How Far Have We Progressed in Identifying Self-admitted
Technical Debts? A Comprehensive Empirical Study

ZHAOQIANG GUO and SHIRAN LIU, Nanjing University
JINPING LIU, Jiangsu University
YANHUI LI, LIN CHEN, HONGMIN LU, and YUMING ZHOQOU, Nanjing University

Background. Self-admitted technical debt (SATD) is a special kind of technical debt that is intentionally in-
troduced and remarked by code comments. Those technical debts reduce the quality of software and increase
the cost of subsequent software maintenance. Therefore, it is necessary to find out and resolve these debts in
time. Recently, many automatic approaches have been proposed to identify SATD. Problem. Popular IDEs
support a number of predefined task annotation tags for indicating SATD in comments, which have been
used in many projects. However, such clear prior knowledge is neglected by existing SATD identification
approaches when identifying SATD. Objective. We aim to investigate how far we have really progressed in
the field of SATD identification by comparing existing approaches with a simple approach that leverages the
predefined task tags to identify SATD. Method. We first propose a simple heuristic approach that fuzzily
Matches task Annotation Tags (MAT) in comments to identify SATD. In nature, MAT is an unsupervised ap-
proach, which does not need any data to train a prediction model and has a good understandability. Then, we
examine the real progress in SATD identification by comparing MAT against existing approaches. Result. The
experimental results reveal that: (1) MAT has a similar or even superior performance for SATD identification
compared with existing approaches, regardless of whether non-effort-aware or effort-aware evaluation indi-
cators are considered; (2) the SATDs (or non-SATDs) correctly identified by existing approaches are highly
overlapped with those identified by MAT; and (3) supervised approaches misclassify many SATDs marked
with task tags as non-SATDs, which can be easily corrected by their combinations with MAT. Conclusion. It
appears that the problem of SATD identification has been (unintentionally) complicated by our community,
i.e., the real progress in SATD comments identification is not being achieved as it might have been envis-
aged. We hence suggest that, when many task tags are used in the comments of a target project, future SATD
identification studies should use MAT as an easy-to-implement baseline to demonstrate the usefulness of any
newly proposed approach.

CCS Concepts: « Software and its engineering — Software maintenance tools;

Additional Key Words and Phrases: Self-admitted technical debt, task annotation tag, code comment, match,
baseline

This work is partially supported by the National Key Basic Research and Development Program of China (2014CB340702)
and the National Natural Science Foundation of China (61772259, 61872177).

Authors’ addresses: Z. Guo, S. Liu, Y. Li (corresponding author), L. Chen (corresponding author), H. Lu, and Y.
Zhou (corresponding author), State Key Laboratory for Novel Software Technology, Nanjing University; emails: {gzq,
shiranlivj@smail.nju.edu.cn, {yanhuili, Ichen, hmlu, zhouyuming}@nju.edu.cn; J. Liu, School of Computer Science and
Communication Engineering, Jiangsu University; email: 553439465@qq.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1049-331X/2021/07-ART45 $15.00

https://doi.org/10.1145/3447247

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3447247

45:2 Z. Guo et al.

ACM Reference format:

Zhaoqiang Guo, Shiran Liu, Jinping Liu, Yanhui Li, Lin Chen, Hongmin Lu, and Yuming Zhou. 2021. How Far
Have We Progressed in Identifying Self-admitted Technical Debts? A Comprehensive Empirical Study. ACM
Trans. Softw. Eng. Methodol. 30, 4, Article 45 (July 2021), 56 pages.

https://doi.org/lo.l145/3447247

1 INTRODUCTION

Technical debt (TD) is a useful metaphor proposed by Cunningham [11] to describe the situation
that developers neglect the maintenance of long-term code quality to achieve short-term goals [12,
13,15, 16, 19, 20, 23-26, 29-32, 45]. For a software project, writing high-quality and well-structured
code is the initial goal. In the process of software evolution, however, uncertainties (e.g., restricted
human resources, release time pressure, and cost reduction) [15, 16] often arise to interrupt the
scheduled development plans. To cope with these changes and complete the previously designated
tasks timely, developers are forced to adjust delivery projects with sub-optimal selection (e.g., hard-
coded parameters and functional reduction) [17]. This solution temporarily solves the problem, but
in the long term, it results in a chaotic structure and increases the effort of refactoring code [14, 30].

In particular, there is a kind of technical debt that is intentionally introduced (e.g., temporarily
modifying a parameter) by developers and marked in code comments. Many studies have shown
the key role of code comments in ensuring the quality of software artifacts [27, 28, 34-41]. There-
fore, Potdar et al. first investigated technical debts in the perspective of code comments and called
them self-admitted technical debt (SATD) [14]. Their study indicated that SATD was common
and might bring a negative impact to software maintenance. Also, Wehaibi et al. [15] conducted
an empirical study to examine the relationship between SATD and software quality. Their find-
ings showed that SATD not only might lead to software defects but also might make the software
system more difficult to change in the future. Therefore, there is an urgent need to identify SATD
and fix them timely.

In the past decade, a variety of approaches have been proposed to identify SATD. Potdar et al.
[14] studied SATD according to code comments and made the first attempt to identify the SATD
comments by summarizing 62 SATD comment patterns (i.e., keywords and phrases) manually.
Subsequently, Bavota et al. [16] reported that the above 62 patterns could identify SATDs for other
projects with a high precision. However, such a Pattern approach heavily depends on the manually
identified SATD patterns. Furthermore, in practice, the Pattern approach may have a low recall,
since such patterns, manually summarized from a limited number of projects, cannot represent all
possible patterns in real world projects [10]. To tackle these problems, many supervised learning
techniques are introduced to automatically learn features in comments to identify SATD, including
Maldonado et al.’s NLP (natural language processing) approach [17], Huang et al.’s TM (text-
mining) approach [10], and Ren et al.’s CNN (convolutional neural network) approach [49].
In particular, it has been reported that these supervised approaches produce a promising SATD
identification performance.

Yet, all the existing studies neglect the fact that, in a large amount of real projects, many com-
ments have already been marked with various task annotation tags, predefined either by popular
IDEs (integrated development environments) or by developers, to indicate SATD. Clearly,
these predefined task annotation tags are prior strong SATD indicators, even if their misuses
are considered. Intuitively, if we Match task Annotation Tags (MAT) in comments to identify
SATD, a high identification accuracy should be achieved. Unlike the Pattern approach, MAT does
not need to manually inspect comments to summarize SATD patterns. Unlike the existing super-
vised approaches, MAT does not require any labeled training data to build a model. In particular,
MAT has a low computation cost and is easy to implement. In contrast, due to the use of complex

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

https://doi.org/10.1145/3447247

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:3

modeling techniques, many existing supervised SATD identification approaches not only occupy
a high computation cost but also involve a large number of parameters needed to be carefully
tuned. This brings non-negligible obstacles for practitioners to apply them in practice. Given this
situation, an interesting question hence naturally arises: “How do the existing SATD identification
approaches perform compared with MAT?” The answer to this question will inform how far we
have really progressed in the field of SATD identification. This answer is important for both prac-
titioners and researchers. For practitioners, it will help judge if it is worth to apply the existing
SATD identification approaches in practice. If MAT performs similarly or even better, then there
is no practical reason to apply the complex approaches. For researchers, if MAT performs simi-
larly or even better, then there is a strong need to improve the prediction accuracy of the existing
SATD identification approaches. Otherwise, the motivation of applying those SATD identification
approaches could not be well justified.

In this study, we attempt to investigate how far we have really progressed in the field of SATD
identification by comparing existing approaches with a simple approach, MAT, that leverages the
predefined task tags to identify SATD. More specifically, we want to know: (1) Is the difference
in SATD identification performance significant and important?; (2) Do they lead to the identifica-
tion of substantially different SATDs or non-SATDs?; and (3) What are the weaknesses of existing
supervised SATD identification approaches and can they be improved by incorporating the idea
of MAT? The investigation of the first question does not need the source code of a compared ex-
isting approach, as its performance has been reported in the original SATD identification study.
However, we need the source code of a compared existing approach to investigate the second and
third questions. In our study, we take the following two measures to ensure a fair comparison.
On the one hand, for those SATD identification approaches whose source codes are open source,
we use the source codes provided by their original authors to conduct the experiment. On the
other hand, for those SATD identification approaches whose source codes are not publicly avail-
able, we tried our best to re-implement them after carefully reading the corresponding research
papers and communicating with the original authors. If there is a large difference in performance
between the original and re-implemented approaches, then we will use the performance values
reported in the original SATD identification studies to investigate only the first question. If the
re-implemented approach exhibits a competitive or even better performance, then we will use the
re-implemented approach to investigate the first to third questions. These measures ensure that
we can draw a reliable conclusion on the benefits of existing SATD identification approaches w.r.t.
MAT in practice.

Under the above experimental settings, we conduct a comprehensive comparison between the
existing SATD identification approaches and MAT. Surprisingly, our experimental results show:
(1) MAT has a similar or even superior performance for SATD identification compared with the
existing approaches, regardless of whether non-effort-aware or effort-aware evaluation indicators
are considered; (2) the SATDs (or non-SATDs) correctly identified by the existing approaches are
highly overlapped with those identified by MAT; and (3) supervised approaches misclassify many
SATDs marked with task tags as non-SATDs, which can be easily corrected by their combina-
tions with MAT. The above results indicate that, for those projects that use task tags to indicate
SATD, the task of SATD identification has in fact been complicated. Consequently, for practition-
ers, it would be better to apply MAT rather than the existing approaches to identify SATDs in a
target project. This is especially true when considering the application cost (e.g., model building
cost). More importantly, the results reveal that, the current progress in SATD identification stud-
ies is not being achieved as it might have been envisaged. Therefore, we strongly recommend that
future SATD identification studies should consider MAT as a baseline approach to be compared
against. As stated in Reference [63], there are two-fold benefits when using a baseline approach.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:4 Z. Guo et al.

On the one hand, this would ensure researchers compare and assess the predictive power of a
newly proposed SATD identification approach more adequately. On the other hand, “the ongoing
use of a baseline model in the literature would give a single point of comparison.” This will lead to a
meaningful assessment of any new SATD identification approach against previous SATD identifi-
cation approaches.

In summary, in this article, we make the following contributions:

(1) We collect a new SATD comment dataset from 10 popular Java projects, which allows for
other researchers to conduct more comprehensive studies in the field of SATD identifica-
tion. To ensure that other researchers can use this dataset, we make it publicly available
[80].

(2) We propose a simple heuristic approach MAT to identify SATD without involving any
training data. In particular, MAT is very easy to understand and apply in real-world
projects.

(3) We conduct a comprehensive experimental comparison between existing approaches and
MAT to investigate the real progress in SATD identification. We are surprised to find that
the real progress in SATD identification is not being achieved as it might have been envis-
aged, regardless of whether the identification performance or the difference in the identi-
fied true positive (negative) instances is considered.

(4) We analyze the weaknesses of existing supervised SATD identification approaches and
explore how to improve their effectiveness by combining them with MAT.

(5) We provide the source code for this study, which can be easily used in future SATD identifi-
cation studies. This will facilitate researchers to use MAT as a baseline SATD identification
approach, thus helping develop really effective approaches.

The rest of this articleis organized as follows: Section 2 introduces the background on self-
admitted technical debt identification. Section 3 presents the process of constructing a simple base-
line approach. Section 4 describes the experimental setup, and Section 5 reports the experimental
results. We discuss additional results in Section 6. In Section 7, we summarize the implications
in our study. Section 8 analyzes the threats to the validity of our study. Section 9 concludes the
articleand outlines the direction for our future work.

2 SELF-ADMITTED TECHNICAL DEBT IDENTIFICATION

Before we start to conduct our empirical study, it is necessary to outline the cognitive status (i.e.,
background) for the field of self-admitted technical debt (SATD) identification in this section.
More specifically, we first describe the problem that SATD identification aims to address. This sub-
section sheds light on the essential mechanism of popular SATD identification approaches. Then,
we give a literature overview of current valuable progress in this area. Finally, we summarize the
main challenges that may have negative influences on the application of these existing SATD iden-
tification approaches and hope that these challenges can attract the attention of our community.

2.1 Problem Statement

The purpose of SATD identification is to address the accuracy of classification results for code com-
ments [10, 17, 49, 81-83, 95]. To predict the labels of comments in a target project, it is common
to use comment sentences and their labels from other projects to construct a classification model
and then apply the model to predict the labels in a target project. In other words, it is a two-phase
process, including model constructing phase and model prediction phase. At the model construct-
ing phase, the comments are first extracted from training projects using code parser tools such
as JDeodorant [48]. Then, the real labels of these comments are marked by manually reading the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:5

sentences. After that, these labeled comments data are leveraged to construct a classification model
that can capture the features of SATD comments. At the model prediction phase, the comments
in a target project are extracted first in the same way. Then, the classification model can output a
predicted label (SATD or non-SATD) for each target comment. Thus, there are two sets of labels
(real labels and predicted labels) for comments in the target project. After that, the classification
performance is evaluated by comparing differences between the two sets of labels. According to
the above process, the task of self-admitted technical debt identification is a typical binary classi-
fication problem.

2.2 State of Progress

The concept of self-admitted technical debt was first introduced by Potdar et al. [14]. Subsequently,
many automatic approaches were proposed for identifying SATD comments. In this section, we
introduce the representative approaches to illustrate the state of research progress in this field.

Pattern matching-based approach (Pattern, 2014). Potdar et al. first studied SATD according
to code comments. They summarized SATD comment patterns manually and proposed a pattern
matching approach (Pattern for short) to identify SATD [14]. More specifically, they manually read
through 101,762 source code comments and summarized 62 SATD patterns in four projects (i.e.,
Eclipse, Chromiun OS, ArgoUML, and Apache). Every pattern is a keyword (e.g., “stupid”) or a
phrase (e.g., “get rid of this”) that frequently appears in SATD comments. The rationale of their
approach is that a comment is considered to indicate SATD if one of the patterns appears in the
target comment. According to the rationale, Pattern is an unsupervised approach that can be used
directly to identify SATD. According to Huang et al.’s [10] experimental result on eight open-
source projects, Pattern achieved an excellent performance in precision (0.770 on average) while it
had a very low recall. This means that the Pattern can only identify a very small portion of SATD.

Natural language processing-based approach (NLP, 2017). To overcome the limitations of
Pattern, Maldonado et al. [17] proposed an approach based on natural language processing (NLP for
short) to automatically identify design and requirement SATD comments. In their experiment, they
collected datasets consisting of the comments from 10 open-source Java projects. For the datasets,
they filtered out the comments that were less likely to be classified as self-admitted technical debt
by applying heuristics. After that, they manually classified the label (i.e., SATD or non-SATD) of
each comment. Based on the datasets, they used a Java implementation of a maximum entropy
classifier, Stanford Classifier [60], to identify SATD comments. In particular, for the prediction of
comments in each target project, they used the data of comments and labels from other projects as
the training data. Their results showed that the NLP approach achieved a good performance even
with a relatively small training dataset when identifying SATD comments.

Text mining-based approach (TM, 2018). Huang et al. [10] proposed a text-mining-based
supervised approach to automatically identify SATD comments. Assume that there are n source
projects and one target project, TM consists of the following two phases: model building phase and
model prediction phase. At the former phase, it built a sub-classifier (Naive Bayes Multinomial
(NBM) [21] model by default) based on the comments of each source project. At the latter phase,
it used a vote strategy to composite n sub-classifiers to jointly predict the label (SATD or non-
SATD) of an unknown comment of the target project. To this end, source code comments were first
preprocessed using a general NLP process (i.e., tokenization, stop-word removal, and stemming)
to get the set of features (i.e., tokens). After that, it used Information Gain (IG) feature selection
technology [43] to select a useful subset of features to avoid a curse-of-dimensionality problem.
Then, it converted the features into a Vector Space Model (VSM) model [33]. Huang et al. used
eight open-source projects to evaluate TM. Their experimental results showed that the proposed
TM was superior to Pattern.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:6 Z. Guo et al.

Convolutional neural network-based approach (CNN, 2019). Ren et al. noticed that the
prediction results of TM are hard to explain, since the features (i.e., tokens) TM used are less
intuitive than human-summarized patterns [49]. Therefore, they proposed a convolutional neural
network—-based approach. In their approach, they first learned a domain-specific word-embedding
[51] using the skip-gram model [50] of word2vec from comments. In the process, each word was
represented by a vector containing semantic information. Then, they concatenated all vectors of
the words in a comment to a matrix as the input data of the CNN model. They used the data
from source projects to train the classification model and used the model to predict the labels (i.e.,
SATD or non-SATD) of comments in a target project. According to their experimental results, CNN
outperforms Pattern, NLP, and TM in identifying SATD comments. In addition to a good classifica-
tion performance, their approach can exploit the computational structure of CNN to automatically
identify key phrases and patterns in code comments that are most relevant to SATD. This mecha-
nism can reduce the effort of manually summarizing patterns and extract a large number of useful
patterns. On the whole, CNN is the state-of-the-art approach that works well in performance, gen-
eralizability, and explainability.

A two-step approach (Jitterbug, 2020). Recently, Yu et al. [95] distinguished SATD comments
to two types: (1) “easy to find” SATDs; and (2) “hard to find” SATDs. The former contains
keywords occurring frequently in SATD comments such as “fixme” and “todo” that are almost
always related to SATDs. Therefore, “easy to find” SATDs can be identified easily by matching
patterns. The latter does not contain keywords that strongly indicate SATDs. For example, “Modify
the system class loader instead—horrible! But it works!” According to Yu et al.’s opinion, “hard to
find” SATDs can only be accurately identified by human experts. As such, they proposed a two-
step framework called Jitterbug to identify “Easy” and “Hard” SATD comments separately. For a
given target project, Jitterbug first leveraged a pattern recognizer to extract the patterns from the
comments in the training projects and used them to identify the “Easy” SATD comments. Then,
Jitterbug filtered out the comments with patterns in the training and test projects and leveraged
the comments data whose labels were available to train (for the first time) or retrain a supervised
model. This supervised model recommended top 10 SATD comment candidates to human experts
for manually labelling. This process was iterated until the evaluated recall of SATD had achieved
an expected recall (say, 90%). In this way, Jitterbug can identify “Easy” SATDs with a high precision
and “Hard” SATDs with a high recall.

2.3 Challenges

In the literature, it has been highlighted that there are two major challenges one SATD identifica-
tion approach has to deal with [10, 17, 49].

(1) Term diversity. This challenge denotes that the comments with similar semantic usually
will be written in various forms [10, 14, 17, 49]. On the one hand, the comment sentences
are described by natural language that has a strong flexibility when constructing sen-
tences. For instance, it is obvious that the meanings of the “perhaps not really necessary”
and “not absolutely necessary” are exactly the same while the expressions of them are
different. On the other hand, there might be different formally designated rules for writ-
ing comments in a specific real project. Thus, the comments from different projects may
exhibit diverse style characteristics. For example, the tag “TODO” is frequently used in
project ArgoUML, while the tag “Note” appears almost exclusively in project JEdit.

(2) Explainability. This challenge highlights that it is difficult to give intuitive SATD pat-
terns to interpret the classification results [49]. Generally, there are some intuitive patterns
(e.g., “todo”) in the SATD comments that are easily identified by humans. However, for
a given comment, most of automatic identification approaches (e.g., NLP and TM) cannot

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:7

provide such intuitive patterns that indicate SATD. Practitioners will be confused by the
classification results of such models. In particular, there are many misclassification cases
in these classification models (e.g., NLP). Therefore, it is necessary to be able to explain
the reason that a comment is classified as SATD comments.

In recent years, supervised approaches have been introduced to tackle the above two challenges.
To deal with the first challenge, many studies employed various supervised models (e.g., TM [10],
NLP [17], and CNN [49]) to extract common SATD-related semantic information from the com-
ments of multiple source projects. To deal with the second challenge, Ren et al. exploited the com-
putational structure of CNN to explain the prediction results by the SATD features and patterns
learned by CNN [49]. In spite of the advance in SATD identification, the following new challenges
are raised due to the use of (complex) supervised modeling techniques:

(1) Data dependency. For a supervised approach, there is a need to use the labeled data to
train a model (e.g., TM [10], NLP [17], and CNN [49]). As such, its performance heavily
depends on the quality and quantity of comment instances in the training data. If the
training data has a low quality or/and is not enough, then such an approach will have
a low performance. In the most extreme case, it cannot be applied if the training data is
not available. For example, in Huang et al.’s study [10], TM performed worse in the test
project JEdit than in other projects, which only achieved a precision of 0.410. Therefore,
data dependency is an inevitable challenge for supervised modeling techniques.

(2) Risk of reproducibility. A supervised model often involves many parameters needed to
be carefully tuned. In our community, it is not uncommon to see that not all the param-
eter settings are reported in detail when reporting a supervised model. Furthermore, for
many supervised models, their source codes are not publicly available (e.g., CNNand NLP).
Given this situation, for a supervised model, it is challenging for practitioners to replicate
the excellent performance reported in the literature. This is especially true, when consid-
ering the fact that a tiny difference in parameter setting could lead to a huge difference
in prediction performance. Therefore, this challenge may hinder the application of many
supervised approaches.

(3) Computational costs. It is often the case that a supervised approach will consume a large
amount of computational costs including time cost and hardware cost. In particular, the
computational costs may be too large to be ignored when a large number of training data
is used to build a supervised model. For instance, the CNN model built on a deep learning
framework needs to spend several hours to train a new model on a GPU device [49]. At
the same time, a large number of temporary files need be stored on the hard disk. In real
software development, it is a strong desire for practitioners to use a lightweight approach
to deal with such a simple task (i.e., text binary classification problem). Therefore, the
computational costs may also pose a challenge for practitioners to use a supervised model
in practice.

3 MAT: A SIMPLE HEURISTIC MATCHING TASK-ANNOTATION-TAGS APPROACH

In this section, we describe a simple heuristic approach (MAT) to identify SATD comments, which
is a very natural but neglected baseline in SATD identification. First, we introduce our observations
about the popular use of task tags in SATD comments in modern software development practices.
Then, we give an overview of our heuristic baseline approach MAT base on these observations.
Finally, we show the high feasibility of building such a simple-yet-effective baseline. With such
a simple baseline, we are able to examine how far our community has really progressed in the
journey of SATD identification.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:8 Z. Guo et al.

