QSPR revealed 

the effects of important physicochemical and electronic properties during the PEC oxidation process. 

An increased hydrophobic nature accompanying the meta position substituent tended to have a high 

degradation rate. Additionally, the topological descriptors related to molecule shape and 

connectivity were vital for improving the degradation rate of dyes. Further, the radial distribution 

function (RDF)[553] descriptors can reflect electronic properties and molecular density. Those 

descriptors were also computed for Rhodamine B (Figure 37b), which was taken as the model 

pollutant for the degradation simulation. It was found that the determined dominant descriptors in 

phenolic degradation were also critical in the degradation of Rhodamine B. Though the training data 

size was relatively insufficient for ML employment, this study still reveals the importance of the 

electronic, hydrophobic and topological properties that significantly influence the degradation of 

organic pollutants in the AOP process. High-throughput experiments[554] or simulations might 

increase the training data size for the enhancement of data-driven innovation in the domain of AOP. 
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Figure 37. a) The performance of the MLR models on capacitances prediction. b) The structure 

diagram of Rhodamine B with the breakdown of substituents (numbered) used for the generation of 

computational descriptors. Reproduced with permission.[14] Copyright 2020, RSC Publications. 

 

6.4. Flexible Electronics 
The fabrication of polymer-based flexible materials[555-558] is generally contingent on numerous 

variables such as temperature, humidity, concentration, and processes parameters.[555-557] The 

integration of data-driven technologies could effectively enhance the functional design, innovative 

synthesis, characterization, and process optimization in this domain.[16] Zhang et al.[16] employed a 

differential evolution (DE)-based backpropagation (BP) neural network to determine the electrical 

properties of Ag/poly amic acid (Ag/PAA) composites with respect to growth conditions (Figure 38). 

Based on the orthogonal analysis, four independent variables were taken as descriptors: the 

concentrations of PAA and NaBH4, reduction time of NaBH4, and ion exchange time of AgNO3. The 

final sheet resistance of the Ag/PAA composite film and processing time were set as output 

parameters. A dataset of 1,077 samples was used for training, while 49 samples are used for 

validation, resulting in a high accuracy ML model with a prediction error of less than 1.96%. This 

study proposed a data-driven framework to explore and optimize reaction conditions to boost the 

material and device design efficiencies.  
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Figure 38. The workflow of the ML-assisted Ag/PAA composites optimization process by the DE-BP 

model. Reproduced with permission.[16] Copyright 2020, RSC Publications. 

 

6.5. Optoelectronics 

The data-driven process powered by ML enables the disentangling of complicated 

photochemical reactions involved in complex system consisting of multicomponent materials, 

accelerating the progress of fundamental understanding and rational material design.[386] 

Conventional trial-and-error methods inhibit the high-throughput screening of novel optoelectronic 

materials. Innovative 2D materials have received much attention for potential optoelectronic 

applications.[559, 560] Ma et al.[15] reported a workflow (Figure 39a) integrating high-throughput first 

principle calculations and ML techniques to predict 2D octahedral oxyhalides with enhanced 

optoelectronic properties. Specifically, through high-throughput quantum chemical computations, 

the training set was composed of the geometric and electronic descriptors of 300 different 

octahedral oxyhalides. The implementation of PCA[52] enabled importance evaluation and reduction 

of the number of descriptors (Figure 39b and 38c), where the proposed distorted stacked octahedral 

factors exhibit superiority in describing the geometric pattern of the inequitable atoms and critical 

influence on the bandgap. The high-performance GBR model with the a MSE of 0.086 and R2 of 0.835 

under 10-fold CV was then employed to accelerate the screening of 5000 2D candidates to excavate 

potential optoelectronic materials. Several 2D optoelectronic octahedral oxyhalides such as 

Bi2Se2Br2, Bi2Se2BrI, and Bi2Se2I2, were regarded as promising candidates due to their high electron 

motilities, mild bandgaps, and absorbance coefficients. This study successfully took advantage of 

data-driven innovation to screen suitable optoelectric candidates with the suitalbe target property 

values, indicating the effectiveness of a ML model trained on geometric and electronic descriptors. 

