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Abstract—Recently, Age of Information (AoI) has become an important metric to evaluate the freshness of information, and studies on
minimizing AoI in wireless networks have drawn extensive attention. In mobile edge networks, the change of critical levels for distinct
information is important for users’ decision making, especially when merely partial observations are available. However, existing
researches have not addressed that issue yet. To tackle the above challenges, we first establish the system model, in which the
information freshness is quantified by the changes of its critical levels. We formulate the Age-of-Critical-Information (AoCI) minimization
issue as an optimization problem, with the purpose of minimizing the average relative AoCI of mobile clients to help them make timely
decisions. Then, we propose an information-aware heuristic algorithm that can reach optimal performance with full obsevations in an
offline manner. For online scheduling, an imitation learning-based scheduling approach is designed to decide update preferences for
mobile clients under partial observations, where policies obtained by the above heuristic algorithm are utilized for expert policies. At
last, we demonstrate the superiority of our designed algorithm from both theoretical and experimental perspectives.

Index Terms—Age of information, imitation learning, mobile edge networks, scheduling policy, critical levels.
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1 INTRODUCTION

WITH the boom in new technologies and the emer-
gence of multifarious applications, individuals have

become heavily dependent on mobile terminals to obtain in-
formation, including news, advertisements, weather reports
and notifications. For instance, a vehicle moving on the
road can require the updated traffic information about some
locations along its routes through Road Side Units (RSUs)
to make driving plans. Another example is that sensors
desire real-time updates of the channel state to monitor the
environment and feed back information to servers through
wireless communication systems. Therefore, the freshness
of information has become a significant metric to qualify
the experience of users in information centric systems.

Currently, Age of Information (AoI) has been utilized to
measure the freshness of information. Generally, it is defined
as the time elapsed from the last time when the information
was updated to now. This concept was first introduced in [1]
to capture the timeless requirements of applications that
broadcast their information periodically. A vivid interest has
been attracted for AoI since then, and it has been taken into
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consideration by variety of researches, such as queueing sys-
tems [2], mobile edge computing networks [3, 4] and wire-
less communication systems [5, 6]. Existing studies mainly
focus on minimizing the average or peak AoI of clients
under the constraints of wireless communication resources.
Many scheduling policies have been proposed to achieve the
above purpose based on request-response models, where
multiple pairs of servers and clients coexist, and relay nodes
can be leveraged for information transmission [7]. However,
the importance of information is not explicitly expressed,
and the fact that different information generally has differ-
ent impacts on users’ decisions is generally neglected [8].

1.1 Motivating Example
A representative application example of AoI minimization
is sending traffic information of different roads to drivers
and passengers in vehicular networks. To keep the freshness
of local information, terminal users always require timely
update. Due to the limited number of channels, not all
users can update their information timely. The manage-
ment server can design an information update preference
for required terminals based on the AoI values of their
information. However, on one hand, different users may be
interested in diverse information, and distinct information
can have different impacts on user decisions. On the other
hand, users may not intend to expose their personal pro-
files to the server on account of individual privacy. Thus,
merely partial observations of user status are available for
the management server. Unfortunately, existing researchers
have always neglected the above important factors for in-
formation update scheduling.

To illustrate the motivation of this paper, let’s take an
example as shown in Fig. 1. We consider that six road
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Fig. 1: An AoI related road network: For a vehicle from
locations A to C , the traffic information of different road
segments, especially 4, 5, and 6, affects the driver’s decision
for road selection.

segments have various traffic information, i.e., traffic status
about road segments 1 to 6 is different. A vehicle prepares to
go to locations C from A, and it concerns traffic information
about road segments 1, 2, 4, 5 and 6. Consider that the traffic
information of road segment 4 has two critical levels: i) a
happened traffic jam; and ii) smooth traffic flow. Commonly,
if the critical level of the information does not change, it
has little impact on the vehicle’s decision. That is, if the
critical level of road segment 4 is ii in time slot t, the
vehicle will choose the path through segments 1, 2 and
4 to destination. Nevertheless, if the corresponding level
changes to i in time slot t + 1, the vehicle will change its
decision by selecting the path containing segments 1, 2, 5
and 6. Therefore, it is a priority to update the information
when its level changes. The vehicle may concern the traffic
condition of road segment 4 more than those of 5 and 6,
since the length of the path through 1, 2 and 4 is shorter
than that of 1, 2, 5 and 6.

1.2 Challenges

Based on the above considerations, the following challenges
exist to design a feasible scheduling policy for information
update:

• How to treat the information based on their different
categories and critical levels is necessary to investi-
gate, since it heavily impacts users’ decisions. How-
ever, there is no existing work focusing on different
impacts of various information, user interests and
dynamic networks simultaneously, to the best of our
knowledge.

• Due to the privacy concern, users may not reveal all
their personal information to the server, and only
expose what they need to update [9]. For example,
their interest ratios for different information are not
revealed. Thus, existing scheduling policies based on
full observations are not applicable for such partial
observations of the system state.

• Dealing with the dynamics of mobile terminals is
necessary for realistic network scenarios, given the
fact that they cannot always stay in specific locations.
Meanwhile, novel scheduling algorithms based on
both wireless resource constraints and information

diversities are challenging. Capturing the change of
critical level for users via limited wireless spectrum
should be elaborately designed to meet individual
information update demands and support users to
make timely decisions.

Overall, information diversity, partial observations, user
dynamics, and limited wireless communication bandwidths
make the design of online scheduling algorithm rather chal-
lenging.

1.3 Contributions
The purpose of this paper is to minimize the average Age
of Critical Information (AoCI) of mobile clients by designing
feasible scheduling algorithms. We define AoCI as the utility
of critical information related to the factors that have direct
impacts on user decisions, including critical levels, user
interests, information categories and AoI. We propose an im-
itation learning-based scheduling algorithm, named LISA,
that allows the learning agent to imitate the behaviors of
experts. The expert data can be collected based on conduct-
ing the information-aware heuristic algorithm offline, where
the learning agent can imitate to find efficient policies with
further possible state. It is similar to supervised learning,
but more intelligent since it can guide agents to tackle
situations never met before. To the best of our knowledge,
we are the first to consider minimizing the average AoCI of
mobile clients under partial observations based on imitation
learning. Our contributions are summarized as follows:

• We first establish the system model based on request-
response communications, and formulate the infor-
mation update scheduling issue as an optimization
problem. We define the concept of AoCI to evaluate
the importance of information.

• We propose an offline scheduling algorithm, i.e., an
information-aware heuristic algorithm based on dy-
namic programming, which can obtain the optimal
scheduling solution for mobile clients based on the
full knowledge of personal profiles. It is suitable to
act as the expert policy for online learning.

• For online learning under partial observations, we
design an imitation learning-based algorithm that
allows the learning agent to mimic the behaviors of
the expert, and can obtain a near-optimal scheduling
solution under the guideline of the expert. Specifi-
cally, technologies of Variational Auto Encoder (VAE)
and Multi-Layer Perceptron (MLP) are leveraged in
the training process.