O x B - , T O
e £t Souce Rfsctor Novigele Search Brojct Bun Window tislp
Task Tags Y Avuueviane bvovasa

Configure Projest Specific Setting: # Package Explo e it hppiava 3 Pointjaa | dsaloapsjava
Strings indicating tasks in Java comments. The entry marked as default will be used in 1 package com.javaperspective.tutorials.practice;
the code templates

o Tag Priority New.
Joveilo FIXME High

Task Tags TODO (default) Normal
XK Normal B

¥ 3 public final class Javaloops {
4
Edit. public void printoddunbers() {
T000 inplesent the method printOddunbers
Debug }

Defouit

private void sayBye() {
XME print a friendly

}

message to the standard output

13}

[7] Case sensitive task tag names | 14
. Restore Defaults Apply
[Aeply snd Gose]] | concel
(a) The preferences window for configuring task tags (b) The code comments that contain task tags

g d output
4 printOddNumbers avaloopsjava

(c) The task list shown in the task window

Fig. 1. An example usage scenario of task tags in Eclipse.

3.1 Popularity of Task Annotation Tags in Software Development

3.1.1 The Usefulness of Task Tags. According to the definition of SATDs, we can see that this
kind of technique debt is often added by the developers themselves intentionally. In other words,
developers write these technique debts for the sake of handling them easily in the future. In the
real process of a project development, a project manager usually requests developers to use task
tags or their team has an informal agreement to use task tags to mark these debts explicitly in
purpose of checking and refactoring them in the task list more conveniently later [22].

Task tags are indicative words used as reminders for a work or an action that needs to be done by
a developer [2]. Usually, task tags are embedded in source code comments, i.e., a string followed
by a short description [59]. As a special kind of words, different task tags can express various
problems in a project. Developers can roughly understand what types of problems exist in one
code by reviewing the task tag directly. Well-known task tags are “TODO,” “FIXME,” and “XXX”
[22]. Many popular IDEs (e.g., Eclipse! and NetBeans”) have supported developers to use task
tags for team collaboration and task communication in development [58]. Figure 1(a) presents a
“preferences” window for configuring task tags in Eclipse. It can be seen that the above popular
task tags have been predefined in the default setting.

Task tags are very useful in programming. For example, Figures 1(b) and (c) present a usage
scenario of task tags (taken from Reference [2]). When a developer is developing an application,
he/she may define some methods (e.g., printOddNumbers()) and decide to implement them later.
To avoid forgetting to implement a method, the developer can add a task comment (//TODO im-
plement the method printOddNumbers()) to remind of the task. When checking the completeness
of code, they can easily find out the code that needs to be implemented in time according to these
(task) comments. In particular, Eclipse provides a predefined list of task tags that a developer can
add to his/her code and view in a single location: the task view. A developer just needs to type a
comment starting with the tag words “TODO” or “FIXME” in a new line. This line will automati-
cally appear in the task window (Figure 1(c)) as soon as a developer saves the source code.

Thttps://www.eclipse.org/.
Zhttps://netbeans.org/.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

https://www.eclipse.org/
https://netbeans.org/

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:9

Table 1. The Default Task Tags in Popular IDEs (Four Representative Tags
are Highlighted in Bold)

Popular IDEs Default task tags

Eclipse [5] TODO, FIXME, XXX

Visual Studio [7] TODO, HACK, UNDONE, NOTE

Intelli] IDEA [6] TODO, FIXME

NetBeans [3] @todo, TODO, FIXME, XXX, PENDING, <<<<<<
AndroidStudio [9] TODO, FIXME

CodeClimate [8] TODO, FIXME, HACK, XXX, BUG

Code::Blocks [4] TODO

The representative tags | TODO, FIXME, HACK, XXX

According to Storey et al. [22], task tags play a key role in the work practices of software de-
velopers. In particular, task tags support articulation work such as the problem indicator and the
edge case that would introduce underlying defects into a project. Similarly, task annotation tags
in code comments would also occur near the problematic code. This reveals that task tags should
be an excellent indicator of SATD comments. In their paper, they have listed many popular task
tags (such as “TODO,” “FIXME,” “XXX,” and “HACK”).

3.1.2 The Representative Task Tags. After years of practice and development, many task tags
have been gradually formed. Table 1 lists the default tags supported in popular IDEs [3-9]. As can
be seen, “TODO” is the most popular task tag used by all the seven tools. In addition, “FIXME,”
“XXX,” and “HACK” are supported by at least two popular IDEs. In this sense, “TODO,” “FIXME,”
“XXX,” and “HACK” are the representative four task tags. For each of these four tags, Table 2 lists
the corresponding meanings and use scenario [1]. As can be seen, different task tags can indicate a
specific type of problem at a more fine-grained level. In particular, Table 2 provides usage examples
of task tags in the comments of the projects collected by Maldonado et al. [17].

3.1.3 Preliminary Statistical Evidence: The Availability and Universality of Task Tags in Real
Projects. To investigate whether task tags have a good availability and universality for identifying
SATD comments in real projects, we conduct a preliminary statistic based on the dataset provided
by Maldonado et al. [17] (it is used in many prior studies [10, 49, 95]) to study the distribution of
the above-mentioned four representative task tags in comments. In total, there are 10 projects in
the dataset with 37,056 comment instances (see Table 5). To reduce the manual effort, we randomly
select 10% SATD comments and 10% non-SATD comments from each project to manually inspect.
We find that the number of the selected SATD comments ranges from 7 (EMF) to 96 (ArgoUML)
on these projects, with a total of 277 SATD comments. The number of the selected non-SATD
comments ranges from 211 (Hibernate) to 455 (ArgoUML) on these projects, with a total of 3,420
non-SATD comments.

Figure 2 depicts the percentage of comments (including SATD comments and non-SATD com-
ments) that contain representative task tags. According to the statistical results, the percentages
of task tags embedded in comment instances are higher than 60% for 8 out of the 10 projects. In
particular, for two projects (i.e., ArgoUML and JRuby), almost all the sampled SATD instances in-
clude representative task tags. This indicates that, in real software development, it is common to
use representative task tags to tag the code as suboptimal or remark underlying dangers. Note
that, there are two special cases whose task tag inclusion ratio is lower than one-third (26% for
JEdit and 29% for EMF). One possible reason is that the developers for these two projects use their

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:10 Z.Guo et al.
Table 2. The Meanings and Usage Scenarios of four Representative Task Tags
Tags Meanings and usage scenarios Examples
Comments thaF mark something for later J// TODO: Fully implement this! - [from
work, later revision, or at least later
. . ArgoUML]
reconsideration. TODO comments // TODO implement clear() - [from
TODO | should be considered a very useful P
technique, although like all good things Columba]
ane,) gn gooc Mg // TODO we should generate this. - [from
on Earth, there’s certainly potential for
EMF]
abuse.
A standard put in comments near a piece | // FIXME: not very efficient - [from
FIXME of code that is broken and needs work. JRuby]
Use FIXME to flag something that is // FIXME: There’s some code duplication
bogus and broken. here... - [from JRuby]
A marker that attention is needed.
Com@only used in program comments // XXX - why not simply new File (dir,
to indicate areas that are kluged up or
XXX | need to be. Some hackers like “XXX”, to filename)? -[from Ant]
. . L // XXX this should not hardcoded - [from
the notional heavy-porn movie rating. Edit]
Use it to flag something that is bogus but s
works.
Tempprary code t.o force inflexible // HACK: force the controller to load its
HACK | functionality, or simply a test change, or

work around a known problem.

tree - [from JMeter]

104 969%

0.94

£3%
0.8 - 75.1%
70%
0.74 64.3%
0.6 4
0.54
044

034 26.3%
0.2 4

00 0.5%| J0.5% Ho.z%

0.8% 0%

92.1%

80%

65%

28.6%

1.8%

0.2% 0.3%

0.14 4.9%
T

N
N zc““’(\

&
&F
X & S
S &

0.8%
T

>
S &

&
& &

‘:] % of SATD comments that contain tags

% of non-SATD c

that contain tags

Fig. 2. The percentage of instances that contain task annotation tags.

user-defined tags (JEdit uses “WORKAROUND” and EMF uses “TBD”) rather than the represen-
tative tags (shown in Table 2) provided by popular IDEs. When looking at the statistical result for
non-SATD instances, we can see that, the percentage of non-SATD instances that contain repre-
sentative task tags is very low (less than 5%). This indicates that most non-SATD instances do not
contain representative task tags.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:11

Table 3. The Detailed Number of Sampled Instances That Contain Each Task Tag on Each Project

ArgoUML | Columba | Hibernate | JEdit | JFreeChart | JMeter | JRuby | SQuirrel | Ant | EMF
HACK 0 0 0 2 0 2 4 1 1 0
TODO 92 8 28 1 4 16 21 12 3 2
SATD FIXME 1 1 0 0 3 0 10 0 0
Comment | XXX 0 1 0 2 0 0 0 41 0
#All Tags 93 10 28 5 7 18 35 13 8 2
#SATD 96 12 37 19 10 28 38 20 10 7
HACK 0 0 0 0 0 0 1 0 0 0
TODO 20 1 1 0 0 0 3 1 0 0
non-SATD | FIXME 0 1 0 0 2 0 2 0 0 0
Comment | XXX 2 0 0 1 0 0 0 0 1 2
#All Tags 22 2 1 1 2 0 6 1 1] 2
#non-SATD 445 396 211 444 239 386 326 427 295 | 251

Table 3 reports the detailed number of sampled comments that contain each representative task
tag on each project. In this table, “#All Tags” denotes the number of comments that contain any
one of the four task tags. In other words, it is the sum of numbers of any one task tag. For ex-
ample, “4#All Tags” in the third column and the six row is 93 (93 = 0 + 92 + 1 + 0). “4SATD” (or
“#non-SATD”) denotes the number of SATD (or non-SATD) comments in the samples. As can been
seen, “TODO” occurs in all the 10 projects for SATD comments and occupies most of the propor-
tion (i.e., 85.39%) compared with the other tags. One possible reason is that many developers use
auto-generated annotations by the IDE (e.g., Eclipse), which sets “TODO” as the default tag [5].
Therefore, “TODO” is the most popular tag for indicating SATD. The other tags such as “FIXME”
and “XXX” have preferences on specified projects such JRuby and Ant but appear less frequently
in the other projects. Considering the result for non-SATD comments, there are few task tags for
non-SATD instances. Note that, some task tags (e.g., “HACK” and “XXX”) do not occur in many
projects.

In summary, we conclude that the four representative task tags (i.e., “TODO,” “FIXME,” “XXX,”
and “HACK”) occur more frequently in SATD comments than in non-SATD comments, and they
exist in almost all the investigated 10 projects. In other words, they should have a good availability
and universality to distinguish between SATD comments and non-SATD comments.

3.2 MAT: Fuzzily Matching Annotation Tags to Identify SATD

Inspired by the results in our observations, we develop a simple heuristic approach that matches
the four representative task annotation tags (MAT for short) to identify SATD comments. To en-
sure the accuracy of our approach, we take the following two phases to complete the identification
process: “preprocessing” and “fuzzy matching” (as shown in Figure 3). Additionally, a formal algo-
rithm of MAT is shown in Figure 4.

(1) Preprocessing: The first phase is to preprocess the text of comments. Different developers
may have different habits of comment writing. For example, “TODO” can be written in the form of
“todo,” “Todo,” or “TODO.” Therefore, we conduct a natural language preprocessing similar to that
in Huang et al.’s study [10]. The “preprocessing” phase contains the following two main steps:

(a) Tokenization: Divide the continuous text into single words and keep only English letters
in a token. During this process, all words are converted to lowercase for the convenience
of matching them.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:12 Z. Guo et al.

Task Annotation Tag list: \
TODO, FIXME, XXX, HACK

l

a N\ Matched .
Source Code Prleprgcess /" Comment Fuzzy y SATD
Comments e Tokenization { . | — i > —> |
o . . Token List Matching . Comments
e Stemming \ -/ \. %
Unmatched
/ Non-SATD |

_ Comments /

Fig. 3. An overview of MAT.

Algorithm 1: MAT(C, D)
// Predicting the label (SATD or non-SATD) of a comment
Input: Cis a comment instance

Dis a dictionary of task tags, In default, D = {todo, fixme, hack, xxx}
Output: L is the prediction label of Cie, SATD or non-SATD
1: L = non-SATD
2: tokens = Tokenization(C)
3: stemmed _tokens = Stemming(tokens)
4: for tagi€ Ddo
5: if (FuzzyMatcher(tag;, stemmed._tokens) == true) then
6: L = SATD
7 break
8: endif
9: end for
10: return L

Fig. 4. The algorithm description of MAT.

(b) Stemming: Transform every word into the original form (e.g., “hacks” to “hack”) to improve
the matching accuracy.

(2) Fuzzy matching: The second phase is to match task tags in the preprocessed token list.
A comment is considered indicating SATD if and only if there is at least one task tag (“TODO,”
“FIXME,” “XXX,” or “HACK”) that occurs in the corresponding token list. At the same time, al-
though the comments are preprocessed at the first phase, there are some unexpected cases that
exist in the token set. For example, two words are linked together by deleting the space by a mis-
taken operation (e.g., “pleasefixme” and “hackhere”). These words cannot be directly matched with
task tags. Therefore, we use a fuzzy matching strategy, which will match a word if a task tag is
contained in the start or the end of a word, to find task tags. More specifically, we will consider
tokens such as “fixme,” “pleasefixme,” or “fixmehere” as the matched tokens of “FIXME.” If a com-
ment consists of the above tokens, then it will be classified as a SATD comment. As can be seen,
the fuzzy matching strategy can be easily implemented by using loose regular expressions.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:13

3.3 Potential as a Baseline in SATD lIdentification

Due to the simplicity of MAT, it is very likely to be a baseline approach in SATD identification. In
this section, we state why MAT can be used as a baseline approach in the perspective of necessity
and possibility.

3.1.1 The Necessity of a Simple-yet-effective Baseline Approach in SATD Identification. In recent
years, many researchers have highlighted the necessity of a simple-yet-effective baseline approach
in their respective research fields [61]. According to the latest studies [63], the benefits of using a
simple-yet-effective baseline approach are mainly two-fold. On the one hand, this would ensure
researchers to adequately compare and evaluate the performance of a newly proposed approach
(SATD identification approach in our context). To be useful, a newly proposed approach should
have a significantly better performance than the simple baseline approach and the corresponding
effect size should be non-trivial. Otherwise, the motivation for introducing such a new approach
could not be well justified. This is especially true if the proposed new approach is highly complex
compared with the baseline approach. On the other hand, the ‘ongoing use of a baseline approach
in the literature would give a single point of comparison” [63]. In the literature, a newly proposed
approach is often compared against the state-of-the-art approaches. The underlying assumption
is that a new approach is useful if it shows a superior performance. However, in our community;, it
is not a common practice to share their codes. As a result, researchers often have to re-implement
the state-of-art approaches, where a tiny difference in the implementation may lead to a degraded
performance. In this case, it will be misleading to report that the proposed new approach advances
the state-of-the-art. Furthermore, due to the lack of a common baseline approach, it is not clear
how far have we really progressed in the journey. These problems can be avoided if there is an
ongoing use of a baseline approach whose code is publicly available. In other words, a baseline
approach defines a meaningful point of reference and hence allows a meaningful evaluation of
any new approach against previous approaches.

The importance of a baseline approach has been well recognized in our community. In the field
of software engineering [61-64], many baseline approaches have been proposed. For example,
Krishna et al. proposed a baseline approach for transfer learning [61]. Chen et al. used “sampling”
as a baseline optimizer for search-based software engineering [62]. Zhou et al. suggested that
ManualDown and ManualUp should be used as the baseline approaches in cross-project defect
prediction [64]. In addition to software engineering, a large number of baseline approaches [66-72]
also were proposed in other fields. For instance, Xiao et al. proposed simple baselines for human
pose estimation and tracking [69], while Ethayarajh used a strong but simple baseline to build
unsupervised random walk sentence embedding [70].

In SATD identification, there is no simple-yet-effective baseline approach available. Although
a variety of approaches have been proposed (i.e., Pattern, NLP, TM, CNN, and Jitterbug, shown
in Table 4), they do not satisfy the characteristics that a baseline approach should have. Accord-
ing to Whigham et al. [63] and Krishna et al. [61], to be both useful and widely used, a baseline
approach at least should have the following important characteristics: (1) it should be simple to
describe, implement, and interpret; (2) it should be deterministic in its outcomes; (3) it should
be publicly available via a reference implementation and associated environment for execution;
and (4) it should offer a comparable performance to standard approaches. A baseline approach
holding the above characteristics will facilitate researchers in filtering out actually useless ap-
proaches and to determine really useful approaches in SATD identification. As shown in Table 4,
Pattern has a low accuracy, while NLP, TM, and CNN are complex (many parameters need to be
tuned). Meanwhile, Jitterbug spends a large amount of human effort. In particular, according to

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:14 Z. Guo et al.
Table 4. The Comparison among Existing SATD Identification Approaches
Approach Solution Advantage Disadvantage |Reproducibility
Matching 62 human-summarized . o Human—. Easy
Pattern Simple intuitive | summarized
patterns 1 (open source)
oW accuracy
Leveraging the maximum entro Medium
NLP ragimg Py High accuracy |Complex model |(partial open
classifier
source)
™ Traml.ng Nalye Bayes classifier and High accuracy Less intuitive |Easy
adopting voting strategy complex model |(open source)
Training convolution neural High accuracy |Very complex |Hard
CNN Lo
network intuitive model (not open source)
Jitterbu Extracting SATD-related patterns |High accuracy |Cost human Easy
& |and utilizing human efforts intuitive efforts (open source)

References [86, 87], CNN is hard to reproduce due to its complex structure and parameters. Cur-
rently, there is a need to develop a simple-yet-effective baseline approach for SATD identification.

3.3.2 The Possibility to Build a Simple-yet-effective Baseline Approach in SATD Identification.
As Ren et al. stated, the essence of identifying SATD comments is a task of binary text classifi-
cation [49]. The solutions to these kinds of tasks usually depend on the extraction of semantic
information and the understanding of context. As can be seen, existing approaches described in
Section 2 utilize the semantic information of comment texts in different ways. Pattern summarized
patterns manually to represent the characteristics of SATD. NLP extracted the n-gram information
to represent the semantic of sentences. TM extracted top features as the semantic context of SATD
to train a classification model based on text-mining techniques. CNN utilized the semantic word-
embedding vectors, which contained rich semantic information, of words in comments to train a
powerful prediction model. The unsupervised Pattern is the most intuitive and easiest to under-
stand. However, its recall rate is too low [10]. The other four supervised approaches can achieve a
high accuracy, but their modeling processes are complex. For example, there is no intuitive expla-
nation for a given result predicted by the TM.

Is it possible to build a simple-yet-effective baseline approach for SATD identification? As shown
in Section 3.1, we have the following facts: (1) many task tags such as “TODO” and “FIXME” have
been designed by our community to be used as “reminders of actions, work to do or any other
action required by the programmer” [5]; and (2) these task tags have been supported by popular
IDEs and have been widely used in many real-world projects. This means that these tags should be
strong indicators of SATD in practice, even if some developers may misuse or do not use them for
some reasons (e.g., someone does not know how to use “TODO” or how to use “FIXME”). Given
this situation, we naturally have the following idea: If we use task tags to identify SATD, a high
accuracy will be obtained. In other words, intuitively, it is highly possible to build a simple-yet-
effective baseline approach to identifying SATD by matching task tags in comments. Interest-
ingly, we find that all prior supervised approaches learn to know that these task tags are
strong SATD indicators. In fact, such knowledge is clearly prior, i.e., there is no need to get
such knowledge by a learner. In this sense, matching task tags in comments is a simple, direct,
and natural idea for identifying SATD comments, which are yet neglected by our community. This
intuition motivates us to use prior task tag knowledge to develop MAT. By comparing MAT with
existing SATD identification approaches, we can get an in-depth understanding of “how far we
have really progressed in the journal of automatic SATD identification.”

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:15

4 EXPERIMENTAL SETUP

This section describes the experimental setup. First, we introduce the research questions that the
experiments would like to answer. Then, we describe the studied datasets and their collection
process. After that, we shed light on the two commonly used prediction scenarios. Next, we explain
the experimental results collection method of the compared approaches. Finally, we present the
indicators used for performance evaluation.

4.1 Research Questions

To conduct a fair comparison between MAT and existing approaches, we first set up the following
research question (RQ1) in our empirical study:

e RQ1 Reproducibility of existing approaches

Could we reproduce existing approaches so the performances of reproduced approaches are closed
to the original ones?

Then, in the following research questions (RQ2 and RQ3), we conduct detailed experiments for
comparing the classification performance and classification difference between MAT and existing
approaches:

e RQ2 Classification performance comparison
How effective are existing approaches in identifying SATD comments compared with MAT?
e RQ3 Difference in correct classification results

What is the difference of the correct classification results between existing approaches and MAT in
SATD identification?

Finally, we analyze for supervised approaches the weaknesses in SATD identification and ex-
plore possible improvement strategies in the following research question (RQ4):

e RQ4 Weakness and possible improvement
(1) Why are the supervised approaches not very outstanding compared with MAT?
(2) Which SATD comments cannot be identified by the supervised approaches?
(3) Can the effectiveness of supervised approaches be promoted by incorporating MAT?

4.2 Studied Datasets

To answer above RQs, we use two datasets, collected by Maldonado et al. [17] and ourselves,
respectively, in our experiments.

(1) Dataset-M: collected by Maldonado et al. This dataset was shared by Huang et al. online.?
On their website, there are two important data files: “comments” and “labels.” The “comments”
file lists the comments after filtering with heuristic rules from 10 open-source software projects,
while the “labels” file lists the label (i.e., a SATD comment or a non-SATD comment) for each com-
ment. These 10 open-source projects include ArgoUML 0.34, Columba 1.4, Hibernate 3.3.2, JEdit
4.2, JFreeChart 1.0.19, Jmeter 2.10, Jruby 1.4.0, Squirrel 3.0.3, Ant 1.7.0, and EMF 2.4.1. As stated
by Huang et al., the dataset was originally provided by Maldonado et al. [17, 18]. For each project,
Maldonado et al. used an open-source Eclipse plug-in (i.e., JDeodorant [48]) to parse source code
and extract code comments. In particular, they applied the following five heuristic rules to filter out
those comments that were obviously impossible to be SATD comments: (1) removed license com-
ments; (2) grouped consecutive single-line comments as one comment; (3) removed commented

Shttps://github.com/tkdsheep/TechnicalDebt.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

https://github.com/tkdsheep/TechnicalDebt

45:16 Z. Guo et al.

source code fragments that usually did not contain SATD; (4) removed automatically generated
comments by the IDE (e.g., Eclipse); and (5) removed Javadoc comment unless they contained at
least one task annotation tag (e.g., “TODO:” and “FIXME:”). After obtaining the comments filtered
with these heuristic rules, Maldonado et al. manually determined their labels (i.e., whether a com-
ment was a SATD comment).

