
1

Intelligent Edge Computing in Internet of Vehicles:
A Joint Computation Offloading and Caching

Solution
Zhaolong Ning, Kaiyuan Zhang, Xiaojie Wang, Lei Guo, Xiping Hu, Jun Huang, Bin Hu,

Ricky Y. K. Kwok, Fellow, IEEE

Abstract—Recently, Internet of Vehicles (IoV) has become
one of the most active research fields in both academic and
industry, which exploits resources of vehicles and Road Side
Units (RSUs) to execute various vehicular applications. Due
to the increasing number of vehicles and the asymmetrical
distribution of traffic flows, it is essential for the network
operator to design intelligent offloading strategies to improve
network performance and provide high-quality services for users.
However, the lack of global information and the time-variety of
IoVs make it challenging to perform effective offloading and
caching decisions under long-term energy constraints of RSUs.
Since Artificial Intelligence (AI) and machine learning can greatly
enhance the intelligence and the performance of IoVs, we push
AI inspired computing, caching and communication resources
to the proximity of smart vehicles, which jointly enable RSU
peer offloading, vehicle-to-RSU offloading and content caching
in the IoV framework. A Mix Integer Non-Linear Programming
(MINLP) problem is formulated to minimize total network
delay, consisting of communication delay, computation delay,
network congestion delay and content downloading delay of all
users. Then, we develop an online multi-decision making scheme
(named OMEN) by leveraging Lyapunov optimization method to
solve the formulated problem, and prove that OMEN achieves
near-optimal performance. Leveraging strong cognition of AI,
we put forward an imitation learning enabled branch-and-bound
solution in edge intelligent IoVs to speed up the problem solving
process with few training samples. Experimental results based
on real-world traffic data demonstrate that our proposed method
outperforms other methods from various aspects.

Index Terms—Internet of Vehicles, peer offloading, content
caching, Lyapunov optimization, imitation learning.

Z. Ning is with the Chongqing Key Laboratory of Mobile Communica-
tions Technology, Chongqing University of Posts and Telecommunications,
Chongqing, China; National Mobile Communications Research Laboratory,
Southeast University, Nanjing, China; and School of Software, Dalian Uni-
versity of Technology, Dalian, China. Email: z.ning@ieee.org.

K. Zhang is with the School of Software, Dalian University of Technology,
Dalian, China. Email: zky123123@live.com.

X. Wang is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, China. Email: xiaojie.wang@polyu.edu.hk.

L. Guo (Corresponding author) is with the School of Communication and
Information Engineering, Chongqing University of Posts and Telecommuni-
cations, Chongqing, China. Email: guolei@cqupt.edu.cn.

J. Huang is with the School of Computer Science and Technology,
Chongqing University of Posts and Telecommunications, Chongqing, China.
Email: jhuang@cqupt.edu.cn.

X. Hu is with the Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences, Shenzhen, China. Email: xp.hu@siat.ac.cn.

B. Hu is with the School of Information Science and Engineering, Lanzhou
University, Lanzhou, China. Email: bh@lzu.edu.cn.

R. Kwok is with the Department of Electrical and Electronic Engineering,
University of Hong Kong, Hong Kong, China. Email: Ricky.Kwok@hku.hk.

I. INTRODUCTION

The advancements in 5G communication networks and
Internet of Vehicles (IoV) enable rapid development of many
vehicular applications, such as route planning, video compres-
sion and AR navigation, which provide comfortable travel
experiences for drivers and passengers. However, individual
vehicles own limited computational resources and storage ca-
pabilities to deal with applications within their strict delay con-
straints [1]. Nowadays, edge intelligence, integrating Artificial
Intelligence (AI) with edge computing, enables appropriate
edge service deployment and flexible resource scheduling in
IoVs [2]. Edge intelligence is a promising techinique for IoVs,
which can alleviate the bandwidth of backhaul links and pro-
vide computing as well as caching services with low-latency.
Leveraging the cognitive capability of edge intelligence, the
edge intelligent IoV framework can realize efficient processing
for mission-critical applications, low latency content delivery
for interactive entertainments and smart transmission for QoS-
aware information [3].

Road Side Units (RSUs) equipped with edge servers are
able to serve vehicles within their coverages, which alleviate
computing and backhaul pressures of the cloud server [4].
Computational tasks exceeding the computational capability
of edge servers can be offloaded to the cloud server. Hence,
a three-layer offloading architecture based on vehicles, RSUs
and the cloud server is constructed for IoVs. Although compu-
tation offloading has attracted great attention in recent works, it
generally ignores the cooperation among edge servers [5]. Due
to the asymmetrical distribution of traffic flows in real world,
it is essential for the network operator to intelligently dispatch
workloads from overloaded RSUs to nearby underused ones,
which both enhances network performance and provides high-
quality services for users.

Energy consumption of IoV entities is meaningful for s-
takeholders, which attracts a lot of attention from all parties
[6]. Many famous automakers around the world are develop-
ing electric vehicles to reduce dependence on non-renewable
resources. Government agencies are putting forward new s-
tandards to construct green cities in 5G era, which motivates
network operators to make use of limited energy effectively.
According to the recent analysis [7], the transportation sector
accounts for 32% of the overall CO2 emission. Given the
limited resources, mobile network operators need to utilize
idle resources in the network to enhance network performance

2

and improve resource utilization efficiency. Thus, an energy-
efficient resource allocation scheme is necessary for both
network operators and users.

Recently, AI and machine learning become emerging tech-
niques to address edge service deployment and resource
scheduling issues [8], [9]. As an important branch of AI,
Deep Reinforcement Learning (DRL) based solutions emerge
as promising solutions in many fields. Owning the cognitive
capability for dynamic environments, DRL empowered IoV
has a superiority in accuracy and efficiency when solving deci-
sion making and resource allocation problems [10]. However,
most of them need sufficient training data to guarantee their
performance [11], [12], and many of them pursue good per-
formance regardless of time complexity. Therefore, imitation
learning [13] is proposed as a lightweight framework for real-
time processing, which can achieve near-optimal performance
with a few training samples.

