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Internet of Vehicles (IoV), as a special application of Internet of Things (IoT), has been widely used for Intelligent

Transportation System (ITS), which leads to complex and heterogeneous IoV backbone networks. Network traffic

prediction techniques are crucial for efficient and secure network management, such as routing algorithm, network

planning, anomaly and intrusion detection. This paper studies the problem of end-to-end network traffic prediction

in IoV backbone networks, and proposes a deep learning-based method. The constructed system considers the

spatio-temporal feature of network traffic, and can capture the long-range dependence of network traffic. Furthermore,

a threshold-based update mechanism is put forward to improve the real-time performance of the designed method by

using Q-learning. The effectiveness of the proposed method is evaluated by a real network traffic data set.
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1 INTRODUCTION

Cloud-based Internet of Vehicles (IoV), integrated by Internet of Things (IoT) and cloud computing, has

been rapidly developed for Intelligent Transportation System (ITS) [6, 11, 16, 19, 23, 26, 29]. IoVs can

provide reliable communications among vehicles for safety-related applications, and the network access

to infrastructures and pedestrians. IoV backbone networks transmit the traffic aggregated by end-to-end

network traffic generated from a large number of sensors and safety monitoring systems of On-Board Units

(OBUs) [9], as shown in Fig. 1. Under this case, the IoV backbone network has become much more complex

and heterogeneous. As a crucial component of an IoV, the network security and management system is

necessary to provide reliable data transmissions for secure IoVs. Network management operations usually

collect network states at first, and then make decisions for network management according to the reported

data [5, 12, 28, 33]. End-to-end network traffic is a crucial network state, which is the basis for network

planning and predictive routing [2, 31].

With the development of IoVs, more data have been generated for implementing ITS. It arises the

challenges in network security. For instance, an attacker may intrude an IoV, and it can steal the information

related to users’ privacy leading to a tremendous economic loss for users. In this case, many network security

applications, such as Intrusion Detection Systems (IDS), have been deployed in the IoV backbone network

to prevent it from kinds of threats. Besides, anomaly detection techniques are leveraged to implement

anomaly-based intrusion detection, and detect impossible damages in networks [8, 13, 30]. In practice, both

intrusion and anomaly detection systems need end-to-end network traffic data as an input parameter to

carry out the corresponding functions. For instance, an IDS can identify the Distributed Denial of Service

attack (DDoS) by detecting the anomalous behaviors of end-to-end network traffic.

Thereby, precise network traffic prediction is useful for maintaining IoVs. A Traffic Matrix (TM), which

shows the size of network traffic among Origin-Destination (OD) nodes, is the mathematical representation

of network traffic [20]. In a TM, each row vector reveals the time-varying features of the corresponding

OD flow. A TM obeys manifold statistical features, e.g., spatial, temporal and spatio-temporal features.

These intricate statistical features arise the main challenges in network traffic prediction. Initially, the

statistics-based methods, such as Gaussian and Poisson models, are proposed to predict network traffic. The

statistical features of TM are much more complex, while supporting more services in IoVs. Then, Machine

Learning (ML)-based methods emerge for network traffic prediction, such as Principal Component Analysis

(PCA) [24], Convolutional Neural Network (CNN) [32] and Long Short-Term Memory (LSTM) methods [22].

These methods capture several statistical features jointly to decease the network traffic prediction error.

Nevertheless, they are not appropriate for predicting network traffic in IoVs. The corresponding main

challenges can be summarized as follows [7, 10, 25, 27]:
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Fig. 1. An illustration of IoV backbone networks.

∙ The statistical features of network traffic in secure IoVs obey a superposition of various distributions.

There are kinds of data in a secure IoV leading to complex network traffic statistical features. These

complex statistical features result in unfaithful predictors via previous methods.

∙ The ML-based methods cannot meet the commands in real-time performance. For a secure IoV, the

topology changes frequently due to quick movement of vehicles. Meanwhile, a secure IoV needs fast

responses for any unlawful attacks. Hence, the real-time performance of network traffic prediction is

crucial for secure IoVs. Nevertheless, the ML-based methods usually extract the features of network

traffic by collecting many data samples. Meanwhile, to guarantee prediction accuracy, deep architectures

are often updated persistently. Training these deep architectures by massive data is time-consuming

for network resources (e.g., computation and communication recourses).

∙ It is significantly difficult for existing ML-based methods to exact the features of network traffic

using few traffic samples. With limited communication resources, sampling and transmitting massive

training data are uneconomical for secure IoVs.

Motivated by the above challenges, we investigate the network traffic prediction problem, and design a

network traffic prediction system for secure IoVs. The proposed system uses CNN and LSTM to optimize the

accuracy and real-time performance of network traffic prediction by extracting multiple statistical features

of TM jointly and implementing intermittent model updates. To extract the multiple statistical features

of TM jointly, a deep architecture integrating CNN and LSTM is built, in which CNN and LSTM are

employed to track the spatio-temporal and time-varying features of TM. LSTM is a particular paradigm of

Manuscript submitted to ACM



4 Xiaojie Wang, Laisen Nie, Zhaolong Ning, Lei Guo, Guoyin Wang, Xinbo Gao, and Neeraj Kumar

Recurrent Neural Network (RNN), which is able to capture the relationship between several input elements

by the feedbacks within the same layer. Based on this advantage, we explore the time-varying features of

network traffic through LSTM. Moreover, the TM consisting of all the OD flows, expresses spatial and

spatio-temporal features caused by routing algorithms and network configurations. Hence, we take advantage

of CNN to portray the spatio-temporal features of TM. To obtain the best predictors, each predictor is

calculated by implementing a training in practice. However, each training of the designed deep architecture

is expensive for real-time performance. Thereby, we train the deep architecture discontinuously. We propose

a threshold-based mechanism to calculate the time intervals between two training processes [17].

