Zhe Peng

Zhe Peng
  • Researcher at University of Colorado Boulder

About

69
Publications
10,839
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,267
Citations
Current institution
University of Colorado Boulder
Current position
  • Researcher

Publications

Publications (69)
Preprint
Full-text available
Oxygenated volatile organic compounds (OVOCs) play a crucial role in atmospheric chemistry, significantly influencing radical production and VOC degradation through photolysis. However, current research on OVOC photolysis is limited by insufficient species coverage in the mechanisms and incomplete understanding from a species-specific perspective....
Preprint
Germicidal UV (GUV) disinfection is effective against airborne pathogens, but it has been recently reported to increase indoor air pollution. Conventional GUV at 254 nm is applied in the upper room only due to skin/eye safety limits, while “Far UVC” (e.g. at 222 nm) is applied across the whole room due to less restrictive safety limits, enabling si...
Preprint
The COVID-19 pandemic highlighted the importance of indoor air quality and the role of airborne transmission in disease spread. Heightened public awareness led to an increase in the commercialization and use of air cleaners. While several of these devices effectively disinfect the air, some also initiate chemical reactions that can worsen indoor ai...
Article
Full-text available
Oxidation flow reactors (OFRs) have been extensively utilized to examine the formation of secondary organic aerosol (SOA). However, the UV lamps typically employed to initiate the photochemistry in OFRs can result in an elevated reactor temperature when their implications are not thoroughly evaluated. In this study, we conducted a comprehensive inv...
Article
Full-text available
Since the 1930s, germicidal ultraviolet (GUV) irradiation has been used indoors to prevent the transmission of airborne diseases, such as tuberculosis and measles. Recently, it has received renewed attention due to the COVID-19 pandemic. While GUV radiation has been shown to be effective in inactivating airborne bacteria and viruses, few studies on...
Article
Full-text available
Secondary organic aerosols (SOAs) formed by oxidation of typical precursors largely emitted by biomass burning, such as polycyclic aromatic hydrocarbons (PAHs) and furans, are still poorly characterized. We evaluated and compared the formation yields, effective density (ρeff), absorption Ångström exponent (α), and mass absorption coefficient (MAC)...
Preprint
Full-text available
Oxidation flow reactors (OFRs) have been widely used to investigate the formation of secondary organic aerosol (SOA). However, the UV lamps that are commonly used to initiate photochemistry in OFRs can lead to increases in the reactor temperature with consequences that have not been assessed in detail. In this study, we systematically investigated...
Preprint
Full-text available
Secondary organic aerosols (SOA) formed by oxidation of typical precursors largely emitted by biomass burning, such as PAHs and furans, are still poorly characterized in terms of formation yields, physical and light absorption properties, particularly those generated at night following reaction with nitrate radicals (NO3). In the present study, we...
Preprint
Full-text available
Lamps emitting at 222 nm have attracted recent interest for germicidal ultraviolet disinfection (“GUV222”). Their impact on indoor air quality is considered negligible. In this study, ozone formation is observed for eight different lamps from five manufacturers, in amounts an order-of-magnitude larger than previous reports. Most lamps produce O 3 i...
Preprint
Full-text available
The disinfection of air using Germicidal Ultraviolet light (GUV) is a long-standing technique, which has received intense attention during the COVID-19 pandemic. GUV generally uses UVC lamps as its light source, which are known to initiate photochemistry in air. However, the impact of GUV on indoor air quality and chemistry has not been investigate...
Article
Volatile organic compounds (VOCs) oxidation processes play a very important role in atmospheric chemistry, and the chemical reactions are expressed in various manners in chemical mechanisms. To gain an improved understanding of VOCs evolution during oxidation processes and evaluate the discrepancies of VOCs oxidation schemes among different mechani...
Article
Full-text available