There are three major challenges for edge computing in
IoVs:

• First, the stochastic traffic flow causes uneven workload
arrivals in IoVs, which consumes heterogeneous ener-
gy resources for RSUs with certain energy constraints.
Meanwhile, network operators are hard to obtain future
information in IoVs, which motivates an online offloading
and caching decision across different time slots.

• Second, vehicular applications are heterogeneous in terms
of their different popularity and demands. To satisfy
the delay constraints for latency-sensitive tasks, jointly
computation offloading and content caching should be
considered.

• Finally, existing AI methods usually require adequate
training samples to guarantee their learning performance.
However, sometimes it is difficult to obtained enough
data from users. Thus, it is significant to propose a novel
learning framework to obtain the optimal solution with a
few training samples.

In this paper, we construct an edge intelligence empow-
ered IoV framework, which utilizes an imitation learning-
enabled solution for optimal computation offloading and con-
tent caching. We first propose a novel online algorithm, by
leveraging Lyapunov optimization, to reduce the total network
delay with current information. To deal with the time-varying
character of IoVs, we design an imitation learning enabled
Branch-and-Bound algorithm (B&B), which combines AI with
the traditional multi-objective optimization algorithm to obtain
the optimal decision with a few training samples. The contri-
butions are summarized as follows:

• We construct a hierarchical architecture for edge intelli-
gence empowered IoV, which jointly considers vehicle-to-
RSU computation offloading, RSU peer offloading, and
content caching. Then, a Mixed Integer Non-Linear Pro-
gramming (MINLP) optimization problem is formulated
to minimize the total network delay.

• We propose an online multi-decision making algorithm
(named OMEN) by leveraging Lyapunov optimization,
which works in an online manner without requiring future
system information. Satisfying the long-term energy con-

straints, we theoretically prove that OMEN approaches
the optimal performance within a bounded deviation.
Then we mathematically characterize the roles of dif-
ferent RSUs and determine the optimal peer offloading
strategy based on Lagrange multipliers method.

• We develop an efficient imitation learning based B&B
algorithm, which accelerates the solving process via a few
training samples. As the pruning process in B&B can be
formulated as a sequential decision problem, we adopt a
novel machine learning method, i.e., Data Aggregation, to
learn optimal pruning policy, which achieves outstanding
learning performance with a few training samples.

• We conduct experiments based on real-world traffic data
in Hangzhou, China. Performance results demonstrate
that our proposed method significantly reduces the net-
work delay with different traffic flows. Moreover, the
imitation learning enabled B&B executing on a few
training samples outperforms baselines.

The rest of this paper is organized as follows. We review
the related work in Section II, and present the system model
in Section III. In Section IV, we transfer the original problem
and design corresponding algorithms to solve the optimization
problem. Simulation results are provided in Section V, and
Section VI concludes this paper.

II. RELATED WORK

Computation offloading and content/service caching in IoVs
have attracted much attention, which can promote network
performance and reduce energy consumption [14]. Since a
variety of computation-intensive and delay-sensitive applica-
tions compete for limited resources and energy, a series of
optimization solutions have been presented to improve network
performance and user experience. The authors in [15] consider
time-varieties of IoVs and latency requirements of vehicular
applications to propose a multi-timescale framework, which
jointly allocates caching and computing resources in IoVs to
minimize energy consumption. The authors in [16] formulate
a three-layer architecture (i.e., cloud server layer, Mobile
Edge Computing (MEC) server layer and mobile user layer)
to cache application services on corresponding edge servers,
reducing the execution time of computational tasks. In [17],
user mobility is integrated with server placement to specify
the offloading decision for delay-sensitive computational tasks.
However, edge servers in IoVs generally execute computation-
al tasks locally without cooperation, which is inefficient for
task processing due to the uneven workloads in different edge
servers.

Some researches investigating cooperative mechanisms in
IoVs focus on either resource allocation or user association.
The authors in [18] consider the cooperation of a cloud server
and several edge servers to execute computation-intensive
tasks. A vehicular edge multi-access network is introduced in
[19], integrating resource-rich vehicles with the cloud server,
to construct a cooperative computing architecture. Some exist-
ing studies design computation offloading strategies based on
users’ properties [20], [21], such as social trust, geographic
regions and the number of physical neighbors. However,

3

they focus on either user-to-server or user-to-user offloading
architectures, and few studies investigate offloading decisions
among servers. Furthermore, the existing researches mainly
perform myopic optimization, which can hardly satisfy the
long-term constraints imposed on the entire network.

AI algorithms have been widely investigated to address
decision making and resource allocation problems in IoVs.
The authors in [22] employ a deep reinforcement learning
approach to dynamically orchestrate resources, which can
improve the task processing capability of IoVs. The authors
in [23] integrate naive Bayes with Support Vector Machines
(SVM) to analyze vehicular information, which can efficiently
detect negative communication conditions. In [24], a multi-
armed bandits based framework is proposed to minimize
computation offloading delay, which outperforms the upper
confidence bound algorithm. However, these researches need
a great deal of offline information as training data, which is
not suitable for dynamic networks.

Based on the asymmetrical distribution of traffic flows in
real world, the computational workload arrivals in IoVs are
highly dynamic and heterogeneous. Existing methods can not
make full use of network resources and are hard to provide
satisfactory services under heavy traffic flows. Therefore, we
construct a hierarchical IoV architecture to minimize the total
network delay by considering the cooperation among edge
servers. Meanwhile, we formulate a multi-decision making
problem under long-term energy constraints, and theoretically
prove it can achieve near-optimal performance in an online
manner. Furthermore, we propose an AI-based approach by
employing imitation learning, which can accelerate the prob-
lem solving process with a few training samples.

III. SYSTEM MODEL

We consider there are N RSUs, indexed by N =
{1, 2, ..., N}, deployed near a crossroad and connected by
a high-speed LAN [25]. These RSUs, integrating with edge
servers, have both computing and caching capabilities, so
that vehicles can offload their computational tasks to and
download their requested contents from the corresponding R-
SUs. Vehicles communicate RSUs via wireless communication
using orthogonal frequency-division multiplexing technique,
which allows vehicles communicate with one RSU without
interferences. There are M vehicles arriving at the crossroad
area, indexed byM = {1, 2, ...,M}, which are overlaid by the
RSUs nearby. Moreover, we divide the timeline into several
discrete time slots T = {0, 1, ..., T − 1}, in which vehicles
and RSUs can update their decisions and resource allocation
strategies. Moreover, each edge server has a caching storage
container, which can store requested contents to accelerate
application processing procedures. In this paper, we consider
application requirements from vehicles consist of two parts:
1) Computational tasks, which can be executed at vehicles or
offloaded to the edge server of RSUs. 2) Requested contents,
which can be downloaded from the cloud server or the caching
storage at the edge servers of RSUs [22]. Generally, we assume
computational tasks generated from vehicles follow a Poisson
process [26], and the rate of Poisson process is denoted by
πti ∈ [0, πmax].