This study also indicated that the selection of appropriate descriptors is significant to improving the 

performance of ML models.  
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Figure 39. a) The workflow of the property prediction and high-throughput computation. b) The 

importance of the selected 26 features. c) The inner correlation of the 26 selected features. 

Reproduced with permission.[15] Copyright 2019, RSC Publications. 

 

6.6. Superconductors 

In the field of superconductors, with the integration of ML techniques and the development of 

relevant databases, several successful predictions have been made indicating the effectiveness of 

ML techniques in this domain.[561] Stanev et al.[277] proposed a framework combining several ML 

models to identify appropriate superconductor candidates among 110,000 different compositions in 

the ICSD, the superconductivity of a large part of which has not been experimentally tested. A 

classification model was trained to identify whether the critical temperature (TC) was higher than 10 

K. A separate regression model was employed in predicting TC to enable better understanding of the 

material properties that determine the TC. The training data were collected from the SuperCon 

database, including the chemical composition and TC. Part of the descriptors used in this study was 

computed via the Material Agnostic for Informatics and Exploration (Magpie),[33] including elemental 

property statistics and electronic structure attributes. With the employment of data from AFLOW 

Online Repositories, additional calculated material properties like DOS and electronic entropy per 

atom were collected. During the model training stage, it was found that the size of the dataset and 
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the number of descriptors were critical to the model's performance (Figure 40a and 39b). The 

trained classifier achieved an accuracy of 92% in identifying materials with TC higher than 10 K and 

the regressor achieved an R2 of 0.88 in predicting the TC for low-TC, cuprate and iron-based 

compounds. The framework integrating the classification and regression model reported 35 

compounds with a higher than 20 K critical temperature (TC) (Figure 40d and 39e) for further 

experimental validation. Part of the reported compounds possess similar chemical and structural 

properties with cuprate superconductors, indicating that the ML framework can identify the hidden 

patterns of the training dataset. Additionally, most of the highlighted compounds share a standard 

peculiar electronic band structure; the energy of the highest occupied electronic state is 

immediately above the one or more flat or near-flat bands. The related prominent peak of the 

density of states (DOS) (Figure 40c) can cause significant electronic instability, as one possible 

approach to achieve high-temperature superconductivity.[562, 563] Further, Konno et al.[404] developed 

a deep learning model (Figure 40f) with an R2 of 0.92 in predicting the TC using only compositions of 

compounds. Moreover, by utilizing descriptors derived from electronic band structure, Isayev et 

al.[564] introduced an innovative fingerprint approach that could quickly identify materials, such as 

superconductors, semiconductors, metals, topological insulators, piezoelectric, and mapping 

properties bandgap with TC (Figure 40g and 39h). In thes ML-based superconducting material 

discovery processes, the critical temperature is one of the most important properties to be 

investigated, where the structural and electronic property information are highly correlative 

descriptors  
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Figure 40. Accuracy, precision, recall, and F1 score as a function of the a) size of the training set with 

a fixed test set and b) the number of predictors. c) The DOS of Ba4(AgO2)(AuO4), where the ML model 

identified as potential candidate materials with a critical temperature (TC) of more than 20K. d) The 

comparison of predicted and measured ln(TC) and e) TC for the general ML model. a-e) Reproduced 

with permission.[277] Copyright 2018, Springer Nature Publications. f) (Top) the representation of the 

ML workflow. (Bottom) The schematic of the deep neural network. Reproduced with permission.[404] 

Copyright 2021, AIP Publications. g) The mapping of the material, bandgap, and h) TC. Reproduced 

with permission.[564] Copyright 2015, ACS Publications. 
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6.7. Metallic Glasses 

Recently, data-driven researche has been conducted to discover metallic glass and investigate 

the glass-forming ability.[33, 565-568] Although metallic glass has various unique properties such as soft 

magnetism and high wear resistance, metallic glass systems usually possess a special composition 

based on empirical rules and extensive experimentation.[569] The investigation of metallic glass 

formation, structure, and properties has attracted much attention due to its fundamental scientific 

importance and potential for further applications.[570, 571] For instance, by using reported 

experimental data to establish an ML model, Ward et al. [33] proposed a data-driven framework to 

accelerate the discovery of novel alloys and predict glass formation ability. The training set was 

collected from 'Nonequilibrium Phase Diagram of Ternary Amorphous Alloys',[572] which comes from 