Some infectious diseases, including COVID-19, can undergo airborne transmission. This may happen at close proximity, but as time indoors increases, infections can occur in shared room air despite distancing. We propose two indicators of infection risk for this situation, that is, relative risk parameter (Hr) and risk parameter (H). They combine the...
Article
Full-text available
OH reactivity (OHR) is an important control on the oxidative capacity in the atmosphere but remains poorly constrained in many environments, such as remote, rural, and urban atmospheres, as well as laboratory experiment setups under low-NO conditions. For an improved understanding of OHR, its evolution during oxidation of volatile organic compounds...
Preprint
Full-text available
Some infectious diseases, including COVID-19, can be transmitted via aerosols that are emitted by an infectious person and inhaled by susceptible individuals. Most airborne transmission occurs at close proximity and is effectively reduced by physical distancing, but as time indoors increases, infections occur in those sharing room air despite maint...
Article
CO2 is co-exhaled with aerosols containing SARS-CoV-2 by COVID-19-infected people and can be used as a proxy of SARS-CoV-2 concentrations indoors. Indoor CO2 measurements by low-cost sensors hold promise for mass monitoring of indoor aerosol transmission risk for COVID-19 and other respiratory diseases. We derive analytical expressions of CO2-based...
Preprint
Full-text available
OH reactivity (OHR) is an important control on the oxidative capacity in the atmosphere but remains poorly constrained. For an improved understanding of OHR, its evolution during oxidation of volatile organic compounds (VOCs) is a major aspect requiring better quantification. We use the fully explicit Generator of Explicit Chemistry and Kinetics of...
Preprint
Full-text available
CO 2 is co-exhaled with aerosols containing SARS-CoV-2 by COVID-19 infected people and can be used as a proxy of SARS-CoV-2 concentrations indoors. Indoor CO 2 measurements by low-cost sensors hold promise for mass monitoring of indoor aerosol transmission risk for COVID-19 and other respiratory diseases. We derive analytical expressions of CO 2 -b...
Article
Full-text available
Oxidation flow reactors (OFRs) are an emerging tool for studying the formation and oxidative aging of organic aerosols and other applications. The majority of OFR studies to date have involved the generation of the hydroxyl radical (OH) to mimic daytime oxidative aging processes. In contrast, the use of the nitrate radical (NO3) in modern OFRs to m...
Article
We summarize the studies on the chemistry in oxidation flow reactor and discuss its atmospheric relevance.
Preprint
Full-text available
Abstract. Oxidation flow reactors (OFRs) are an emerging tool for studying the formation and oxidative aging of organic aerosols and other applications. The majority of OFR studies to date involved generation of the hydroxyl radical (OH) to mimic daytime oxidative aging processes. On the other hand, use of the nitrate radical (NO<sub>3</sub>) in mo...
Article
Full-text available
The partitioning of low- and semi-volatile organic compounds into and out of particles significantly influences secondary organic aerosol formation and evolution. Most atmospheric models treat partitioning as an equilibrium between gas and particle phases, despite few direct measurements and a large range of uncertain mass accommodation coefficient...
Article
Full-text available
Secondary organic aerosol derived from isoprene epoxydiols (IEPOX-SOA) is thought to contribute the dominant fraction of total isoprene SOA, but the current volatility-based lumped SOA parameterizations are not appropriate to represent the reactive uptake of IEPOX onto acidified aerosols. A full explicit modeling of this chemistry is however comput...
Article
KinSim is a research-grade, interactive, user-friendly, open-source, and visual software for kinetics modeling of environmental chemistry and other applications. Students without any computer-programming background and limited knowledge of environmental chemistry can use KinSim, which also includes multiple features and functionality dedicated to r...
Article
Full-text available
Secondary organic aerosol derived from isoprene epoxydiols (IEPOX-SOA) is thought to contribute the dominant fraction of total isoprene SOA, but the current volatility-based lumped SOA parameterizations are not appropriate to represent the reactive uptake of IEPOX onto acidified aerosols. A full explicit modelling of this chemistry is however compu...
Article
Full-text available