Fig. 1. The framework of edge intelligence empowered IoV.

The framework of the edge intelligence empowered IoV is
shown in Fig. 1. Vehicles construct transmission links with
nearby RSUs to perform computation offloading and content
downloading. If the requested contents are cached, vehicles
can download them from RSUs directly. Otherwise, RSUs
have to download them from the cloud server. In addition,
RSUs are connected by Local-Area Networks (LANs), al-
lowing computational tasks to be transferred among them.
According to the observations on the real-world traffic data,
it is common that uneven traffic flows come from different
directions at the crossroad. Therefore, workload processing
among RSUs requires different system costs and resource
allocation strategies. The hierarchical IoV is constructed with
the cloud server, edge servers and vehicles, which can perform
vehicle-to-RSU computation offloading, RSU peer offloading
and content caching to improve the network efficiency.

A. Communication Model

The communication rate between vehicle i and RSU m in
time slot t, i.e., rtim, can be calculated by:

rtim = B log2(
1 + pih

t
im

σ2
), (1)

where B is the available spectrum bandwidth of the RSU, and
pi denotes the transmission power of vehicle i. Variable htim
represents the channel gain between vehicle i and RSU m,
and σ2 is the noise power. The expected data size of each
computational content is set to s. Obviously, the transmission
time depends on the number of input contents (i.e., the task
generation rate) from vehicle i. The transmission delay of RSU
m in time slot t is the overall transmission time of its overlaid
vehicles, i.e.,

TTm,t =
∑
i∈Mm

πtis

rtim
, (2)

where Mm is the set of vehicles associated with RSU m.

B. Computation Model

Computational tasks from vehicles can be computed locally
or remotely by the RSUs along roads via computation of-
floading. The computation delay mainly depends on offloading
decisions, including vehicle-to-RSU offloading decisions and
RSU peer offloading decisions. If the tasks are computed
locally by vehicles, the computation delay can be calculated
by:

TLi,t =
πtisl

f
, (3)

4

where l is the expected number of CPU cycles for the
calculation of one bit content, and f is the computational
capability (CPU cycles per second) of the vehicle.

If the tasks are offloaded to RSUs, the centralized controller
first executes RSU peer offloading instead of processing tasks
directly. It can alleviate computational pressure, decrease sys-
tem cost of edge servers with heavy workloads, and improve
network efficiency by involving servers with low usage. Let
φti denote the total offloading tasks from vehicles to RSU i in
time slot t, i.e., φti =

∑
m∈Mm

πtm. We denote βtij(j ∈ N) as
the tasks offloaded from RSUs i to j in time slot t (notice that
βtii represents the task processed by RSU i itself). Then, the
total task workloads processed by RSU i can be calculated by
ωti =

∑N
j=1 β

t
ji, consisting of tasks from its overlaid vehicles

and offloaded ones from/to other RSUs. Thus, the RSU peer
offloading decision are βt = {βtij}i,j∈N .

Fig. 2. Illustration of RSU peer offloading system with queuing models.

Proposition 1: The RSU peer offloading decision βt is
feasible when it satisfies:

(a) Conservation:
∑N
j=1 β

t
ij = φti,∀i ∈ N ;

(b) Stability: ωti 6 Fi/sl,∀i ∈ N .
Condition (a) guarantees the total offloaded tasks by each

RSU should be equal to its tasks received from vehicles.
Condition (b) indicates that the workloads to be offloaded
among RSUs should not exceed the computational capability
of each RSU.

Considering the Poisson generation of computational tasks,
the peer offloading system can be modeled by an M /M /1
queueing model [27]. Hence, the computation delay for RSU
m can be calculated by:

TEm,t =
ωtm

µ− ωtm
, (4)

where µ = F/ls is the expected service rate, and ωtm is
the task workloads processed at RSU m with regard to the
given peer offloading decision βt. Herein, F represents the
computation capability of the RSU.

Peer offloading among RSUs causes network congestion
delay due to the limited bandwidth of the LAN. Let λti(βt) =∑
j∈N−{i} β

t
ij = φti − βtii denote the tasks offloaded from

RSU i, and the total traffic (i.e., the number of offloaded tasks
among RSUs) can be calculated by λt(βt) =

∑
i∈N λ

t
i(βt).

In order to estimate the congestion delay, we assume that the

data size of computational tasks is exponentially distributed
as in [16], [22]. According to the queueing theory in [27], the
offloading model can be formulated as a first-come first-serve
M /M /1 system.

Proposition 2: The congestion delay of the offloading
system, i.e., TCt , can be calculated by:

TCt =
τλt(βt)

1− τλt(βt)
, τλt(βt) < 1, (5)

where τ is the expected delay for transferring one compu-
tational task in the LAN without congestion, and λt(βt) =∑
i∈N λ

t
i(βt) is the total traffic (i.e., the number of offloaded

tasks among RSUs). Herein, λti(βt) =
∑
j∈N−{i} β

t
ij =

φti − βtii.
Proof: See Appendix A.