• We demonstrate the superiority of our designed algo-
rithm from both theoretical analysis and experimen-
tal scenarios. Compared with representative studies,
experimental results show that our algorithm has
advantages over the average AoCI under various
network parameters and has a short convergence
time.

The rest of this paper is structured as follows: in Section
2, we review the related work; we illustrate the system
model and formulate the studied problem in Section 3; in
Section 4, we design an information-aware heuristic algo-
rithm that can be conducted offline, followed by presenting
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the designed imitation learning-based scheduling algorithm
in Section 5; then, we introduce the experiment setting and
discuss the experimental results in Section 6; finally, we
conclude this paper in Section 7.

2 RELATED WORK

In this section, we review the recent studies about AoI and
imitation learning.

2.1 AoI
AoI is defined as a metric to evaluate the freshness of
information [10]. Existing studies focus on AoI minimization
under the constraint of wireless communication resources,
and its applications in real-time information networks. The
authors in [11] focus on a system consisting of a central
station and several terminals. A mobile agent exists in the
former to help update information of these terminals, while
the latter designs distributed scheduling policies for traffic
flows in wireless networks. The above considered model is
similar with ours, but their scheduling policies are based
on the full knowledge of the system state. Similar to our
work, researches [13] and [14] consider the bandwidth con-
straints in wireless networks, but neglecting the weighted
impact of information for Mobile Clients (MCs). A system
including multiple terminals collecting data to a base station
is considered in [4], while multiple end users upload their
video frames to the edge servers for processing in [15].
Information update between a server and a terminal by
several intermittent relay nodes has been studied in [18].

Although there exists some scheduling policies related
to AoI, the category, critical level of information and the
interest ratio of users are not focused, which have great
impacts on personal decisions. The authors in [19] propose
a metric named Age of Incorrect Information (AoII), but it
along with the corresponding scheduling method cannot be
applied in our system, because: 1) it focuses on network
status updates instead of information critical levels and the
interest ratio of users, whereas one critical level of one
single information category may refer to a set of network
status with different interest ratios to distinct MCs; 2) it
is not suitable for highly-dynamic application scenarios in
this paper, since static network situations and merely one
pair server-client model are considered; 3) we concentrate
on user-oriented scheduling with partial observable infor-
mation, while the authors in [19] design a server-oriented
method with full network observation.

2.2 Imitation Learning
Imitation learning aims to mimic expert behaviors in a
given task. A mapping between states and actions can
be learned by training a learning agent based on expert
demonstrations. Then, the agent can perform tasks based
on the learned model [20]. The advantages of imitation
learning can be summarized as: (1) it can utilize few expert
demonstrations to teach complex tasks; (2) it does not need
to deliberately design a reward function related to the
task; and (3) compared with reinforcement learning, it has
good performance from the beginning based on the expert
supervision.

DAGGER [31] is a typical imitation learning method,
iteratively training a deterministic policy based on Markov
Decision Processes (MDPs). At first, it utilizes the expert pol-
icy to obtain trajectories D. Then, at each iteration, it trains
policy π̂ to best mimic the expert, and collects trajectories
for D. Its objective is to find a policy π̂ that can minimize
the surrogate loss under the distribution of real states, i.e.,

π̂ = argmin
π∈Π

Es∼dπ [l(s, π)], (1)

where Π is the class of policies the agent should consider,
and l(·) is the loss function to be minimized when training
policy π̂. Function E [·] calculates the expected value of its
input.

Currently, imitation learning has a wide spread of appli-
cations, such as robotic motion planning [22], autonomous
driving [23] and information gathering [25]. This algorithm
allows the agent to imitate the expert that can compute
the best information sensing locations based on its full
knowledge of the world maps. However, the application of
imitation learning in wireless networks is still in its initial
stage. An imitation learning enabled resource allocation
algorithm is proposed in [26] to accelerate the solving speed
of optimization problems. For device-to-device communica-
tions, imitation learning is utilized to find suitable resource
allocation strategy in wireless networks, where the learning
speed can be accelerated based on expert trajectories [27].

Different from existing researches, we investigate imita-
tion learning with AoI-related information update schedul-
ing. Our objective is to find feasible solutions for the
scheduling issue under the consideration of information
diversities, user preferences, dynamic networks and partial
observations. To the best of our knowledge, we are the first
to design an imitation learning-based scheduling approach
for the AoI-related issue under partial observations.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the considered system model and
formulate the optimization problem.

3.1 System Model

As illustrated in Fig. 2, a request-response model is inves-
tigated, where a server can provide services for MCs with
maximum number K due to its bandwidth constraint. This
model is general in the real world, and can be applied in
many scenarios. For instance, the server can be an RSU
in vehicular networks to serve multiple passing-by vehi-
cles [28, 29], or a base station in cellular networks providing
services for mobile users [30]. Without loss of generality, it
is reasonable to consider the AoCI minimization issue in
this general network framework. For simplicity, we refer
to different terminals served by the server as MCs, which
can randomly enter in or leave the wireless coverage of the
server. We consider that the information update scheduling
is determined in each time slot, and three periods are
included.

At the beginning of time slot t, the updated informa-
tion (various real-time information from sensors or pushing
services from a remote center) randomly arrives at the local
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Fig. 2: Illustrative system model.

server, and N(t) MCs send requests to the local server for in-
formation update in time slot t. Then, the server determines
a scheduling preference to update the information of MCs.
Note that not all clients have the update opportunity in each
time slot, and not all information belonging to one client can
be updated at the same time. There are min {N(t),K} MCs
can initialize the information update process. At the end of
each time slot, the clients receive the required information.
In this work, we mainly focus on the update scheduling
issue for MCs. First, several formal definitions are given as
follows:

Definition 1 (Information category). One information cate-
gory is related to a specific event that MCs focus on. In our system,
the information can be classified into |M | categories, denoted by
M = {1, ..., |M |}, and each client can be interested in several
information categories.

Definition 2 (Critical level). Each information category can
have several critical levels that reflect different statuses of one
specific event changing with time. In our work, each kind of
information has |L| critical levels, denoted by L = {1, 2, ..., |L|}.

For one information category fj that MC ui focuses, its
critical level may be different from that on the server, when
ui does not get update. Variables v(t, fj) and v(t, ui, fj)
represent the critical level of category fj on the server and
MC ui in time slot t, respectively. In the following, we
provide the definition of level difference:

Definition 3 (Level difference). The level difference for one
information category on an MC can be defined as the differ-
ence between its local critical level and that on the server, i.e.,
| v(t, fj)− v(t, ui, fj) |.

For each MC, it can be interested in several information
categories, and prepare to receive their update information.