hundreds of ternary phase diagrams containing the potential for glass formation based on many 

experiments conducted at thousands of compositions. The authors selected 5,396 distinct 

compositions with an amorphous ribbon forming ability and evaluated them by melt spinning. For a 

single composition, if at least one measurement indicated the potential to form an utterly 

amorphous sample, it was assumed that it may form a metallic glass. With the implementation of 

the described screening process, 70.8% of the entries in the training set were found to be consistent 

with metallic glasses. A total of 145 descriptors in four categories, namely, the stoichiometric 

descriptors, elemental property descriptors, electronic structure descriptors,[573] and ionic compound 

descriptors, was used to construct the descriptor space. A random forest classifier[189] was applied to 

classify the material into two classes with respect to the calculated possibilities for glass formation. 

Those materials whose predicted glass formation probability was higher than 50% are considered 

positive predictors of glass formation, while others are considered negative. For the ML model's 

testing process, the glass formation ability of the Al-Ni-Zr ternary system was well-matched with the 

literature data (Figure 41a and 40b), indicating the ML model could precisely pinpoint the desired 

ideal compositions in yet-unassessed alloy systems. The data-driven framework (Figure 41c) 

designed by Ward et al[405] could accurately predict the critical properties of candidate bulk metallic 

glasses, incluing the existence of an amorphous state, the critical casting diameter (Dmax), and the 

supercooled liquid range (ΔTx) (Figure 41e). The only input dataset for the ML model was the 

materials’ compositions, which consisted of over 8000 metallic glasses experiments. The trained ML 

models were implemented to optimize the properties of existing commercial alloys and discover 

novel compositions for forming metallic glasses with enhanced properties. These two cases present 

data-driven frameworks for the design and identification of innovative bull metallic glasses. Both of 

the two applied ML-based workflow employed the stoichiometric descriptors to discover innovative 

bull metallic glasses.  
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Figure 41. a) The experimental measurements and b) ML prediction of metallic glass-forming ability. 

Reproduced with permission.[33] Copyright 2016, Springer Nature Publications. c) The schematic of 

the construction of a data-driven framework for the prediction of metallic glass properties. 

Reproduced with permission.[405] Copyright 2018, Elsevier Publications. d) The heat map of ternary 

compositions' stability ranking. Reproduced with permission.[573] Copyright 2014, AIP Publications. e) 

The performance of ML models on the prediction of glass formation ability, critical casting diameter, 

and critical temperature. Reproduced with permission.[405] Copyright 2018, Elsevier Publications. 

 

6.8. Magnetic Materials 
Data-driven approaches have been employed to predict the ordering temperature and classify 

different types of magnets.[406, 574] Ferromagnetic materials (FM) have a broad spectrum of 

applications in spintronic, including logic, memory, and sensing, while the emerging 

antiferromagnetic (AFM) has also attracted intense attention.[575] To predict the Curie temperature 

(TC) of the FM and FM/AFM classification model, Long and co-workers [406] performed an RF model 

(Figure 42a and 41b) according to TC and magnetic ground state. The 1,749 FM and 1,056 AFM 

compounds were collected from the experimental AtomWork database,[576], consisting of structures 

and properties of magnetic materials. To present the structure information, such as the coordination 

and the distance between atoms, chemical descriptors were computed by the Material Agnostic for 

Informatics and Exploration (Magpie);[33] the smooth overlap of atomic position (SOAP) descriptor 

was selected.[577] The volume of the unit cell and the space group number were also taken as 

structural descriptors. Finally, 139 chemical and 26 structural descriptors adopted each compound. 

Similar, Möller et al.[407] utilized an ML model to identify the optimal chemical composition of novel 

permanent magnets. Specifically, a kernel-based SVR algorithm was applied to establish a data-
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driven framework for accurately predicting properties such as uniaxial magneto (K1), the 

magnetization (μ0M), and the relative phase stability energy (Ef) (Figure 42c). Soft magnetic materials 

are widely employed in plenty of electromagnetic distribution, generation, and conversion devices 

such as converters, transformers, inductors, generators, and sensors[578-580] due to the advantage of 

being able to rapidly switch their magnetic polarization under a relatively small magnetic field. For 

example, Wang et al.[408] utilized data-driven approaches (Figure 42d) to boost novel soft magnetic 

materials' design and discovery.  