An example of RSU peer offloading system with queueing
models is shown in Fig. 2, in which RSUs i and k offload
workloads βij and βkj to RSU j through LAN, respectively.
We define the vehicle-to-RSU offloading decision for vehicle
i as xti ∈ {0, 1}, where xti = 0 represents that vehicle i
computes tasks locally, and xti = 1 means tasks are computed
remotely at RSUs by traffic offloading. Hence, the total
computation delay in time-slot t is:

T comt =

M∑
i=1

{(1−xti)TLi,t+xti(TCt +

N∑
m=1

(TTm,t+T
E
m,t))}. (6)

C. Caching Model

When computational tasks from vehicles are offloaded, the
centralized controller first checks whether its requested content
has been stored in the server. If so, the edge server does not
need to download it from the cloud server. Similar to [22],
[28], we assume that the popularity of requested contents from
the Internet is determined by a Zipf-like distribution, thus the
popularity of i-th (i = 1, 2, ..., Nf , where Nf is the total types
of contents in the Internet) contents requested by vehicle j can
be expressed as:

ζji =
1

ρiε
. (7)

where ρ =
∑Nf

i=1 1/iε with Zipf slope ε (0 < ε < 1). If the
task is cached, the system can reduce the transmission delay
between vehicle and the MEC server. However, due to the
limited caching storage of each edge server, it is impossible
to store all the requested contents. We define yti ∈ {0, 1} as the
caching decision of vehicle i, where yti = 0 represents the edge
server caches the requested contents, and otherwise yti = 1.
Hence, the caching delay in time-slot t can be expressed by:

T cat =

M∑
i=1

xtiy
t
i

s

ζiR
, (8)

where R is the average transmission rate between the Internet
and MEC servers.

5

D. System Cost Model

Hybrid computation offloading and intelligent caching em-
power satisfactory quality of services, however, it is worth
noticing that computation offloading would cause additional
system costs for the network operator [29], such as com-
putation cost, communication cost and caching cost. The
computation cost for RSU m is used to execute corresponding
computational tasks in time slot t, depending on the amount of
tasks, i.e., ωtm. The communication cost is used to access the
virtual network, which maintains stable links between vehicles
and servers. The caching cost for RSU m is consumed to store
caching contents in edge servers, which depends on the size
of caching contents, i.e.,

∑
i∈Mi

(1− yti)s. Hence, the system
cost for RSU m in time slot t can be expressed by:

Etm =
∑
i∈Mm

[γ · rtim + ε · (1− yti)s] + δ · ωtm, γ, ε, δ > 0, (9)

where Mm is the set of vehicles associated with RSU m, and
γ is the unit cost for accessing the virtual network. Symbol ε
is the unit cost for content caching, and δ is the unit cost for
task execution.

E. Problem Formulation

Given the latency and resource constraints of vehicular
applications as well as the cost budgets of each edge server, we
jointly consider hybrid computation offloading (i.e., vehicle-
to-RSU offloading and RSU peer offloading), and intelligent
caching to minimize the total network delay. In time slot t,
the network delay consists of computation delay and caching
delay, which can be expressed by:

Tt = T cat + T comt . (10)

Define X = {xti}i∈M,t∈T , Y = {yti}i∈M,t∈T , and B =
{βt}t∈T as the vectors of vehicle-to-RSU offloading decision,
content caching decision, and RSU peer offloading decision,
respectively. The optimization problem can be formulated as:

P0 : min
X,Y,B

1

T

T−1∑
t=0

E{Tt}, (11a)

s.t.
1

T

T−1∑
t=0

E{Etm} 6 Em,∀m ∈ N , (11b)

Etm 6 Emax,∀m ∈ N ,∀t ∈ T , (11c)
Tt 6 Tmax,∀t ∈ T , (11d)∑
i∈Mi

(1− yti)s 6 C, ∀t ∈ T , (11e)

xti ∈ {0, 1},∀i ∈M,∀t ∈ T , (11f)
yti ∈ {0, 1},∀i ∈M,∀t ∈ T , (11g)

where constraint (11b) is the long-term cost budget for each
RSU. Constraints (11c) and (11d) ensure the system cost
and delay in each time slot. Constraint (11e) guarantees that
all caching contents cannot exceed the storage capability of
each edge server (i.e., C). Constraints (11f) and (11g) are
binary variables, representing offloading decision and caching
decisions of each vehicle, respectively.

There are two challenges in solving the formulated problem.
The first one is that binary variables X and Y make P0 be an
MINLP problem, which is proved to be NP-hard in [30]. Fur-
thermore, the offloading decisions are coupled with long-term
energy constrains across different time slots, i.e., consuming
more energy at the current time slot will leave less available
energy for future usage, which calls for an online optimization
method without complete information (since tasks arrive in all
time slots).

IV. PROBLEM TRANSFORMATION AND SOLUTION

In this section, we reformulate and transform the optimiza-
tion problem P0. Then, we introduce an online method to make
traffic control schemes by leveraging the Lyapunov technique
and imitation learning enabled branch-and-bound method.

A. Problem Transformation

To address the long-term cost constraints of RSUs without
global information, we leverage the Lyapunov optimization
method to decouple the long-term cost budget, which strikes
a balance between the system delay and energy cost. First,
we construct a cost queue for RSU m as the historical mea-
surement of the deficit system cost, which can be expressed
by:

qm(t+ 1) = max{qm(t) + Etm − Em, 0}, (12)

where qm(t) is the queue length in time slot t, and the initial
queue backlog qm(0) = 0. The cost condition of RSU m is
evaluated by qm(t) for executing peer offloading decision. If
the value of qm(t) gets larger, the system cost will exceed
the long-term cost budget, i.e., Em. In order to guarantee
constraint (11b), qm(t) of each RSU m ∈ N should be stable,
i.e., limT→∞ E{qm(t)}/T = 0. For all RSUs in the IoV, the
set of cost queues is expressed by Θ(t) = {qm(t)}m∈N .

We define a quadratic Lyapunov function as L(Θ(t))
∆
=

1
2

∑N
m=1 q

2
m(t), which represents a scalar metric of the virtual

queue length. Variable L(Θ(t)) with small values indicates
queue backlogs are small, and queues are stable. A one-step
conditional Lyapunov drift ∆(Θ(t)) is defined to consistently
push the quadratic Lyapunov function towards a low value,
which keeps the queue stable. The drift ∆(Θ(t)) denotes the
change of the cost queue in the Lyapunov function over one
time slot. Based on the cost queue, the original problem can be
decomposed into a series of real-time optimization problems.
Therefore, we define a Lyapunov-drift-plus-penalty function,
which integrates network delay with cost queue stability by
∆(Θ(t)) + V

∑N
m=1 E{Tt|Θ(t)}. Herein, V is a positive

parameter, controlling the trade-off between network delay and
system cost.