3.2 AoCI

To model the impact of information with different cate-
gories and critical levels, we introduce the concept of AoCI,
defined as the relative age of critical information that has
significant impacts on user decisions. It also implies that
capturing the change of critical levels as early as possible
is significant to avoid missing the chance of making appro-
priate decisions. For information category fj that MC ui

Fig. 3: Example change in AoI, level difference and AoCI.

focuses on, we first provide the expression of its AoI in time
slot t by:

h (t, ui, fj) =

⎧⎪⎨
⎪⎩
1, if ξi (t) = 1 and

βij (t) = 1,
h (t− 1, ui, fj) + 1, otherwise.

(2)

We utilize ξi (t) ∈ {0, 1} to denote the server decision
on MC ui in time slot t. If ui is selected for update,
ξi (t) = 1. Otherwise, ξi (t) = 0. Variable βij (t) is an
indicator, representing whether information category fj of
MC ui is updated or not.

Then, we derive the AoCI for each information category.
It begins with an example in Fig. 3, which shows the update
trends of one information category related to an MC. The
horizontal axis represents the change of time slots, and the
vertical axis is the value of three-related metrics, i.e., AoI,
level differences and AoCI. The server updates its local
information in each time slot, and the MC requests update
for its focused information category (e.g., category A). We
assume that the critical level of A on the server changes
in time slots 2, 4 and 8, while the MC obtains update
in time slots 1, 3, 5, 6, 9 and 12. After MC updates, the
AoI of its information category drops to 1 and the level
difference becomes 0, illustrated by the red and blue lines,
respectively. We intend to describe the AoCI curve that can
reflect the variation trends of both AoI and level differences
as the black dotted line shows, and provide the following
definition:

Definition 4 (AoCI). The AoCI of one information category
reflects the utility of critical information that has significant
relationships with the AoI and level difference, i.e.,

I (t, ui, fj) = h (t, ui, fj) b
|v(t,fj)−v(t,ui,fj)|, (3)

where b is a constant value and above one.

The specified explanation of Definition 4 can be found in
Appendix A of Supplementary File. If βij (t) = 1, the final
value of AoCI in time slot t is I (t, ui, fj) = 1.

It is worth noticing that the scheduling policy of AoCI
is quite different from that of AoI. Since we are the first to
investigate impacts on users’ decisions caused by different
information categories and critical levels, a toy example
is provided to show the differences between these two
kinds of scheduling policies, as well as the advantages by
considering AoCI instead of AoI. As shown in Fig. 4, a
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system consists of three MCs and one server that can update
one information in each time slot. Each MC is simplified
to have interests in only one information category. For
example, MC 1, MC 2 and MC 3 are 100% interested in
information categories A, B and C , respectively. A greedy
scheduling can be leveraged here for the sample scenario
by giving a priority to the bigger AoI or AoCI. We notice
that the schedule for AoI is in a round-robin manner, while
that for AoCI mainly depends on the level change of the
server. The result of the scheduling policy for AoCI is better
than that of AoI, since it can schedule the information with
level differences as early as possible. Thus, MCs can timely
update the information that may affect their decisions.

3.3 Problem Formulation
The purpose of this paper is to timely capture the impact
of AoCI for MCs. In other words, we intend to minimize
the average relative AoCI for MCs. Then, the information
with a bigger AoCI and a greater level difference will have
a higher priority to update. The relative AoCI of MC ui is:

I (t, ui) =

|M |∑
j=1

αijI (t, ui, fj) . (4)

We consider that each MC has different interests for
distinct information categories. Symbol αij denotes the
interest ratio of information category fj for MC ui, and∑|M |

j=1 αij = 1. The problem of minimizing the average
relative AoCI of MCs is formulated as follows:

P1: min
ξi(t),βij(t)

T∑
t=1

N(t)∑
i=1

1

TN(t)
I (t, ui)

=
T∑

t=1

N(t)∑
i=1

|M |∑
j=1

1

TN(t)
I (t, ui, fj)αij , (5)

s.t. N (t) ≤ K, (6)
|M |∑
j=1

sjβij (t)

rn
≤ t̂, (7)

|M |∑
j=1

αij = 1, (8)

0 ≤ v(t, fj) ≤ |L|, 0 ≤ t ≤ T, (9)
0 ≤ |v(t, fj)− v(t− 1, fj)| ≤ |L|, (10)

where equation (5) is our objective, aiming to minimize the
average relative AoCI of MCs. We assume that the number
of MCs during one time slot remains unchanged, while
increasing or decreasing at the beginning of each time slot.
It is reasonable and realistic, because we can always find a
schedule that guarantees one time slot short enough to keep
the number of MCs invariant. Constraint (6) makes sure that
the number of selected MCs by the server cannot exceed
the maximum number K . Constraint (7) guarantees that
the total information transmission delay of MC ui cannot
exceed time span t̂ of one time slot, where sj is the current
information size of category fj , and rn is the transmission
rate. The total interest ratios for all categories of one MC
should be 1 as defined in equation (8). Constraints (9) and
(10) ensure that the critical level in each time slot is below

Fig. 4: Scheduling policies for AoI and AoCI.

|L|, and the absolute value of level changes should not
exceed |L|.

To solve the formulated optimization problem, we con-
sider two situations: 1) all the MCs’ personal knowledge
is known by the server; 2) partial knowledge is known.
For the above two situations, different scheduling policies
are designed, i.e., an information-aware heuristic algorithm
and an imitation learning-based scheduling algorithm. The
former one can find the optimal scheduling policy based
on all the personal knowledge. The latter one leverages
imitation learning in the scheduling processes. A learning
model can be trained via offline based on the state-action
pairs obtained by the heuristic algorithm. Then, the learning
agent can make proper online scheduling decisions merely
based on partial known information. The above two algo-
rithms will be specified in the following two sections, and
the main notations can be found in Table 1.

4 AN INFORMATION-AWARE HEURISTIC ALGO-
RITHM

In this section, we specify the designed information-aware
heuristic algorithm. We first transfer the original problem
into subproblems, and then design a heuristic algorithm
based on the MCs’ personal profiles.

4.1 Subproblem Transformation

Since the purpose of Problem P1 is to minimize the average
related AoCI for MCs, and the change of AoCI can be
captured in each time slot, we intend to minimize the related
AoCI in each time slot by the following subproblem:

P2: min
ξi(t),βij(t)

N(t)∑
i=1

1

N(t)
I (t, ui) ,

s.t. Equations (6)-(10).