(2) Dataset-G: collected by ourselves. Following the same data collection method as used
in Dataset-M, we collected a new dataset, Dataset-G, from another 10 popular open-source Java
projects. The purposes of this are two-fold. First, using a new dataset provides us an opportunity to
observe whether the findings obtained on Dataset-M (the commonly used dataset in the literature)
can be generalized to other projects. Second, combining Dataset-M with Dataset-G together allows
us to have a large sample to draw statistically meaningful conclusions. The new projects involved
in Dataset-G include Dubbo-2.7.4, Gradle-5.6.3, Groovy-2.5.8, Hive-3.1.2, Maven-3.6.2, Poi-4.1.1,
SpringFramework-5.2.0, Storm-2.1.0, Tomcat-9.0.27, and Zookeeper-3.5.6. These projects are se-
lected because they are open source, are well commented, and vary in the number of contributors
and the size of projects. In total, we extract 266,980 comments from these 10 projects and obtain
81,260 comments after filtering. In particular, the number of comments of project Hive is the largest
(i-e., 29,340) and that of project Maven is smallest (i.e., 1,219). In our study, the first author manually
labeled these comments as SATD and non-SATD following Maldonado et al.’s labeling tutorial.*
As a result, we got 2,995 SATD comments (about 1.10% of the total comments). This process took
about 200 hours (one month). To mitigate the risk of providing a biased dataset, we also extracted
a statistically significant sample that was created based on the total number of comments (81, 260)
with a confidence level of 99% and a margin of error of 5%, resulting in a stratified sample of 661
comments.’ According to the principle of stratified sampling, there are 96% comments without
self-admitted technical debt (634 comments) and 4% (i.e., 27) SATD comments. The first and sec-
ond authors relabeled these comments individually. Based on the two group labels, we calculated
the Cohen’s Kappa coefficient [78] to evaluate inter-rater agreement level for categorical scales.
The level of agreement measured between two reviewers achieved to 0.86 (that is larger than 0.75),
an excellent agreement according to Fleiss [79]. To facilitate the research in this field, the dataset
is provided online [80].

Table 5 provides the detail statistics of the 20 projects that belong to different application do-
mains used in our study. The first column shows the group name of each dataset. In the following,
we use Dataset-M and Dataset-G to refer to the dataset provided by Maldonado et al. and our-
selves, respectively. The second column reports for each project the name. The third and fourth
columns report the number of original comments and number of the resulting comments after
filtering. The fifth and sixth columns report the number and the proportion of SATD comments in
the resulting comments. The seventh column reports the number of contributors extracted from
an online community and public directory OpenHub.® The last two columns report the project size
statistics by SLOCCount, including the number of classes and the code size in KLOC.” On aver-
age, the number of the resulting comments for a project is about 5,916, of which 1.10% are SATD
comments.

Note that Huang et al. only used 8 out of 10 datasets to conduct their study (Ant 1.7.0 and EMF
2.4.1 were not used) [10]. Furthermore, we find that, for each of the 8 projects, the number of
comments filtered with the heuristic rules on their website is slightly different from that in their

4https://github.com/Naplues/tse.satd.data/blob/master/replication%20and%20understanding/labeling_turorial.md.
Shttps://www.calculator.net/sample- size- calculator.html?type=18&cl=99&ci=5&pp=50&ps=62566&x=90&y=10.
®https://www.openhub.net/.

Thttp://www.dwheeler.com/sloccount/sloccount.html.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

https://github.com/Naplues/tse.satd.data/blob/master/replication%20and%20understanding/labeling_turorial.md
https://www.calculator.net/sample-size-calculator.html?type=1&cl=99&ci=5&pp=50&ps=62566&x=90&y=10
https://www.openhub.net/
http://www.dwheeler.com/sloccount/sloccount.html

How Far Have We Progressed in Identifying Self-admitted Technical Debts?

Table 5. Statistics of the Comments in the 20 Projects

%o of

#of

Dataset Project #Comments [After filtering| #SATD SATD Cont. classes KLOC

Ant 21,587 3,052 102 0.47% 74 1,475 115

ArgoUML 67,716 5,426 969 1.43% 87 2,609 926

Columba 33,895 4,090 128 0.38% 10 1,711 155

EMF 25,229 2,585 74 0.29% 30 1.458 228

Maldonado et al. Hibernate 11,630 2,492 377 3.24% 314 1,356 703

collected JEdit 16,991 4,644 195 1.15% 57 800 310

(Dataset-M) JFreeChart 23,474 2,494 101 0.43% 19 1,065 317

JMeter 20,084 4,148 282 1.40% 41 1,181 354

JRuby 11,149 3,652 383 3.44% 374 1,486 841

SQuirrel 27,474 4,473 201 0.73% 40 3,108 708

Total 259,229 37,056 2,812 1.08% 1,046 16,249 4,657

Dubbo 5875 1,649 85 1.45% 255 2,532 141

Gradle 15,901 3.324 321 2.02% 409 13,541 406

Groovy 14,199 4,435 249 1.75% 284 2,729 181

Hive 81,127 29,340 1,046 1.29% 192 15,463 1,257

Maven 5,448 1,219 136 2.50% 87 1,158 84

We collected Poi 45,666 15,033 618 1.35% 12 4,793 406
(Dataset-G)

SpringFramework 42,574 7,712 98 0.23% 401 14,686 654

Storm 12,258 3,639 92 0.75% 304 4,787 282

Tomcat 37,038 12,218 287 0.77% 31 4,120 335

Zookeeper 6.894 2,691 63 0.91% 93 1.322 87

Total 266,980 81,260 2,995 1.12% 2,068 65,131 3,833

45:17

published paper. After communicating with Huang, we were told that their dataset was updated
after their paper was published. In other words, the dataset on their website is more reliable. There-
fore, in our article, we use the up-to-date dataset (from 10 projects) on their website to evaluate
the effectiveness of MAT as well as the state-of-the-art approaches. It is worth mentioning that
Ren et al. [49] also conducted their experiments on Dataset-M, although the statistics information
reported in their paper is inconsistent with the information in Table 5 (this was confirmed after
communicating with Ren).

4.3 Prediction Scenarios

According to the existing works [10, 17, 49], we design the following two prediction scenarios
based on the above datasets to conduct the experiments:

e Many-to-one (MTO) prediction. Under this scenario, for each supervised approach (i.e.,
NLP, TM, and Easy), each project is used as the test dataset to evaluate a model built on the
training dataset combined from the remaining 19 projects. For each unsupervised approach
(i.e., Pattern and MAT), it is directly applied to the test data without a training process. For
each approach except CNN, we have 20 experiments. For CNN, we have 10 experiments (i.e.,
the results obtained from the 10 projects on Dataset-M). In total, we have 110 classification
results (5 approaches X 20 projects + 1 approach (CNN) X 10 projects). After obtaining the
results on the 20 projects, we can investigate the non-effort-aware classification effective-
ness (i.e., precision, recall, and F;) and effort-aware classification effectiveness (i.e., ER and
RI) of MAT compared with Pattern, NLP, TM, CNN, and Easy.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:18 Z. Guo et al.

e One-to-One (OTO) prediction. Under this scenario, on a given test project, for each of the
three supervised approaches NLP, TM, and Easy, we have 19 experiments (i.e., we train 19
models using 19 source projects to predict the labels of comments in the target project,
respectively) and use their average performance as the resulting performance. For CNN, we
have 9 experiments (i.e., the results obtained from the 10 projects on Dataset-M) and use
their average performance as the resulting performance. For MAT, we have 1 experiment
(i.e., we predict the labels of comments in the target project directly) on each testing dataset.
In total, we have 90 classification results (4 approaches (NLP, TM, Easy, and MAT) X 20
projects + 1 approach (CNN) x 10 projects). After obtaining the results on 20 (or 10) projects,
we can investigate the effectiveness of MAT compared with the NLP, TM, and Easy (or CNN)
approaches. Note that, we do not compare MAT and Pattern, since their results are same as
those in Scenario 1.

4.4 Compared Approaches

We examine the real progress in SATD identification by comparing MAT with the following ap-
proaches proposed in the literature: Pattern [14], NLP[17], TM [10], CNN [49], and Easyin Jitterbug
[95]. As described in Section 2, Pattern is an unsupervised approach, while the NLP, TM, CNN, and
Easy are supervised approaches. In the following, we describe how to obtain the experimental
results of each approach.

Pattern. We use the patterns (i.e., keywords or phrases appearing frequently in SATD com-
ments) summarized by Potdar et al. to identify the label of each comment in a target project. If
any of these patterns is found in a comment, it will be classified as a SATD comment. Otherwise,
it will be classified as a non-SATD comment. Similar to the Pattern, our MAT approach is also an
unsupervised approach. However, their differences are obvious. As can be seen, MAT uses popular
task annotation tags that are inherently supported by many IDEs designed by our community to
indicate SATD. Furthermore, unlike the Pattern, MAT takes a fuzzy matching strategy, rather than
a strict matching strategy, to identify SATD.

NLP. Since Maldonado et al. [17] and Huang et al. [10] did not share the source code of the NLP,
we read their papers carefully and implement the NLP by ourselves to compare the performance
with MAT. Note that the core of the NLP is based on the Stanford Classifier [60]. Our implemen-
tation also used the same classifier to train the NLP model and the reproduced code is available
online [80].

TM. We use the code shared by Huang et al. [10] for TM. Specifically, for a given target project,
we first train a single sub-classifier for each of the other individual source projects. Then, we use
the resulting sub-classifiers to vote for the label of each comment in the target project.

CNN. Since the code of CNN is not shared online, we first obtained the CNN code for within-
project prediction after communicating with Ren [49]. Then, we modified the CNN code for cross-
project prediction according to the descriptions in Reference [49]. In particular, we set the param-
eters in CNN with Ren’s help. However, as shown in the results of RQ1 (Reproducibility for the
state-of-the-art approaches), we are unable to reproduce the experimental results reported in Ren
et al.’s paper [49]. Moreover, this is not surprising, as reproducibility in deep learning is a huge
challenge.® The main reason is that many factors contribute to non-determinism: initialization of
layer weights, dataset shuffling, randomness in hidden layers, updates to ML frameworks, libraries,
or drivers, and even hardware used during the training process. Therefore, to avoid the implemen-
tation bias, we will use the prediction performance values of CNN reported in their study directly

8https://docs.paperspace.com/machine-learning/wiki/reproducibility-in-machine-learning.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

https://docs.paperspace.com/machine-learning/wiki/reproducibility-in-machine-learning

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:19

Table 6. The Confusion Matrix

Actual label
SATD Non-SATD
Predicted SATD TP FP
label Non-SATD FN TN

to conduct the comparison in Dataset-M. This ensures that we make a fair comparison between
CNN and MAT in SATD identification.

Easy. Jitterbug is a two-step framework that can automatically identify “Easy” SATD comments
and recommend a “Hard” SATD comments list to developers for manually labelling iteratively. In
Section 5, we only use Easy as our compared classification approach, since the Hard component
is not automatic (“Hard” needs to interact with developers to manually label the recommended
comments as SATD or non-SATD). In Section 6, we will further compare MAT with Fitterbug. We
use the code shared by Yu et al. [95] to obtain the result of “Easy.”

4.5 Performance Evaluation

As can be seen, the process of identifying SATD comments is a typical binary classification prob-
lem [42-44] in nature, which aims to determine whether a comment indicates SATD or not. For
the classification result, there are a total four situations (TP, FP, TN, and FN) shown in a confu-
sion matrix in Table 6. Each row represents the comments in a predicted class, while each column
represents the comments in an actual class. More specifically, TP (true positive) denotes the set
of correctly classified SATD comments, FP (false positive) denotes the set of mistakenly classi-
fied non-SATD comments, TN (true negative) denotes the set of correctly classified non-SATD
comments, and FN (false negative) denotes the set of mistakenly classified SATD comments.

Based on the aforementioned confusion matrix, the following three popular performance indi-
cators are often used to evaluate the classification performance of a SATD identification approach
[10, 17, 49, 95]:

Precision is the proportion of comments that are correctly classified as SATD comments among
those classified as SATD comments. If the precision of an approach is high, then the SATD com-
ments identified by this approach are usually correct.

. ITP|
Precision = ——— (1)
|TP| + |FP]

Recall is the proportion of comments that are correctly classified as SATD comments among
those true SATD comments. If the recall of an approach is high, then a large percentage of real
SATD comments can be found in the result of classification.

TP
Recall = # (2)
|TP| + |FN|

F; is the harmonic mean of precision and recall. According to Han et al. [21], precision and recall
are complementary indicators. That is, in many cases, the increase of the precision of an approach
will lead to a decrease of the recall and vice versa. Therefore, it is not comprehensive to evaluate
the performance using the two indicators separately. F; reflects the comprehensive contribution

of both.
2 X Precision X Recall
1 =

— ®3)
Precision + Recall
Although the above three indicators measure the accuracy of classification results, they do not

reflect the effort of reviewing the classification results that developers actually need to spend.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:20 Z. Guo et al.

Many software quality assurance studies (e.g., defect prediction [53, 55, 56], bug localization [96],
vulnerability prediction [72], and fault prediction [76]) have emphasized the importance of using
effort-aware indicators to evaluate a prediction model. To conduct a comprehensive comparison,
we hence include the following two effort-aware indicators:

ER (Effort Reduction) is the proportion of the reduced number of comments to be inspected
(i.e., effort) by a model m compared with a random model random that achieves the same recall
of SATD comments. For a target project, let N be the total number of comments and n be the
number of actual SATD comments. Assume that a model (approach) m predicts xinstances as SATD
comments, in which y comments are actual SATD comments. Thus, the model m will recommend
x comments to developers for review. In this case, the recall of model m is y/n. After a perfect
review, developers can find y SATD comments. That is to say, the effort ratio of reviewing the
result output by model m is as follows:

x
Effort, = N (4)
For a random model random, to achieve the same recall rate as model m (i.e.,y/n), there is a need
to randomly select y/ n * N comment instances for review. Therefore, the effort ratio of reviewing
the result output by a random model is:

Sle

e * N y s
lrandom = = .

ffortrana N " (5)

Therefore, according to the definition of Ef fort, (Equation (4)) and Ef fortrandgom (€.,

Equation (5)), we can get the effort reduction (ER) of model m compared with a random model

as follows:

Effortrandom — Ef fort,, y*N —x=n ©)
Effortrandom yxN ’

According to the confusion matrix, we can get that x = |TP|+|FP|, y=|TP|, n=|TP|+
|[EN|, N = |TP| + |FP| + |FN| + |TN|. ER ,,, > 0 indicates that model m is better than a random
model, and ER ,, < 0 indicates that model m is worse than a random model. For two models m1
and m2, m1is better if ER ,,,; > ER 2.

RI (Recall Increase) is the proportion of the increased recall by a model m compared with a
random model random when m and random inspect the same number of comments (i.e., the same
effort). As described above, the recall of model m is as follows:

ER.,

Recall,, = % (7)

In this context, the corresponding number of inspected comments (i.e., effort) is x. Under the same

eﬂ‘ort, the reCall Ofa random model iS as fOHOWS:
Recallrandom = N = 8
n N ’ ()

Here, n/N denotes the probability of a random model predicting an instance as SATD comment.
Therefore, & * x is the number of SATD comments identified by a random model. According to
the definition of Recall,, (Equation (7)) and Recall, 4n40m (i-€., Equation (8)), we can get the recall

increase (RI) of model m compared with a random model as follows:

_ Recally, — Recall, gngom _ y*N —x*n

RI,,)

RI,, > 0 indicates that model m is better than a random model, and RI,,, < 0 indicates that model
m is worse than a random model. For the two models m1 and m2, m1is better if RI,;,; > Rl,,.

Recall, sndgom X*n

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:21

5 EXPERIMENTAL RESULTS

In this section, we report the experimental results in detail. To enable external replication, we make
the datasets, source codes of MAT, and experimental results in our study publicly available [80].

5.1 RAQ1: Reproducibility of Existing Approaches

To conduct accurate comparisons and get reliable conclusions, all comparisons between existing
approaches and MAT should be based on accurate results. As mentioned above, Pattern is a sim-
ple keyword matching approach that can be reproduced easily and accurately. Meanwhile, the
implementation codes of TM and Easy have been opened by their authors. Therefore, we can get
the entirely same results as they reported. However, there are no open-source codes for both NLP
and CNN. Therefore, we need to reproduce the two approaches to conduct subsequent experi-
ments. The answer to this RQ can ensure the correction of the conclusions obtained in subsequent
experiments and provide an evidence for researchers the difficulty of reproduction in different ap-
proaches. For each of the compared SATD approaches, we read the corresponding paper carefully
and implement the approach according to its description strictly. In particular, we use the same
datasets as used the original studies to conduct the experiments, thus enabling a direct comparison
between our reproduced results and their original results. The following are the reproducibility
details of each approach:

e Reproduction details of NLP approach. To the best of our knowledge, the main compo-
nent of NLP is the Stanford Classifier, which contains all the parameters (i.e., 14) of NLP. To
reproduce this approach, we carefully adjust each parameter according to their description.
The parameter settings of Stanford Classifier used in our reproduced NLP are available in
Reference [80].

e Reproduction details of CNN approach. According to Ren et al.’s work [49], the imple-
mentation of CNN is based on a simple sentence classification model [94]. In particular,
they leveraged weighted loss function to deal with the class imbalance issue and conducted
a sensitivity analysis to obtain the optimal values of three important hyper-parameters: the
dimension size of word embedding, the number of filters, and the combination of filter size
[52]. According to Ren et al.’s description and a code draft they provided, we apply their
weighted loss function and tuned values for the parameters on the simple sentence classifi-
cation model. The parameter settings of our reproduced CNN are also available in Reference
[80].

Results of reproduced NLP approaches. To examine the correctness of NLP we implemented,
we use Table 7 to report the comparison of NLP reproduced by Huang et al., Ren et al., and our-
selves. Note that there are only 8 projects considered in Huang et al.’s experiment (Ant and EMF
were not used), while there are 10 projects considered in Ren et al.’s experiment. To make a fair
comparison, we use the same projects as used in their studies. Considering the F; indicator, on
average, our NLP can achieve a value of 0.705 on 8 projects (and 0.654 on 10 projects), which is
higher than 0.576 obtained by Huang et al. on 8 projects and 0.624 obtained by Ren et al. on 10
projects. Similar results can be found in terms of average recall. As for average precision, our re-
sult is higher than Huang et al.’s result. Although our precision is slightly lower than Ren et al.’s
result, the average F; value of our result is higher. Note that, the performances of our implemented
NLP on 10 projects are lower than that on 8 projects. The reason is that Ant and EMF have dif-
ferent comment characteristics from the other 8 projects (e.g., many SATD comments in the two
projects do not contain important features such as “todo”). Therefore, it is easy to understand that
adding the comments of these two projects into the training set will have negative impacts on the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:22 Z. Guo et al.

Table 7. The Comparison of NLP Approaches Implemented by Different Authors
Based on Dataset-M

Compared with Huang et al. under 8 projects Compared with Ren et al. under 10 projects
Precision Recall F, Precision Recall F,
Implemented by (Huang et al.| Ourselves [Huang et al.| Ourselves |Huang et al.| Ourselves | Renetal. | Ourselves | Renetal. | Ourselves | Renetal. [Ourselves
Ant - - - - - - 0.524 0.476 0.431 0.480 0.473 0.478
ArgoUML 0.726 0.801 0.897 0.886 0.802 0.841 0.821 0.798 0.851 0.878 0.836 0.836
Columba 0.677 0.792 0.688 0.742 0.682 0.766 0.786 0.754 0.719 0.742 0.751 0.748
EMF - - - - - - 0.449 0.433 0.297 0.392 0.358 0.411
Hibernate 0.565 0.837 0.610 0.682 0.587 0.751 0.862 0.822 0.663 0.674 0.750 0.741
Jedit 0.473 0.686 0.446 0.359 0.459 0.471 0.691 0.667 0.333 0.369 0.450 0.475
JFreeChart 0.516 0.633 0.485 0.614 0.500 0.623 0.846 0.663 0.436 0.644 0.575 0.653
Jmeter 0.503 0.779 0.624 0.738 0.557 0.758 0.836 0.757 0.741 0.706 0.786 0.730
Jruby 0.589 0.782 0.580 0.760 0.584 0.771 0.791 0.796 0.504 0.794 0.616 0.795
Squirrel 0.325 0.623 0.657 0.692 0.435 0.656 0.655 0.657 0.642 0.687 0.648 0.672
Average 0.547 0.742 0.623 0.684 0.576 0.705 0.726 0.682 0.562 0.637 0.624 0.654
Median 0.541 0.781 0.617 0.715 0.571 0.755 0.789 0.711 0.573 0.681 0.632 0.701

Table 8. The Performance of CNN Approaches Implemented by
Different Authors Based on Dataset-M

Precision Recall F,

Implemented by | Ren etal. | Ourselves | Renetal. | Ourselves | Renetal. | Ourselves
Ant 0.584 0.515 0.758 0.686 0.660 0.588
ArgoUML 0.816 0.766 0.950 0.928 0.878 0.839
Columba 0.830 0.390 0.875 0.773 0.852 0.518
EMF 0.793 0.158 0.594 0.527 0.679 0.243
Hibernate 0.930 0.771 0.743 0.849 0.826 0.808
Jedit 0.773 0.239 0.489 0.456 0.599 0314
JFreeChart 0.686 0.199 0.802 0.851 0.739 0.323
Jmeter 0.873 0.815 0.787 0.780 0.828 0.797
Jruby 0.805 0.752 0.930 0.697 0.836 0.724
Squirrel 0.794 0.812 0.692 0.622 0.739 0.704
Average 0.788 0.542 0.762 0.717 0.764 0.586
Median 0.800 0.634 0.773 0.735 0.783 0.646

performance of a supervised approach (i.e., NLP). According to the comparison result, the NLP we
implemented is excellent, so it can be used for subsequent comparison.

Results of reproduced CNN approaches. Table 8 reports the performance comparison of
CNNs provided by Ren et al. and reproduced by us on Dataset-M. As can be seen, there is a
large difference in performance between the two implementations. On average, the precision, re-
call, and F; of CNN implemented by us can achieve 0.542, 0.717, and 0.586, which, respectively,
has a deterioration of 31.22%, 5.91%, and 23.30% compared with the results reported by Ren et al.
This means that our implemented CNN cannot reproduce the excellent performance reported by
Ren et al. In particular, the precision of our CNN implementation on EMF, JEdit, and JFreeChart
are especially low (less than 0.3). The reason may be that the parameters of CNN are too complex
to reproduce. To make a fair comparison between CNN and MAT in later experiments, we only use
the results reported by Ren et al. on the Dataset-M to represent the performance of CNN.