Lemma 1. For all feasible values of Θ(t) determined by peer
offloading decision βt, there is a supremum bound for the
drift-plus-penalty function, i.e.,

6

∆(Θ(t)) + V

N∑
m=1

E{Tt|Θ(t)}

∆
=E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}+ V

N∑
m=1

E{Tt|Θ(t)}

≤H +

N∑
m=1

qm(t)E{Etm − Em|Θ(t)}+ V

N∑
m=1

E{Tt|Θ(t)}

(13)
where H = 1

2

∑N
m=1(E2

max + E
2

m) is a constant value.

As Lemma 1 shows, the objective function of P0 has a
supremum bound in each time slot t. Then, we can determine
the offloading and caching decisions by solving the optimiza-
tion problem P1, which intends to minimize the supremum
bound of problem P0:

P1 : min
(X,Y,B)t

(V · Tt(xt, yt, βt) +

N∑
m=1

qm(t) · Etm),

s.t. (11c)− (11g),

(14)

where the additional term
∑N
m=1 qm(t) ·Etm is supplemented

to satisfy the cost constraint in (11b). Generally, system cost
minimization is critical for the optimization problem P1 when
qm(t) is larger. We propose the OMEN algorithm to make
optimal offloading and caching decisions, which is shown in
Algorithm 1.

Algorithm 1 Online Multi-Decision Making Algorithm
Input: Trade-off parameter V , energy deficit queue backlog

qm = 0,m ∈ N ;
Output: Vehicle-to-RSU offloading decision X, content

caching decision Y, RSU peer offloading decision B;
1: for t = 0, 1, ..., T − 1 do
2: Solve the optimization problem P1 to get optimal

(xt, yt, βt)∗:
min

xt,yt,βt
(V · Tt(xt, yt, βt) +

∑N
m=1 qm(t) · Etm)

3: Update the cost queue for all RSUs:
qm(t+ 1) = max{qm(t) + Etm − Em, 0}

4: end for
5: return (xt, yt, βt)∗t=1,2,...,T−1

Although we have converted the original problem into
a real-time optimization problem, it is also a combinatori-
al optimization problem, which is NP-hard [31], [32]. The
B&B method is leveraged to the obtain optimal offloading
and caching policy in each time slot. In one time slot, the
centralized controller first decides vehicle-to-RSU policies,
i.e., vehicle-to-RSU offloading decisions, and content caching
decisions. When computational tasks are offloaded to RSUs,
the controller makes optimal RSU peer offloading polices
to minimize the network delay. We decompose the objective
function as shown in Eq. (15), i.e., (i) a vehicle-to-RSU de-
pendent part, controlling task offloading and content caching,
and (ii) an RSU-to-RSU dependent part. Then, we propose
the Iterative Multi-RSU Balancing Algorithm (IAMB) to find
solution β∗ to make optimal RSU peer offloading decisions.

B. Iterative Multi-RSU Balancing Algorithm

In time slot t, for simplicity, we rewrite ωtm(βt) and λt(βt)
as ωm and λ, respectively. Then, the RSU-to-RSU part of
problem P1 is formulated as:

P1− β : min
ωm,λ

N∑
m=1

(
V ωm
µ− ωm

+
τλ

1− τλ
+ δqmωm), (16a)

s.t. Em(ωm, λ) 6 Emax,∀m ∈ N , (16b)
Tm(ωm, λ) 6 Tmax,∀m ∈ N , (16c)

where ωm and λ are two independent variables and they
are determined by the RSU peer offloading decision β. The
relationship between these two variables has been illustrated
in Section III-B. Note that an RSU cannot concurrently
offload and receive workloads, because it will cause additional
network congestion delay.

During RSU peer offloading, the workload flow equation
holds in every time slot, i.e.,

∑N
m=1 Im =

∑N
m=1Om, where

Im ≥ 0 and Om ≥ 0 are the inbound and outbound workloads
of RSU m, respectively. According to the definition in Section
III-B, the variables in P1− β can be written as ωm = φm +
Im−Om and λ =

∑N
m=1 Im, respectively. By substituting Im

and Om into (16a), we can obtain the optimization problem
P2, i.e.,

P2 : min
X,Y

N∑
m=1

[
V (φm + Im −Om)

µ− (φm + Im −Om)
+ δqm(φm + Im −Om)

+
τ
∑N
m=1 Im

1− τ
∑N
m=1 Im

],

(17a)
s.t.

φm + Im −Om > 0,∀m ∈ N , (17b)

−
N∑
m=1

Im +

N∑
m=1

Om = 0, (17c)

Based on P2 and the conditions of Im and Om, we clarify
RSUs into three types, i.e., Source RSU (R), Neutral RSU
(U) and Sink RSU (S). If Im = 0 and Om > 0, RSU
m is a Source RSU, meaning that it partially offloads its
received workloads to other RSUs and processes the rest of
workloads locally. If Im = 0 and Om = 0, RSU m is a
Neutral RSU, denoting that it processes the source-offloading
workloads locally without receiving any workloads. Here, the
source-offloading workloads of RSU m is the total offloading
tasks from vehicles to RSU m. If Im > 0 and Om = 0, RSU
m is a Sink RSU, representing that it processes the workloads
received from other RSUs without offloading any workloads
to others. Because the objective function of P2 is convex
and all the constraints are linear, we can leverage Lagrangian
Multipliers method to obtain the optimal solution.

Theorem 1. According to different task processing patterns
of RSUs, the optimal solution ω∗m, λ∗ to P1-β are:

(a) If m ∈ U , then ω∗m = φm.
(b) If m ∈ R, then ω∗m = [d−1

m (1
V (ϑ+ V g(λ∗)− δqm))]+.

(c) If m ∈ S , then ω∗m = d−1
m (1

V (ϑ − δqm)). Here,
dm(ωm)

∆
= ∂

∂ωm
(TEm) = µ/(µ− ωm)2 and g(λ)

∆
= ∂

∂λ (Tc) =

7

V · Tt(xt, yt, βt) +

N∑
m=1

qm(t) · Etm =

M∑
i=1

V {(1− xti) ·
πtisl

f

+xti ·
N∑
m=1

[
V ωtm(βt)

µ− ωtm(βt)
+

τλt(βt)

1− τλt(βt)
+δqm(t)ωtm(βt)︸ ︷︷ ︸

RSU−to−RSU dependent

+γqm(t)rtim + εqm(t)(1− yti)s+
πtis

rtim
+ yti

s

ζiR
]}.