 
Figure 42. a) The model performance and feature importance evaluation of the classification model 

and b) regression model. Reproduced with permission.[406] Copyright 2021, Taylor and Francis Ltd. 

Publications. c) The 10-fold cross-validation of the SVR models for the prediction of (i) magnetization 

μ0M (ii) K1 , and (iii) the relative phase stability energy Ef. Reproduced with permission.[407] Copyright 

2018, Elsevier Publications. d) The workflow of the material design process based on the integration 

of ML and conventional experiments. e) The t-SNE visualization to compare the optimized alloys 

predicted by ML to the alloys published literature. Reproduced with permission.[408] Copyright 2020, 

Elsevier Publications. 
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Their data-driven framework involves establishing the experimental database, employing ML 

models, identifying the trends of magnetic properties, and predicting/ optimizing the next-

generation design of soft magnetic materials. They propose the target material system, FINEMET-

type soft magnetic nanocrystalline alloys,[581] with two classes of properties: extrinsic and intrinsic 

properties.[582, 583] The Pearson correlation coefficient is combined with the GBDT algorithm and 

applied to simplify the model, while avoiding a significant loss of information. Five different ML 

models, LR, SVM, DTs, k-NN, and RF[189], are implemented to accurately predict properties, including 

magnetic saturation (BS), coercivity (HC), and magnetostriction (λ). A stochastic optimization model is 

applied for the exploration and optimization of those target properties. Based on these predictive 

models, several optimized soft magnetic materials specified for composition and heat treatment 

conditions were predicted, prepared, and validated (Figure 42e), exhibiting excellent agreement 

between experiments and predictions, which verified the reliability of the established data-driven 

model.  

 

6.9. Materials Thermodynamic Stability Prediction 

To accelerate material design and discovery with the assistance of ML, thermodynamic stability 

of materials is considered as the first essential requirement, such as for the discovery of 

perovskites,[584] two-dimensional materials,[67] and alloys[585]. Then, the further screening of the 

properties would meet different needsspecific to the application. The driving force for discovering 

new materials still relies on the DFT calculations, and the synthesis of new materials often faces 

more challenges in experiments. Researchers performed the data-driven design of materials through 

theoretical computing methods, which integrate the databases, ML algorithm, and high-throughput 

DFT calculations. Unexplored materials still need to be discovered and designed through data-driven 

strategies, such as alloys,[585] heterostructures,[586] 2D materials[587] and even doped materials.[10] 

Data-driven studies of thermodynamic stability have important implications for the identification of 

novel materials, either as detailed complex features or simpler scalar features. 

For the descriptors of thermodynamic properties, the current focus is mainly on the geometric 

descriptors related to the material's crystal structure. Goodall et al.[588] used only the stoichiometry 

of the material as a descriptor to train the machine and employed automatic learning to improve the 

descriptor to solve the problem of predicting material properties in the absence of a known crystal 

structure. Choudhary et al.[589] used deep transfer learning to employ large DFT calculation datasets 

(such as the Open Quantum Materials Database (OQMD)[590]) together with other smaller DFT 

calculation datasets and reasonable experimental results to establish accurate prediction models for 

the formation energy of the material. Bartel et al.[591] tested the stability predictions of seven ML 

models using the material project database and the DFT calculations of 85,014 unique chemical 

components. The error generated by the ML model is a fundamental error such that the ML model 

does not have duplicate beneficial error elimination, which hinders the accurate prediction of 

material stability. Therefore, the accuracy of the existing ML model to predict formation energies is 

dependent on the accuracy of the DFT.  