The following summarizes the main contributions of our work:

∙ To predict network traffic of a secure IoV backbone network accurately, we design a deep architecture

utilizing CNN and LSTM to trace the temporal and spatio-temporal features of TM jointly.

∙ To improve the real-time performance of the proposed method, a threshold-based mechanism is

proposed to update the deep architecture discretely. A Reinforcement Learning (RL) algorithm is

proposed to determine the threshold.

∙ We evaluate the designed scheme by real network traffic data set sampled from the Abilene network

and our constructed testbed which is leveraged to imitate the scene of a secure IoV. According to the

evaluation, our method can capture the long-term network traffic in secure IoVs.

The following sections are organized as follows. The related work is reviewed in Section 2. Section 3

provides the system model of network traffic prediction. Section 4 presents the proposed method, and Section

5 gives the evaluation of the designed deep architecture. At last, we conclude our work and illustrate the

future work in Section 6.

2 RELATED WORK

2.1 Shallow Learning-based Methods

Initially, researchers model OD traffic by simple statistical models, e.g., Gaussian and Poisson models,

to extract network traffic features. Then, the problem of network traffic prediction is converted into a

parameter estimation problem. However, simple models cannot model nonlinear distributions of network

traffic [1, 4, 21, 24].

ML techniques have a widespread usage in network traffic prediction, which relies on its remarkable

ability in modeling complex statistical distributions. Initially, kinds of shallow learning-based approaches

have emerged to solve network traffic prediction problem, such as shallow Neural Network (NN) and PCA.

These methods try to fit the statistical features of network traffic consisting of linear and nonlinear features.

According to the analysis of network traffic in depth, current network traffic yields multiple distributions,

such as multi-fractal and heavy-tailed distributions. Capturing these statistical features can enhance the

accuracy of network traffic prediction remarkably. However, traditional shallow learning approaches cannot

track these features effectively. For instance, the PCA method deals with the problem of network traffic

prediction by singular value decomposition, and neglects some non-principal components with small singular

values. Namely, it relies on the spatial correlation of TM. The NN method is mainly designed to adapt to

the changes of TM with respect to the time interval.
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To enhance the accuracy of network traffic prediction, hybrid model-based methods have been emerged, in

which researchers model network traffic by more than two models. In [1], the authors proposed two hybrid

methods based on Fanout Estimation (FE) and Iterative Proportional Fitting (IPF), respectively. The IPF

method is adapted to track the time-varying features of OD network traffic. By contrast, the FE method

can extract the spatial features of TM. They are combined with other state-of-the-art modeling techniques

for network traffic feature extraction, i.e., tomogravity, entropy maximization and shallow NN. Besides,

the authors in [18] proposed a network traffic feature extraction method using artificial NN and genetic

algorithm. They first model OD flows by the autoregressive model with exogenous inputs, and then calculate

the inputs (i.e., weights and biases) by genetic algorithm.

2.2 Deep Learning-base Network Traffic Prediction

Deep Learning (DL) techniques are viewed as an excellent solution to fit a complex data set. Hence, it

has been referred to extract network traffic features for both estimation and prediction. For instance, a

hybrid deep architecture was proposed to leverage the diversified features for network traffic prediction

in cellular networks in [27]. In this deep architecture, autoencoder and LSTM are used to extract spatial

and temporal features, respectively. The authors in [32] handled this kind of prediction problem in future

cellular networks. A CNN-based mechanism is designed to profile the nonlinear features of traffic in wireless

networks. Different from previous methods denoting OD flows by sequences, the authors defined an OD

flow as an image (i.e., a matrix). From this representation of an OD flow, they design a CNN-based deep

architecture with highly dense connections for network traffic prediction. In [22], the authors proposed a

LSTM-based deep architecture with one hidden layer consisting of four LSTM blocks to predict the network

traffic of the optical data center.

Many network traffic prediction approaches have been proposed in traditional wired and wireless networks.

However, the approaches for IoV backbone network traffic prediction have not been discussed, to the best of

our knowledge. Though many approaches have been put forward for traffic prediction, they are not adopted

to predict the network traffic of IoV backbone networks. Consequently, we design a deep architecture by

integrating CNN and LSTM to extract the spatio-temporal and temporal features of TM for decreasing

prediction errors.

3 SYSTEM MODEL

As mentioned before, TM reveals the volume of traffic that flows among all OD pairs. In this paper, we

denote TM by 𝑋 for a secure IoV backbone network. Its element is 𝑋𝑛,𝑡, where 𝑛 is the index of an OD

flow and 𝑡 denotes time slot. Generally, 𝑡 is a time interval, and then 𝑋𝑛,𝑡 shows the average traffic within

time interval 𝑡. If the network is made up of 𝑁 nodes and 𝐾 links, then 𝑛 = 1, 2, 3, ..., 𝑁2. Moreover, if TM

contains 𝑇 time slots of network traffic in a secure IoV backbone network, then 𝑡 = 1, 2, 3, ..., 𝑇 . Link load

expresses the aggregation of OD network traffic, and it conforms a linear relationship with respect to TM.