(15)

τ/(1 − τλ)2. Variables λ∗ and ϑ are the solutions of the
workload flow equation:

∑
m∈N

Im =
∑
m∈S

(d−1
m (

1

V
(ϑ− δqm))− φm)︸ ︷︷ ︸

inbound workloads

=
∑
m∈N

Om =
∑
m∈R

(φm − [d−1
m (

1

V
(ϑ+ V g(λ∗)− δqm))]+)︸ ︷︷ ︸

outbound workloads

.

(18)

Proof: See Appendix B.
We develop the IAMB algorithm, which employs a binary

search method to find optimal solutions ω∗m and λ∗. The
detailed iterative procedures are described in Algorithm 2.
In each iteration, we first determine the set of sink RSUs
(S(ϑ)) according to parameter ϑ, and then calculate inbound
workloads λs according to Eq. (18). Given the total workloads
in the LAN as λ = λS , we calculate R(ϑ), U(ϑ) and λR
sequentially. After that, we make a judgment on whether λS
equals to λR to determine optimal ϑ or go into the next
iterative step. After finding optimal ω∗m and λ∗, we can obtain
the minimal value of P1-β by the optimal RSU peer offloading
strategy β∗.

Algorithm 2 Iterative Multi-RSU Balancing Algorithm
Input: Offloading tasks to RSU φm,m ∈ N ;

Expected communication delay τ ;
Output: ω∗m and λ∗

1: ωm ← φm,m ∈ N
2: Calculate εm

∆
= V dm(φm) + δqm for each RSU

3: εmax ← max εm; εmin ← min εm
4: if εmin + V g(0) ≥ εmax then
5: No RSU performs peer offloading
6: end if
7: a← εmin; b← εmax
8: ϑ← 1

2 (a+ b)
9: λR =

∑
m∈N Im, λS =

∑
m∈N Om

10: repeat
11: λS(ϑ)← 0, λR(ϑ)← 0
12: ϑ← 1

2 (a+ b)
13: Calculate S(ϑ), λS(ϑ), R(ϑ), U(ϑ), λR(ϑ)
14: if λR(ϑ) > λS(ϑ) then
15: b← a
16: else
17: a← ϑ
18: end if
19: until λR(ϑ)− λS(ϑ) ≥ ν̃
20: return ω∗m and λ∗ according to Theorem 1

C. Imitation Learning based branch-and-bound method

After determining the optimal value of P1-β, the problem
consists of vehicle-to-RSU offloading decisions and caching
decisions, which are integer variables. Thus, we can adopt the
B&B method for the following constitution of problem P3:

P3 : min
X,Y

1

T

T−1∑
t=0

M∑
i=1

{xti · [P (B∗) + γqm(t)rtim + εqm(t)s

+
πtis

rtim
+ yti(

s

ζiR
− εqm(t)s)] + (1− xti) ·

πtisl

f
},

s.t. (11d), (11e), (11f), (11g).
(19)

where P (B∗) is the minimal value with the corresponding
optimal RSU peer offloading decision. Since the original B&B
has exponential time complexity (i.e., O(2MT)), it is imprac-
tical to solve our problem. As the most time consuming part is
searching all feasible solutions to guarantee the optimality of
the current solution, it is significant to design a good pruning
policy to reduce the time complexity.

In the learning based B&B method, the set of vehicle-to-
RSU offloading decisions x and caching decisions y is utilized
to construct the binary searching tree to obtain the optimal
solution of problem P3. Then, we determine the optimal set
of (x, y) by a tree searching process from the root to a proper
leaf node, and decide whether a node is fathomed sequentially
using the pruning policy. Imitation learning is employed to
solve the sequential problems [13]. We denote the nodes
leading to the optimal solution as optimal nodes and others
are non-optimal ones. State s ∈ S reflects the situations of
the visited nodes in the tree, action a ∈ A decides whether
to preserve the node as the optimal one, and the policy π ∈ Π
constructs a mapping relation between the state and the action,
i.e., π(s) = a. Imitation learning aims to find optimal action
a∗ ∈ A with different states, i.e., the best pruning policy π∗

to find the optimal solution in our problem. The action space
is two-dimensional (i.e., {prune, preserve}), so that we can
solve the problem via binary classification to decide whether
to prune or preserve the node.

1) Feature designing: We investigate problem-independent
and problem-dependent features to formulate the features
closely related to state s ∈ S .

Problem-Independent Features: They mainly reflect the
situation of the searching tree constructed by the B&B method,
including:

Node feature: State s is closely related to the location of
current node s, including the depth of node s, the plunge depth
of node s, and the relaxed optimal value bsU by substituting
the current decisions into Eq. (19).

Branching feature: It explores the source of the current node,
which is the branching variable leading to current node s. We

8

take the branching variable obtained by its father node as the
branching feature of node s.

Tree feature: It captures the features obtained from the
searching tree to describe the features of state s, containing
current optimal objective value b∗ and the obtained number of
solutions.

Problem-Dependent Features: They mainly reflect the
characters of IoVs, including:

Transmission feature: When the offloading decision is not
determined at node s in the searching process, the transmission
rate can affect decision making. Therefore, the transmission
rate between the vehicle and the edge server is captured as
the transmission feature.

Storage feature: It concentrates on caching decisions at
node s, and can be formulated by a function combining
caching size C with task attributes (e.g., task arrival rate
πi and size per content s). Because caching size of RSUs
and computational task attributes vary across different prob-
lems, the normalized storage feature can be expressed as
g(C, πi, s) = NC/

∑M
i=1 πis.

2) Binary classifier learning: After obtaining proper fea-
tures of the formulated problem, SVM [33] is utilized to train
the classifier, where the input is the designed features of each
node and the output is the binary label of {prune, preserve},
corresponding to the non-optimal node (equals to 0) and the
optimal node (equals to 1), respectively. Two aspects of the
B&B searching process deserve to be noticed. The first one
is the node with a small depth occupies an important position
in the searching process. In addition, pruning optimal nodes
is more serious than preserving non-optimal nodes.