For this subproblem, the intuitive solution is to find K MCs
out of all MCs, so that if their corresponding information can
be updated, the average relative AoCI can be minimized.
Consequently, two steps are necessary: first, for each MC,
we intend to find its information category that should be
updated to minimize the personal AoCI based on its size
and the channel capacity; second, we queue MCs in an
ascendant order based on their computed minimum relative
AoCI. The first K MCs can be selected.
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TABLE 1: Main notations

Notation Description

ui Mobile client with identity i
fj Information category with identity j
v(t, fj) The critical level of information category fj

on the server in time slot t
v(t, ui, fj) The critical level of information category fj

on MC ui in time slot t
h (t, ui, fj) The AoI of category fj on MC ui at time

slot t
ξi (t) It denotes whether MC ui is selected for

update in time slot t
I (t, ui, fj) The AoCI of category fj on MC ui at time

slot t
βij (t) It represents whether category fj on MC ui

is selected for update in time slot t
N(t) Total number of MCs in time slot t
Fm
i The selected information category group for

update by the server
sm The size of information m
M Total number of information categories in

the network
S The maximum size of overall information

can be transmitted through one channel
Ŝ Remaining channel volume for information

transmission
sτ Real system state in time slot τ
oτ Observation in time slot τ
p(sτ+1|sτ , aτ ) State transition possibility from state sτ to

sτ+1 by taking action aτ
r(sτ , aτ ) The received reward by taking action aτ at

state sτ
o≤τ History observations
a≤τ History actions
p(sτ |o≤τ , a<τ ) The belief state
bτ := φ(Ψτ ) The history record pairs of observations and

actions
l(s, π), l(b, π) The loss functions of imitation learning
π̂, π∗(s) A learned policy
π∗(s) An expert policy
pθ∗ (s) Priority distribution to generate states
pθ∗ (o|s) The likelihood to generate observations
qϕ(s|o, a, r) A generation model prepared to train
pθ(s|o, a, r) A real distribution of states
L(o, a, r, q) The loss function of the training model for

belief representation
L(b, ε) The loss of the policy model
wσ(bτ−1, aτ−1, o<τ ) The output of the representation update

model
πε(b) The output of the policy model

The first step of the subproblem is to minimize the
personal AoCI, i.e.,

P3: I (t, ui) = min
βij(t)

|M |∑
j=1

I (t, ui, fj)αij ,

s.t. Equations (6)-(10).

The problem in P3 exhibits the following properties:

Proposition 1 (Optimal substructure of P3). Let β∗
i (t) =

{β∗
i1 (t) , β

∗
i2 (t) , ..., β

∗
iM (t)} be the optimal solution of Problem

P3, and Fi = {fi1β∗
i1, fi2β

∗
i2, ...fiMβ∗

iM} \ {0} be the selected
information categories of MC ui to update. Without one randomly
selected information category fid, 1 ≤ d ≤ M , we define f

′
i =

Fi\ {fid}, and the minimization problem for f
′
i becomes P4:

P4: I
′
(t, ui) = min

βij(t)

|M |∑
j=1

I (t, ui, fj)αij , j �= d,

s.t. Equations (6)-(10).

Then β
′
i (t) = β∗

i (t) \ {β∗
id (t)} is the optimal solution for

Problem P4.

The proof can be found in Appendix B of Supplementary
File. Based on the proof, we can get the following proposi-
tion:

Proposition 2 (Overlapping subproblem of P3). Problem P3
can be solved recursively by increasing the size of Fi from F 1

i =
{fi1}, F 2

i = {fi1, fi2}..., to FM
i = {fi1, ..., fiM}. In each

step, a subproblem similar to Problem P4 can be formed, and the
optimal solution for each subproblem can be obtained.

We define the maximum size of overall informa-
tion can be transmitted through one channel is S, and
I
(
t, ui, F

m
i |Ŝ

)
, 1 ≤ m ≤ M, 1 ≤ Ŝ ≤ S, is the relative

AoCI based on selected information category Fm
i , when the

total update information can be transmitted through one
channel in time slot t is Ŝ. Then, the optimal solution for
Problem P3 is illustrated in Proposition 3.

Proposition 3 (Optimal solution of P3). The optimal solution
of Problem P3 can be deduced based on the recursive computation:

min
ϕ

I
(
t, ui, F

m
i |Ŝ

)
= min

{
I
(
t, ui, F

m−1
i |Ŝ

)
, I

(
t, ui, F

m
i |

(
Ŝ − sm

))}
,

where 1 ≤ m ≤ M .

For information category fim, there are two choices: one
is to update, and the other is not to update. For the former,
the relative AoCI based on Fm

i (information category fim
in this update group) is I

(
t, ui, F

m
i |

(
Ŝ − sm

))
, where sm

is the size of update information m, and cannot be divided
into smaller ones. For the latter, the relative AoCI based
on Fm

i is I
(
t, ui, F

m−1
i |Ŝ

)
. The minimization of AoCI

determines whether information category fim should be
updated in the current subproblem or not.

For the second step, how to select K MCs to update
is based on the results of the first step. We greedily select
an MC that can make the AoCI reach the minimum value
in each iteration. There are K iterations totally. For each
iteration, MC ui (i ∈ N(t)\Ci−1) is selected to minimize the
total average AoCI, where Ci−1 is the group of selected MCs
during the former i − 1 iterations. Therefore, the optimal
solution of Problem P2 can be obtained as demonstrated in
Proposition 4.

Proposition 4 (Optimal solution of P2). For time slot t, the
information selection decision of each MC by the information-
aware heuristic algorithm leads to the optimal solution of Problem
P2.

The proof can be found in Appendix C of Supplementary
File.
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Algorithm 1 Pseudo-code of the information-aware heuris-
tic algorithm

Require: clients, server, info
Ensure: Scheduling results based on a and v

1: for i < timeslots.size() do
2: Update the information status on the server
3: Initialize preUpdateInfo
4: for j < clients.size() do
5: Initialize interv and interflag to record the result

of each subproblem
6: for l < client[i].interestedInfo.size() do
7: for h < allowedInfoSize do
8: if h < client[i].interestedInfo[l] then
9: interv[l][h] = interv[l − 1][h]

10: else
11: u = client[i].Compute(interflag)
12: if interv[l − 1][h] > u then
13: interv[l][h] = u
14: end if
15: interflag.update()
16: end if
17: end for
18: end for
19: preUpdateInfo[j] = interflag[l][h]
20: end for
21: if clients.size() < K then
22: Compute the average AoCI in time slot i based

on preUpdateInfo
23: v.update(preUpdateInfo)
24: else
25: v = FindMinKV alues(interv)
26: Compute the average AoCI in time slot i based

on preUpdateInfo
27: end if
28: end for
29: Compute the average AoCI for all time slots

4.2 Overall Steps

Algorithm 1 presents the processes of the proposed
information-aware heuristic algorithm. In each time slot, the
server updates its own information, including information
sizes, critical levels and contents. Upon the update require-
ments of MCs, the server computes the AoCI of each MC
based on the attributes of its interested information cate-
gories, which are revealed to the server when the MC sends
an update requirement. A heuristic algorithm is conducted
to obtain the personal AoCI based on the channel capacity,
as shown from lines 5 to 19. After obtaining all the AoCI of
MCs, a greedy algorithm is carried out to select K MCs for
information update from lines 21 to 25.

Theorem 1. The time complexity of the proposed information-
aware heuristic algorithm is O(N(t)(MS + k)).

The proof can be found in Appendix D of Supplementary
File.