Oxidation flow reactors (OFRs) are a promising complement to environmental chambers for investigating atmospheric oxidation processes and secondary aerosol formation. However, questions have been raised about how representative the chemistry within OFRs is of that in the troposphere. We investigate the fates of organic peroxy radicals (RO2), which...
Article
Full-text available
Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (HO2), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (O3) at λ=254 nm, photolysis of H2O a...
Article
Full-text available
Oxidation flow reactors (OFR) are a promising complement to environmental chambers for investigating atmospheric oxidation processes and secondary aerosol formation. However, questions have been raised about how representative the chemistry within OFRs is of that in the troposphere. We investigate the fates of organic peroxy radicals (RO2), which p...
Article
Full-text available
Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To...
Article
Full-text available
Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (HO2), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (O3) at λ = 254nm, photolysis of H2O at...
Article
Full-text available
Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To...
Article
Oxidation flow reactors (OFRs) efficiently produce OH radicals using low-pressure Hg-lamp emissions at λ=254 nm (OFR254) or both λ=185 and 254 nm (OFR185). OFRs under most conditions are limited to studying low-NO chemistry (where RO2+HO2 dominates RO2 fate), even though substantial amounts of initial NO may be injected. This is due to very fast NO...
Article
Full-text available
Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (in which peroxy radicals (RO2) react pref...
Preprint
Full-text available
Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (where peroxy radicals (RO2) react prefere...
Article
Equation 5 in the article should read as follows log OHexp = a + b + c·OHRd + e·log O3· ³t ·OHR f · log O3· ³t + log H2O + log 3t We also would like to correct Table 3, due to some values in the original table not having enough digits for accurate results. Table 3. Fit Parameters and One Standard Deviation (SD) for the OHexp Estimation Equation Bas...
Article
Full-text available
Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16-36% of the submicron OA in the southeastern United States (SE US) summer....
Article
Full-text available
Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow react...
Article
Full-text available
Isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting for example for 16–36 % of the submicron OA in the SE US summer. Particle evaporation measurem...
Article
Full-text available
Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tr...
Article
Full-text available
An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign,...
Article
Full-text available
Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from...
Article
Full-text available
Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O-3 since OH is formed from O-3 photolysis, while OFR185 does not since O-2 can be photolyzed to produce O-3, an...
Article
Full-text available
Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tr...
Article
Full-text available
Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An Oxidation Flow React...
Article
Full-text available
Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O3 since OH is formed from O3 photolysis, while OFR185 does not since O2 can be photolyzed to produce O3 and OH...
Article
Oxidation Flow Reactors (OFRs) containing low-pressure mercury (Hg) lamps that emit UV light at both 185 and 254 nm ("OFR185") to generate OH radicals and O3 are used in many areas of atmospheric science and in pollution control devices. The widely used Potential Aerosol Mass (PAM) OFR was designed for studies on the formation and oxidation of seco...
Article
Full-text available
We present a comparison of the outcomes of two models of N2/CH4 VUV plasmas in two sets of conditions representative of a laboratory experiment and of Titan’s ionosphere. The “FullDR” model incorporates all available experimental data on dissociative recombination od CxHyN+ recently developed in our group, whereas the “Hloss” model implements the H...
Article
Full-text available
The APSIS reactor has been designed to simulate in the laboratory with a VUV synchrotron irradiation the photochemistry occurring in planetary upper atmospheres. A Titan-like gas mixture has been studied, whose photochemistry in Titan’s ionospheric irradiation conditions leads to a coupled chemical network involving both radicals and ions. In the p...