To deal with the problems mentioned above, we first place
a weight parameter ω1 to train examples from nodes with
different depths. It is set as ω1 = Pe

−Rd
H , where d is the depth

of the node, and H is the maximum depth of the searching
tree. While P and R are utilized to adjust the training process.
A larger value of P emphasizes the priority for the node with
a smaller depth, while a larger value of R differentiates nodes
at different depths more clearly. Furthermore, we set weight
parameter ω2 for optimal and non-optimal nodes, depending
on their quantity in the training data. Then, the weight placed
for each training sample is calculated by ω = ω1 × ω2.

Algorithm 3 Learning Based Branch-and-bound Algorithm
Input: State space S , action space A and policy space Π.
Output: Best policy π+ on validation dataset

1: Initialize policy π1 = π∗

2: Initialize training data D = ∅
3: for m = 1, 2, ...,M do
4: for s in S do
5: Ds ← COLLECT(s, πm, π∗)
6: D ← D ∪Ds

7: end for
8: πm+1 ← train binary classifier (SVM) using D
9: end for

10: return Best policy π+ on validation dataset

3) Imitation Learning Process: As the number of nodes
increases exponentially, training binary classifier consumes

much time and space. Therefore, we employ an imitation
learning method, dataset aggregation (DAgger) [34] to reduce
learning costs on the premise of guaranteeing the learning
performance. The DAgger is an iterative training algorithm,
which collects data with current policy in each iteration
and then trains a new policy with the aggregation of those
collected data. Detailed training procedures of our learning
based branch-and-bound algorithm are shown in Algorithm 3.

Algorithm 4 COLLECT(s, πm, π∗)
1: Initialize nodelist Ns = n([])
2: Initialize training data D = ∅
3: while Ns 6= ∅ do
4: Pop a node ns(β) from Ns

5: D ← f(ns(β)), π∗(ns(β))
6: if πm(ns(β)) = branch then
7: Branch on node ns(β)
8: Add children nodes of ns(β) into Ns

9: Solve P1-β according to Algorithm 2 corresponding
to node ns(β)

10: end if
11: end while
12: return D

We first set the expert policy of imitation learning π∗ as
an initial policy and the training dataset be an empty set.
In each iteration, we search each problem in state space S
with πm and collect data into training dataset D . Then, we
train binary classifier using D in order to learn a new policy
πm+1. We repeat this process M times and choose the best-
performed policy π+. The data collection process is shown
in Algorithm 4, which collects data with different labels, i.e.,
prune or preserve.

D. Performance Analysis

Theorem 2. Given the optimal solution (xt, yt, βt)∗ obtained
by OMEN, the long-term network delay should satisfy:

lim
T→∞

1

T

T−1∑
t=0

E{Tt(xt, yt, βt)∗} < T opt +
H

V
, (20)

and the long-term energy deficit should satisfy:

lim
T→∞

1

T

T−1∑
t=0

M∑
m=1

E{Ec,tm (β∗,t)− Em}

≤ 1

η
(H + V (Tmax − T opt)),

(21)

where T opt = lim
T→∞

1
T

∑T−1
t=0 E{Tt(xt, yt, βt)opt} represents

the optimal solution of P0, and Tmax = NTmax represents
the largest network delay. Variable η > 0 is a constant tuning
value with stable strategies.

Proof: See Appendix C.
Compared with the optimal solution of P0, Theorem 2

demonstrates that the OMEN algorithm is able to achieve
a rigorous performance bound. Moreover, the OMEN algo-
rithm asymptotically achieves the optimal performance of

9

offline problem P0 by setting V → ∞. Equations (20) and
(21) demonstrate that there is a [O(1/V),O(V)] trade-off
between delay and energy consumption, indicating that the
time-average energy deficit grows linearly with parameter V .
Meanwhile, a large energy deficit is required to stabilize the
network and guarantee the converged network delay.

Following the common assumptions and analysis for imi-
tation learning in [34], the computational complexity of our
proposed method depends on the number of samples we have,
and the expected number of convex problems solved. The
computational complexity of convex problems depends on the
IMAB method, which employs a binary search method to find
the optimal solutions. Thus, the computational complexity of
this part is O(logN), where N is the number of RSUs. The
number of training samples for the classifier is the sum of
nodes explored in the branch-and-bound tree of each problem
instance. Note that the number of problem instances is |T |
and the computational complexity of exploring nodes in the
branch-and-bound tree is O(M2), where M is the number of
vehicles. Therefore, the total computational complexity can
be expressed as O(M2|T |logN). This is much more efficient
than the standard branch-and-bound, whose time complexity
is O(2M |T |logN).

V. PERFORMANCE EVALUATION

One IoV system is constructed at a crossroad covered
with a 200 × 200 m2 area, where 4 RSUs are distributed
at the roadside of each entrance. The arrival rate of Poisson
process is πti ∈ [0, 4] content per time slot for vehicle i.
Meanwhile, the expected data size of each computational
content is s = 20Mb and the required CPU resource is l = 1
cycle per bit. Expected transmission delay is τ = 0.2s in
the LAN with 100Mps, and transmission power of vehicles
is set to pi = 100mW. The channel gain him is modeled as
L[dB] = 128.1 + 37.5 log 10(d[m]), and the noise power is
-174dBm/Hz when tasks are offloaded to the edge server. The
energy consumption for computation is 9 × 10−5W · h, and
Em = 1W · h/GHz is the energy constraint for utilizing
computing resources. The total types of requested content are
Nf = 50 with size 20Mb for each content, and the caching
capability of each server is 100Mb. We select 50 crossroads
in the city center of Hangzhou, China, and analyze the traffic
flows during the evening peaks (from 5 p.m. to 7 p.m.). The
number of vehicles is M ∈ [50, 450], and the network operator
can provide different computing resources F ∈ [4, 36] GHz.
The illustration of the selected crossroads in the real-world
map is shown in Fig. 3.