Observations from the reproduced results and reproduction processes. According to the
reproduction process and the comparison results of performance aforementioned above, we make
the following two key observations about the NLP and CNN:

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:23

(1) Complex models. The numerous parameters in the structure of the supervised ap-
proaches can bring huge challenges for understanding and applying them. For NLP, there
are 14 parameters (including 5 binary parameters and 9 numerical parameters) that can
affect the performance of a NLP model. It is a challenge to set up a group of suitable pa-
rameters that can have a good predictive capability on many test projects. Compared with
NLP, the CNN model is more complicated. First, there are many processing layers (includ-
ing input layer, embedding layer, convolution layer, pooling layer, fully connected layer,
and output layer) to construct the prediction model. For example, the input layer accepts
and transforms comment data for subsequent modeling, and the pooling layer is added
to extract important features and to prevent overfitting. The combination of these layers
can enhance the performance of a CNN model. However, there are many parameters in
each of the above layers that need to be tuned carefully to build an effective prediction
model. Second, various additional functions (e.g., activation function and loss function)
are added to ensure the robustness of a CNN model. These functions play an important
role in CNN and various neural network models. For example, the activation function can
elevate the expression ability of a liner model, and the loss function is set to measure the
difference between the output and actual values. Third, many detailed operations (e.g.,
batch normalization) and hyper parameters (e.g., the size of vocabulary and the number
of filters) will also affect the performance of a CNN model. Last but not least, it cannot
be ignored for the consumption of the computing resources of a CNN model. In total, the
NLP and CNN are both complex in their structures.

(2) Highreproduction cost. For complex approaches, there are huge parameter spaces to ex-
plore, large training time to spend, and many details to take into consideration. Therefore,
it is difficult to reproduce these approaches exactly as the result reported by their original
authors. Many studies [46, 86, 87] have confirmed this standpoint. For example, Beam et al.
point out that there are great challenges to the reproducibility of machine learning models
[87]. According to their findings, even if the same code is used by different researchers,
they could obtain substantially different conclusions if some parameters are given differ-
ent values. In our study, to obtain the performance that is consistent with the original
study, we try our best to reproduce these approaches according to the descriptions from
their papers. However, we do not get exactly the same results, since not all details (e.g.,
some parameters) about their approaches are reported explicitly and clearly. Although
it is possible that our implementation is biased, the more important lesson we learned
is the hard reproducibility of these approaches. This is especially true for a CNN model,
where a trivial change in its parameter values can have a huge influence on the prediction
performance. A recent empirical study on the replicability and reproducibility of deep
learning models [46] also validates the standpoint. In particular, they summarized that
the difficulties of reproduction or replication are from four factors: model stability, model
convergence, out-of-vocabulary issue, and testing data size. Their empirical results show
that these factors can influence the performance of a deep learning model substantially,
and hence the reproduction cost is increased largely. Therefore, there are non-negligible
challenges when applying these approaches in practice due to their high reproduction
cost.

Due to the high reproduction cost of these approaches, it may hinder developers to apply them
in practice. In other words, there are non-ignorable challenges for developers to implement these
approaches that can achieve exactly the same performance reported by the original authors. For
example, the performance of our implemented CNN is poor compared to the one reported by Ren

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:24 Z. Guo et al.

et al. Note that, although our reproduced CNN has a low performance, it does not mean that CNN
is not effective. On the contrary, as stated in Reference [49], CNN-based models have been shown
very useful in many research fields (e.g., bug localization [89, 90], defect prediction [91], and soft-
ware community question retrieval [92, 93]). However, the low results of our implementation indi-
cate that, as a practitioner, there are great challenges to achieve an equally excellent performance
without their complete CNN source code.

Conclusion. In summary, the reproduction difficulty of existing approaches can be classified into
three categories: (1) Low (Pattern, TM, and Easy). These approaches can be used directly, since they
can be easily implemented or have open-source code; (2) Medium (NLP). Although the code of the
approach is not open source, we can reproduce it with an acceptable cost; (3) High (CNN). There are
considerable challenges to reproduce this approach, since it contains complicated structure and many
parameters.

5.2 RQ2: Classification Performance Comparison

As mentioned in previous sections, MAT is an intuitive, simple, and easy-to-understand approach
in identifying SATD comments. This is very helpful for practical use. Being an unsupervised ap-
proach, MAT can be applied to identify SATD directly in a target project without a need to train
a model in advance. This is an obvious advantage over the (complex) supervised approaches. In
this RQ, we want to know how well existing approaches perform in classification performance
compared with MAT. If MAT exhibits a very competitive or even superior classification perfor-
mance, then we can conclude: (1) the current progress in identifying SATD comments is not as
good as they described; and (2) developers should apply a simple approach instead of using a com-
plex approach in practice. To answer this research question, we use the same datasets to evaluate
the classification performance of MAT as well as existing approaches under both MTO and OTO
scenarios.

Under each scenario, we employ the BH-corrected p-values from the Wilcoxon signed-rank test
to examine whether there is a statistically significant difference between MAT and each of existing
approaches at the significance level of 0.05. Furthermore, we use the Cliff’s delta (§) to quantify the
effect size of the difference. This enables us to know whether the magnitude of the difference in
performances between two approaches is important from the viewpoint of practical application.
By convention, the magnitude of the difference is considered trivial (|§| < 0.147), small (0.147-0.33),
moderate (0.33-0.474), or large (>0.474).

(1) How effective are existing approaches in identifying SATD comments compared
with MAT under many-to-one cross-project prediction scenario?

Figures 5-6 report the performance comparison results between existing approaches and MAT.
For each figure, the detailed performance scores of each approach and the improvement rates that
MAT achieves are available in Reference [80]. On the 20 projects, on average MAT can achieve a
precision of 0.815, a recall of 0.687, an F; value of 0.726, an ER of 0.926, and an RI of 19.483. This
result is excellent for SATD comments identification. However, there are some exceptional cases.
For instance, MAT has a recall lower than 0.500 in three projects (i.e., 0.205 for JEdit, 0.461 for Ant,
and 0.351 for EMF). The reason for this is that the four task tags used in MAT rarely exist in these
projects. According to the result, we have the following observations:

MAT wvs. Pattern. In terms of precision, MAT has a better (higher) value on 12 out of 20
projects, with an average improvement of 2.6%. This indicates that MAT does not lose precision
due to matching fewer words (i.e., only four tags). Considering the recall and F; of MAT, it has an
average improvement of 1,188.4% and 643.3% compared with Pattern, respectively. The great im-
provement on recall indicates that MAT can identify more SATD comments than Pattern. This is

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts?

[CJ25%~75% 1 Range within 1.5IQR_ — MedianLine = Mean ¢ Outliers|

1.0 A
0.6 %
0.4 4
z L d * : ¢
0.2 . : .
=2 =
Pattern |[NLP| T™ [Easy] MAT [Pattern [NLP| T™ [Easy| MAT [Pattern [NLP| T™ [Easy| MAT
Precision Recall F,

45:25

80 o

0.

0.8+ 204
. . . .

0.7

o
!

Paterm | NLP | TM [Basy | MAT Patem | NLP | TM [Easy | MAT
ER RI

Fig. 5. The performance comparison based on Dataset-M and Dataset-G under the MTO scenario: Pattern,
NLP, TM, and Easy vs. MAT.

[125%~75% | Range within 1.5IQR_— MedianLine = Mean + Outliers|
40
1.0 4
)
%l 30
0.8 4
.
.
064 . 20
0.4
10 4
0.2
0+
0.0
CNN | MAT [oNN | MAT [oNN [MAT [oNN [MAT CNN | MAT
Precision Recall F ER RI

Fig. 6. The performance comparison based on Dataset-M under the MTO scenario: CNN vs. MAT.

mainly caused by the inherent imprecision of text matching via limited patterns in Pattern (i.e.,
keywords or phrase). In other words, natural language is more diversified, so a fixed pattern can-
not match another expression of that pattern. For example, there is a pattern called “remove this
code,” according to Potdar et al. However, a SATD comment “todo remove this old implementation
after it’s demonstrated that it’s not needed” (from ArgoUML project) cannot be identified by the
pattern even though their semantics are very similar. Because of this reason, Pattern may leave out

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:26 Z. Guo et al.

Table 9. The Results from the Wilcoxon-singed Rank Test and the Cliff’s Delta when Comparing MAT
with Existing Approaches under the MTO Scenario (Bold Fonts Denote that the P-value is Less Than 0.05)
(Abbr. N: Negligible; S: Small; M: Medium; L: Large)

BH corrected p-value Cliff’s delta
Indicators | Pattern NLP TM Easy = CNN | Pattern NLP ™ Easy CNN
Precision | 0.519 0.000 0.001 0.008 0.004 | 0.080 (N) 0.650 (L) 0.330 (M) —0.138(N) 0.620 (L)
Recall 0.000 0.003 0.018 0.020 0.008 | 1.000 (L) 0.445 (M) 0230(S) 0.068(N) —0.260 (S)
F1 0.000 0.001 0.004 0400 0366 | 1.000 (L) 0.490 (L) 0265(S) 0.015(N) —0.060 (N)
ER 0329 0.000 0.001 0.008 0.008 | 0.058(N) 0.265(S) 0.110 (N) —0.063 (N) 0.230 (S)
RI 0.546 0.000 0.001 0.008 0.004 | 0.055(N) 0.265(S) 0.115(N) —0.060 (N) 0.220 (S)

many of SATD comments. Considering the two effort-aware indicators (i.e., ER and RI), MAT has
an improvement of 0.8% and 16.1% in terms of median value of them, respectively, which shows a
slight advantage over Pattern.

MAT wvs. NLP. On average, MAT performs better than NLP with respect to all five indicators.
In terms of precision, MAT has an average improvement of 24.2% compared with NLP. Note that,
the precision of MAT is higher than that of NLP in all target projects. When looking at recall, we
find that MAT can identify more SATD comments in the majority (18 out of 20) of projects, with
an average improvement of 13.6%. In terms of F; score, on average, MAT has an improvement of
16.7% compared with NLP. Considering ER and RI, MAT has an average improvement of 1.3% and
37.2%, respectively.

MAT vs. TM. Compared with TM, MAT performs better in the majority of projects. On average,
MAT has an improvement of 7.6%, 6.6%, 5.8%, 0.4%, and 10.2% in terms of precision, recall, F;, ER,
and RI, respectively. In particular, MAT achieves promising improvements in Ant (i.e., 16.4%) and
Tomcat (i.e., 19.0%) in terms of F; and in Ant (i.e., 31.3%) and EMF (i.e., 25.9%) in terms of RI.

MAT vs. Easy. MAT has a very similar effectiveness compared with Easy. The reason is that
MAT and Easy use very similar patterns (e.g., “fixme,” “todo”) to identify SATD comments. In par-
ticular, on average, MAT shows 4.2% improvement in recall and 2.3 improvement in F;. However,
on average, MAT shows 2.5% reduction in precision, 0.1% reduction in ER, and 4.8% reduction in
RI, respectively.

MAT vs. CNN. Compared with CNN, we find that MAT can achieve an average improvement
of 12.6% in terms of precision. Note that, the precision of MAT is higher in all target projects. In
particular, MAT can achieve a large improvement on many projects (e.g., 49.0% for Ant). As an
unsupervised approach, this is a great advantage for accurate identification of SATD comments.
The comparison between MAT and CNNin terms of recall shows that MAT can identify fewer SATD
comments than CNN. This is understandable, because MAT cannot identify those SATD comments
that are not marked by task tags (e.g., “Nasty hardcoded values” from JEdit). However, CNN can
identify these comments by semantic analysis. The situation is particularly evident for JEdit, on
which MAT decreases the recall value of 58.1% compared with CNN. According to the median Fy,
MATachieves a value of 0.779 that is very close to that (0.783) of CNN. In particular, MAT has higher
ER and RI than CNN, regardless of whether the mean or median value is considered. This reveals
that MAT is more cost-effective than CNN in identifying SATD when compared with a random
model: On the one hand, MAT leads to a higher inspection effort reduction in finding the same
number of SATD; and on the other hand, MAT leads to a higher recall increase when inspecting
the same number of comments.

Table 9 reports the results from statistical analyses under the MTO prediction scenario. In the
view of the statistical test, we make the following observations: First, MAT is significantly better

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:27

“:l25%~75% T Range within 1.5IQR — Median Line © Mean ¢ Oullicrs‘

0.8
- *
*
02 . . :
= : =
0.0

Pattern |NLP[TM [Easy[MAT [Pattern [NLP] T™ [Easy] MAT [Pattern [NLP|T™ [Easy[MAT

HiH

Precision Recall F,

0.9 ? 07
404 .
0.8
. .

3

. 20
0.7 4 *

: ==

Patem | NLP | TM | Easy | MAT Patiern | NLP | TM | Easy | MAT
ER RI

=3

Fig. 7. The performance comparison based on Dataset-M and Dataset-G under the OTO scenario: Pattern,
NLP, TM, and Easy vs. MAT.

than Pattern (the effect size is large) when recall and F; is considered. Second, when compared with
NLP and TM, MAT exhibits a significantly better performance for all indicators (the effect size is
non-negligible in most cases). Third, although there are significant differences between Easy and
MAT in precision, recall, ER, and R, the corresponding effect sizes are negligible. Finally, MAT is
significantly worse than CNN in terms of recall (the effect size is small) but is significantly better
than CNN in terms of precision, ER, and RI (the effect sizes are small to large).

Combining the above results, we find that, under the MTO prediction scenario: MAT has an
outstanding classification performance compared with the unsupervised approach Pattern; in ad-
dition, MAT is very competitive or even superior to all the supervised approaches (NLP, TM, Easy,
and CNN).

(2) How effective are existing approaches in identifying SATD comments compared
with MAT under one-to-one cross-project prediction scenario?

Figures 7-8 report the performance comparison results under the OTO prediction scenario. Since
MAT and Pattern are unsupervised approaches, they are not influenced by the training data. As
a result, they have the same performance under the MTO and OTO scenarios. According to the
results, we have the following observations:

MAT vs. NLP. In terms of precision, MAT has a better (higher) value on 18 out of 20 projects,
which has an average improvement of 15.9%. Considering the recall, MAT performs better than

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:28 Z. Guo et al.

[125%-75% | Range within I.5IQR — MedianLine = Mean + Outliers|

40

] & =L

.

0.4

0.2 4

0.0

CNN [MAT [oNN [MAT [oNN [MAT | ONN | MAT CNN_| MAT
Precision Recall F ER RI

Fig. 8. The performance comparison based on Dataset-M under the OTO scenario: CNN vs. MAT.

NLPin all 20 projects, which has an average improvement of 45.9%. Similarly, we can see that MAT
achieves a better F; than NLP in all the 20 projects, with an average improvement of 31.2%. As
for ER and RI, MAT is better than NLP for most projects. Note that, the average precision of NLP
increases under the OTO prediction scenario (0.656 under MTO vs. 0.703 under OTO). Meanwhile,
the average F; under OTO (0.553) is slightly lower than that under MTO (0.621) when the number
of projects for training are reduced largely (from 19 projects to one project). The above results
show that NLP can maintain a good performance even with a relatively small training dataset
when identifying SATD comments, which is consistent with that found in Reference [17]. Also,
we find that NLP has similar average ER and RI values under OTO and MTO.

MAT vs. TM. Compared with TM, on average, MAT has an improvement of 120.7%, 19.6%, 66.4%,
8.9%, and 201.7% in terms of precision, recall, F, ER, and R, respectively. In particular, for precision,
ER, and RI, MAT is better than TM in all projects. We can see that, under the OTO scenario, the
average precision of TM decreases largely (0.757 under MTO vs. 0.369 under OTO). This indicates
that, the precision of TM is very sensitive to training set size. Many false positive instances will
be introduced by TM when the training set is small. As for the average recall, there is no large
difference under the two scenarios (0.644 under MTO vs. 0.574 under OTO), which means that the
recall of TM is not sensitive to training set size. Note that, there is a small reduction when looking
at the average ER (0.922 under MTO vs. 0.850 under OTO), while there is a large reduction for the
average RI (17.673 under MTO vs. 6.458 under OTO).

MAT vs. Easy. Under the OTO scenario, MAT performs better than Easy on all the projects. On
average, MAT has an improvement of 53.4%, 93.9%, 75.6%, 4.4%, and 55.6% in terms of precision,
recall, F;, ER, and RI, respectively. For Easy, there is a large performance drop when comparing
OTO with MTO, regardless of which performance indicator is considered. The main reason is that
the patterns extracted from a single project are not representative. For instance, Easy only extracts
one pattern (i.e., “xxx”) from Ant and it extracts nothing from Hive. In this case, it is not possible
to make accurate predictions for a target project by matching these poor patterns. To facilitate
external examination, we make all the extracted patterns online.’

MAT vs. CNN. MAT performs better than CNN, regardless of which performance indicator is
considered. Compared with CNN, MAT can achieve an average improvement of 59.5% in terms of
precision. Different from the MTO scenario, MAT has a better average recall than CNN under the

“https://github.com/Naplues/MAT/blob/master/result/pattern. txt.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

https://github.com/Naplues/MAT/blob/master/result/pattern.txt

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:29

Table 10. The Results from the Wilcoxon-singed Rank Test and the Cliff’s Delta when Comparing MAT
with Existing Approaches under the OTO Scenario (Bold Fonts Denote that the P-value is Less than
0.05) (Abbr. N: Negligible; S: Small; M: Medium; L: Large)

BH corrected p-value Cliff’s delta
Indicators | Pattern NLP TM Easy = CNN | Pattern NLP ™ Easy CNN
Precision | 0.519 0.000 0.000 0.000 0.002 | 0.080 (N) 0.528 (L) 0.990 (L) 1.000 (L) 1.000 (L)
Recall 0.000 0.000 0.001 0.000 0.066 | 1.000(L) 0.700 (L) 0.570 (L) 0.835(L) 0.510 (L)
F1 0.000 0.000 0.000 0.000 0.007 | 1.000 (L) 0.695(L) 0.870(L) 0.913 (M) 0.660 (L)
ER 0.301 0.000 0.000 0.000 0.002 | 0.058 (N) 0.185(S) 0.675(L) 0.358 (M) 0.490 (L)
RI 0.546 0.000 0.000 0.000 0.002 | 0.055(N) 0.185(S) 0.675(L) 0.360 (M) 0.480 (L)

OTO scenario, with an average improvement of 33.0%. Considering the F; score, MAT performs
better than CNN in most (8 out of 10) projects, with an average improvement of 28.1%. This means
that MAT is better than the latest supervised approach when the training set is small. Note that,
CNN achieves a low average recall (0.489) under the OTO scenario compared with that (0.762)
under the MTO scenario. The large degradation reveals that many SATD comments cannot be
identified by CNN when the training data are limited. Considering the effort-aware indicators,
there is also a large reduction for RI (14.595 under MTO vs. 9.792 under OTO).

Table 10 reports the results from statistical analyses under the OTO prediction scenario. In the
view of the statistical test, we make the following observations: In terms of the majority of com-
parisons, MAT is significantly better (p-value < 0.05) than existing approaches (the effect sizes are
medium to large in most cases).

Combining the above results, we can see that, under the OTO scenario, the effectiveness of exist-
ing supervised approaches declines in various degrees. Overall, MAT outperforms all the existing
approaches in identifying SATD comments under the scenario that only limited training data are
available.

Conclusion. In summary, MAT exhibits a very competitive or even superior overall performance to
existing approaches when identifying self-admitted technical debt. This indicates that, if the prediction
performance is the goal, then the current progress in identifying SATD comments is not being achieved
as it might have been envisaged in the literature.

5.3 RQ3: Difference in Correct Classification Results

In RQ2, we calculate an overall performance score (such as precision, recall, and F;) to represent
how well an approach correctly predicts SATD comments by considering the level of incorrect
predictions made. However, only the overall performance score cannot illustrate the classifica-
tion result of a single comment classified by different approaches. According to Reference [74],
the overall performance can hide a variety of differences in the defects that each classifier pre-
dicts. Similarly, for SATD classification, it is important to investigate the difference in individual
SATD and non-SATD comments identified by various approaches. Studying the difference will
help us understand the classification characteristics of various approaches such as the overlapped
instances and unique instances identified by different approaches. As a result, we can analyze the
advantages and disadvantages of each approach. More specifically, in our study, we investigate the
difference of the correct classification results among MAT, NLP, TM, and Easy. Note that, in RQ3,
we do not consider the Pattern and the CNN. The reasons are the following: For the former ap-
proach, the recall is too low to conduct the analysis; for the latter approach, its code is not shared
online (it is hard to implement it by ourselves to exactly reproduce Ren et al.’s results due to many

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:30 Z. Guo et al.

parameters involved), and their original classification results (i.e., which instances are classified as
SATD or non-SATD) are also not publicly available.

According to Maldonado et al.’s study [17] and Huang et al.’s study [10], both the NLP, TM,
and Easy are evaluated under the MTO scenario. Consistent with their studies, we investigate RQ3
under the MTO scenario. First, for each project, we obtain the true positive SATD comments (and
true negative SATD comments) that four approaches (i.e., the MAT, NLP, TM, and Easy) can iden-
tify. Then, we use a set diagram to describe the difference among four approaches in terms of the
specific SATD comments (and non-SATD comments) that each approach identifies and does not
identify. Second, we leverage McNemar’s test [84] to compare if there exists a statistical signifi-
cance for the prediction errors between any supervised approach and MAT. According to Zhang
et al. [88], the calculation of McNemar’s test between two approaches al and a2 is based on a
contingency matrix shown as follows:

[NCC NCW] , (10)

NWC NWW

where N.. (or N,,,,) denotes the number of instances that both approaches make correct (or wrong)
predictions; N¢,, (or N,,.) denotes the number of instances that al makes correct (or wrong) pre-
diction, but a2 produces wrong (or correct) prediction. After obtaining the contingency matrix,
we also apply R function mcnemar.exact from R package exact2 X 2 to conduct McNemar’s test as
used in Reference [88]. In addition, we use odds ratio (OR) [85] to measure the effect size of this
kind of difference. The definition of OR is shown as follows:
Ny + 1. (11)
Ny +1
Note that, we add 1 to both N¢,, and N,,. to avoid generating a divisor equal to 0. An OR > 1
indicates that a2 makes more wrong predictions than al and vice versa. An OR = 1 indicates that
al and a2 make the same number of wrong predictions.

Figure 9 reports the number of true positive instances (TPs) identified by NLP, TM, Easy, and
MAT, while Figure 10 reports the number of true negative instances (TNs) identified by NLP, TM,
Easy, and MAT. In each figure, the orange, blue, red, and green ellipses, respectively, denote the
number of SATD comments that are correctly classified by NLP, Easy, MAT, and TM. Each Venn
diagram (corresponds to a project) in Figure 9 (or Figure 10) shows the number of overlaps of TP
(or TN) instances among the prediction results of each approach. For example, for the project Ant
shown in Figure 9, there are 14 same SATD comments correctly identified by all four approaches,
10 same SATD comments are identified correctly by only both NLP and MAT, and 6 unique SATD
comments are correctly identified by only TM.