Article
A new reactor, named APSIS (Atmospheric Photochemistry SImulated by Synchrotron), has been designed to simulate planetary atmospheric photochemistry [Peng et al. JGR-E. 2013, 118, 778]. We report here a study focusing on Titan's upper atmosphere. A nitrogen-methane gas flow was irradiated by a continuous 60-350 nm VUV beam provided by the DISCO lin...
Article
Titan's VUV photochemistry is studied by laboratory simulation and numerical modeling.In the laboratory simulations, a gas flow of N2/CH4 (90/10) was irradiated by a continuousVUV (60-350 nm) synchrotron beam in a new reactor, named APSIS (Atmospheric Photochemistry SImulated by Synchrotron). The production of C2-C4 hydrocarbons as well as several...
Article
A new reactor, named APSIS for Atmospheric Photochemistry Simulated by Synchrotron, is designed for simulating the reactivity occurring in planetary upper atmospheres. In this reactor, a gas mixture roughly reproducing Titan's main atmosphere composition (N2/CH4 = 90/10) is irradiated by a continuous spectrum in the 60-350 nm range, provided by the...
Article
The precision of the rates of the photolysis processes initiating the complex chemistry of Titan's upper atmosphere conditions strongly the predictivity of photochemical models. Recent studies in sensitivity analysis of such models point out photolysis rate constants as key parameters. However, they have been treated approximately so far. We deal h...
Article
Full-text available
We report here on the coupling of a gas reactor with a VUV beamline at the SOLEIL synchrotron radiation facility. The reactor may be irradiated window-less with gas pressure up to the atmosphere. The photochemistry is monitored by a mass spectrometer gas analyzer. This set up, termed APSIS for Atmospheric Photochemistry SImulated by Synchrotron, ha...
Conference Paper
The precision of the rates of the photolytic processes initiating the complex chemistry of Titan's upper atmosphere conditions strongly the predictivity of photochemical models. However, there was no thorough investigation of the impact of the different parameters describing these processes. For the first time, we deal here directly with uncertaint...
Conference Paper
Full-text available
A new reactor has been designed for experimental simulation of Titan's atmospheric photochemistry and installed at SOLEIL Synchrotron Radiation Facility whose DISCO continuous-spectrum UV beamline is used as the energy source. The products of the photochemistry are detected in situ by mass spectrometry and ex situ by the GC-MS analysis of a cryogen...
Conference Paper
Full-text available
A preliminary modeling of a new photoreactor for experimental simulation of Titan's photochemistry is developed. This study confronts experimental results with those of a 1D neutral photochemical model and its improved versions: the ones with ion-molecule reaction included and with ion-molecule reaction and dissociative recombination included. Fina...
Book
Full-text available
We report here on the coupling of a gas reactor with a VUV beamline at the SOLEIL synchrotron radiation facility. The reactor may be irradiated window-less with gas pressure up to the atmosphere. The photochemistry is monitored by a mass spectrometer gas analyzer. This set up, termed APSIS for Atmospheric Photochemistry SImulated by Synchrotron, ha...
Article
Titan's atmospheric chemistry modeling is presently limited by the lack of knowledge about many reaction rate coefficients at low temperature (50-200 K). Considering the difficulty of measuring such data, the only way to improve this situation is to identify key reactions as the ones for which better estimations of reaction rates is guaranteed to h...
Article
The reaction of triplet methylene with methanol is a key process in alcohol combustion but surprisingly this reaction has never been studied. The reaction mechanism is investigated by using various high-level ab initio methods, including the complete basis set extrapolation (CBS-QB3 and CBS-APNO), the latest Gaussian-n composite method (G4), and th...
Article
A chain-shaped (H2O)4 cluster A is self-assembled in a metal phosphonate compound, [Al(phen)(AEDPH2)(AEDPH3)] · 4H2O (1) (AEDPH4 = 1-aminoethylidenediphosphonic acid, phen = 1,10-phenanthroline). This water cluster, and another chain-shaped (H2O)4 cluster B which exists in the previously reported compound [Zn(phen)(AEDPH2)2] · 4H2O (2), are investi...

Network

Cited By