This relationship can be denoted by:

𝑌 = 𝑅𝑋, (1)

where 𝑅 is a so-called routing matrix. The routing matrix is constructed by 0 and 1, if we consider that an

OD flow is transmitted through the same path of an IoV backbone network. The element in 𝑅 is denoted

Manuscript submitted to ACM



6 Xiaojie Wang, Laisen Nie, Zhaolong Ning, Lei Guo, Guoyin Wang, Xinbo Gao, and Neeraj Kumar

by 𝑅𝑘,𝑛. When 𝑅𝑘,𝑛 = 1, the 𝑛th OD flow passes link 𝑘 (𝑘 = 1, 2, ...,𝐾), otherwise 𝑅𝑘,𝑛 = 0. Obviously,

the sizes of link load and routing matrices are 𝐾 × 𝑇 and 𝐾 ×𝑁2, respectively. TM estimation techniques

calculate TM 𝑋 via 𝑌 and 𝑅. Symbols 𝑌 and 𝑅 are available, because they can be obtained from the

simple network management protocol and routing configurations, respectively. In this paper, we utilize link

load and routing matrix to build a threshold for deep architecture update.

The problem of network traffic prediction in an IoV backbone network is to calculate 𝑋𝑡 according to

previous network traffic (𝑋𝑡−1, 𝑋𝑡−2, ..., 𝑋𝑡−𝐸), which can be denoted by:

𝑋𝑛,𝑡=𝑓 (𝑋𝑛,𝑡−1, 𝑋𝑛,𝑡−2, ..., 𝑋𝑛,𝑡−𝐸) . (2)

Then this problem is defined as fitting function 𝑓 (·) with respect to 𝑋𝑡−1, 𝑋𝑡−2, ..., 𝑋𝑡−𝐸 . Eq. (2) mainly

shows the problem of network traffic prediction according to a sequence. Namely, fitting this function mainly

considers the temporal features of OD flows. By expanding to other features, the network traffic prediction

problem can be defined as:

𝑋𝑛,𝑡=𝑓 (𝑋𝑡−1,𝑋𝑡−2, ...,𝑋𝑡−𝐸) , (3)

where vector 𝑋𝑡−𝑒 (𝑒 = 1, 2, ..., 𝐸) is a snapshot of network traffic over time slot 𝑡 − 𝑒. Symbol 𝐸 is the

length of prior network traffic. Different from the problem of network traffic prediction shown by Eq. (2), we

consider the spatial and spatio-temporal features of network traffic. In this case, the problem of network

traffic prediction is modeled by calculating a traffic element according to previous snapshots of network

traffic.

4 OUR METHODOLOGY

Traditional prediction approaches usually calculate network traffic by extracting the time-varying features of

OD flows to fit the function in Eq. (2). Different from previous approaches, we combine CNN and LSTM,

and design a deep architecture to predict the network traffic of secure IoVs by means of extracting two

features, i.e., the spatio-temporal and temporal features. The designed deep architecture for network traffic

prediction is shown in Fig. 2. It contains 6 hidden layers,i.e., a convolutional layer, a subsampling layer, an

LSTM layer, two fully connected layers and a dropout layer. In our method, we first preprocess the network

traffic data set to normalize and centralize it, that is:

𝑋𝑛,𝑡 =
𝑋𝑛,𝑡 − 𝜇𝑛

|𝑋𝑛,𝑡|
, (4)

where 𝜇𝑛 is the average value of OD flow 𝑛, and can be computed by the prior of network traffic.

4.1 Traffic Prediction Based on CNN and LSTM

CNN is a prevalent tool for 2-dimensional data feature extraction, such as pattern recognition and image

processing [14, 32]. It can extract the spatio-temporal features of 2-dimensional data by using convolution

kernels. For defining spatial location (𝑖, 𝑗), 𝑖 ∈
{︁
𝐼(𝑙)
}︁

and 𝑗 ∈
{︁
𝐽(𝑙)

}︁
are the sets of input and output on

layer 𝑙, respectively, and the output map of the 𝑙th convolutional layer can be denoted by:

𝑎
(𝑙)
𝑗 = 𝜎

(︃∑︁
𝑖

(︁
𝑎
(𝑙−1)
𝑖 * 𝑘(𝑙)

𝑗

)︁
+ 𝑏

(𝑙)
𝑗

)︃
, (5)
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Fig. 2. Deep architecture with CNN and LSTM.

where 𝑏
(𝑙)
𝑗 and 𝑘

(𝑙)
𝑗 are the 𝑗th convolution kernel and its bias of the 𝑙th convolutional layer, respectively.

Variable 𝑎
(𝑙−1)
𝑖 is the output map of the (𝑙 − 1)th layer, and function 𝜎 (·) is the activation function.

As mentioned before, CNN is suitable for handling 2-dimensional data. Thereby, we utilize it to carry

out the TM-oriented spatio-temporal feature extraction. In our deep architecture shown in Fig. 2, the

convolutional layer, following the input layer, consists of 6 convolution kernels which learn 5 × 5 spatial

dimensions. To predict network traffic, the tanh function is used as the activation function on the convolutional

layer. Then, the output maps are:

𝑎
(1)
𝑗 = 𝑡𝑎𝑛ℎ

(︁(︁
𝑋(𝑚) * 𝑘(1)

𝑗

)︁
+ 𝑏

(1)
𝑗

)︁
, 𝑗 ∈ {6} , (6)

where 𝑋(𝑚) is the training data set constructed by the prior of TM, and set {6} denotes the set {1, 2, ..., 6}.
Following the convolutional layer, a subsampling layer is built to carry out the average pooling with a factor

of 2. Then, the output maps of this average pooling are:

𝑎
(2)
𝑗 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

(︁
𝑎
(1)
𝑗

)︁
, 𝑗 ∈ {6} , (7)

where 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (·) denotes the average pooling process.