Usually, thermodynamic stability is defined as the total energy and the energy above the 

convex hull. Schleder et al.[592] investigated the thermodynamic stability of 2D materials in a 

computational 2D materials database (C2DB) with the assistance of the SISSO. The descriptor of the 
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training machine did not have clear information about the position of the atom, and the stability of 

the 2D material in the database can only be accurately classified only relying on the prototype 

structure. The structure in which former "chemical intuition" was abandoned was once again 

discovered by Faber et. al.[593] The development of ML for the study of energy formation consisting 

of all possible elpasolites was successfully used for the discovery of stable as well as unconventional 

chemistries. Legrain et al.[272] only used descriptors based on the chemical formula of 300 

compounds as training sets to train an ML model. The prediction of Fvib and Svib descriptors based on 

the chemical composition for small training sets is outperformed by some of the more detailed 

descriptors for more extensive training sets. Gibbs Energy determines the equilibrium conditions of 

chemical reactions and material stability. For inorganic compounds, G is critical for predicting the 

synthesizability and stability of materials, especially for thermoelectric materials, photothermal 

materials, fuel cells, and other applications which concern the temperature-dependent stability of 

materials. Bartel et al.[594] accurately predicted Gibbs energy by applying the SISSO approach and 

adopted the temperature, atomic mass, and (calculated) atomic volume of materials as primary 

descriptors to train a model. Although thermodynamic stability is the key criterion for high-

throughput computational screening of materials to predict the possibility of synthesis of specific 

material, the interaction of thermodynamics with several other measures, such as kinetics and non-

equilibrium process conditions, have a more significant impact on the synthesizability of materials.  

7. Conclusion and Perspectives 

Data-driven material innovation shows excellent potential for the rational design and discovery 

of materials in terms of efficiency, accuracy, and intelligence. In a data-driven material innovation 

process, the data are the foundation, ML algorithm is the core, descriptor transfers the information, 

and framework integrates these disciplines to implement innovative applications. In this review, the 

recent advances in data-driven innovation of materials science are elaborated. First, several data-

driven frameworks, along with direct design, inverse design, and active learning, are discussed based 

on the flow of data and information in the data-driven process. Then, the frequently employed ML 

algorithms and the relevant data-processing strategies are reviewed in terms of information 

extraction from data. The chemical databases that store and manage material data and the related 

digital tools are systematically discussed. Furthermore, the molecular descriptors that carry the 

chemical information in the data-driven process are introduced. Finally, a critical discussion on how 

the data-driven approach is applied for various materials is provided. The development of novel and 

intelligent algorithms, the capability of computational and experimental material databases to 

generate and store data, and the design and validation of accurate and efficient descriptors have 

many outcomes. Their synergistic integration is promising and effective for innovative material 

discovery.  

Although considerable progress has been made over the last several decades, the research 

direction in the field of materials science is shifting into a novel paradigm of data-driven science. 

Here, we present certain challenges and perspectives with the objective to understand the research 

and development in the relevant fields.  

(i) In addition to the establishment of structure-property relations and material discovery, data-

driven techniques could be employed in materials science in the form of autonomous laboratories 
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for chemical synthesis.[67] The ML-enabled self-guided experimentation that integrates automation 

experimental platforms and artificial intelligence is becoming the next-generation facility.[302, 595] In 

particular, ML techniques play a vital role in determining the variations in material properties based 

on the changes in macroscopic parameters, including reaction conditions and operation parameters, 

enabling improved process-property relation fitting.[596, 597] The automated laboratories empowered 

by ML have the potential to substantially boost the material discovery process with the integration 

of automated platforms[300] or robotics [302], which fully embrace the vision of autonomous 

laboratories. With the implementation of data-driven strategies, the traditional experiments are 

expected to be performed without the supervision of humans.[67] For example, Burger et al.[302] 

developed a mobile robot that automatically conducted 688 experiments for searching 

photocatalysts by using a Bayesian search algorithm. Angelone et al.[300] proposed the “Chemputer,” 

a universally programmable chemical synthesis machine that can perform 17 different reactions 

using one platform architecture. The combination of data-driven techniques and automated 

laboratories is expected to significantly boost innovative material discovery and provide more 

opportunities in material synthesis with high productivity and quality. 