5 AN IMITATION LEARNING-BASED SCHEDULING
ALGORITHM

Last section presents an information-aware heuristic algo-
rithm to schedule the update requirements of MCs. How-
ever, the corresponding implementation is based on the
assumption that full knowledge of personal profiles can be
acquired. Actually, individuals may be unwilling to reveal
their private information to others. When they send update
requirements to the server, they may only expose identities
of their interested information categories, while keeping
local information critical levels and interested ratios unre-
vealed. This is possible and easy to understand, just like the
case that we buy fruits in the store and do not tell the sellers
how much we like the fruit and how many are left at home.
Though the server can learn the updated result of MCs
after their update, the required MCs in the next slot may
be not the same with the current slot due to their mobility,
resulting in the fact that the server cannot always know
the full network state. In this situation, the information-
aware heuristic algorithm is not effective. Therefore, novel
scheduling algorithms are necessary to meet the require-
ments of MCs based on partial known user profiles.

In this section, we propose an imitation learning-based
scheduling algorithm, named LISA, which is robust to han-
dle personal update requirements under uncertainty envi-
ronments. We first map the original scheduling problem to
a Partially Observable Markov Decision Process (POMDP).
Then, we take the advantage of imitation learning to solve
the problem based on POMDP. At last, we specify the
whole process and provide comprehensive analysis of the
designed learning algorithm.

5.1 Problem Transformation
To map the original scheduling algorithm to a POMDP
setting, this subsection begins with a brief overview of
POMDP, and shows its relationship with our problem. After
that, we define a mapping from the scheduling issue to a
POMDP.

5.1.1 POMDP
A tuple (S,A,R,O, P,Q,T) can be utilized to represent a
discrete-time finite horizon POMDP, where S is the state
space, A the action space, R the reward function, O ob-
servations, P the state transition functions, Q conditional
observation probabilities and T the time horizon.

Since the environment cannot be observed directly in a
POMDP, real state sτ ∈ S is hidden at time τ , and only
observation oτ ∈ O can be received. When the agent takes
action aτ , the environment transfers from states sτ to sτ+1

based on state transition probability p(sτ+1|sτ , aτ ), and gets
observation oτ+1 ∈ O based on probability q(oτ+1|sτ+1, aτ )
along with reward r(sτ , aτ ).

Because oτ cannot reflect the real state of the envi-
ronment, it is necessary to infer a distribution of the real
states based on history observations o≤τ and actions a<τ .
This inferred state is formally called belief state, defined by
distribution p(sτ |o≤τ , a<τ ). Let Ψτ := (o≤τ , a<τ ) denote
the history record pairs of observations and actions, and
bτ := φ(Ψτ ) be a function of Ψτ . If we can learn bτ such
that sufficient statistics of posterior distribution over real

Authorized licensed use limited to: Dalian University of Technology. Downloaded on September 29,2021 at 02:27:42 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3053136, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

states can be estimated, i.e., p(sτ |o≤τ , a<τ ) ≈ p(sτ |bτ ), we
can utilize bτ as a representation of the belief state and train
the leaning algorithm based on it.

5.1.2 Mapping the original scheduling problem to
POMDP
At each time τ , state sτ should include all knowledge
related to the server and MCs’ information, while action aτ
should be the selection of MCs and their prepared update
information categories. This makes state and action spaces
extremely large and consumes much training time, which is
unacceptable for online scheduling problems. Fortunately,
we can transfer the original Problem P1 into Problems P2
and P3 as described in Section 4.1. In this POMDP setting,
Problem P3 is the key component to obtain an efficient
solution. Thus, we mainly focus on it and first find the AoCI
for each MC based on its best prepared update information
categories with blurry observations. Then, based on the
result of Problem P3, its solution can be derived as described
in Section 4.1.

For Problem P3, let state sτ be the attributes of its local
information, that is sτ = {αi,v(τ, ui),v(τ), S, τ̂}, where
αi = {αij}, v(τ, ui) = {v(τ, ui, fj)}, and v(τ) = v(τ, fj),
j ∈ {1,M}. Action aτ =

{
βp
ij (t)

}
, j ∈ {1,M}, denotes

the possibilities to select the interested information cate-
gories. Since our objective is to minimize the AoCI, the
reward function r(s, a) is defined as r(sτ , aτ ) = −I(τ, ui).
Then, observation oτ can be parts of state sτ , e.g., oτ =
{v(τ), S, τ̂}, where the interested ratios and local critical
levels are unrevealed.

5.2 Information Update Scheduling via Imitation

Imitation learning allows to train policies by imitating ex-
pert demonstrations. They are efficient for past operations,
but cannot be directly utilized to solve the formulated
problem due to long-term costs and complicated implemen-
tation. Even so, it is a useful approach for problems with
good expert policies. In this subsection, we present how
to make the agent imitate expert policies. First, we map s,
a, r to b based on the expert demonstration, i.e., learning
the belief representation to find their intrinsic relationships.
Then, a history about (bt, at) can be formed. After that, we
train the learning model offline.

5.2.1 Oracle policy acquisition
To provide excellent demonstrations for the formulated
scheduling problem based on POMDP settings, we first
collect data based on the information-aware heuristic al-
gorithm as described in Section 4. In other words, we
can recruit volunteers or testers that agree to expose their
personal interests to servers, and let them involve in the
data collection process during a specific time period. This is
feasible in reality and easy for implementation. Our expert
policy is defined as follows:

Definition 5 (Oracle policy). An expert policy π∗(s) can map
state s to action a by solving the optimization problem defined in
Subsection 3.3 based on the information-aware heuristic algorithm
in Section 5, with the purpose of maximizing cumulative reward
R in the MDP setting, i.e., (S,A,R, P,T).

Based on the expert policies, we can collect dataset
X = {sτ , aτ , oτ , rτ}Gτ=1, where G is the number of data
collection iterations. The items in X can be utilized for
training the belief and policy models. However, we cannot
directly employ imitation learning for our POMDP-based
problem, since true state s cannot be fully observed. Given
the distribution of history records, we can define loss func-
tion L(bτ , π) to capture the imitation ability of policy π.
Therefore, we intend to find policy π̂ in each iteration to
minimize the expected loss by:

π̂ = argmin
π∈Π

E Ψ ∼ p(Ψ|π),
b = φ(Ψ)

[l(b, π)]. (11)

It is obvious that the agent cannot directly imitate the
expert demonstration, since there is a mismatch between s
and b, resulting in a big realizability error. Thus, we should
first establish a correct relationship between s and b.

5.2.2 Belief representation
State sτ is generated by priority distribution pθ∗ (s), and
observation oτ is generated by likelihood pθ∗ (o|s), which
come from parametric families of distributions pθ (s) and
pθ (o|s), respectively. Unfortunately, parameter θ∗ is hidden
from our view. Based on dataset X , we train a genera-
tion model qϕ(s|o, a, r) to approach true posterior density
pθ(s|o, a, r). Thus, the purpose of the training model is to
minimize the gaps between distributions of qϕ(s|o, a, r) and
pθ(s|o, a, r), i.e.,

min
ϕ

DKL (qϕ(s|o, a, r)||pθ(s|o, a, r)) , (12)

where:
DKL (qϕ(s|o, a, r)||pθ(s|o, a, r))

= −
G∑

τ=1

qϕ(s|o, a, r) ln pθ(s|o, a, r)
qϕ(s|o, a, r)

= ln pθ(o, a, r) +
G∑

τ=1

qϕ(s|o, a, r) ln qϕ(s|o, a, r)

−
G∑

τ=1

qϕ(s|o, a, r) ln pθ(s, o, a, r).