As a special paradigm of RNN, LSTM can learn the time-varying features of a time sequence [30, 34].

Hence, many LSTM-based algorithms have been put forward to predict a time sequence. The mathematic

model of RNN can be defined by: ⎧⎪⎨⎪⎩
𝑓𝑡 = 𝜎

(︀
𝑈𝑋𝑡 +𝑊𝑓𝑡−1 + 𝑏𝑓

)︀
,

𝑜𝑡 = 𝑉 𝑓𝑡 + 𝑐𝑓 ,

𝑎𝑡 = 𝜎 (𝑜𝑡) ,

(8)

where 𝑋𝑡 is input data, and 𝑈 , 𝑉 and 𝑊 are weights of RNN. Variables 𝑏𝑓 and 𝑐𝑓 are biases, and 𝑎𝑡 is the

final output map of RNN. LSTM takes advantage of three gates to control the contents of unit state. They

are the forget gate, the input gate and the output gate, whose weights are denoted by 𝑊 𝑓 , 𝑊 𝑖 and 𝑊 𝑜,

respectively , and they can be denoted by:⎧⎪⎨⎪⎩
𝑔𝑡 = 𝜎

(︀
𝑊 𝑓 [𝑓𝑡−1;𝑋𝑡] + 𝑏𝑓

)︀
,

𝑖𝑡 = 𝜎
(︀
𝑊 𝑖 [𝑓𝑡−1;𝑋𝑡] + 𝑏𝑖

)︀
,

𝑜𝑡 = 𝜎 (𝑊 𝑜 [𝑓𝑡−1;𝑋𝑡] + 𝑏𝑜) ,

(9)
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where [·; ·] denotes the combination of two matrices. Variables 𝑏𝑓 , 𝑏𝑖 and 𝑏𝑜 are the biases for three gates,

respectively. Finally, the current cell state and the final output map of LSTM cell are:{︃
𝑐𝑡 = 𝑐𝑡−1𝑔𝑡 + 𝑖𝑡 tanh (𝑊 [𝑓𝑡−1;𝑋𝑡] + 𝑏𝑐) ,

𝑎𝑡 = 𝑜𝑡 tanh (𝑐𝑡) ,
(10)

where 𝑐𝑡−1 is the previous cell state.

In our method, we extract the spatio-temporal and time-varying features of TM by CNN and LSTM,

respectively. As shown in Fig. 2, the output maps of subsampling layer are 6 matrices. To combine the

LSTM layer, we unfold these matrices as a vector, and make it as the input of LSTM layer. After that, the

output maps of LSTM can be shown as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔𝑡 = 𝜎
(︁
𝑊 𝑓

[︁
𝑓𝑡−1;𝑎

(2)
𝑗

]︁
+ 𝑏𝑓

)︁
,

𝑖𝑡 = 𝜎
(︁
𝑊 𝑖

[︁
𝑓𝑡−1;𝑎

(2)
𝑗

]︁
+ 𝑏𝑖

)︁
,

𝑜𝑡 = 𝜎
(︁
𝑊 𝑜

[︁
𝑓𝑡−1;𝑎

(2)
𝑗

]︁
+ 𝑏𝑜

)︁
,

𝑐𝑡 = 𝑐𝑡−1𝑔𝑡 + 𝑖𝑡 tanh
(︁
𝑊
[︁
𝑓𝑡−1;𝑎

(2)
𝑗

]︁
+ 𝑏𝑐

)︁
,

𝑎(3) = 𝑜𝑡 tanh (𝑐𝑡) .

(11)

On the LSTM layer, there are 3
(︀
𝑁2 − 4

)︀⧸︀
2 LSTM blocks for temporal feature extraction.

The rest of the proposed deep architecture contains two fully connected layers and one dropout layer

employed between two fully connected layers. The first fully connected layer is made up of 3
(︀
𝑁2 − 4

)︀⧸︀
2

neurons, and we also use the tanh function as the activation function for prediction. It can be denoted by:

𝑎
(4)
𝑖 = tanh

(︁
𝑊

(4)
𝑖 𝑎(3) + 𝑏

(4)
𝑖

)︁
. (12)

The following is the dropout layer used to prevent the proposed deep architecture from overfitting. The

number of neurons on the dropout is the same as the first fully connected layer. It carries out a probabilistic

dormancy mechanism for each neuron of the first fully connected layer. In other words, the output maps of

the dropout layer can be denoted by:

𝑎
(5)
𝑖 = 𝑑

(5)
𝑖 tanh

(︁
𝑊

(4)
𝑖 𝑎(3) + 𝑏

(4)
𝑖

)︁
, (13)

where 𝑑
(5)
𝑖 obeys a Bernoulli distribution 𝑑

(5)
𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝). The fully connected layer connecting with

the output layer determines the length of predicted sequence. The objective of the deep architecture is

to implement regression. Hence, to implement prediction, the tanh function is also utilized as activation

function on this layer. The length of predicted sequence by way of a forward propagation is equal to the

number of neurons on this fully connected layer.

To train the deep architecture, the backpropagation algorithm is applied to our approach. The loss

function used in the backpropagation algorithm is the Mean-Squared-Error (MSE) of prediction, which is

defined as:

𝑙𝑜𝑠𝑠𝑀𝑆𝐸 =
1

𝐼(𝐿)

𝐼(𝐿)∑︁
𝑖=1

(ℎ𝑖 −𝑋𝑛,𝑖)
2, (14)

where 𝐼(𝐿) is the number of neurons on the output layer, and ℎ𝑖 is the output maps of the proposed deep

architecture.
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4.2 Deep Architecture Update Algorithm Based on RL

The prevalent end-to-end network traffic prediction approaches solve the problem shown by Eq. (2). In

other words, OD flows are viewed as time sequences, and then they are predicted through their own prior

information. In this paper, the deep architecture is designed to deal with the problem shown by Eq. (3).