(ii) Data-driven innovation can accelerate material discovery. However, ML techniques are not 

panaceas that can solve all problems in material discovery without domain knowledge.[67] 

Implementing a complete data-driven process with critical stages, such as data-preprocessing,[50] 

descriptor generation,[33] ML-model deployment,[44] uncertainty quantification, and domain 

applicability, is laborious.[44, 69] Performing ML-centered data-driven research can be challenging for 

material scientists with limited background in computations.[44] Therefore, achieving best practice of 

ML employment is a significant stage in the data-driven paradigm of materials science, in which a 

systematic methodology or ecosystem that unifies the material science community with a consistent 

interface may guarantee reliability and reproducibility of the trained ML models.[69] Several efforts 

have been made to develop general ML-centric frameworks for a broad range of materials. For 

example, Ward et al.[33] proposed a general-purpose ML methodology for predicting properties of 

inorganic materials. Wang et al.[44] reported broad guidelines on ML-model deployment, domain 

applicability, and model persistence. Moreover, the automation of the ML workflow and related 

tools, such as ChemML[311, 312]
, MAST-ML[313], TPOT,[18, 454] and automatminer,[598] are receiving 

attention. General guidelines and tools for data-driven techniques are necessary and should be 

investigated to reduce the difficulties for chemistry and material scientists. We envision that such a 

general systematic infrastructure can benefit material scientists in efficiently constructing 

automated and accurate ML workflows to solve their specific material problems; this is critical and 

helpful for the wider applications of ML in the data-driven innovation of broader materials. 

(iii) The implementation of data-driven material innovation is based on frameworks. Multiple 

material properties may have to be predicted, and therefore, novel data-driven frameworks are 

essential. Multitask prediction is suitable for the scenario where multiple properties are excepted to 

be predicted. ML models such as the SISSO and atoms-in-molecules neural network have been 

reported for implementation in the prediction of several related properties simultaneously.[420, 599] 

The form of material data varies in terms of numerical values, images, texts, and graphs, and one 

research project could have several data sources and data modalities. In the ML community, 

multimodal ML[600] and transfer learning are applied to process and relate information from multiple 
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modalities and fidelities.[601] The transfer-learning model can combine both low- and high-fidelity 

data to make high-fidelity predictions at low computation costs.  

(iv) Algorithms are the core of the data-driven approach to material innovation. Researchers 

with different backgrounds, such as in chemistry, materials science, and computer science, tend to 

choose different strategies to show the novelty of their study. Researchers in the field of chemistry 

and materials science tend to employ existing algorithms and models to solve their problems, 

whereas computer scientists focus on improving algorithms to enhance the performance. Although 

the combination of common algorithms and models can provide good solutions in the current 

studies on chemistry and materials science, it is not as revolutionary as the development of new 

algorithms. To introduce existing algorithms and their improved version from computer science 

should be the preferred strategy to study chemistry and materials science in the future, and fast and 

surrogate algorithms receive the most attention. For example, graph networks that are based on the 

structure of materials and support relational reasoning and combinatorial generalization are 

promising for high-fidelity learning. In addition to learning from material structures directly, 

algorithms for analyzing experimental characterization data, such as XAS and STEM, are critical and 

could significantly promote the utilization of high-modality data in the future. General algorithms 

still cannot fulfill the demand of materials science, because most of the algorithms are 

mathematics–based, whereas the materials science problems usually have hidden physical laws, 

indicating that various algorithms can be used in parallel to solve the same problem and the 

algorithm with the best performance can be selected.[67] Therefore, the rational design and selection 

of algorithms that are specific for materials science can help scientists have a better understanding 

of materials science problems and save computing resources. 

(v) Descriptors are the bridge in a data-driven process for transferring information between 

humans and machines, and new combinational descriptors for ML must be further developed and 

evaluated. Many descriptors with high relevance have been developed. However, these descriptors 

are not universal and often solve the same type of or similar prediction problems. At present, the 

interaction between experimental and simulated descriptors is also incompatible. A possible solution 

to the compatibility problem is the use of active learning, robotics-assisted high-throughput 

experiments, and artificial intelligence approaches, which will enable the development of new 

combinational descriptors. As the critical input for a data-driven workflow, desired descriptors 

should ensure uniqueness and carry as much related information as possible. Although the current 

insufficiency of database descriptors and the inaccessibility of descriptors for small-sample datasets 

hinder the development of descriptors, an issue that will be improved with the data blowing out in 

materials science. To match the advancement of the algorithms and databases mentioned above, 

descriptors which could economically be acquired from database or computed and precisely present 

complex nature are desired to be developed. Further, it is critical to develop methodology and 

theory to derive outperformed descriptors in various approaches and integrate multiple modalities 

of data to present materials more accurately and efficiently for implementing advanced algorithms, 

which is one of the most challenging and demanding tasks in data-driven material innovation in the 

future. 