From Figure 9, we can see that, the SATD comments correctly classified by NLP, TM, Easy,
and MAT are largely overlapped. Specifically, all four approaches agree on 3,055 (63.02%) out of
4,848 true SATD comments. These overlapped SATD comments accounts for 79.66% of the 3,835
SATD comments correctly identified by NLP, 75.98% of the 4,021 SATD comments correctly iden-
tified by TM, 70.12% of the 4,357 SATD comments correctly identified by Easy, and 68.62% of the
4,452 SATD comments correctly identified by MAT. This indicates that MAT can identify more
SATD comments than NLP, TM, and Easy.

According to Figure 10, it can be seen that, most of the non-SATD comments correctly classified
by NLP, TM, Easy, and MAT are also overlapped. In total, all four approaches agree on 109,936
(98.15%) out of 112,011 true non-SATD comments. These overlapped non-SATD comments account
for 99.36% of the non-SATD comments correctly identified by NLP (110,644), 98.76% of the non-
SATD comments correctly identified by TM (111,311), 98.52% of the non-SATD comments correctly

OR =

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:31

Easy MAT

Easy MAT MAT

Ant ArgoUML Columba
Easy MAT Easy MAT

Ny 7

S
Hibernate

Easy MAT

JFreeChart
Easy MAT

SQuirrel
MAT

SpringFramework Storm Tomcat Zookeeper

Fig. 9. Set diagrams for the number of true positive instances identified by MAT and three supervised ap-
proaches (NLP, TM, and Easy) on 20 projects.

identified by Easy (111,583), and 98.62% of the non-SATD comments correctly identified by MAT
(111,479). This indicates that most non-SATD comments can also be correctly identified by all
four approaches. Note that, there is almost no difference among each approach in terms of the
number of the identified correct non-SATD comments. Compared with the overlapped non-SATD
comments, the unique non-SATD comments identified by each approach are very few (i.e., the
percentage is lower than 1%) and hence there are no large differences among the four approaches.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:32 Z. Guo et al.

<
S
~A

ArgoUML Columba
Easy MAT Easy MAT

<
S\

-
-
-
N

—_—

JFreeChart
Easy MAT

SN
Gradle
Easy MAT

SQuirrel
Easy MAT

SpringFramework Storm Tomcat Zookeeper

Fig. 10. Set diagrams for the number of true negative instances identified by MAT and three supervised
approaches (NLP, TM, and Easy) on 20 projects.

Table 11 reports the comparison between MAT and each supervised approach in the perspective
of TP instances. For each supervised approach, the first column reports the number of true positive
instances, the second column (i.e., %Hit) reports the percentage of true positive instances that
can also be correctly identified by MAT, and the third column (i.e., %Over) reports the ratio (in
percentage) of the number of instances only correctly identified by MAT to the number of true

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:33

Table 11. The Comparison between MAT and Each Supervised Approach in the Perspective of TP
Instances (%Hit = |TPSupervised N TPmaTl/ |TPSupervised|; %Over = [TPmAT — TPSupervised| /
|TPSupervised|)

Project MAT v.s. NLP MAT v.s. TM MAT v.s. Easy
TPyyp %Hit %Over TPy % Hit % Over TPE,‘sy %Hit %Over
Ant 50 7600% 18.00% | 43 7442% 3488% | 21 100.00% 12381%
ArgoUML 776 97.94% 18.56% | 730 98.63% 2521% | 904 99.78% 0.22%
Columba 85 90.59% 3412% | 105 9429% 667% | 103 100.00% 2.91%
EMF 25 80.00% 2400% | 32 71.88% 938% 25 100.00% 4.00%
Hibernate 236 9322% 2246% | 259 9344% 11.97% | 272 100.00% 037%
JEdit 61 42.62% 2295% | 59 5254% 1525% | 32 100.00% 25.00%
JFreeChart 64 8504% 28.13% | 77 9481% 0.00% 73 100.00% 0.00%
TMeter 194 97.94% 1546% | 207 96.62% 9.66% | 220 _ 100.00% _ 0.00%
JRuby 283 9647% 2297% | 320 97.50% 8.13% | 331 100.00% 2.11%
SQuirrel 110 8273% 29.09% | 117 90.60% 1453% | 123 100.00% 0.00%
Dubbo 54 9630% 2037% | 58 100.00% 8.62% 63 100.00% 0.00%
Gradle 202 8465% 32.67% | 203 91.13% 25.62% | 243 97.53% _ 0.00%
Groovy 178 96.63% 18.54% | 194 9536% 1031% | 205 100.00% 0.00%
Hive 693 92.64% 2222% | 703 9573% 17.50% | 788 99.87% 1.14%
Maven 82 9268% 21.95% | 85 97.65% 12.94% | 94 100.00% 0.00%
Poi 403 9454% 3648% | 502 96.02% 9.16% | 521 100.00% 134%
SpringFramework | 59 91.53% 23.73% | 66 93.94% 9.09% 68 100.00% 0.00%
Storm 53 8401% 2075% | 54 90.74% 1296% | 56 100.00% 0.00%
Tomeat 196 01.84% 2041% | 177 9435% 29.94% | 185 99.46% 19.57%
Zookeeper 31 9032% 22.58% | 30 9333% 2333% | 30 100.00% 16.67%
g LTS roroe 23.77% 005 506506 1476% |0 998306 9.86%
Total 3835 4021 4357

positive instances. For example, for NLP on the Ant project, of the 50 true positive instances, 76%
of the instances (i.e., 38 instances) are also correctly identified by MAT; in addition, MAT identifies
9 additional true positive (i.e., 18.0%) instances that are not identified by NLP.

On average, MAT can identify 87.97% of true positive instances identified by NLP, 90.65% of true
positive instances identified by TM, and 99.83% of true positive instances identified by Easy. This
indicates that most of the true positive instances identified by each supervised approach can also
be correctly identified by MAT. Considering the %Over of MAT compared with each supervised ap-
proach, we can find that MAT can identify 23.77% distinct true positive instances compared with
NLP, 14.76% distinct true positive instances compared with TM, and 9.86% distinct true positive
instances compared with Easy on average. This means that the supervised approaches can mis-
classify some comments having task tags (they are SATDs) as non-SATD comments, especially for
NLP. This is an obvious limitation of the supervised approaches, since these true positive instances
can be easily identified by MAT in practice.

Table 12 reports the comparison between MAT and each supervised approach in the perspective
of TN instances. We can see that, the true negative instances identified by MAT are very similar
to those identified by the supervised approaches. Specifically, MAT can identify 99.51% of true
negative instances identified by NLP, 99.78% of true negative instances identified by TM, and 99.90%
of true negative instances identified by Easy. Meanwhile, MAT can identify 1.08% distinct true
negative instances compared with NLP, 0.37% distinct true negative instances compared with TM
on average. This means that, MAT has the almost same ability to identify non-SATD comments as
the supervised approaches.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:34 Z. Guo et al.

Table 12. The Comparison between MAT and Each Supervised Approach in the
Perspective of TN Instances (%Hit = [TNsupervised N TNMAT] / [TNsupervised|; %#Over =
[TNmaT — TNSupervised| / |TNSupervised|)

. MAT v.s. NLP MAT v.s. TM MAT v.s. Easy
Project TNy p %Hit %Over TNy %Hit %Over TNEE‘sy % Hit %Over
Ant 2011 99.79% 131% | 2020 99.00% 0.58% | 2946 99.9% 0.00%
ArgoUML 4265 98.50% 141% | 4300 98.67% 044% | 4283 99.5% 0.00%
Columba 3040 99.900% 041% | 3948 99.97% 0.10% | 3952 100.0% 0.00%
EMF 2490 100.00% 0.80% | 2503 100.00% 032% | 2511 100.0% 0.00%
Hibernate 2082 99.62% 120% | 2087 99.95% 0.62% | 2099 100.0% 0.00%
JEdit 4413 9991% 0.79% | 4437 99.89% 023% | 4447 99.9% 0.00%
IFrecChart 2365 99.62% 038% | 2356 100.00% 038% | 2365 100.0% 0.00%
IMeter 3818 99.79% 0.89% | 3843 99.92% 021% | 3849 100.0% 0.00%
TRuby 3211 9981% 1.00% | 3228 99.85% 040% | 3239 99.9% 0.00%
SQuirrel 4220 9991% 1.09% | 4248 99.93% 040% | 4263 100.0% 0.00%
Dubbo 1545 99.42% 052% | 1542 99.81% 026% | 1544 99.9% 0.00%
Gradle 2872 98.19% 230% | 2892 99.20% 0.62% | 2889 99.9% 0.03%
Groovy 4093 99.00% 129% | 4102 99.61% 0.56% | 4115 99.9% 0.00%
Hive 27758 99.70% 140% | 28024 99.84% 034% | 28082 100.0% 0.00%
Maven 1051 98.67% 133% | 1047 99.90% 048% | 1051 100.0% 0.00%
Poi 14239 99.60% 0.90% | 14282 99.89% 0.36% | 14326 99.9% 0.00%
SpringFramework | 7514 99.69% 1.10% | 7564 99.79% 040% | 7598 99.7% 0.00%
Storm 3491 9991% 149% | 3530 100.00% 020% | 3537 100.0% 0.00%
Tomeat 11766 99.70% 1.10% | 11836 99.83% 0.32% | 11869 99.9% 0.02%
Zookeeper 2600 9938% 0.88% | 2613 99.66% 0.19% | 2618 99.7% 0.00%
G 5322 o cive 108% o0 99780, 037% i 99009 0.00%
Total 110644 111311 111583

In summary, the SATD comments (or non-SATD comments) correctly identified by existing ap-
proaches are highly overlapped with those identified by MAT. This finding is surprising, given the
fact that existing supervised approaches tackle the prediction task using very different techniques.

Table 13 reports the detailed results of McNemar’s test and the corresponding effect size (i.e.,
odd ratio) from the comparison of prediction errors on actual SATD and non-SATD comments.
Note that, the p-values of McNemar’s test have been corrected according to Benjamini et al.’s
method [47] that can control the false discovery. A p-value < 0.05 indicates that there is a signifi-
cant difference on the prediction errors. Meanwhile, the effect size (OR) is the ratio of the number
of instances that only the compared supervised approach makes a wrong prediction to the num-
ber of instances that only MAT makes a wrong prediction. Therefore, an OR = 1 means that two
approaches make the same amount of wrong predictions. An OR > 1 indicates that MAT makes
fewer wrong predictions than the compared supervised approach and vice versa.

According to Table 13, for the prediction error on actual SATD comments, MAT is significantly
different (p-value < 0.05) from NLP, TM, and Easy on 65%, 45%, and 30% of 20 projects, respec-
tively. This shows that MAT and other approaches can make different wrong predictions for actual
positive instances on many projects. For the comparison between MAT and NLP, the majority of
ORs are greater than 1, which means that NLP makes more wrong predictions than MAT in these
projects. We can observe a similar result for the comparison between MAT and TM and between
MAT and Easy. The above results reveal that MAT makes fewer wrong predictions compared with
the investigated three supervised approaches. Meanwhile, we find that, for the prediction error on
actual non-SATD comments, MAT is significantly different (p-value < 0.05) from NLP, TM, and Easy
on 60%, 45%, and 30% of 20 projects, respectively. Furthermore, MAT makes fewer wrong predic-
tions (i.e., OR > 1) compared with NLPand TM on most projects but makes more wrong predictions

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:35

Table 13. Comparison of Prediction Errors on Actual SATD Comments and Non-SATD Comments under
the MTO Scenario (the BH-Corrected P-values of McNemar’s Test and Odd Ratio)

Prediction errors on actual SATD Prediction errors on actual non-SATD

Target Project MAT v.s. NLP MAT v.s. TM MAT v.s. Easy MAT v.s. NLP MAT v.s. TM MAT v.s. Easy
p-value OR |p-value OR |p-value OR |[p-value OR |p-value OR |[p-value OR
Ant 0.885 0.769 | 0.777 1.333 | 0.000 27.000 | 0.000 6.333 | 0.008 4500 | 0.375 0.250
ArgoUML 0.000 8529 | 0.000 16.818 [1.000 1.000 1.000 0953 | 0.000 0.345 | 0.000 0.045
Columba 0.003 3.333 1.000 1.143 | 0375 4.000 | 0.055 2833 | 0.523 2.500 | 1.000 0.500
EMF 1.000 1.167 | 0.231 0.400 | 1.000 2.000 | 0.000 22.000 | 0.018 9.000 | 1.000 1.000
Hibernate 0.000 3.176 | 0.112 1.778 | 1.000 2.000 | 0.016 2.700 | 0.006 7.000 [1.000 1.000
JEdit 0.011 0417 | 0.009 0.345 | 0.022 9.000 | 0.000 5.833 | 0.442 1.833 | 0.117 0.167
JFreeChart 0.203 1.900 | 0.203 0.200 | 1.000 1.000 1.000 1.000 | 0.011 10.000 | 1.000 1.000
JMeter 0.000 6.200 | 0.048 2.625 | 1.000 1.000 | 0.000 5286 | 0.358 2250 | 1.000 0.500
JRuby 0.000 6.000 | 0.009 3.000 | 0.041 8.000 | 0.000 4.125 | 0.175 2333 | 0.375 0.250
SQuirrel 0.158 1.650 | 0.493 1.500 | 1.000 1.000 | 0.000 9.400 | 0.008 4.500 | 1.000 0.500
Dubbo 0.049 4000 | 0.112 6.000 [1.000 1.000 1.000 0.818 1.000 1.250 | 1.000 0.500
Gradle 0.002 2.094 | 0.000 2.789 | 0.065 0.143 | 0.333 1.288 | 0.710 0.792 | 0.815 0.500
Groovy 0.000 4857 | 0.112 2.100 | 1.000 1.000 | 0.214 1.400 | 0.481 1.412 | 0.063 0.143
Hive 0.000 2981 | 0.000 4.000 | 0.049 5.000 | 0.000 5329 | 0.000 2.111 0.018 0.111
Maven 0.049 2714 | 0.049 4.000 | 1.000 1.000 | 1.000 1.000 | 0.355 3.000 | 1.000 1.000
Poi 0.000 6.435 | 0.007 2.238 | 0.041 8.000 | 0.000 2.436 | 0.000 3250 | 0.018 0.111
SF 0.112 2500 | 0.983 1.400 | 1.000 1.000 | 0.000 3.783 | 0.105 1.824 | 0.000 0.048
Storm 0.883 1.333 | 0.989 1.333 1.000 1.000 | 0.000 8.667 | 0.035 8.000 | 1.000 1.000
Tomcat 0.007 2.412 | 0.000 4.909 | 0.000 18.500 | 0.000 3.146 | 0.053 1.857 | 0.003 0.167
Zookeeper 0.493 2.000 | 0.276 2.667 | 0.112 6.000 | 0.333 1.563 | 0.578 0.600 | 0.011 0.100

signifii:ltllce(%) 13/20 (65%) 9/20 (45%) 6/20 (30%) 12/20 (60%) 9/20 (45%) 6/20 (30%)

than Easy. According to the results, we can observe that: (1) MAT is more reliable than NLP and
TM in predicting SATD comments as well as in predicting non-SATD comments; and (2) MAT is
more reliable than Easy in predicting SATD comments but not in predicting non-SATD comments.
For practitioners, it is a matter to predict SATD comments rather than non-SATD comments. In
this sense, MAT is more helpful for practitioners than NLP, TM, and Easy.

Conclusion. In summary, most SATD (non-SATD) comments correctly identified by the inves-
tigated supervised approaches (i.e., NLP, TM, and Easy) can also be correctly identified by MAT.
Furthermore, MAT makes few wrong predictions on actual SATD comments. In this sense, for
practitioners, it appears reasonable to consider applying (simple) MAT to replace the investigated
(complex) existing supervised approaches.

5.4 RQ4: Weakness and Possible Improvement

According to the results in RQ2 and RQ3, supervised approaches do not exhibit a superior per-
formance compared with the simple unsupervised approach MAT. This finding is very surprising,
as supervised approaches leverage the knowledge learned from labelled data, but MAT does not.
In this research question, we aim to analyze for supervised approaches the weaknesses in SATD
identification and explore whether there is a simple strategy to improve their effectiveness by
incorporating the idea of MAT.

(1) Why are the supervised approaches not very outstanding compared with MAT?

One of the assumptions of supervised approaches is that the testing data has a similar data distri-
bution with the training project data. In our context, the training and testing data are from different
projects, which may exhibit different data distribution. Consequently, the phenomena of concept
drift may exist, which can seriously affect the validity of a prediction model [65, 73].

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:36 Z. Guo et al.

Test Project p value
— 1.000

Zookeeper
Tomcat
Storm

SF

Poi
Maven
thve 0.050
Groovy
Gradle
Dubbo
SQuirrel
JRuby
JMeter
JFreeChart
JEdit
Hibernate
EMF
Columba
ArgoUML
Ant

0.003

0.000

Ed 8L e85 23 90 Q0 g2 '3 L ® 5 2 . .
=E'§E§EE§§§:S§Z§§§”’ g:’c;-gTralnlnngJect(s)
2 3 5§~ 0SS &332 £ 2 & 5 8%
3”8 2 §“"‘%QOO = l_‘aé\é‘
< =& NI
=
=

Fig. 11. The concept drift detection of NLP.

In the following, we employ WTSD (Wilcoxon rank sum test drift detector) to examine to
what extent the investigated supervised approaches suffer from the concept drift phenomena [73].
For a given supervised model, WTSD uses the Wilcoxon rank sum test, a nonparametric test, to
examine whether two independent samples (i.e., the predictions on two projects in our context)
come from populations with the same distribution. Based on the p-value, one of the following cases
will happen [39]: Yes (a concept drift detected) if p-value < 0.003, Warning (warning happened)
if 0.003 < p-value < 0.05, or No (no concept drift detected) if p-value > 0.05. Again, p-values are
corrected using the BH method to control for false discovery [47].

Figures 11-13 report the results of concept drift detection for the three state-of-the-art super-
vised approaches. In each heat map, each row represents a test project, and each column represents
a training project. Note that, the last column (i.e., Multi-projects) represents that the comments
from all the other projects are merged to obtain the training data. Therefore, we have 420 (21 X
20) training-test pairs for each supervised approach. Each cell reports the BH-corrected p-value
and its background color indicates the result of the WTSD for the corresponding training-test pair:
blue background denotes a concept drift (Yes, p < 0.003), light blue background denotes a warning
for concept drift (Warning, 0.003 < p < 0.05), and white background denotes no concept drift (No,
p = 0.05). From Figures 11-13, we have the following observations:

e For NLP, 20% of results (85 pairs) do not exhibit concept drift, 14% of results (59 pairs) may
have concept drift, and the majority (66%) of results provide an evidence of concept drift.

e For TM, 20% of results (84 pairs) do not exhibit concept drift, 9% of results (39 pairs) may
have concept drift, and the majority (71%) of results provide an evidence of concept drift.

e For Easy, 40% of results (168 pairs) do not exhibit concept drift, 6% of results (27 pairs) may
have concept drift, and the majority (54%) of results provide an evidence of concept drift.

As can be seen, all the three investigated supervised approaches suffer from considerable con-
cept drift (especially true for TM). This means that these supervised approaches can perform well

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:37

Test Project p value
— 1.000

Zookeeper —foon
Tomcat
Storm

Maven
Hive
Groovy 0.050
Gradle
Dubbo
SQuirrel
JRuby
JMeter
JFreeChart
JEdit
Hibernate
EMF
Columba
ArgoUML
Ant

0.003

0.000

Training Project(s)

JFreeChart
Tomcat
Zookeeper

Hibernate
Multi-projects

Fig. 12. The concept drift detection of TM.

Test Project p value
Zookeeper — 1.000
Tomcat

Storm

Maven
Hive
Groovy
Gradle
Dubbo
SQuirrel
JRuby
JMeter
JFreeChart
JEdit 0007 n,m.nrm.amz
Hibernate .nm 1 .n 167 0.066 0.128 0041 ms.nou.n 161 0021

EMF X 0.086 0,656 067 037 0569 0.787 0832 1
Columba X : Iuszv uosa Ilom 0758 ussx.um

ArgoUML Y
Ant

0.050

0.003

0.000

Training Project(s)

Hibernate
JFreeChart
Multi-projects

Fig. 13. The concept drift detection of Easy.

on the training data, but they do not achieve an equally good performance on the test data. Note
that, for TM and Easy, the numbers of pairs that contain concept drift have decreased (see the last
columns in Figure 12 and Figure 13) when multi-projects are used for training a prediction model.
This can partly explain the reason why TM and Easy can perform better than NLP under MTO sce-
nario (in RQ2). We can also conclude that the performances of TM and Easy under MTO scenario

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:38 Z. Guo et al.

Table 14. Example SATD Comments that Cannot Be Identified by the Supervised Approaches

Type of FN instances Examples

// TODO Is this a valid operation on a timestamps cache? - [from Hibernate by NLP]

// FIXME: need a locale as well as a timezone - [from JFreeChart by NLP]

/] XXX ENCODING - this only works if encoding is UTF8-compat -[from Tomcat by NLP]
The FNs contain task // Hack via a static since we can’t pass an instance in the test. -[from Tomcat by NLP]
tags // TODO: This shouldn’t depend on the current project - [from ArgoUML by TM]

// TODO Should this be OK ? - [from JMeter by TM]

// TODO: This does not work correctly. None of the partitions is created - [from Hive by TM]
/] XXX Please check. - [from Tomcat by TM]

// stupid Swing - [from JEdit by NLP]

// not yet handled - [from jRuby by NLP]

// not thread safe - [from Groovy by NLP]

The FNs do not // Dummy implementation - [from Tomcat by NLP]

contain task tags // not absolutely necessary - [from Hibernate by TM]

// there’s a risk - [from Gradle by TM]

// 1 think this is wrong - [from Hive by TM]

// Multiple bad arguments - [from Zookeeper by TM]

are better than the counterparts under OTO scenario according to Figure 12 and Figure 13. How-
ever, we cannot get the similar conclusion for NLP under different scenarios according to Figure
11, which is consistent with the result of NLPin RQ2. The above findings mean that using multiple
projects rather than a single project as the training set is in favor of improving the robustness of
the two supervised approaches. However, the unsupervised approach MAT is free of the concept
drift challenge, since it does not depend on the training data.

Conclusion. In summary, concept drift exists when applying all three supervised approaches to
identify SATD comments, which can negatively impact their performance. This is one possible reason
why the investigated supervised approaches do not exhibit outstanding performance compared with
MAT.