(13)

We define:

L(q) = −
G∑

τ=1

qϕ(s|o, a, r) ln qϕ(s|o, a, r)

+
G∑

τ=1

qϕ(s|o, a, r) ln pθ(s, o, a, r).
(14)

Then, we can obtain:

ln pθ(o, a, r) = DKL (qϕ(s|o, a, r)||pθ(s|o, a, r)) + L(q).
(15)

Since DKL (qϕ(s|o, a, r)||pθ(s|o, a, r)) is always above 0,
ln pθ(o, a, r) ≥ L(q) holds, where L(q) is regarded as the
evidence lower bound [32]. Minimizing the gaps between
qϕ(s|o, a, r) and pθ(s|o, a, r) equals to maximize L(q). As a
result, we define the loss function of the training model for
belief representation as:

L(o, a, r, q) = Eqϕ(s|o,a,r)

(
ln

qϕ(s|o, a, r)
pθ(o, a, r|s)pθ(s)

)
. (16)
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Fig. 5: Overview of the designed learning architecture.

We intend to train the model by picking mini-batches
based on {oτ}Gτ=1, {aτ}Gτ=1, {rτ}Gτ=1 and {sτ}Gτ=1. Monte
Carlo estimation is utilized to obtain training results [33].

5.2.3 Representation update
For online learning, we merely need to input oτ , aτ and
rτ to predict belief state bτ . Regrettably, aτ and rτ are not
available beforehand, and can be obtained through the pol-
icy module. The available information is b<τ , a<τ and o<τ .
Similar to [32], we can train a representation update model
that can update bτ based on bτ−1, aτ−1 and oτ−1. Since
training data can be extracted from expert demonstrations,
we can also train the representation update model offline
beforehand based on equation bτ = wσ(bτ−1, aτ−1, o<τ ). To
learn σ, we set the loss function as:

L(b, a, o, w) = E(‖ wσ(b, a, o)− b ‖2), (17)

where E (·) represents the expected average value of its
inputs.

5.2.4 Oracle policy imitation
After training the model for belief representation, we can
train the policy model offline. Based on belief representation
model qϕ and belief update model wσ , we can get belief
state b. Each time, one pair of oτ and aτ is inputted into
the model, and the output is bτ+1. Gradually, we can get
{bτ∗}Gτ=1 for expert policies. Then, we train the policy model
based on the mini-batches from {bτ}Gτ=1 and {aτ}Gτ=1. The
loss of the policy model is:

L(b, ε) = E(‖ πε(b)− a ‖2). (18)

For online learning, in time slot t, we treat each MC sep-
arately. States and actions for one MC are independent from
others. For each MC, we provide the following definition:

Definition 6 (Single POMDP). For MC ui in time slot t, its
true state is sit and observation is oit. Then, we can form a single
POMDP problem based on tuple

(
S
i,Ai,Ri,Oi, P i, Qi,T

)
.

To solve this single POMDP, we input the belief
model oit−1, ait−1 and rit−1, and its output is bit−1 =
qϕ(o

i
t−1, a

i
t−1, r

i
t−1). Then, we predict bit by representa-

tion update model bit = wσ(b
i
t−1, a

i
t−1, o

i
t). Until now, the

POMDP problem has been transformed into an MDP prob-
lem. We can utilize the trained policy model to get action
ait = πε(b

i
t). The action here refers to the update possibilities

of interested information categories of MC i.

5.3 Imitation Learning-based Scheduling
As shown in Fig. 5, there are mainly three modules in our
learning algorithm, i.e., belief representation module qϕ,
representation update module wσ and policy module πε.
Since expert demonstrations can be obtained based on the
information-aware heuristic algorithm described in Section
4, these three modules can be treated by minimizing the
following optimization problems:

q =argmin
ϕ

E s ∼ pθ (s) ,
o ∼ pθ (o|s, a, r)

(ln pθ(s|o, a, r))
−DKL(qϕ(o|s, a, r)||pθ(s)).

(19)

w = argmin
σ

E o ∼ pθ (o|s, a, r) ,
b ∼ dqϕ(b|o,a,r)

(‖ wσ(b, a, o)− b ‖2).
(20)

π = argmin
ε

E b ∼ dwσ(qϕ(b|o,a,r)) (‖ πε(b)− a ‖2). (21)

In each time slot t, there are total N(t) POMDP prob-
lems, each of which is related to one MC with the pur-
pose of finding the scheduling sequences of local interested
information categories. To solve each POMDP problem,
we transfer it into MDP based on belief representation
module qϕ and representation update module wσ to get
bt = wσ(qϕ(ot−1, at−1, rt−1), at−1, ot). Then policy model
πε can be utilized to get prediction at, and the corre-
sponding pseudo-codes can be found from lines 8 to 18 in
Algorithm 2.

Following that, we have the update possibilities for each
interested information categories of MC ui. We can greedily
select the information categories with big update possibili-
ties from the residential groups as candidate update infor-
mation categories. However, their total sizes cannot exceed
the channel capacity. The top K MCs with the minimum
AoCI based on candidate update information categories can
be obtained. Thus, we can get the update list. The whole
process is illustrated in Algorithm 2.

5.4 Theoretical Analysis
In this subsection, we provide a comprehensive theoretical
analysis for the designed imitation learning-based schedul-
ing algorithm. The overall loss of our learning algorithm is:

L = λ1L(o, a, r, q) + λ2L(b, a, o, w) + L(b, π), (22)

where parameters λ1 and λ2 are utilized to control the
weighting factors among the three losses.
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Algorithm 2 Pseudo-code of the imitation learning-based
scheduling algorithm

Require: clients, server, info
Ensure: The updated scheduling result

1: X ← GetExpertTrajectries() /*Utilize Algorithm 1
2: Train models offline
3: for i < timeslots.size() do
4: if i%Δ == 0 then
5: Train models online/*Utilize training methods

specified in Section 5.4
6: end if
7: Update the information status on the server
8: Initialize preUpdateInfo
9: for j < clients.size() do

10: Interact with client j to get ojt
11: if client.idF irstEnter then
12: Random take an action ajt
13: else
14: bjt−1 = GetEstimation(ot−1, at−1, rt−1)