(vi) Data is the foundation of data-driven material innovation, and therefore, reliable and 

sufficient data sources are critical. Although data-driven material innovation is widely and 

extensively explored by the scientific community and several databases have been established and 



 

This article is protected by copyright. All rights reserved. 

158 

used in materials science, challenges in data acquisition still remain: (1) representative experimental 

databases (such as the ICSD and SciFinder) still needs a license for access;[345, 602] (2) no unified 

application programming interface is available for connecting different databases and other 

software, although the python-based RESTful API has been widely adopted;[233, 234, 270] (3) the primary 

challenge in choosing and comparing databases is identifying the specific function for the databases' 

difference and determining the equivalency for the same structure in various databases.[218] 

Databases can be used to solve one specific problem by relaying the specific descriptors that 

are extracted from the selected databases using the appropriate high-throughput tools and 

workflow management frameworks. We can use this strategy to explore new materials, new 

structures, and new properties by utilizing meaningful information and patterns. The strategy can 

also be employed to synthesize the specific materials for the specific applications mentioned in 

previous sections. The data-driven strategies can be used to uncover complexities and design novel 

materials with excellent properties based on the powerful and accessible databases, high-

throughput tools, and workflow management frameworks. For the modern materials science 

community, data-driven strategies show considerable potential for the future. The development of 

the databases and related tools is impossible by using the trial-and-error methods in traditional 

approaches. Moreover, advanced algorithms in materials science are generally restricted because of 

the lack of sufficiently diverse and extensive databases. In addition to the data generated by 

performing simulations and computations, high-throughput experiments conducted by using 

modular robotic systems[300], mobile robots,[302] and automated platforms for programmable 

material screening and synthesis could be an alternative and critical approach for database 

construction in the future. 

 

In summary, data-driven research is expected to rapidly expand and progress in the future, 

thereby accelerating material innovations to bridge the gap between science and technology and 

facilitating a rapid development of emerging advanced materials. 
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Abbreviations 

Terms Explanations 

ANN Artificial Neural Network 

CRR Carbon Reduction Reaction 

CV Cross Validation 

DFT Density Functional Theory 

DNN Deep Neural Network 

DT Decision Tree 

GBDT Gradient Boosting Decision Tree 

GBR Gradient Boosting Regression 

GBRT Gradient Boosting Regression Tree 

GPR Gaussian Process Regression 

HER Hydrogen Evolution Reaction 

HOIP Hybrid Organic-Inorganic Perovskites 

ICSD Inorganic Crystal Structure Database 

k-NN k-Nearest Neighbor 

KPI Key Performance Indicator 

KRR Kernel Ridge Regression 

LASSO Least Absolute Shrinkage and Selection Operator 

LOOCV Leave One Out Cross Validation 

LR Linear Regression 

MAE Mean Absolute Error 

ML Machine Learning 

MLR Multi-Linear Regression 

MP Materials Project 

MSE Mean Square Error 

NNP Neural Network Potential 

NRR Nitrogen Reduction Reaction 

OER Oxygen Evolution Reaction 

OPV Organic Photovoltaics 

OQMD Open Quantum Materials Database  

ORR Oxygen Reduction Reaction 

PCA Principal Component Analysis 

PV Photovoltaics 

QSAR Quantitative Structure Activity Relationship 

QSPR Quantitative Structure Property Relationship 
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RF Random Forest 