We use the previous network traffic of all OD flows as the prior information to predict the elements of

an OD flow. This method can capture the weak relationship among nonadjacent elements that even come

from different OD flows. Though it can ensure the accuracy of network traffic predictor, it actually arises a

challenge in real-time performance. In detail, we employ 𝐸 snapshots of TM to predict a time sequence, and

then the prior data is an 𝑁2 × 𝐸 matrix. By contrast, the previous methods merely use an 𝐸-dimensional

vector to predict a time sequence. Without other optimization methods, it is significantly difficult to employ

the proposed deep architecture for online network traffic prediction.

For a network traffic prediction approach in the IoV backbone network, its real-time performance is crucial

in practice. Obviously, training and updating the deep architecture after predicting a network traffic element

is really expensive. On the contrary, predicting a large number of network traffic by one training may cause a

poor predictor. Aiming at dealing with the tradeoff problem, we leverage RL to build a threshold to control

the prediction error and real-time performance. The threshold is based on Normalized Mean Absolute Error

(NMAE) between TM and link load, which is defined as:

𝑁𝑀𝐴𝐸 =

∑︀
𝑘,𝑡

⃒⃒⃒
𝑅𝑋̂ − 𝑌

⃒⃒⃒
∑︀
𝑘,𝑡

⃒⃒⃒
𝑅𝑋̂

⃒⃒⃒ , (15)

where 𝑋̂ is the predictor of TM, and 𝑌 is the corresponding aggregation traffic (i.e., link load). Comparing

with other metrics, NMAE can measure the spatial and temporal errors of network traffic prediction.

Therefore, we use NMAE as the metric of the threshold-based mechanism. In our method, when the NMAE

between a snapshot of link load and its predictor is larger than the threshold, and then we train the deep

architecture. Otherwise, we predict traffic elements over the next time interval using previous trained deep

architecture.

The threshold is computed by RL to obtain the optimal tradeoff between real-time performance and

accuracy. RL has an excellent ability of dealing with the decision problem, in which it can compute an

optimal policy with the maximum reward by implementing iterative actions. It leverages a sample of the

environment to guide the following action from the current state to the next, and the relative reward can be

gained in the meantime. Furthermore, the environment can be updated in the light of the obtained reward.

The RL can be regarded as an MDP represented by ⟨𝑆,𝐴,𝑃 , 𝑅, 𝛾⟩. In detail, 𝑆 and 𝐴 are the state and

action spaces, respectively. Symbol 𝑃 is the transition probability matrix, and 𝛾 is the discount factor. 𝑅 is

the immediate reward from the current state to the next according to the given policy with environment.

To explore the optimal policy, many algorithms have been proposed. Recently, the Q-learning, known as

an off-policy learning algorithm, has been brought in RL and widely developed. In Q-learning algorithm,

when an agent with state 𝑠 (𝑠 ∈ 𝑆) moves to state 𝑠 (𝑠 ∈ 𝑆) after carrying out action 𝑎 (𝑎 ∈ 𝐴) according to

given policy 𝜋 (𝑠, 𝑎), immediate reward 𝑅 (𝑠, 𝑎) can be obtained. The reward with respect to current state 𝑠

by taking action 𝑎, denoted by 𝑄 (𝑠, 𝑎), is a weight sum of immediate reward 𝑅 (𝑠, 𝑎) of moving to the next
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state 𝑠, which can be denoted by:

𝑄 (𝑠, 𝑎) = 𝑅 (𝑠, 𝑎) + 𝛾

(︂
max
𝑎̃∈𝐴

𝑄 (𝑠, 𝑎̃)

)︂
, (16)

where 𝑎̃ ∈ 𝐴 is the action set under the next state 𝑠. The Q-learning algorithm can be regarded as an

optimization problem that finds an optimal policy to maximize the reward 𝑄 (𝑠, 𝑎). For each iterative process

of researching the maximum reward, the reward can be updated according to a weighted sum denoted by:

𝑄 (𝑠, 𝑎)← (1− 𝛼)𝑄 (𝑠, 𝑎) + 𝛼

(︂
𝑅 (𝑠, 𝑎) + 𝛾

(︂
max
𝑎̃∈𝐴

𝑄 (𝑠, 𝑎̃)

)︂)︂
, (17)

where 𝛼 ∈ [0, 1] is a constant step-size parameter. During each iteration, the sampling of state can be chosen

by way of exploration-only and exploitation-only approaches. The former prefers to carry out sampling with

large range in value, and determine a state sampling by the uniform distribution. By contrast, the latter

selects the state sampling with the maximum cumulative reward currently.

The detail process of computing the threshold based on Q-learning is shown in Algorithm 1. The state

𝑠 represents the error threshold. The state space is set according to previous prediction errors, i.e., it is

equal to the maximum NMAE among previous predictors. We define the number of updates with respect to

state 𝑠 as 𝑁 (𝑠). Similarly, the NMAE with respect to state 𝑠 can be denoted by 𝑁𝑀𝐴𝐸 (𝑠). They can be

obtained by counting the previous data set. Obviously, 𝑁 (𝑠) and 𝑁𝑀𝐴𝐸 (𝑠) are monotone decreasing and

increasing functions with respect to 𝑠, respectively. In practice, we hope that 𝑁𝑀𝐴𝐸 (𝑠) and 𝑁 (𝑠) are as

small as possible. Therefore, we define the initialized policy as follows:

𝜋 (𝑠, 𝑎) =
1

𝑁𝑀𝐴𝐸 (𝑠)𝑁 (𝑠)
. (18)

By Algorithm 1, we can gain optimal policy 𝜋* (𝑠, 𝑎), and then set the threshold according to 𝜋* (𝑠, 𝑎).