15: bjt = GetReEstimation(bt−1, at−1, rt−1)
16: att = getPredicted(bjt )
17: preUpdateInfo.Add(ajt )
18: end if
19: end for
20: if clients.size() < k then
21: Compute average AoCI in time slot i based on

preUpdateInfo
22: v.update(preUpdateInfo)
23: else
24: v = FindMinkV alues(interv)
25: Compute average AoCI in time slot i based on

preUpdateInfo
26: end if
27: end for
28: Compute average AoCI for all time slots

For imitation learning, two kinds of algorithms can be
applied here. One is the supervised approach [34], and the
other is DAGGER [31]. For the supervised approach, it first
collects expert trajectories in an offline manner and then
trains the learning model. Since it cannot obtain the expert’s
online direct guidance, online expert trajectories cannot be
obtained, and we can only utilize the agent trajectories to
continue training the online learning model. Different from
the supervised approach, DAGGER allows an existing ex-
pert to direct the behaviors of the agent. For online learning,
the expert behavior trajectories can be collected by a few
rounds at the beginning. Based on the whole collected data
set, the model can be trained further, narrowing down the
gaps between the behaviors of the expert and the agent.
This is possible in reality, since after the agent making
decisions by state transformation, the corresponding states
can be recorded and the expert can select actions for each
collected state triggered by the agent. The pseudo-codes
of the supervised approach and DAGGER are listed in
Appendix G of Supplementary File.

For simplicity and without loss of generality, we utilize
policy η to represent trained policy πε(wσ(qϕ(·), ·), ·). For-
mally, we can regard that the overall loss defined in equation

(22) is a 0 − 1 loss. For the supervised approach, we train
these three models every Δ time slots. The expected average
AoCI J(η) by conducting policy η can be bounded by the
following theorem.

Theorem 2 (Upper bound of the supervised approach). Let
η be the policy carried by the learning agent for T steps, and
J(η) < J(η∗) + T 2e/Δ2 holds, where e < 1.2e1 + 2e2 + e3.
Variables e1, e2 and e3 are the probabilities that models πε, wσ

and qϕ make one mistake under state distribution dη , respectively.

The proof can befound in Appendix E of Supplementary
File.

For DAGGER, it adopts expert policy η∗ with possibility
γi in each step i by enabling ηi = γiη

∗ + (1 − γi)η̂i.
Let lmax

σ and lmax
ε be the upper bounds of losses, i.e.,

L(b, π) ≤ lmax
ε and L(b, a, o, w) ≤ lmax

σ , respectively. Then,
let εε = minπ Δ/T

∑T/Δ
i=1 E s ∼ dηi

,

b ∼ dϕi,σi

[L(b, π)], and εσ =

minw Δ/T
∑T/Δ

i=1 E s ∼ dηi
,

b ∼ dϕi,σi
,

o ∼ Πηi

[L(b, a, o, w)] be the training

losses of the best policy, respectively. We can obtain the
following lemma for the representation update and policy
modules:

Lemma 1. For the representation update module, the average loss
L(ŵ) should satisfy:

L(ŵ) = E s ∼ dη̂i
,

b ∼ dϕ̂i,σ̂i
,

o ∼ Πη̂i

[L(b, a, o, ŵ)]

≤ E s ∼ dηi
,

b ∼ dϕi,σi
,

o ∼ Πηi

[L(b, a, o, ŵ)] + 2lmax
σ min (1,Δγi) ,

(23)
and the average loss L(π̂) for the policy module should satisfy:

L(π̂) = E s ∼ dη̂i
,

b ∼ dϕ̂i,σ̂i

[L(b, π̂)]

≤ E s ∼ dηi
,

b ∼ dϕi,σi

[L(b, π̂)] + 2lmax
ε min (1,Δγi) .

(24)

The proof can be found in lemma 4.1 in reference [31].
For the belief representation module, we can obtain:

Lemma 2. The upper bounds of the loss for belief representation
model can be roughly obtained by:

lmax
ϕ < 1− ln pθ(o, a, r), (25)

and the lower bound is:

εϕ = min
q

Δ/T

T/Δ∑
i=1

E s ∼ dηi
,

o ∼ Πηi

[L(o, a, r, q)]

≥ lmin
ϕ ,

(26)

where lmin
ϕ can be obtained by the explanation in Section 3 in [33].

The average loss L(q̂) should satisfy:

L(q̂) = E s ∼ dη̂i
,

o ∼ Πη̂i

[L(o, a, r, q̂)]

≤ E s ∼ dηi
,

o ∼ Πηi

[L(o, a, r, q̂)] + 2lmax
ϕ min (1,Δγi) .

(27)

Based on the above lemma, we can obtain the following
theorem:
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Fig. 6: Selected GPS locations in Shanghai.

Theorem 3 (Upper bound of DAGGER). For DAGGER in our
learning model, with probability at least 1−δ, policy π̂ ∈ π̂1:T/Δ

exists, and should satisfy:

E s ∼ dηi
,

o ∼ Πηi

[L]

< ρT/Δ + εε + εσ + lmin
ϕ + 2 (λ1 + λ2l

max
σ + lmax

ε )Δγi

+ (λ1 + λ2l
max
σ + lmax

ε )

√
2Δ log(1/δ)

TK
,

(28)
where ρT/Δ is the average regret of η1:T/Δ.

The proof can be found in Appendix F of Supplementary
File.

6 PERFORMANCE EVALUATION

In order to validate the performance of our proposed al-
gorithm LISA, we conduct extensive simulations based on
real-world taxi traces in Shanghai (China) with the support
of tensorflow.

6.1 Simulation Setup
A data set of real-world taxi traces in Shanghai collected
from April 1, 2015 to April 30, 2015, including the recorded
information of more than 1000 taxies, is leveraged to demon-
strate the feasibility of our solution. According to adminis-
trative divisions [35], Shanghai can be divided into seven re-
gions. We select two districts as examples, i.e., Hongkou and
Jingan, and deploy servers in several locations as illustrated
in Fig. 6. We set the wireless communication range of a
server by 200 m, and schedule the requirements of passing-
by MCs to compute their average AoCI in the communi-
cation range of servers. We set the number of information
categories between 1 and 10, and the total number of critical
levels is 5. For different MCs, we randomly set their interest

(a) Jingan district (b) Hongkou district

Fig. 7: Performance of average AoCI with different number
of time slots.

information categories when they move in the coverage of
the server. For the information managed by the server, its
level changes are also set randomly at the beginning of
each time slot. The information update size is randomly
distributed between 1 and 5 MB, and the transmission
power between MCs and servers is 10 dBm with noise
power 172 dBm [36]. For expert policies, we collect data
in 200 time slots to train offline models, leveraging multi-
layer perceptrons. For the belief representation module, we
define it has 4 convolutional layers and 2 fully connected
layers with ReLU non-linearities. The belief update module
and the policy module both have 4 fully connected layers.
We use Adam optimizer [37] to train the three modules.

Five representative algorithms are compared:

• LISA-S: We utilize supervised learning for LISA, i.e.,
models are trained based on the data collected by
expert policies offline. For online training, the data
can only be collected by the agent policy.