RMSE Root Mean Square Error 

SISSO Sure Independent Screening and Sparsifying Operator 

SVM Support Vector Machine 

SVR Support Vector Regression 

AAPL Automatic Anharmonic Phonon Library 

ADES Automation, Data, Environment, And Sharing 

AFM Antiferromagnetic 

AiiDA Automated Interactive Infrastructure And Database 

AIMD Ab Initio Molecular Dynamics 

AML Adaptive Machine Learning 

ANN Artificial Neural Network 

AOP Advanced Oxidation Processes 

API Application Programming Interface 

ASE Atomic Simulation Environment 

AUC The Area Under The Curve 

BO Bayesian Optimization 

BP Back Propagation 

C2DB Computational 2D Materials Database 

CART Classification And Regression Tree 

CBM Conduction Band Bottom  

CGCNN Crystal Graph-Based Convolutional Neural Network 

CMR Computational Materials Repository 

CNN Convolutional Neural Network 

COD Crystallography Open Database 

CRM Cluster Ranking Model 

CRR Carbon Reduction Reaction 

CSD Cambridge Structural Database 

CV Cross Validation 

CVD Chemical Vapor Deposition 

DE Differential Evolution 

DFT Density Functional Theory 

DMSC Dual-Metal-Site Catalysts  

DNN Deep Neural Network 

DOS Density of States 

DT Decision Tree 

EA Electron Affinity 
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EELS Electron Energy Loss 

EM Expectation Maximization 

FM Ferromagnetic  

FN False Negative 

FP False Positive 

FPR False Positive Rate 

FWS Fireworks 

GA Genetic Algorithm 

GAN Generative Adversarial Networks 

GBDT Gradient Boosting Decision Tree 

GBR Gradient Boosting Regression 

GBRT Gradient Boosting Regression Tree 

GCLP Grand Canonical Linear Programming 

GPR Gaussian Process Regression 

HER Hydrogen Evolution Reaction 

HOIP Hybrid Organic-Inorganic Perovskites 

HT High Throughput 

HTTP Hyper Text Transfer Protocol 

HTVS High-Throughput Virtual Screening 

ICSD Inorganic Crystal Structure Database 

ID3 Iterative Dichotomiser 3 

IP Ionization Potential 

k-NN K-Nearest Neighbor 

KPI Key Performance Indicator 

KRR Kernel Ridge Regression 

LASSO Least Absolute Shrinkage And Selection Operator 

LOOCV Leave One Out Cross Validation 

LR Linear Regression 

MAE Mean Absolute Error 

MAP Maximum Posteriori 

MAST-ML Materials Simulation Toolkit For Machine Learning 

MDF Materials Data Facility 

MGI Material Genome Initiative 

MIV Mean Impact Value 

ML Machine Learning 

MLPNN Multi-Layer Perceptron Neural Network 

MLR Multi-Linear Regression 
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MP Materials Project 

MPB Morphotropic Phase Boundary 

MQCBO Multiple Quality Constraint Bayesian Optimization 

MSE Mean Square Error 

NLP Natural Language Processing 

NNP Neural Network Potential 

NOMAD Novel Material Discovery 

NRR Nitrogen Reduction Reaction 

OER Oxygen Evolution Reaction 

OPTIMADE Open Databases Integration For Materials Design 

OPV Organic Photovoltaics 

OQMD Open Quantum Materials Database  

ORR Oxygen Reduction Reaction 

PCA Principal Component Analysis 

PCE Power Conversion Efficiency 

PES Potential Energy Surface 

PF Power Factor 

PSO Particle Swarm Optimization 

PV Photovoltaics 

QSAR Quantitative Structure Activity Relationship 

QSPR Quantitative Structure Property Relationship 

RBF Radial Basis Function 

RBM Restricted Boltzmann Machine 

REST Representational State Transfer 

RF Random Forest 

RL Reinforcement Learning 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

ROC Receiver Operating Characteristic 

SAA Simulated Annealing Algorithm 

SISSO Sure Independent Screening And Sparsifying Operator 

SQCBO Single Quality Constraint Bayesian Optimization 

STEM Scanning Transmission Electron Microscopy 

SVM Support Vector Machine 

SVR Support Vector Regression 

TEM Transmission Electron Microscopy 

TL Transfer Learning 
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TN True Negative 

TP True Positive 

TPR True Positive Rate 

t-SNE t-Distributed Stochastic Neighbor Embedding 

VAE Variational Autoencoders 

VASP Vienna Ab-Initio Simulation Package 

VBM Valence Band Top  

WGAN Wasserstein Generative Adversarial Network 

XAS X-Ray Absorption Spectra 
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This review aims to provide a timely and critical discussion on the recent advances, strategies, 

insights, and challenges of data-driven-based innovations and applications in material science. 

Essential sub-disciplines, including framework, machine learning algorithms, available chemical 

databases, commonly used key descriptors, and innovations and applications based on their synergy, 

are reviewed. 

 

 