Algorithm 1 Residual-based Dictionary Learning

Require: action space 𝐴
initial state 𝑠0
discount factor 𝛾
step-size parameter 𝛼

Ensure: 𝜋* (𝑠, 𝑎)
1: 𝑄 (𝑠, 𝑎)← 0
2: 𝜋 (𝑠, 𝑎)← 1

𝑁𝑀𝐴𝐸(𝑠)𝑁(𝑠)

3: for 𝑧 = 1, 2, ..., 𝑍 do
4: Choose an action from 𝑆 using 𝜀-greedy algorithm
5: Obverse immediate reward 𝑅(𝑠, 𝑎) and 𝑠
6: Update 𝑄 (𝑠, 𝑎) according to Eq. (17)
7: 𝑠← 𝑠
8: end for

Up to now, we have presented the proposed deep architecture to solve the traffic prediction problem and

the corresponding optimization method to optimize the real-time performance. The details of prediction

method are shown by Algorithm 2. We first construct the training data set from previous TM 𝑋 ′ which

is known for us. 𝑋(𝑚) is the 𝑚th sampling, and it is an 𝑁2 × 𝐸 matrix. Symbol 𝑋 ′
* , (𝑚:(𝑚+𝐸−1)) denotes
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intercepting partial columns of 𝑋 ′, i.e., from columns 𝑚 to 𝑚+ 𝐸 − 1. Similarly, 𝑋 ′
𝑛 , (𝑚:(𝑚+𝐿𝑝−1)) means

intercepting partial columns (columns 𝑚 to 𝑚+ 𝐿𝑝 − 1) from row 𝑛 of 𝑋 ′. Obviously, the output maps of

convolutional and subsampling layers are
(︀
𝑁2 − 4

)︀
× (𝐸 − 4) and

(𝑁2−4)
2

× (𝐸−4)
2

matrices. The unfolding

layer reshapes 6 output maps of the subsampling layer as a sequence which is a

(︂
3(𝑁2−4)(𝐸−4)

2

)︂
× 1 vector.

In each output map 𝑎
(2)
𝑗 , it is unfolded as a row vector consisting of

(𝑁2−4)
2

rows of 𝑎
(2)
𝑗 in turn. Aiming at

each OD flow, we build the corresponding training data set for prediction. Then, we train the proposed deep

architecture by the backpropagation algorithm independently for each OD flow prediction. The predictor

can be achieved by forward propagation over trained deep architecture. After predicting all OD flows, we

update the prior TM 𝑋 ′ for the next prediction. Meanwhile, we can calculate the NMAE according to

link load, routing information and predictor 𝑋̂. Besides, we compute a threshold by means of Algorithm 1.

If the NAME is greater than or equal to the threshold, we train the deep architecture by updated prior

TM for the network prediction. Otherwise, we implement the next prediction by the forward propagation

without re-training the proposed deep architecture. This method is able to decease the number of training

and optimize the real-time performance of prediction.

Algorithm 2 Network traffic prediction by way of DL and RL

Require: previous TM 𝑋 ′ with 𝑀 time slots
length of training data set 𝐸
length of predicted sequence 𝐿𝑝

Ensure: 𝑋̂
for 𝑛 = 1, 2, ..., 𝑁2 do

2: for 𝑚 = 1, 2, ..., (𝑀 − 𝐸 − 𝐿𝑝) do

𝑋(𝑚) ←𝑋 ′
* , (𝑚:(𝑚+𝐸−1))

4: 𝑋
(𝑚)
𝑛 ←𝑋 ′

𝑛 , (𝑚:(𝑚+𝐿𝑝−1))

Train the deep architecture shown in Fig. 2 by the training data
(︁
𝑋(𝑚),𝑋

(𝑚)
𝑛

)︁
6: Predict

(︀
𝑋𝑛,𝑀+1, 𝑋𝑛,𝑀+1, ..., 𝑋𝑛,𝑀+𝐿𝑝

)︀
from 𝑋 ′

* , ((𝑀−𝐸):𝑀) by forward propagation
end for

8: end for
Update previous TM by predicted TM 𝑋̂ with 𝐿𝑝 time slots

10: Calculate NMAE according to 𝑋̂ by Eq. (15)
Calculate threshold by Algorithm 1

12: if 𝑁𝐴𝑀𝐸 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
Go to Step 1

14: else
Go to Step 7

16: end if

5 NUMERICAL RESULTS

5.1 Network Traffic Data Set

To evaluate the designed approach, we implement it by the real data set sampled via the Abilene network

and our testbed [21]. The Abilene network includes 12 nodes, and these nodes are connected by 54 internal

and external links. Hence, the number of OD flows is 144 in Abilene. We use one week of TM to evaluate
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Fig. 3. Real network traffic and its predictor for large OD flow in Abilene.

the proposed approach. The network traffic is sampled by 10-minute interval. Namely, the TM contains

2016 time slots. Besides, we construct a testbed, which consists of 1 RSU and 12 OBUs, to imitate the scene

of a secure IoV [15]. The topology of our testbed is built according to the open shortest path first algorithm,

in which weights are defined as the general urban path loss model [3]. Meanwhile, the distance between

two OBUs is random. Furthermore, the services provided by the testbed include video and radio. We also

collect end-to-end network traffic with 2016 time slots by using Wireshark. Moreover, two state-of-the-art

network traffic prediction approaches are leveraged for comparison, i.e., the PCA method and the Sparsity

Regularized Matrix Factorization (SRMF) method. The PCA method is a ML-based approach, and leverages

singular value decomposition to capture the spatial features of TM [24]. SRMF is a matrix interpolation

algorithm in fact. It is put forward to reconstruct the missing data during network traffic direct measurement

process. Besides, by setting special parameters, it is also an available network traffic prediction approach by

extracting the spatio-temporal features of TM [21].