(2) Which SATD comments cannot be identified by the supervised approaches?

According to Table 11 in RQ3, we can find that MAT can identify 23.5% and 16.9% more unique
SATD comments compared with the number of TP instances classified by NLP and TM, respec-
tively. In other words, there are many SATD comments with task tags misclassified by these su-
pervised approaches. In the following, we investigate the characteristics of SATD comments (es-
pecially for those contain task tags) that cannot be identified by the supervised approaches (i.e.,
NLP and TM).

Table 14 lists example SATD comments that cannot be identified by the supervised approaches
(i.e., FN). In particular, the FNs are divided into two types based on whether the comments contain
task tags or not. As can be seen, the FNs that contain task tags and do not contain task tags
both have very obvious semantic meanings that indicate SATD. One possible reason for these
misclassifications is that the supervised approaches will combine the weights of each word in a
target comment to determine the final category (SATD or non-SATD), which is easily affected by
some unrelated words. For example, the SATD comment “TODO: Should this be OK?” in JMeter is
misclassified as non-SATD comment by TM. In this example, the word “OK” may incorrectly affect
the final decision of TM. However, for the comments that contain task tags (shown in Table 14),
we can see that they can be easily identified by human experts or MAT.

Table 15 reports the distribution of false negative instances (i.e., comments) that have task tags.
For each supervised approach (NLP or TM), the first column reports FN-tags, the number of in-
stances having task tags in false negative instances. The second column reports N-tags (i.e., the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:39

Table 15. The Distribution of False Negative Instances that Have Task Tags for NLP and TM

Approach NLP ™
Project FN-tags | N-tags (FN-tags/N-tags)| FN (FN-tags/FN) FN-tags | N-tags (FN-tags/N-tags)| FN (FN-tags/FN)
Ant 9 14 (64.29%) 52 (17.31%) 15 18 (83.33%) 59 (25.42%)
ArgoUML 144 207 (69.57%) 192 (75.00%) 184 241 (76.35%) 239 (76.99%)
Columba 29 34 (85.29%) 43 (67.44%) 7 8 (87.50%) 23 (30.43%)
EMF 5 5 (100.00%) 48 (10.42%) 3 3 (100.00%) 42 (7.14%)
Hibernate 53 62 (85.48%) 141 (37.59%) 31 32 (96.88%) 118 (26.27%)
JEdit 14 19 (73.68%) 133 (10.53%) 9 14 (64.29%) 136 (6.62%)
JFreeChart 18 28 (64.29%) 37 (48.65%) 0 0 (0.00%) 24 (0.00%)
JMeter 30 36 (83.33%) 88 (34.09%) 20 23 (86.96%) 75 (26.67%)
JRuby 65 71 (91.55%) 100 (65.00%) 26 31 (83.87%) 63 (41.27%)
SQuirrel 32 36 (88.89%) 91 (35.16%) 17 20 (85.00%) 84 (20.24%)
Dubbo 11 21 (52.38%) 31 (35.48%) 5 8 (62.50%) 27 (18.52%)
Gradle 66 116 (56.90%) 119 (55.46%) 52 75 (69.33%) 118 (44.07%)
Groovy 33 73 (45.21%) 71 (46.48%) 20 36 (55.56%) 55 (36.36%)
Hive 152 223 (68.16%) 350 (43.43%) 123 167 (73.65%) 343 (35.86%)
Maven 18 32 (56.25%) 54 (33.33%) 11 12 (91.67%) 51 (21.57%)
Poi 146 200 (73.00%) 214 (68.22%) 46 61 (75.41%) 116 (39.66%)
SF 13 35 (37.14%) 38 (34.21%) 6 22 (27.27%) 32 (18.75%)
Storm 11 16 (68.75%) 39 (28.21%) 7 7 (100.00%) 38 (18.42%)
Tomcat 40 80 (50.00%) 92 (43.48%) 53 73 (72.60%) 110 (48.18%)
Zookeeper 7 22 (31.82%) 32 (21.88%) 7 16 (43.75%) 33 (21.21%)
Average 44.8 66.5 (67.37%) 98.25 (45.60%) B2Al 43.35 (74.05%) 89.3 (35.95%)
Median)5 35.5 (83.10%) 79.5 (37.11%) 16 21 (76.19%) 61 (26.23%)

number of instances having task tags in the predicted negative instances) as well as the ratio of
FN-tags to N-tags (shown in parentheses). The ratio of FN-tags to N-tags indicates what percentage
of instances with task tags in the predicted negative instances is actual SATD comments. The third
column reports FN (i.e., the number of false negative instances) as well as the ratio of FN-tags to
FN (shown in parentheses). The ratio of FN-tags to FN indicates what percentage of actual SATD
instances in the false positive instances can be identified by matching task tags.

From Table 15, we have the following two observations: On the one hand, of the instances
with tags in the predicted negative instances, more than two-thirds of instances are actual SATD
comments. On average, for NLP, 44.8 SATD comments with task tags are misclassified as non-
SATD comments, which accounts for 67.4% of the predicated negative instances with task tags.
Surprisingly, this proportion is higher (32.1/43.35 = 74.05%) for TM. This indicates that most of
the comments with tags in the predicted negative instances are actual SATD comments with a
small rate of exceptions. On the other hand, of the false negative instances, more than one-third
of instances have already been marked by task tags. Specifically, on average, there are 45.60% such
instances for NLP and 35.95% such instances for TM. This indicates that there are non-ignorable
false negative instances that can be corrected by matching task tags. The above two observations
reveal that: (1) many actual SATD comments marked with task tags cannot be identified by a
supervised approach, thus hindering its effectiveness; and (2) matching task tags have a potential
in reducing false negative instances, thus helping boost its effectiveness.

Conclusion. In summary, quite a part of the false negative instances caused by NLP and TM
contain the popular task tags, which can be easily identified by MAT. Meanwhile, it seems that the
improvement of a supervised approach could be a challenging problem if the researchers do not use
MAT to make up for the shortcomings, but only by adjusting their own mechanism.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:40 Z. Guo et al.

Table 16. The Performance Comparisons among MAT, NLP, TM, NLP+MAT, and TM+MAT Based
on 3 Projects with Low Ratio of tags (<=50%) and 17 Projects with High Ratio (>50%) of Tags under
the MTO Scenario

Ratio of tags in projects Low (3) High (17)
Approach Details Precision | Recall Fl ER RI Precision | Recall Fl ER RI

MAT MAT 0.907 0.339 0.485 0.961 26.081 0.798 0.748 0.768 0.920 18.318
NLP 0.585 0.386 0.459 0.941 16.145 0.670 0.645 0.652 0.910 13.904

NLP NLP+MAT 0.608 0.462 0.519 0.943 16.893 0.663 0.799 0.719 0.908 13.782
Impr. 4.05% | 19.67% | 13.00% | 0.21% | 4.63% | -0.97% | 23.86% | 10.33% | -0.13% | -0.88%

™ 0.768 0.386 0.508 0.954 21.613 0.755 0.690 0.717 0.917 16.978

™ TM+MAT 0.774 0.464 0.571 0.955 21.883 0.750 0.782 0.761 0.917 16.681
Impr. 0.78% | 20.22% | 12.54% | 0.10% | 1.25% | -0.60% | 13.28% | 6.18% | -0.02% | -1.74%

(3) Can the effectiveness of supervised approaches be promoted by incorporating MAT?

According to the result of RQ2, MAT can achieve a high precision for each project. This means
that the majority of comments that contain task tags are indeed SATD comments, which can be
identified by MAT accurately. Meanwhile, according to the Figure 9 of RQ3, we can summarize that
there are 284 (or 211) SATD comments that correctly classified by NLP (or TM) cannot be identified
by MAT, since some SATD comments are not marked by task tags. In other words, the advantages
of NLP/TM and MAT are complementary. This motivates us to investigate whether we can achieve
more effective SATD identification by combining MAT and NLP (or TM).

To this end, for each target project, we first apply MATto identify the comments that contain task
tags and predict them as SATD comments. Then, we apply NLP (or TM) to classify the remaining
comments that do not contain any task tags into two categories: SATD and non-SATD. Finally, we
combine the SATD comments predicted by two approaches (NLP+MAT or TM+MAT). To obtain
correct conclusions, we divide the experimental projects into two groups (i.e., Low group and
High group) according to the ratio of task tags in the SATD comments of a project and report
them, respectively. Low group includes 3 projects (i.e., Ant, EMF, and JEdit) with a task tag ratio £
50% and High group includes the remaining 17 projects.

Table 16 reports the average performance comparisons among MAT, NLP, TM, NLP+MAT, and
TM+MAT in Low group and High group. As can be seen, the combined approaches (NLP+MAT
or TM+MAT) have a higher performance than the original supervised approach (NLP or TM) in
the Low group. Specifically, NLP+MAT leads to an improvement of 4.05% in precision, 19.67% in
recall, 13.00% in Fy, 0.21% in ER, and 4.63% in RI compared with NLP. TM+MAT also achieves
improvements in terms of five indicators, especially for recall (20.22%) and F; (12.54%) compared
with TM. As for the High group, on average, two combined approaches both achieve improvements
in terms of recall and F;. The results indicate that MAT has a positive effect for recall and F; when
combined with the supervised approaches (NLP or TM). At the same time, the values of the other
three indicators (i.e., precision, ER, and RI) of the two combined approaches are almost not affected
negatively. In other words, the supervised approaches NLP and TM can be boosted by MAT.

Compared with MAT, for the project in the Low group, the combined approaches also achieve
a higher performance in recall and F; on average. More specifically, NLP+ MAT (or TM+MAT) can
lead to an improvement of 36.28% (or 36.87%) in recall and 7.01% (or 17.73%) in F;. In particular, for
JEdit, TM+MAT achieves a great improvement of 70.24% compared with MAT in terms of recall.
These improvements indicate that the combined approaches can recall more SATD comments in
the projects with few task tags. Nevertheless, for the projects in the High group, we find that the
combined approaches do not perform better than MAT according to most indicators, since the NLP

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:41

(or TM) will misclassify many non-SATD comments as SATD comments. This means that many
false positive instances are introduced. As a result, overall, it appears that the F; score does not
benefit from the combination compared with MAT.

Conclusion. In summary, the combined approaches (NLP+MAT and TM+MAT) have a better
overall performance than a single supervised approach (NLP or TM). In addition, they can facilitate
MAT to recall more SATD comments that are not labeled by task tags.

6 DISCUSSION

In previous sections, we compare MAT with existing approaches to gain the understanding of the
real progress in SATD identification. The used MAT is very simple but enough for our purpose
in this study. However, in practice, it may be expected that MAT could achieve a higher effec-
tiveness in SATD identification. In this section, we conduct additional experiments to provide a
more comprehensive understanding on the characteristics of MAT, thus facilitating researchers
and practitioners to improve and apply MAT in the future.

6.1 How Does Fuzzy Matching Strategy Affect the Classification Effectiveness of MAT?

As aforementioned, comment words may be connected together (e.g., “pleasefixme,” “hackhere”)
due to carelessness. These typos will negatively increase the proportion of mismatching when
using a strict matching strategy. To tackle this problem, MAT takes a fuzzy matching strategy (as
described in Section 3) to identify SATD. To determine the usefulness of a fuzzy strategy, we next
compare the effectiveness of a strict matching strategy versus a fuzzy matching strategy. To this
end, we construct two MAT variants that, respectively, apply strict and fuzzy strategies to match
task tags in comments for SATD identification. The only difference between the two variants is
the selection of matching strategy. For each target project, MAT will identify the label (i.e., SATD
or non-SATD) of each comment in the project. After that, we have 20 classification results for the
models that apply strict strategy and fuzzy strategy, respectively. As such, we compute precision,
recall, Fy, ER, and RI to evaluate the effectiveness of each matching strategy.

Table 17 reports the performance comparison between strict and fuzzy matching strategies. The
improvement percentages marked by bold fonts indicate that the performance of a fuzzy matching
strategy is superior to that of a strict matching strategy. As can be seen, on average, a fuzzy strategy
leads to a slightly higher recall and almost the same precision compared with the strict strategy. In
other words, for most projects, a fuzzy matching strategy can identify more SATD comments and
at the same time it does not introduce too many false positives. Note that, the recalls of more than
half of the projects (13/20) have increased, indicating that there are typos in the comments of these
projects and the occurrence of typos is not an accident. In particular, the recall of a fuzzy matching
strategy has a great improvement of 18.5% on the project Gradle. Meanwhile, although few projects
(except Zookeeper) introduce some additional false positives when applying the fuzzy strategy,
the percentages of these false positives are very low and hence it should not waste much effort
of developers to review these additional comments. Considering the fact that a fuzzy matching
strategy can recall more SATD comments, we believe that it is worthwhile to use it to identify these
SATD comments. In terms of Fy, a fuzzy matching strategy leads to a higher score (0.726) than strict
matching (0.721). More specifically, fuzzy strategy slightly improves F; for 10 out of the 20 projects
and leads to an inferior F; in only 3 projects. On average, fuzzy strategy leads to an improvement
0f 0.62% in terms of F;. Considering the effort-aware indicators, there are no significant differences
between two strategies for most projects. Note that, the performances between strict strategy and
fuzzy strategy are the same on 6 projects, regardless of which indicators are considered. The result
shows that the comments in these projects are well written by developers so there are no typos in
these comments.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:42 Z. Guo et al.

Table 17. Performance Comparisons between Strict and Fuzzy Matching Strategies

Indicator Precision Recall F, ER RI

Approach Strict Fuzzy Impr.% Strict Fuzzy Impr.% Strict Fuzzy Impr.% Strict Fuzzy Impr.% Strict Fuzzy Impr.%
Ant 0.865 0.870 0.6%| 0.441 0.461 4.5%]| 0.584 0.603 3.3%| 0.961 0.962 0.1%| 24.894 25.043 0.6%
ArgoUML | 0.838 0.823 -1.8%| 0.934 0.934 0.0%| 0.883 0.874 -1.0%| 0.787 0.783 -0.5%| 3.692 3.606 -2.3%
Columba | 0.912 0.906 -0.7%| 0.813 0.828 1.8%| 0.860 0.865 0.6%| 0.966 0.965 -0.1%| 28.15 27.949 -0.7%
EMF 1.000 1.000 0.0%]| 0.338 0.351 3.8%| 0.505 0.520 3.0%| 0.971 0.971 0.0%| 33.932 33.932 0.0%
Hibernate | 0.944 0.945 0.1%| 0.714 0.724 1.4%| 0813 0.820 0.9%| 0.840 0.840 0.0%| 5239 5244 0.1%
JEdit 0.844 0.851 0.8%| 0.195 0.205 51%| 0317 0.331 4.4%| 0950 0.951 0.1%]| 19.111 19.268 0.8%
JFreeChart | 0.723 0.723 0.0%| 0.723 0.723 0.0%| 0.723 0.723 0.0%| 0.944 0.944 0.0%| 16.847 16.847 0.0%
JMeter 0.924 0.924 0.0%]| 0.780 0.780 0.0%| 0.846 0.846 0.0%]| 0.926 0.926 0.0%| 12.597 12.597 0.0%
JRuby 0.911 0.911 0.0%| 0.877 0.883 0.7%| 0.894 0.897 0.3%| 0.885 0.885 0.0%| 7.683 7.687 0.1%
SQuirrel | 0.925 0.925 0.0%| 0.612 0.612 0.0%| 0.737 0.737 0.0%| 0.951 0.951 0.0%| 19.581 19.581 0.0%
Dubbo 0.750 0.750 0.0%| 0.741 0.741 0.0%| 0.746 0.746 0.0%| 0.931 0.931 0.0%| 13.55 13.550 0.0%
Gradle 0.667 0.671 0.6%| 0.623 0.738 18.5%| 0.644 0.703 9.2%| 0.855 0.856 0.1%| 5.903 5.952 0.8%
Groovy 0.747 0.727 -2.7%| 0.819 0.823 0.5%| 0.782 0.772 -1.3%]| 0.925 0.923 -0.2%| 12.31 11.948 -2.9%
Hive 0.785 0.783 -0.3%| 0.748 0.761 1.7%| 0.766 0.772 0.8%| 0.955 0.954 -0.1%] 21.023 20.976 -0.2%
Maven 0.746 0.746 0.0%| 0.691 0.691 0.0%| 0.718 0.718 0.0%| 0.850 0.851 0.0%| 5.687 5.687 0.0%
Poi 0.844 0.845 0.1%| 0.848 0.854 0.7%| 0.846 0.850 0.5%| 0.951 0.951 0.0%| 19.526 19.550 0.1%
SF 0.650 0.654 0.6%| 0.684 0.694 1.5%| 0.667 0.673 0.9%| 0.980 0.981 0.1%]| 50.189 50.454 0.5%
Storm 0.848 0.848 0.0%| 0.609 0.609 0.0%| 0.709 0.709 0.0%| 0.970 0.970 0.0%| 32.561 32.561 0.0%
Tomcat 0.742 0.741 -0.1%| 0.763 0.767 0.5%| 0.753 0.753 0.0%]| 0.968 0.968 0.0%| 30.604 30.534 -0.2%
Zookeeper [0.750 0.648 -13.6%| 0.524 0.556 6.1%| 0.617 0.598 -3.1%| 0.969 0.964 -0.5%| 31.036 26.685 -14.0%
Average 0.821 0.815 -0.8%| 0.674 0.687 1.9%| 0.721 0.726 0.7%| 0.927 0.926 -0.1%| 19.706 19.483 -1.1%!
Median | 0.841 0.834 -0.8%| 0.719 0.731 1.7%| 0.742 0.742 0.0%| 0.951 0.951 0.0%| 19.319 19.409 0.5%

In summary, by correctly dealing with the typos of task tags, a fuzzy matching strategy can
improve the recall and maintain almost a similar performance in the other indicators compared
with a strict matching strategy. This can facilitate developers to find more SATD comments by
MAT in practice.

6.2 How Do Project-specific tags Affect the Classification Effectiveness of MAT?

In default, MAT matches four popular task tags to identify SATD comments. Although it can
achieve a promising performance in terms of average F;, we find that some projects have a low
recall (e.g., 0.205 for JEdit and 0.351 for EMF) due to only a few comments of the corresponding
projects containing the four task tags. In this context, an interesting problem is naturally raised: Is
there a simple approach to extending MAT such that the recall in such projects can be improved?

To tackle the above problem, we manually read the comments in these projects that have a low
recall to understand their characteristics. Consequently, we make the following observations: First,
the developers of these projects did not always use the default task tags (e.g., “TODO”) in their com-
ments. For instance, there are only 40 comments that contain default tags in all SATD comments
(195) in JEdit. Second, in addition to default task tags, there are project-specific task tags (defined
by developers, usually highlighted in capitalized words). For example, the word “NOTUSED” often
appears in the comments in JMeter. Table 18 summarizes the meanings and examples of project-
specific tags used in the subject projects under study. Intuitively, for a given project, if we adapt
MAT to incorporate such project-specific task tags, the performance in SATD identification would
be improved. For the simplicity of presentation, we name MAT incorporating project-specific tags
as MAT-ext.

Table 19 reports the performance comparison between MAT and MAT-ext on projects with
project-specific task tags under the MTO scenario. As can be seen, on average, MAT-ext achieves
an improvement of 13.37% and 8.77% compared with MAT in terms of recall and F;, respectively.
This indicates that, the incorporation of project-specific task tags in MAT has a positive effect in

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:43

Table 18. The Specified Tags Used in the Subject Projects

Specified Task Tags Projects The meanings of tags Examples
//WORKAROUND: we simply append URLs
Columba to the existing global class loader and use the
Hibernate . same as parent - [from Columba]
WORKAROUND JEdit Alternatlves, the problem Workaround for backwards compatibility.
. itself has not been solved . . : .
SQuirrel Previously this case would unintentionally
Poi cause the method to be invoked on the owner
continue below - [from Gradle]
TBD EMF The abbreviation of “To Be | // TBD filter out volatile and other
Hibernate | Determined” inappropriate links? - [from EMF]
REVISIT EMF There is something that need | // REVISIT: Remove this code. // Store port
Tomcat to be revisit value as string instead of integer. - [from EMF]
. . /I"/* Note: This class is messy. The method and
Note JEdit There is something that need field resolution need to be rewritten. - [from
to be noted .
JEdit]
NOTUSED JMeter The statements that not used // NOTUSED private String chosenfile; - [from
FMeter]
REMIND JMeter A weak code that should pay | / REMIND: convert arg list Vectors here? -
Tomcat attention to later [from JMeter]
UNDONE Hive Something has not be done //UNDONE: Haven'’t finished isRepeated
-[from Hive]
//@deprecated in favour of {@link
DEPRECATED Hive Current code is deprecated | HCatTable.#collectionltemsTerminatedBy()}. To
be removed in Hive 0.16. -[from Hive]

Table 19. The Performance Comparison between MAT and MAT-ext on Projects with Project-specific
Task Tags under the MTO Scenario

Indicator Precision Recall Fl ER RI

Approach | MAT MAT-ext Impr.% | MAT MAT-ext Impr% | MAT MAT-ext Impr% | MAT MAT-ext Impr.% | MAT MAT-ext Impr.%
Columba 0.906 0.910 0.44%| 0.828 0.867 4.71%| 0.865 0.888 2.66%| 0.965 0.966 0.10%| 27.949 28.072 0.44%

EMF 1.000 0.898 -10.20%| 0.351 0.595 69.52%| 0.520 0.715 37.50%| 0.971 0.968 -0.31%| 33.932 30.369 -10.50%
Hibernate | 0.945 0.943 -0.21%| 0.724 0.743 2.62%| 0.820 0.831 1.34%| 0.840 0.839 -0.12%| 5.244 5.232 -0.23%
JEdit 0.851 0.683 -19.74%| 0.205 0.441 115.12%| 0.331 0.536 61.93%| 0.951 0.938 -1.37%| 19.268 15.255 -20.83%
IMeter 0.924 0.911 -1.41%| 0.780 0.798 2.31%| 0.846 0.851 0.59%| 0.926 0.925 -0.11%| 12.597 12.399 -1.57%

SQuirrel 0.925 0.929 0.43%| 0.612 0.652 6.54%| 0.737 0.766 3.93%| 0.951 0.952 0.11%| 19.581 19.675 0.48%

Hive 0.783 0.759 -3.07%| 0.761 0.820 7.75%| 0.772 0.789 2.20%| 0.954 0.953 -0.10%| 20.976 20.298 -3.23%
Tomcat 0.741 0.743 0.27%| 0.767 0.784 2.22%| 0.753 0.763 1.33%| 0.968 0.969 0.10%| 30.534 30.612 0.26%
Average 0.884 0.847 -4.23%| 0.629 0.713 13.37%| 0.706 0.767 8.77%| 0.941 0.939 -0.21%| 21.260 20.239 -4.80%
Median 0.915 0.904 -1.20%| 0.743 0.764 2.83%| 0.763 0.778 1.97%| 0.953 0.953 0.00%| 20.279 19.987 -1.44%

recalling more SATD comments. In particular, in JEdit, the improvement in recall is 61.93%, since
a large number of the tag “Note” exists in the comments. Considering the other indicators, the
differences between MAT and MAT-ext are not large. Therefore, in practice, it is recommended
that developers incorporate project-specific tags to MAT, which can lead to a more accurate SATD
identification.