• LISA-D: We leverage DAGGER algorithm [31] to
train models online. The offline training process is
the same with that of LISA-S. For online training,
each 200 time slots, we collect data based on expert
policies within the first 50 time slots. Then, models
based on expert trajectories can be trained further to
guide the agent behaviors.

• Oracle policy: It refers to the expert policy, i.e., the
utilized information-aware heuristic algorithm de-
signed in Section 4.

• Random scheme: Similar to the expert policy, it se-
lects K MCs with the minimum AoCI. However, for
each MC, it randomly selects the updated informa-
tion categories satisfying the channel capacity.

• AoI-M [4]: It is a traditional information update
scheduling algorithm, aiming at minimizing the av-
erage AoI of users on base stations by considering
varying sample sizes, multiple data transmission
units, as well as general and heterogeneous sampling
behaviors among source nodes.

6.2 Simulation Results

Fig. 7 illustrates the performance of average AoCI with
different number of time slots. From Fig. 7(a), we can
observe that the performance of the expert policy is the best,
while that of LISA-D is the closest to it. This is because
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(a) Jingan district (b) Hongkou district

Fig. 8: Performance of average AoCI with different values of
K .

(a) Jingan district (b) Hongkou district

Fig. 9: Performance of average AoI with different K .

the expert policy can obtain the optimal solution based
on the awareness of MC profiles. Besides offline training,
LISA-D also collects expert trajectories online to train the
learning model, which can revise the potential errors from
a long-term perspective. However, LISA-S cannot collect
online expert trajectories but reduces imitation learning
as supervise learning. If a new state encountered by the
agent that the offline expert never met, a decision error
may occur and affect the further decision. For random and
AoI-M algorithms, they cannot find optimal solutions but
randomly select the updated information categories with
the purpose of minimizing the AoCI and AoI, respectively.
Similar results can be found in Fig. 7(b). Since there are more
MCs in the dataset of Hongkou district, their information
cannot get updated simultaneously in one time slot. Thus,
the average AoCI of Hongkou district is bigger than that of
Jingan district.

The performance of average AoCI with different values
of K is illustrated in Fig. 8, where K is the maximum
number of MCs that are allowed to update information
categories simultaneously in one time slot. When the value
of K becomes big, more MCs can communicate with the
server simultaneously. Thereby, more information categories
can be updated. The average AoCIs become small for all
the five algorithms when the value of K increases. The
performance of AoI-M is the worst, since it only focuses on
minimizing the average AoI while neglecting the average
AoCI. Similar results can be found in Fig. 8(b) for Hongkou
district.

Besides the performance of average AoCI, we also mea-
sure the performance of average AoI for the five algorithms
as shown in Fig. 9. From Fig. 9(a), we can observe that the
average AoI achieved by the designed LISA-D and LISA-

(a) Offline training (b) Online training

Fig. 10: Performance of losses for offline training and online
training.

(a) Jingan district (b) Hongkou district

Fig. 11: Performance of average AoCI with different number
of information categories.

S algorithms are not much worse than that of AoI-M, and
their values are all around 3. This is because, though our
designed algorithm does not directly minimize the average
AoI, we can achieve that purpose through information
update scheduling by minimizing the average AoCI, which
has a tight relationship with AoI. In addition, as the value
of K becomes big, the AoI performance trends of the five
algorithms also drop. The reason is similar with that of Fig.
8. In Fig. 9(b), AoI values of the five algorithms in Hongkou
district are bigger since more MCs require information up-
date.

The loss trends of our learning models based on the
dataset of Jingan district are illustrated in Fig. 10. All the
three modules in our designed algorithm can be trained
together both online and offline, whose total loss is defined
in equation (22). For offline training loss in Fig. 10(a), we
can notice that the loss trend of LISA-D overlaps with
that of LISA-S, because the two offline training processes
are the same, i.e., training the model by expert behavior
trajectories collected by the information-aware heuristic al-
gorithm. However, their online training processes are differ-
ent, resulting in the loss gaps between LISA-D and LISA-S.
LISA-D collects online expert behavior trajectories to further
train the models. However, LISA-S cannot collect the expert
behavior trajectories and only the agent’s trajectories are
available, leading to imperfect training results by introduc-
ing errors from expert behaviors.

The influence of the number of information categories on
the average AoCI is shown in Fig. 11. When there are more
kinds of information, MCs are likely to have more interested
information categories. In other words, one MC can have
more local information categories. Then, the number of
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Fig. 12: Performance of av-
erage AoCI with different
values of b.

Fig. 13: CDF curves.

information categories that need to update becomes big,
resulting in bigger average AoCI. The performance of LISA-
D is also the closest to that of the expert policy, while
that of LISA-S is better than those of random and AoI-M
algorithms, since imitation learning is leveraged in LISA-S
and LISA-D to imitate the expert behaviors.

Fig. 12 shows the impacts of different values of b on the
average AoCIs with the dataset of Jingan district, where b
reflects the importance of critical levels for the computation
of AoCI. As the value of b increases, the average AoCI
becomes high. This is because b affects the computation of
personal AoCI and becomes more important when its value
grows. In addition, the gaps of the AoCI of LISA-D, LISA-S,
expert policy, random scheme and AoI-M become big when
the value of b increases. This is because the level differences
between local MCs and the server become more important
for the computation of AoCI. LISA-D, LISA-S and expert
policy can always update information by considering level
changes. As a result, these three algorithms have relative
lower AoCI than the other two algorithms.

The Cumulative Distribution Function (CDF) curves of
the five algorithms are shown in Fig. 13. The horizontal axis
is based on the normalized AoCI of MCs. We observe that
the curve of expert policy is the highest, since the AoCI of
MCs are mainly between 0 and 0.6. However, the values of
AoI-M and random scheme are mainly centralized between
0.4 and 0.8. The performance of LISA-D and LISA-S is better
than that of AoI-M and random scheme while worse than
that of the expert policy. This is because the expert policy
can always find the best scheduling method, and schedule
MCs that can make the average AoCI have a small value
first. AoI-M only considers AoI, while Random scheme
makes scheduling decision randomly based on the value of
personal AoCI. LISA-D and LISA-S can imitate the policy of
experts effectively.

7 CONCLUSION

In this paper, we have investigated imitation learning with
information update scheduling to minimize the average
AoCI, by considering the importance of personal informa-
tion under partial observations. Specifically, we first es-
tablished the system model and formulated the schedul-
ing issue as an optimization problem. Then, we proposed
an offline scheduling algorithm, i.e., an information-aware
heuristic algorithm that can obtain the optimal scheduling
result. For online scheduling based on partial observations,

we designed an imitation learning-based scheduling algo-
rithm to guide the learning agent to mimic the behaviors of
experts. We first transferred the scheduling problem in the
POMDP setting to an MDP by belief representation and rep-
resentation update modules, and then selected actions based
on the policy module. We provided theoretical analysis for
the designed learning algorithm to derive its upper bound.
Experimental results showed that our designed algorithm
has advantages on average AoCI and CDF based on differ-
ent network parameters compared with other representative
algorithms.
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