In our evaluations, the first 2000 time slots of TM are used as the previous TM to build the training

data set, and the rest is for test. Furthermore, we set 𝑀 = 150, 𝐸 = 50, 𝐿𝑝 = 4, 𝛼 = 0.5, 𝛾 = 0.01 in

our evaluations. To train the proposed deep architecture, we set the batch equal to 2 and 𝑝 = 0.5 for

the Bernoulli distribution on the dropout layer. We set these parameters empirically to obtain the lowest

prediction error. We use MATLAB R2019a to carry out all the evaluations. The evaluations are conducted

on a 64-bit Windows 7 machine running on an Intel Xeon W-2102 (2.9 GHz) and a 32 GB RAM.
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Fig. 4. Real network traffic and its predictor for small OD flow in Abilene.
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Fig. 5. Real network traffic and its predictor for large OD flow in testbed.
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Fig. 6. Real network traffic and its predictor for small OD flow in testbed.

5.2 Prediction Error Evaluation

We first evaluate our approach in tracking the traces of OD flows. Hence, we demonstrate the real network

traffic and its predictor as shown in Figs. 3 and 4, respectively. The x-axis and y-axis are time slot order and

the volume of traffic element (i.e., the number of packets during a time slot), respectively. For a prediction

algorithm, the elephant (large) flows are easier to be predicted. On the contrary, it is difficult to predict the

mice (small) flows. Thereby, to guarantee the comprehensiveness of evaluation, we assess two OD flows with

large and small averages of network traffic from 144 OD flows. Fig. 3 shows the real network traffic of large

OD flow and its predictor in Abilene. Obviously, three approaches can faithfully capture the profile of this

OD flow. PCA and our method (CNN+LSTM) appear over-estimate and under-estimate more or less. By

contrast, SRMF exhibits a consistent under-estimate. For small OD flow shown in Fig. 4, we find that the

prediction errors of three approaches are higher than that of large OD flow. For an approach extracting

spatial or spatio-temporal features to predict network traffic, the prediction errors of small OD flows are

usually influenced by large OD flows. The spatial feature of TM means that two adjacent elements that

belong to different OD flows in TM are similar in size, and the definition of spatio-temporal feature is similar.

Hence, SRMF shows obvious over-estimate in Fig. 4, though it still can track the profile of this OD flow.

PCA and CNN+LSTM have lower errors. Nevertheless, PCA cannot capture the profile of this OD flow at

all. For a network management function, it has a fault-tolerant ability for network traffic prediction error.

Sometimes, predicting the profile of an OD flow are much more important for many network management

functions. Thereby, SRMF is not a failure prediction. Figs. 5 and 6 show the predictors of our testbed. The

traffic flows in our testbed have many irregular fluctuations, which raises the difficulty level of network traffic

prediction. For instance, in Fig. 5, the traffic flow appears a sharp damping. Our approach can capture this
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Fig. 7. Evaluation for SREs and TREs in Abilene.

sharp damping faithfully. By contrast, SRMF has a low error, and PCA cannot track this trace at all. For

small traffic flows, all approaches occur large prediction error. Specially, SRMF has negative predictors, and

PCA shows a consistent predictor. Our approach can pursue the profile of this traffic flow from time slots 6

to 13.

To provide a quantitative analysis of three approaches, we leverage the Spatial Relative Error (SRE) and

Temporal Relative Error (TRE) defined as:⎧⎪⎨⎪⎩
𝑆𝑅𝐸 (𝑛) =

‖𝑋̂𝑛,𝑡−𝑋𝑛,𝑡‖2
‖𝑋𝑛,𝑡‖2

𝑇𝑅𝐸 (𝑡) =
‖𝑋̂𝑛,𝑡−𝑋𝑛,𝑡‖2
‖𝑋𝑛,𝑡‖2

, (19)

where 𝑋𝑛,𝑡 and 𝑋̂𝑛,𝑡 are real network traffic and its predictor, respectively. Fig. 7 shows the SREs and TREs

of three approaches. The x-axis in Fig. 7(a) is the index of each OD flow, and it is arranged according to the

means of OD flows from the smallest to the largest ones. We can obtain similar conclusion for Figs. 3 and 4.

SRMF has the largest SREs, specially for small OD flows. The means of SREs of CNN+LSTM, PCA, and

SRMF are 0.47, 1.03 and 22.01, respectively. Fig. 7(b) exhibits the TREs of three approaches. Our method

obtains the lowest TRE consistently. SRMF shows the largest TRE in three approaches. Fig. 8 displays

the Cumulative Distribution Functions (CDF) of SREs and TREs. From Fig. 8(a), for CNN+LSTM, PCA

and SRMF, the SREs are less than 1.63, 1.80 and 15.38 respectively, with respect to 90% of all the OD

flows. Meanwhile, in Fig. 8(b), the TREs are less than 0.13, 0.25 and 0.39 respectively for 80% of time slots.