Table 20 reports the performance comparison between CNN and MAT-ext under the MTO sce-
nario in Dataset-M. Note that, the gray rows denote the performance comparison on projects with
project-specific task tags. We can see that, after incorporating project-specific task tags, MAT-ext
achieves a more competitive performance compared with CNN. On average, MAT-ext performs
well in precision while CNN has an advantage in recall. The reason for this is that MAT-ext can
only identify the comments marked by tags, while CNN can find SATD comments without tags.
However, the precision of CNN is relatively low, since more irrelevant comments are misclassified

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:44 Z. Guo et al.

Table 20. The Performance Comparison between CNN and MAT-ext on Dataset-M
under the MTO Scenario

Indicator Precision Recall F, ER RI

Approach CNN MAT-ext Impr.% CNN MAT-ext Impr.% CNN MAT-ext Impr.% CNN MAT-ext Impr.% CNN MAT-ext Impr.%
Ant 0.584 0.870 48.97%| 0.758 0.461 -39.18%| 0.660 0.603 -8.64%| 0.943 0.962 2.01%| 16.474 25.043 52.02%
ArgoUML | 0.816 0.823 0.86%| 0.950 0934 -1.68%| 0.878 0.874 -0.46%| 0.781 0.783 0.26%| 3.569 3.606 1.04%
Columba | 0.830 0.910 9.64%| 0.875 0.867 -0.91%| 0.852 0.888 4.23%| 0.962 0.966 0.42%| 25.521 28.072 10.00%
EMF 0.793 0.898 13.24%| 0.594 0.595 0.17%| 0.679 0.715 530%| 0.964 0.968 0.41%| 26.701 30.369 13.74%
Hibernate | 0.930 0.943 1.40%| 0.743 0.743 0.00%| 0.826 0.831 0.61%| 0.837 0.839 0.24%| 5.147 5.232 1.65%
JEdit 0.773 0.683 -11.64%| 0.489 0.441 -9.82%| 0.599 0.536 -10.52%| 0.946 0.938 -0.85%| 17.409 15.255 -12.37%
JFreeChart | 0.686 0.723 5.39%| 0.802 0.723 -9.85%| 0.739 0.723 -2.17%| 0.941 0944 0.32%| 15939 16.847 5.70%
IMeter 0.873 0911 4.35%| 0.787 0.798 1.40%| 0.828 0.851 2.78%| 0.922 0925 0.33%| 11.841 12399 4.71%
JRuby 0.805 0911 13.17%)| 0.930 0.883 -5.05%| 0.836 0.897 7.30%| 0.870 0.885 1.72%| 6.676 7.687 15.14%
SQuirrel 0.794 0929 17.00%| 0.692 0.652 -5.78%| 0.739 0.766 3.65%| 0.943 0.952 0.95%| 16.669 19.675 18.03%
Average | 0.788 0.860 9.09%| 0.762 0.710 -6.86%| 0.764 0.768 0.63%| 0.911 0.916 0.58%| 14.595 16.419 12.50%
Median | 0.800 0.904 13.07%| 0.773 0.733 -5.11%| 0.783 0.799 2.04%| 0.942 0941 -0.11%| 16.207 16.051 -0.96%

as SATD. In terms of F;, MAT-ext is better than CNN on most projects (i.e., better on 6 projects,
worse on 4 projects). In particular, we can find that the average F; values of CNN and MAT-ext
are very close (0.764 for CNN vs. 0.768 for MAT-ext). If we take into account the cost of modeling
building and application, it is clear that MAT-ext is preferred in practice.

For researchers, they do not know what tags are in a specific project in advance. However, for
the developers responsible for the project, it is easy to acquire project-specific task tags, because
developers in the project usually specify the used tags clearly at the stage of design to better main-
tain the project later. Therefore, it is meaningful to apply MAT-ext to improve the practicability of
MAT in real projects.

6.3 What Are the Causes of Misclassification by MAT?

Although an excellent prediction performance of MAT has been shown in Section 5, there are
some inherent limitations when applying MAT to identify SATD comments due to the simple
design of MAT, i.e., MAT can output some misclassified comments. According to our thorough
analysis, we conclude that the misclassification of MAT can be classified into four kinds of
situations, shown in Table 21.

We report the summary of misclassification of MAT in Table 21 to illustrate the main causes:

(1) False positive instances caused by auto-generated tag comments. For the IDEs (e.g.,
Eclipse) that integrate the function of tagging comments, developers may introduce an
auto-generated comment, which consists of only a task tag, due to their negligence. For
example, there are some comments like “/* XXX*/” in JRuby (in Table 21) generated by
IDE. However, it is actually unclear whether a developer tends to use such a comment
to indicate SATD or they are just auto-generated by IDEs. In the dataset provided by
Maldonado et al. [17], this kind of comment is manually classified as non-SATD. In this
situation, MAT will introduce false positive instances. To reduce such FPs, one can filter
a comment if it consists of only one tag (e.g., “//TODO”) token after preprocessing the
original comment.

(2) False positive instances caused by the components of a sentence. According to our
observation, there is another kind of false positive instance: some non-SATD comments
contain the same word (e.g., “hack”) as a task tag but it is not tended to be used as a
tag. For the example of “/* Owner related todo items: */” from the project ArgoUML, the
word “todo” is not a task tag but a component word of the comment sentence. Note that

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts?

Table 21. The Summary of Misclassification of MAT

45:45

Reasons of . .
Type mis-classification Examples Possible solution
// TODO: - [from ArgoUML, Storm, Poi, Maven] Filtering the
zﬁsoc_agfﬁizg}g //TODO!!! - [from Hibernate] comments that only
False comn%ents g // FIXME - [from JFreeChart, Tomcat, Groovy] contain one task tag
Positive /* XXX*/ - [from JRuby, Tomcat] token.
/* Owner related todo items: */ - [from ArgoUML]
// Copy the todo items after the model - [from Filtering the
FPs caused by the ArgoUML] comments whose task
components of // no item exists in table // — nothing todo - tag does not appear at
sentences. [from Columba] the top of the
// Hack to ensure charset is set correctly at sentence.
start-up - [from Columba]
// Check it out; also ugly. - [from Ant]
// this is ugly - [from Zookeeper] .
FNs caused by the // Not implemented - [from SQuirrel, Sclfrzfélfsl:f
untagged comments. SpringFramework] P
False . approaches and MAT.
Negati // not thread safe - [from Hive]
cgative // there is a risk - [from Gradle]
// TO DO: these annotations only work with
XYPlot - [from JFreeChart] Setting a matching
I;(I)\i;csa(l;fs :: EY the //TOOD: get a real example file ... to actual test dictionary of
£s- the FBSE entry not sure where the foDelay block | one-of-a-kind tags.
is -[from Poi]
these comments are not marked by task tags. The reason of the misclassification of MAT
is that task tags (e.g., “TODO”) will be transformed into its original form (e.g., “todo”) in
the preprocessing stage before matching. This will be confused with the components of
sentences and hence may cause false positive instances. According to our observation,
a task tag usually is the first token of one comment. Therefore, this kind of FPs can be
reduced by filtering out the comments in which the first token is not a task tag.

(3) False negative instances caused by the untagged comments. This is the main kind
of misclassification of MAT. The rationale of MAT assumes that developers will use tags to
mark the technical debts admitted by themselves. However, this is not the habit of some
developers and hence MAT will perform poorly in the projects for which these develop-
ers are responsible. For these comments, we can use the state-of-the-art supervised ap-
proaches (e.g., TM [10] or CNN [49]) to identify the SATD comments by extracting useful
semantic information from comments.

(4) False negative instances caused by the formats of tags. This kind of misclassifica-

tion is uncommon but also shows the weakness of MAT. In the application of MAT, we
have considered using fuzzy matching strategy to avoid some misclassifications. How-
ever, fuzzy matching we used cannot handle all forms of tags. For example, for the SATD
comment “//TO DO: delete the file if it is not a valid file” in Ant, MAT will classify it as non-
SATD, because there is no task tag after preprocessing (“TO DO ” will be transformed as
two words “to” and “do” but not “todo”). In our studied projects, the situation is extremely
rare and there is no universal rule to capture this kind of FNs. One possible solution to
this problem is to add these one-of-a-kind tags into the matching dictionary of MAT once
it is found by developers.

It should be pointed out that the above misclassifications do not have a large influence on the
overall effectiveness of MAT. The reason is that the percentage of these misclassifications is low

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:46 Z. Guo et al.

7% -
FP% FNY
L e
ol o
o N
4% A]
o
3% a8t
2% faple- e B O I o SR R
[\ N 33‘\4\, \'\o[o “_mn “9010 Q7 } AT ~,P«'° o
1% g Sh- 1 | et ,QT\“I°, - Gl m N
SRR o A5 oo 3 sl o of
o E AN > O od DN [glel FO0 [gh
0, o | o “D?I" Qo
T L R ki i ETEEEEEGGEG R
< 3 € = %38 £ 8 3 E B8 T 3 & 2 &89 5 8 &
B EH -~ Qg 323532 § g * & a2 E 2
S 3 = s - 4 © E g
< = E N

Fig. 14. The statistics of misclassifications by MAT in terms of FP% and FN%.

when considering the large number of comments. Figure 14 reports the percentages of misclassi-
fication (i.e., FP % and FN %) by MAT. We can see that the proportion of the misclassification cases
of the majority projects is very low (less than 2%).

In summary, there are only a small part of comments that are wrongly classified by MAT. More-
over, most types of FPs and FNs of MAT can be corrected easily by applying more refined matching
strategies.

6.4 How Well Does Jitterbug Perform Compared with MAT?

In the experiments of Section 5, all approaches we compared are automatic technologies that do
not need manual labeling by human experts’ effort (i.e., human intervention). As a result, only
the “Easy” component in Yu et al.’s Jitterbug is compared with MAT. In Yu et al.’s study [95], the
“Hard” component was designed to identify SATD from the comments not matched by the “Easy”
component. The purpose of the “Hard” component is to increase the recall of the classification
results of Easy via human experts’ manual labelling. To this end, the “Hard” component uses a rec-
ommendation model to iteratively recommend top 10 comments with the highest probabilities of
being SATD to human experts for labeling and uses the labeled data to update the recommending
model. This process is repeated until the estimated recall reaches a target recall. In this section, we
analyze how well MAT can perform compared with Jitterbug. Following the settings in their ex-
periment, we run Yu et al.’s script to obtain the classification result of Jitterbug when its estimated
recall reaches 0.9.

Figure 15 reports the performance comparison among Easy, Jitterbug, and MAT. It can be seen
that there is almost no difference between MAT and Easy in terms of all performance indicators.
However, a large difference can be found between MAT and Jitterbug. Because the purpose of Jit-
terbug is to identify more SATD comments (not just the comments that contain keywords), the
recalls of Jitterbug (with an average of 0.958) are significantly higher than that of MAT (with an
average of 0.687). The results show that Jitterbug has indeed achieved its goal. However, a large
decrease occurs for the precision of Jitterbug, which only achieves 0.153 on average. The reason is
that many non-SATD comments are recommended to human experts for labelling. These recom-
mended candidate comments are considered by Jitterbug to be the most probable ones that indicate
SATD. However, most of them are false alarms, leading to a low precision. As a result, the F; scores
are pulled from 0.709 (Easy) down to 0.251 (Jitterbug). In addition, the effort-aware indicators of

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:47

“:l25%~75% T Range within 1.5IQR — Median Line = Mean <+ Outliers

0.5
s
* e
* S
S » . o
\& . N
.\‘;’\Qam S
0.0 1 K
o)
Easy | Jitterbug | MAT Easy Jitterbug MAT Easy Jitterbug MAT
Precision Recall F;
T
.
1.0 S S 60
,%"v"g o 95“ o
qu}\‘“ w@@“
. . 40
N N
e o N
o 20 o o
a N PO TN
0.5 o ? 5\5“\\ N ‘J“M‘n\
- i o
Q)
Py N
* 04 @'\&"‘%
\ \5“«\.,\
Eal
Easy | Jitterbug | MAT Easy | Jitterbug | MAT
ER RI

Fig. 15. The performance comparison among Easy, Jitterbug, and MAT based on Dataset-M and Dataset-G
under the MTO scenario.

Jitterbug are considerably lower than MAT or Easy. In particular, Jitterbug only achieves 1.697
in terms of RI on average. This indicates that Jitterbug can only recall about 69.7% more SATD
comments than a random approach.

According to the above results, Jitterbug achieves a quite high recall by leveraging human ex-
pert’s effort while it introduces many false positives to the final classification result, which may
not be economical in practice. Although MAT does not achieve such a high recall, its overall clas-
sification performance is competitive, and it does not need any human expert’s effort. Therefore,
it should be more useful in practice.

7 IMPLICATIONS FOR TOOL PROVIDERS, PRACTITIONERS, AND RESEARCHERS

This study has important implications for tool providers, practitioners, and researchers.

7.1 For Tool Providers

This work gives a simple and intuitive solution for SATD identification, which can be easily added
into the popular tools by tool providers to contribute more assistance for users. The detailed im-
plications are as follows:

(1) This work can motivate tool providers to enhance the role of task tags in existing
integrated development environments (IDEs). In our investigation, although the tool
providers of many popular IDEs (e.g., Eclipse, Visual Studio, and NetBeans) have supported

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:48

)

Z. Guo et al.

task tags to facilitate the evolution activities of a target project developed in the IDE, this
work highlights another important usage scenario of task tag, i.e., SATD identification
and management. This finding may motivate tool providers to improve an IDE so it can be
used for handling SATD-related task more efficiently. For example, the IDE can maintain
a checklist to manage the unremoved SATD comments marked by task tags. To ensure the
correctness of code, the checklist can automatically remind developers to review and pay
for these unremoved SATDs before a new version of code is released.

The findings of this work can be integrated into static analysis tools (SATs). The
static analysis tools (e.g., FindBugs, PMD, and Checkstyle) are very useful in the analysis of
software defects, which have been widely used in both industry and academia. Therefore,
supporting the proposed MAT or similar matching solutions in these tools will provide
a lot of convenience. For industry, developers can use these lightweight auxiliary tools
to detect the potential SATD related static bugs easily. Compared with the supervised
approaches, MAT is easier to be integrated into SATs. For academia, researchers can use
such static analysis tools to support their research in many fields (e.g., defect prediction).
For example, incorporating SATD detected by these SATs as a component to boost their
proposed models.

7.2 For Practitioners

In practice, MAT can be easily used by practitioners for SATD identification when there are many
task tags in comments of a target project. The detailed implications are as follows:

(1)

@)

®)

This work reminds practitioners to recognize the value of a simple matching ap-
proach in SATD identification again. In the literature, many recently proposed ap-
proaches perform better than Pattern [14] in terms of classification accuracy. However,
they are often complex, so there is a challenge for practitioners to use them. The pro-
posed MAT has great advantages both in classification performance and actual applica-
tion. Therefore, putting attention to MAT will benefit the recognition of SATD in practice.
Because MAT is a training-free approach, practitioners can easily use it without collecting
a lot of training data. This will save practitioners’ time and effort greatly. Additionally, in
many popular IDEs, these tools have built-in task annotation tags module in their environ-
ments, so it is convenient for practitioners to add task tags or scan the existing unsolved
task tags in their daily routine.

We give practitioners useful guides for further improving and applying MAT in
practice. In the actual activities, practitioners can use MAT very flexibly instead of using
it exactly according to the default settings introduced in this work. In other words, MAT
provides a feasible way instead of a fixed approach for identifying SATD comments. More
specifically, as stated in section 6, practitioners may use a more specific fuzzy matching
strategy when the characteristics of comments in a target project are unique, add or use
important project-specific task tags in MAT when these important tags are defined in the
corresponding project, or combine existing supervised approaches with MAT for identi-
fying SATD comments more accurately when seldom task tags are marked in the target
project. Meanwhile, we analyze the limitations of MAT so practitioners can be aware of
these adverse situations and take actions accordingly to apply MAT more reasonably.
The more meaningful enlightenment to practitioners of our work is that good
coding habits and standard specifications will achieve twofold results with half
the effort. Task tags are an important element in comments that is designed as reminders

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:49

for a work or an action that needs to be done in the process of software development. For
this reason, many popular IDEs (e.g., Eclipse) have integrated the task tags plugin in their
environments to assist practitioners to develop and maintain software more easily. Mean-
while, according to our experimental results in Section 5, task tags show an outstanding
performance than compared approaches in indicating SATD comments. Therefore, we
strongly recommend practitioners to pay more attention to task tags, including the mean-
ing and usage scenario of each task tag. When one developer needs to add a short-term
solution (i.e., SATD) in a project due to some inevitable objective reasons, he (or she) had
better use a proper task tag provided by the development platform (or a user-defined tag)
to mark the SATD in the comment explicitly. If possible, making standard specifications
for managing and applying these task tags can not only improve the robustness of soft-
ware artifacts but also facilitate the identification of SATD comments later.

7.3 For Researchers

We contribute a simple yet strong baseline in SATD identification. In the future, if a new SATD
identification approach is proposed, it should be compared against MAT to demonstrate its practi-
cal value. This will help our community develop more effective approaches for SATD identification.
The detailed implications are as follows:

(1)

Our work highlights the importance of task tags in SATD identification. If there
are many task tags in the comments of a target project, then researchers should not build
a prediction model by completely ignoring these tags or treating them as ordinary words.
Otherwise, the performance of such prediction models (e.g., TM, NLP, and CNN) may not
be better than MAT. Indeed, these task tags are predefined by developers or managers in
the purpose of indicating problems (e.g., SATD) in software artifacts [22]. Although these
task tags may be misused by developers in the process of practical application, the com-
ments with task tags have a high probability of indicating SATD. Furthermore, these task
tags are prior knowledge, which can be obtained without learning. Therefore, we strongly
recommend that future studies take the task tags into consideration when building new
SATD identification approaches.

Our work gives useful suggestions for improving SATD identification. At the
model constructing phase, we recommend combining the prior knowledge of task tags
in his (or her) (supervised or unsupervised) identification approach. At the same time, the
newly proposed approach had better automatically identify SATD comments and avoid
labor cost as soon as possible. Otherwise, according to Section 6.4, it may not be practi-
cal, since the precision of a new approach is very low when increasing the recall rate. At
the model evaluation phase, we recommend researchers add a group of test sets that the
comments containing tasks from this test set are removed. Such test sets can be regarded
as a control group to validate the real effectiveness of the proposed approach without the
confounding effects caused by task tags.

Our work demonstrates an important software engineering scenario that a sim-
ple solution could work well compared with complex solutions. Indeed, in software
engineering, it is not uncommon to observe similar phenomena [53, 54, 57, 64, 75-77]. For
example, in cross-project defect prediction, we found that, ManualDown, a very simple
module-size model, performed similarly to or even better than almost all the state-of-the-
art (complex) supervised models [64]; in the Stack Overflow text mining task, Majumder
et al. reported that a simple tuned local model performed similarly to the state-of-the-
art CNN model but was 500+ times faster [77]; in the automatic generation of commit
messages, Liu et al. showed that a simple nearest neighbor generator outperformed the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:50 Z. Guo et al.

complex neural machine translation algorithm but was 2,600 times faster [75]. The above
facts caution that when faced with a software engineering problem, researchers should
first seek simple rather than intricate and complex solutions. This is in accordance with
the idea of “less, but better” advocated by Menzies,'*which aims to use simple approaches
to solve complex problems. At least, “before researchers release research results, they com-
pare their supposedly sophisticated methods against simpler alternatives” [77]. This will
help avoid wasting research effort and find practical solutions.

8 THREATS TO VALIDITY

We consider the most important threats to construct, internal, and external validity of our study.

8.1 Construct Validity

Construct validity is the degree to which the dependent and independent variables accurately mea-
sure the concept they purport to measure. In this study, the used dependent variable is a binary
variable that indicates whether a code comment is a SATD comment. We used the dataset shared
online by Huang et al., which was collected by Maldonado et al. [17] (Dataset-M) and the dataset
we collected (Dataset-G). In the data collection, both the authors of the two datasets manually read
comments to obtain the dependent variable. During this process, there were ambiguous comments
that could not be accurately labeled. For example, a comment only consisting of a task tag (e.g., “//
TODO:”) cannot be determined whether it indicates a SATD. Therefore, this is a threat to the con-
struct validity of the dependent variable that needs to be reduced in the future work. Furthermore,
there is another risk for the Dataset-G that was collected by ourselves, because we have learned
the prior knowledge (i.e., task tags may indicate SATD) to label each comment. To mitigate this
risk, our group has spent a long period of time (about 200 hours) to label these comments and
asked others to verify the labels. Currently, there are no more published datasets except for the
ones used in this work. Although MAT performs well in 20 of the projects and MAT should also
work on other datasets intuitively, it is necessary to conduct more experiments to validate the
effectiveness of MAT on new datasets published by other research groups in the future.

8.2 Internal Validity

Internal validity is the degree to which conclusions can be drawn about the causal effect of inde-
pendent variables on the dependent variables. There are two main internal threats in this article.
The first internal threat is from the selection of existing SATD identification approaches. Because
this articleis devoted to the current research progress of SATD identification, it is important to
select the most representative works. To this end, the approaches used in this articleare all from
the top international conferences and journals. To the best of our knowledge, these approaches
are the most widely cited works in the field of SATD identification, and they have attracted much
attention. Therefore, in our opinion, this threat has been minimized.

The second internal threat is from the comparison between MAT and CNN. Because the imple-
mentation of CNNis not open source, we can only compare the performance of MAT and CNN (the
results of each project are all from their paper [49]) in the Dataset-M in RQ2. The result shows
that MAT is a competitive identification approach compared with CNN. Unfortunately, we can-
not compare the classification difference between the two approaches in RQ3. According to Table
15 in their paper [49], we summarize the top 10 important patterns (i.e., tokens) of each project
identified by CNN and rank them in descending order according to the number of occurrences in

Ohttp://menzies.us/.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

http://menzies.us/

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:51

these projects. We find an interesting phenomenon that the number of times that a pattern ap-
pears is high if it can be considered as a task tag. More specifically, “todo” ranked first (occurring
10 times), “hack” ranked second (occurring 9 times), “fixme” ranked third (occurring 6 times), and
“xxx” ranked fifth (occurring 4 times). This indicates that CNN regards these words (i.e., task tags
especially for “todo,” “hack,” and “fixme”) as the most important features in SATD comments. This
partly explains why MAT and CNN have a competitive performance on Dataset-M. However, it is
clear that these task tags are prior knowledge, that one does not need to use CNN to acquire this
information through a complex learning process and then use them to build a SATD identification
model. This means that CNN may have complicated the SATD identification problem. In addition,
because the four task tags are listed as the important features by CNN, it is reasonable to expect
that the true positive instances (SATD) and true negative instances (non-SATD) recognized by
CNN may overlap with those identified by MAT greatly. Since this is our conjecture, it needs to be
validated in future work.

8.3 External Validity

External validity is the degree to which the results of the research can be generalized to the pop-
ulation under study and other research settings. The most important threat is that our findings
may not be generalized to non-Java projects or commercial projects. In our experiment, all subject
projects are open-source Java projects. In particular, MAT uses four tags (i.e., “TODO,” “FIXME,”
“HACK,” and “XXX”) to identify SATD. For non-Java or commercial projects, if the tags for mark-
ing SATD are different from these four tags, then MAT will not work. One possible solution is to
adapt MAT by replacing the four tags with the popular tags or user-defined tags in those projects.
In this context, we believe that the adapted MAT should still work. Nonetheless, to mitigate this
threat, there is a need to reproduce our study across a wider variety of projects in the future.

9 CONCLUSION AND FUTURE WORK

In this article, we conduct a comprehensive empirical study to investigate the real progress in the
field of SATD identification. We compare existing approaches with a simple heuristic approach
MAT in terms of classification performance and classification differences. In nature, MAT is an un-
supervised approach, which does not need any data to train a prediction model and only matches
task tags in comments to identify SATD. The used task tags are predefined for indicating SATD
comments and have been supported by many popular IDEs. It is prior that comments with these
tags have a high probability of being SATD even if tag misusing is considered. However, existing
SATD identification approaches neglect this fact and learn their relationships with SATD from
labeled training data. We use 20 different open-source Java projects to conduct the comparison
experiment. Our experimental results surprisingly show that MAT is very competitive or even
superior to all the investigated approaches, regardless of whether effort-unaware or effort-aware
performance indicators are considered. Furthermore, for the investigated approaches, the resulting
true positive instances (i.e., SATD) and true negative instances (i.e., non-SATD) are highly over-
lapped with those identified by MAT. This result indicates that the real progress in SATD identifi-
cation is not being achieved as it might have been envisaged. Due to a low computation cost and a
low memory requirement, MAT can be efficiently applied in practice. Therefore, we strongly rec-
ommend that future SATD identification studies consider MAT as an easy-to-implement baseline,
when many task tags are used in the comments of a target project. Indeed, in light of the fact that
task tags are usually signals of SATD, there is no reason to neglect such a natural baseline. In prac-
tice, using MAT as a baseline will enable us to determine whether a new identification approach
is practically useful.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:52 Z. Guo et al.

In the future, we will investigate developers’ habit of writing comments to develop a more
accurate task tag matching for MAT. What is more, we will study how to effectively combine
MAT with existing supervised approaches to boost the performance of SATD identification.

ACKNOWLEDGMENTS

We are very grateful to Maldonado, Shihab, and Tsantalis for sharing their datasets and collection
methodologies online. We are also very grateful to Huang, Shihab, Xia, Lo, and Li for sharing their
comment datasets and source code of TM online, to Yu, Fahid, Tu and Menzies for sharing their
code for Easy online, and to Ren for providing the details on the datasets and the basic code used
in their CNN.

REFERENCES

(1]

(13]
[14]

[15]

[16]
(17]
(18]
(19]
[20]
[21]

[22]

[23]

Python Developer’s Guide. 2020. Retrieved from https://www.python.org/dev/peps/pep-0350/.

Tips about Eclipse. 2020. Retrieved from http://www.javaperspective.com/how-to-use-todo-and-fixme-task-tags-in-
eclipse. html.++6.

Tasklist of NetBeans. 2020. Retrieved from https://ui.netbeans.org/docs/hi/promoB/tasklist.html.

To-Do List plugin of CodeBlocks. 2020. Retrieved from http://wiki.codeblocks.org/index.php/To-Do_List_plugin.
Task Tags Preferences of Eclipse. 2020. Retrieved from https://www.eclipse.org/pdt/help/html/task_tags.htm.
TODO comments of Intelli] IDEA. 2020. Retrieved from https://www.jetbrains.com/help/idea/using-todo.html.
Task List of Visual Studio. 2020. Retrieved from https://docs.microsoft.com/zh-cn/visualstudio/ide/using-the-task-
list?view=vs-2015.

Code Climate. 2020. Retrieved from https://codeclimate.com/.

Android Studio. 2020. Retrieved from https://developer.android.com/.

Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2018. Identifying self-admitted technical debt in open
source projects using text mining. Empir. Softw. Eng. 23, 1 (2018), 418-451.

Ward Cunningham. 1993. The WyCash portfolio management system. ACM SIGPLAN OOPS Mess. 4, 2 (1993), 29-30.
Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li. 2018. SATD detector: A text-mining-
based self-admitted technical debt detection tool. In Proceedings of the 40th International Conference on Software En-
gineering (ICSE’18). ACM, 9-12.

Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and Xiaohu Yang. 2018. Automating change-level self-
admitted technical debt determination. IEEE Trans. Softw. Eng. 45, 12 (2018), 1211-1229.

Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted technical debt. In Proceedings of the
IEEE International Conference on Software Maintenance and Evolution (ICSME’14). IEEE, 91-100.

Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the impact of self-admitted technical debt on
software quality. In Proceedings of the IEEE 23rd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER’16). IEEE, 179-188.

Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on self-admitted technical debt. In Proceedings
of the IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR’16). IEEE, 315-326.

Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using natural language processing to auto-
matically detect self-admitted technical debt. IEEE Trans. Softw. Eng. 43, 11 (2017), 1044-1062.

Everton da S. Maldonado and Emad Shihab. 2015. Detecting and quantifying different types of self-admitted technical
debt. In Proceedings of the IEEE 7th International Workshop on Managing Technical Debt (MTD’15). IEEE, 9-15.

Nico Zazworka, Antonio Vetro, Clemente Izurieta, Sunny Wong, Yuanfang Cai, Carolyn B. Seaman, and Forrest Shull.
2014. Comparing four approaches for technical debt identification. Softw. Qual. 7. 22, 3 (2014), 403-426.

Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study on technical debt and its manage-
ment. J. Syst. Softw. 101 (2015), 193-220.

Jiawei Han and Micheline Kamber. 2006. Data Mining: Concepts and Techniques, Second Edition (The Morgan Kaufmann
Series in Data Management Systems). Elsevier.

Margaret-Anne D. Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer. 2008. TODO or to bug: Exploring
how task annotations play a role in the work practices of software developers. In Proceedings of the 30th International
Conference on Software Engineering (ICSE’08). 251-260.

Nico Zazworka, Rodrigo O. Spinola, Antonio Vetro, Forrest Shull, and Carolyn B. Seaman. 2013. A case study on
effectively identifying technical debt. In Proceedings of the 17th International Conference on Evaluation and Assessment
in Software Engineering (EASE’13). 42-47.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

https://www.python.org/dev/peps/pep-0350/
http://www.javaperspective.com/how-to-use-todo-and-fixme-task-tags-in-eclipse.html.++6
http://www.javaperspective.com/how-to-use-todo-and-fixme-task-tags-in-eclipse.html.++6
https://ui.netbeans.org/docs/hi/promoB/tasklist.html
http://wiki.codeblocks.org/index.php/To-Do_List_plugin
https://www.eclipse.org/pdt/help/html/task_tags.htm
https://www.jetbrains.com/help/idea/using-todo.html
https://docs.microsoft.com/zh-cn/visualstudio/ide/using-the-task-list?view=vs-2015
https://docs.microsoft.com/zh-cn/visualstudio/ide/using-the-task-list?view=vs-2015
https://codeclimate.com/
https://developer.android.com/

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:53

[24]

[25]

[26]

[27]

(28]

[29]

(33]

(34]

(35]

Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn B. Seaman. 2011. Investigating the impact of design debt
on software quality. In Proceedings of the IEEE 2nd International Workshop on Managing Technical Debt (MTD’11). 17—
23.

Clemente Izurieta, Antonio Vetro, Nico Zazworka, Yuanfang Cai, Carolyn B. Seaman, and Forrest Shull. 2012. Orga-
nizing the technical debt landscape. In Proceedings of the IEEE 3rd International Workshop on Managing Technical Debt
(MTD’12). 23-26.

Nicolli S. R. Alves, Leilane Ferreira Ribeiro, Vivyane Caires, Thiago Souto Mendes, and Rodrigo O. Spinola. 2014. To-
wards an ontology of terms on technical debt. In Proceedings of the 6th International Workshop on Managing Technical
Debt (MTD’14). 1-7.

Beat Fluri, Michael Wiirsch, and Harald C. Gall. 2007. Do code and comments coevolve? On the relation between
source code and comment changes. In Proceedings of 14th Working Conference on Reverse Engineering (WCRE’07).
70-79.

Haroon Malik, Istehad Chowdhury, Hsiao-Ming Tsou, Zhen Ming Jiang, and Ahmed E. Hassan. 2008. Understanding
the rationale for updating a function’s comment. In Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’08). 167-176.

Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe Kruchten, Erin Lim, Alan Mac-
Cormack, Robert L. Nord, Ipek Ozkaya, Raghvinder S. Sangwan, Carolyn B. Seaman, Kevin J. Sullivan, and Nico
Zazworka. 2010. Managing technical debt in software-reliant systems. In Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research (FOSER’10). 47-52.

Frank Buschmann. 2011. To pay or not to pay technical debt. IEEE Softw. 28, 6 (2011), 29-31.

Erin Lim, Nitin Taksande, and Carolyn B. Seaman. 2012. A balancing act: What software practitioners have to say
about technical debt. IEEE Softw. 29, 6 (2012). 22-27.

Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, and Davide Falessi. 2013. Technical debt: Towards a crisper definition
report on the 4th International Workshop on Managing Technical Debt. ACM SIGSOFT Softw. Eng. Notes 38, 5 (2013),
51-54.

Gerard Salton, A. Wong, and Chung-Shu Yang. 1975. A vector space model for automatic indexing. Commun. ACM
18, 11 (1975), 613-620.

Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment: Testing Javadoc comments to
detect comment-code inconsistencies. In Proceedings of the IEEE 5th International Conference on Software Testing,
Verification and Validation (ICST’12). IEEE, 260-269.

Ninus Khamis, René Witte, and Juergen Rilling. 2010. Automatic quality assessment of source code comments: The
JavadocMiner. In Proceedings of the International Conference on Application of Natural Language to Information Systems
(NLDB’10). 68-79.

Matthew J. Howard, Samir Gupta, Lori L. Pollock, and K. Vijay-Shanker. 2013. Automatically mining software-based,
semantically-similar words from comment-code mappings. In Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR’13). 377-386.

Daniela Steidl, Benjamin Hummel, and Elmar Jiirgens. 2013. Quality analysis of source code comments. In Proceedings
of the 21st International Conference on Program Comprehension (ICPC’13). IEEE, 83-92.

Bradley L. Vinz and Letha H. Etzkorn. 2008. Improving program comprehension by combining code understanding
with comment understanding. Knowl.-based Syst. 21, 8 (2008), 813-825.

Hirohisa Aman, and Hirokazu Okazaki. 2008. Impact of comment statement on code stability in open source devel-
opment. In Proceedings of the 8th Joint Conference on Knowledge-based Software Engineering (JCKBSE 08). 415-419.
Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. 1996. The effects of comments and identifier names
on program comprehensibility: An experimental investigation. 7. Prog. Lang. 4, 3 (1996), 143-167.

Xiaobing Sun, Qiang Geng, David Lo, Yucong Duan, Xiangyue Liu, and Bin Li. 2016. Code comment quality analysis
and improvement recommendation: An automated approach. Int. J. Softw. Eng. Knowl. Eng. 26, 6 (2016), 981-1000.
Paul W. Mcburney and Collin Mcmillan. 2016. An empirical study of the textual similarity between source code and
source code summaries. Empir. Softw. Eng. 21, 1 (2016), 17-42.

Fabrizio Sebastiani. 2002. Machine learning in automated text categorization. ACM Comput. Surv. 34, 1 (2002), 1-47.
Haibo He and Edwardo A. Garcia. 2009. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21, 9 (2009),
1263-1284.

Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou, and Paris Avgeriou. 2017. The evolution of technical debt
in the apache ecosystem. In Proceedings of the European Conference on Software Architecture (ECSA’17). 51-66.

Chao Liu, Cuiyun Gao, Xin Xia, David Lo, John C. Grundy, and Xiaohu Yang. 2020. On the replicability and repro-
ducibility of deep learning in software engineering. CoRR abs/2006.14244 (2020).

Yoav Benjamini and Daniel Yekutieli. 2001. The control of false discovery rate in multiple testing under dependency.
Ann. Statist. 29, 4 (2001), 1165-1188.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

45:54 Z. Guo et al.

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(57]

(58]

[59]

[60]

[61]
[62]
[63]

[64]

[65]
[66]

[67]

[68]

[69]

Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2008. Jdeodorant: Identification and removal
of type-checking bad smells. In Proceedings of the 12th European Conference on Software Maintenance and Reengineer-
ing (CSMR’08). 329-331.

Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy. 2019. Neural network based
detection of self-admitted technical debt: From performance to explainability. ACM Trans. Softw. Eng. Methodol. 28,
3(2019).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Proceedings of the International Conference on Advances in Neural
Information Processing Systems (NIPS’13). 3111-3119.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. 2014. Learning sentiment-specific word em-
bedding for Twitter sentiment classification. In Proceedings of the 52nd Meeting of the Association for Computational
Linguistics (ACL’14). 1555-1565.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neu-
ral networks. In Proceedings of the International Conference on Advances in Neural Information Processing Systems
(NIPS’12). 1106-1114.

Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu, Baowen Xu, and Hareton Leung. 2016.
Effort-aware just-in-time defect prediction: Simple unsupervised models could be better than supervised models.
In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’16).
157-168.

Wei Fu and Tim Menzies. 2017. Easy over hard: A case study on deep learning. In Proceedings of the 11th Joint Meeting
on Foundations of Software Engineering (FSE’17). 49-60.

Qiao Huang, Xin Xia, and David Lo. 2019. Revisiting supervised and unsupervised models for effort-aware just-in-
time defect prediction. Empir. Softw. Eng. 24, 5 (2019), 2823-2862.

Qiao Huang, Xin Xia, and David Lo. 2017. Supervised vs. unsupervised models: A holistic look at effort-aware just-
in-time defect prediction. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution
(ICSME’17). IEEE, 159-170.

Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour. 2018. Prediction of relatedness in stack over-
flow: Deep learning vs. SVM: A reproducibility study. In Proceedings of the 12th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM’18). 1-10.

Margaret-Anne D. Storey, Jody Ryall, Janice Singer, Del Myers, Li-Te Cheng, and Michael J. Muller. 2009. How soft-
ware developers use tagging to support reminding and refinding. IEEE Trans. Softw. Eng. 35, 4 (2009), 470-483.
Annie T. T. Ying, James L. Wright, and Steven Abrams. 2005. Source code that talks: an exploration of eclipse task
comments and their implication to repository mining. In Proceedings of the International Workshop on Mining Software
Repositories (MSR’05). 1-5.

Christopher D. Manning, and Dan Klein. 2003. Optimization, maxent models, and conditional estimation without
magic. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (HLT-NAACL’03). 8-8.

Rahul, Krishna and Tim Menzies. 2017. Bellwethers: A baseline method for transfer learning. IEEE Trans. Softw. Eng.
45,11 (2017), 1081-1105.

Jianfeng Chen, Vivek Nair, Rahul Krishna, and Tim Menzies. 2019. “Sampling” as a baseline optimizer for search-based
software engineering. IEEE Trans. Softw. Eng. 45, 6 (2019), 597-614.

Peter A. Whigham, Caitlin A. Owen, and Stephen G. MacDonell. 2015. A baseline model for software effort estimation.
ACM Trans. Softw. Eng. Methodol. 24, 3 (2015).

Yuming Zhou, Yibiao Yang, Hongmin Lu, Lin Chen, Yanhui Li, Yangyang Zhao, Junyan Qian, and Baowen Xu. 2018.
How far we have progressed in the journey? An examination of cross-project defect prediction. ACM Trans. Softw.
Eng. Methodol. 27, 1 (2018).

Roberto Souto Maior de Barros and Silas Garrido Teixeira de Carvalho Santos. 2018. A large-scale comparison of
concept drift detectors. Inf. Sci. 451-452, (2018), 348-370.

Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma. 2015. PCANet: A simple deep learning
baseline for image classification. IEEE Trans. Image Proc. 24, 12 (2015), 5017-5032.

Zhiguang Wang, Weizhong Yan, and Tim Oates. 2017. Time series classification from scratch with deep neural net-
works: A strong baseline. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’17). 1578~
1585.

Hongjian Wang, Xianfeng Tang, Yu-Hsuan Kuo, Daniel Kifer, and Zhenhui Li. 2019. A simple baseline for travel time
estimation using large-scale trip data. ACM Trans. Intell. Syst. Technol. 10, 2 (2019).

Bin Xiao, Haiping Wu, and Yichen Wei. 2018. Simple baselines for human pose estimation and tracking. In Proceedings
of the European Conference on Computer Vision (ECCV’18). 472-487.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

How Far Have We Progressed in Identifying Self-admitted Technical Debts? 45:55

[70]
(71]

[72]

(73]

(74]

[75]

(76]

(7]

[92]

(93]

[94]

Kawin Ethayarajh. 2018. Unsupervised random walk sentence embeddings: A strong but simple baseline. In Proceed-
ings of the 3rd Workshop on Representation Learning for NLP (Rep4NLP@ACL’18). 91-100.

Zheng Xu, Xitong Yang, Xue Li, and Xiaoshuai Sun. 2018. The effectiveness of instance normalization: A strong
baseline for single image dehazing. CoRR abs/1805.03305 (2018).

Yaming Tang, Fei Zhao, Yibiao Yang, Hongmin Lu, Yuming Zhou, and Baowen Xu. 2015. Predicting vulnerable compo-
nents via text mining or software metrics? An effort-aware perspective. In Proceedings of the International Conference
on Software Quality, Reliability and Security (QRS’15). 27-36.

Roberto Souto Maior de Barros, Juan Isidro Gonzalez Hidalgo, and Danilo Rafael de Lima Cabral. 2018. Wilcoxon
rank sum test drift detector. Neurocomputing 275 (2018), 1954-1963.

Annibale Panichella, Rocco Oliveto, and Andrea De Lucia. 2014. Cross-project defect prediction models: L'Union
fait la force. In Proceedings of the IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE’14). 164-173.

Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing, and Xinyu Wang. 2018. Neural-machine-
translation-based commit message generation: How far are we? In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE’18). 373-384.

Yuming Zhou, Baowen Xu, Hareton Leung, and Lin Chen. 2014. An in-depth study of the potentially confounding
effect of class size in fault prediction. ACM Trans. Softw. Eng. Methodol. 23, 1 (2014).

Suvodeep Majumder, Nikhila Balaji, Katie Brey, Wei Fu, and Tim Menzies. 2018. 500+ times faster than deep learn-
ing: A case study exploring faster methods for text mining stackoverflow. In Proceedings of the 15th International
Conference on Mining Software Repositories (MSR’18). 554-563.

Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. XX, 1 (1960), 37-46.

Joseph L. Fleiss. 1981. The measurement of interrater agreement. In Statistical Methods Rates Proportions. John Wiley,
NewYork.

Retrieved from https://github.com/Naplues/MAT.

Giancarlo Sierra, Emad Shihab, and Yasutaka Kamei. 2019. A survey of self-admitted technical debt. J. Syst. Softw.
152, (2019), 70-82.

Supatsara Wattanakriengkrai, Rungroj Maipradit, Hideaki Hata, Morakot Choetkiertikul, Thanwadee Sunetnanta,
and Kenichi Matsumoto. 2018. Identifying design and requirement self-admitted technical debt using n-gram IDF. In
Proceedings of the International Workshop on Empirical Software Engineering in Practice IWESEP’18). 7-12.

Maleknaz Nayebi, Yuanfang Cai, Rick Kazman, Guenther Ruhe, Qiong Feng, Chris Carlson, and Francis Chew. 2018.
A longitudinal study of identifying and paying down architectural debt. CoRR abs/1811.12904 (2018).

Nathalie Japkowicz and Mohak Shah. 2011. Evaluating Learning Algorithms: A Classification Perspective. Cambridge
University Press.

N. E. Breslow and N. E. Day. 1980. Statistical methods in cancer research: The analysis of case-control studies. IARC
Sci. Public. 1, 32 (1980), 5-338.

Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. Comput. Sci. 359, 6377 (2018), 725-726.
Andrew Lane Beam, Arjun K. Manrai, and Marzyeh Ghassemi. 2020. Challenges to the reproducibility of machine
learning models in health care. J. Amer. Med. Assoc. 323, 4 (2020).

Feng Zhang, Iman Keivanloo, and Ying Zou. 2017. Data transformation in cross-project defect prediction. Empir.
Softw. Eng. 22, 6 (2017), 3186-3218.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’16). 631-642.

Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. 2010. A discriminative model approach
for accurate duplicate bug report retrieval. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE’10). 45-54.

Alex Graves, M. Abdel-rahman, and Geoffrey E. Hinton. 2013. Speech recognition with deep recurrent neural net-
works. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’13).
6645-6649.

Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li. 2016. Predicting semantically link-
able knowledge in developer online forums via convolutional neural network. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE’16). 51-62.

Lin Ma, Zhengdong Lu, and Hang Li. 2016. Learning to answer questions from image using convolutional neural
network. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI’16). 3567-3573.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP’14). Association for Computational Linguistics, 1746—
1751.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

https://github.com/Naplues/
https://MAT

45:56 Z. Guo et al.

[95] Zhe Yu, Fahmid Morshed Fahid, Huy Tu, and Tim Menzies. 2020. Identifying self-admitted technical debts with
Jitterbug: A two-step approach. IEEE Trans. Softw. Eng. (2020).

[96] Fei Zhao, Yaming Tang, Yibiao Yang, Hongmin Lu, Yuming Zhou and Baowen Xu. 2015. Is learning-to-rank cost-
effective in recommending relevant files for bug localization? In Proceedings of the International Conference on Software
Quality, Reliability and Security (QRS’15). 298-303.

Received June 2020; revised December 2020; accepted January 2021

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 45. Pub. date: July 2021.