Similarly, the means of SREs of three methods are 2.34, 6.63, and 4.92, as shown in Fig. 9. The TREs of our

method occur some fluctuations, though it is the lowest one of three approaches. These fluctuations of TRE

can be exhibited clearly in Fig. 10(b).
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Fig. 10. Evaluation for CDF of SREs and TREs in testbed.

Moreover, we leverage the prediction bias and the relative sample Standard Deviation (SD) to evaluate

the availability, which are denoted by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏𝑖𝑎𝑠(𝑛) = 1

𝑇

𝑇∑︀
𝑡=1

(︁
𝑋̂𝑛,𝑡 −𝑋𝑛,𝑡

)︁
𝑆𝐷(𝑛) =

√︃
1

𝑇−1

𝑇∑︀
𝑡=1

(𝑒𝑟𝑟𝑜𝑟(𝑛)− 𝑏𝑖𝑎𝑠(𝑛))2
, (20)

where 𝑒𝑟𝑟𝑜𝑟 (𝑛) = 𝑋̂𝑛,𝑡 −𝑋𝑛,𝑡. Fig. 11 shows the biases and SD of three approaches. In Fig. 11(a), we sort

all OD flows by the descending order according to their averages. From Fig. 11(a), we find that all the

approaches show an under-estimate or over-estimate. Specially, the CNN+LSTM has smaller biases than

the others. Meanwhile, the biases are decreased with the means of OD flows decrease. The biases of SRMF

are not consistently related to flow size, as in CNN+LSTM and PCA. It has prominent under-estimates and

over-estimates. For small OD flows, SRMF appears a remarkable under-estimate. The biased estimators

sometimes may have lower SD, and then predictors are closer to the real value than those of unbiased

predictor. Thereby, we refer to the SD (or variance) of bias for further evaluation. In Fig. 11(b), we find

that CNN+LSTM and PCA have lower bias, but higher SD. An approach with low bias and high SD tends

to predict the long-term traffic [24]. Otherwise, it prefers to predict the short-term traffic, when it has high

bias and low SD. Hence, CNN+LSTM and PCA are suitable for long-term traffic prediction, and SRMF

for short-term traffic prediction. As mentioned before, the SRMF is a matrix interpolation algorithm used

to reconstruct the missing data in TM. Generally, the missing probability of each element is independent

identically distributed. To extending this matrix interpolation algorithm to predict network traffic, it assumes
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Fig. 11. Prediction bias and its SD in Abilene.

that the missing elements are a series of columns in TM. Under this case, SRMF predicts an element from a

snapshot of TM. Hence, it is good at predicting short-term traffic. On the contrary, PCA and CNN+LSTM

predict a network traffic element by using a great number of snapshots of TM. For instance, the singular

value decomposition is a matrix-oriented operation. We use CNN as the first hidden layer, and employ a

matrix as the input of deep architecture. As a result, PCA and our method are suitable for long-term traffic

prediction. We can obtain the similar conclusion according to the evaluations in Fig. 12.

Finally, we evaluate the performance improvement ratio for our approach versus PCA and SRMF. The

performance improvement ratio is expressed by:

𝑃𝐼𝑅 =

𝑁2∑︀
𝑛=1

𝑇∑︀
𝑡=1

⃒⃒⃒
𝑋̂𝐴

𝑛,𝑡 −𝑋𝑛,𝑡

⃒⃒⃒
−

𝑁2∑︀
𝑛=1

𝑇∑︀
𝑡=1

⃒⃒⃒
𝑋̂𝐵

𝑛,𝑡 −𝑋𝑛,𝑡

⃒⃒⃒
𝑁2∑︀
𝑛=1

𝑇∑︀
𝑡=1

⃒⃒⃒
𝑋̂𝐴

𝑛,𝑡 −𝑋𝑛,𝑡

⃒⃒⃒ , (21)

where 𝑋̂𝐴
𝑛,𝑡 and 𝑋̂𝐵

𝑛,𝑡 are the predictors obtained via algorithms A and B, respectively. According to Eq. (8),

the performance ratios of CNN+LSTM versus PCA and SRMF are 43.34% and 71.47% in Abilene. Moreover,

they are 60.93% and 64.54% in our testbed, respectively.

6 CONCLUSIONS AND FUTURE WORK

This paper investigates the problem of end-to-end network traffic prediction in the IoV backbone network.

Aiming at minimizing the prediction error and improving real-time performance of network traffic prediction,

we design a deep architecture based on CNN and LSTM. This hybrid deep architecture is built by considering
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Fig. 12. Prediction bias and its SD in testbed.

two features of TM, i.e., the temporal and spatio-temporal features. Convolutional and subsampling layers

are used for extracting the spatio-temporal features of TM. Meanwhile, an LSTM layer is leveraged to

capture the temporal features. To improve the real-time performance of the proposed deep architecture

for prediction, we propose a threshold-based deep architecture update policy. Furthermore, we propose

a Q-learning algorithm to gain this threshold, in which link loads and routing information are employed

to generate NMAE. In this case, the threshold can be calibrated to obtain an optimal tradeoff between

real-time performance and prediction error. The proposed approach is evaluated by real network traffic data

set from the Abilene backbone network and our constructed testbed. From these evaluations, the proposed

approach can track the trace of end-to-end network traffic precisely.

The 5G-enabled communication network, in which infrastructures are employed densely, has been involved

in IoVs to provide adequate communication resources. Hence, network traffic prediction approaches for

large-scale and heterogeneous IoV backbone networks are necessary. Under this case, the computational

complexity of a prediction approach is significantly important for online network traffic prediction. Thereby,

a lightweight network traffic prediction approach is the main work in the future.
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