We compare the presented OMEN algorithm in comparison
with other three baselines:

(a) No RSU Peer offloading (NoRP) [7]: No RSU performs
peer offloading and the received tasks from vehicles are
processed by their associated RSUs. This method can fulfill
tasks without considering long-term energy constraints;

(b) Average Energy Constraint (AEC) [35]: It aims to
strictly satisfy the long-term energy constraint by posing an
average constraint on RSU in each time slot, i.e., Etm 6
Em/T ;

Fig. 3. Illustration of data selection in Hangzhou, China.

(c) Delay-Greedy Optimization (DGO): It aims to mini-
mize the delay of each task greedily. However, it can hardly
satisfy the long-term energy constraints.

(a) Network delay

(b) Network energy deficit

Fig. 4. Performance comparison with different number of time slots.

A. System Performance

Fig. 4 shows the performance of different methods from two
aspects, i.e., network delay and network energy deficit. The
scheme with a large energy deficit means that it consumes
much energy on task computing. Moreover, energy deficit
converges to 0 if the scheme tightly follows the long-term
energy constraints. We can observe that the IoV system
without RSU peer offloading has the largest delay and the
second largest energy consumption. The IoV system with
AEC scheme has a rather large delay. However, it has the
lowest energy consumption, which strictly satisfies the long-
term energy constraints in all time slots. By contrast, the

10

(a) Delay (b) Energy consumption (c) Energy deficit

Fig. 5. Performance comparison with different number of vehicles.

(a) Impact of V (b) Impact of E (c) Impact of C

Fig. 6. Impacts of three key parameters, i.e., controlling parameter V , energy constraint E, and storage capability C.

DGO method consumes much energy to achieve the lowest
network delay. However, its consumed energy outdistances
the energy constraints. Compared with those three baselines,
the presented OMEN sacrifices the network delay slightly and
reduces the energy consumption significantly.

Fig. 5 illustrates the performance of our method with
different number of vehicles. In Fig. 5(a), we can see that the
network delay of all these schemes increases when the network
serves more vehicles. Meanwhile, the energy consumption
increases since more computing resources are deployed for
vehicles. Specifically, the network delay of OMEN and DGO
increases slowly when the number of serving vehicles grows,
meaning that they are suitable for dense traffic flows. However,
DGO achieves the lowest network delay with much con-
sumption, which can hardly satisfy the predetermined energy
constraints. As observed in Fig. 5(b) and 5(c), the energy
consumption of DGO scheme increases more sharply when the
network serves more vehicles, which can hardly meet the long-
term energy constraints. Compared with other baselines, our
proposed scheme can work well in dense vehicular networks,
and strictly satisfy the energy constraints.

B. Impact of Parameters

Impacts of three key parameters are evaluated in Fig. 6.
As mentioned in Section IV-D, there is a [O(1/V),O(V)]
trade-off between network delay and energy consumption. A
higher value of V achieves lower delay performance, but

it calls for more energy consumption. Fig. 6(a) shows that
V = 50 is appropriate for the network operator, because
OMEN has little improvement on network delay and energy
consumption, its performance almost remains unchanged by
increasing V . Fig. 6(b) illustrates network delay and energy
consumption with different energy constraints. We can observe
that OMEN achieves lower network delay and consumes larger
energy with the increase of energy constraints. A higher energy
constraint implies the RSU is able to process more tasks.
Meanwhile, we can observe that the energy consumption of
our method is strictly lower than the predetermined energy
consumption constraint. Fig. 6(c) illustrates network delay
under different storage capabilities of RSUs. As the energy is
mainly consumed for computational tasks, the caching storage
has little influence on the network delay. We can observe that
the network delay declines with the increase of the storage
capacity, since more contents can be cached at RSUs. In
addition, the network delay of OMEN becomes close to that
of DGO as the storage capacity increases due to less impact
on energy constraints.

C. Time complexity

We compare the performance of our proposed method with
Deep Q Network (DQN) [22] and the optimal Branch-and-
Bound method (B&B) [36] for their optimality (i.e., system
delay) and running speed. Notice that we change the size of
experience relay to represent different training samples for

11

DQN. In addition, we use 200 testing samples to test the
performance, and the results are presented in Table I.

TABLE I
PERFORMANCE OF OMEN WITH DIFFERENT TRAINING SAMPLES

Training samples 50 100 150 200

Delay
OMEN 92.61% 93.61% 94.61% 97.07%
DQN 75.32% 85.06% 91.33% 96.06%
B&B 100%

Speed
OMEN 9.15x 4.84x 4.63x 4.32x
DQN 2.64x 2.29x 2.17x 2.06x
B&B 1.00x

Using the B&B as the baseline, we can see that OMEN can
achieve near-optimal system delay and reduce computational
complexity significantly. It can be observed that OMEN speeds
up the B&B algorithm by 4.32 times, while only sacrificing
2.93% of the performance with 200 training samples. Howev-
er, DQN speeds up the B&B algorithm by only 2.06 times and
the system performance drops 3.94%. For training models with
less examples (i.e., 50 training samples), OMEN can speed up
about 9.15 times with 7.39% performance loss. However, DQN
only achieves 75.32% system delay, and sometimes does not
converge to the optimal value.

VI. CONCLUSION

In this paper, we construct a novel hierarchical framework
for edge intelligence empowered IoV with computation of-
floading and content caching, and formulate an MINLP opti-
mization problem to minimize the total network delay under
long-term energy constraints for RSUs. Then, we propose an
efficient online algorithm (i.e., OMEN) to orchestrate edge
computing and caching resources by leveraging the Lyapunov
optimization method, and prove its near-optimal performance
compared with the oracle method. By formulating the pruning
process in the B&B as a sequential decision problem, we pro-
posed an imitation learning based method to obtain the near-
optimal solution to the formulated MINLP problem. We can
learn the pruning action by the SVM method and reduce the
learning cost by DAgger, which achieves outstanding learning
performance with a few training samples. Performance eval-
uations based on real-world traffic data in Hangzhou, China,
demonstrate that our method for computation offloading and
intelligent caching is practical, and achieves high-efficiency
performance in large-scale vehicular networks.

VII. ACKNOWLEDGEMENTS

This work is partially supported by National Key R&D
Program of Chinaunder Grant No. 2018YFE0206800, Na-
tional Natural Science Foundation of China under Grant
Nos. 61971084, 61771120 and 61671092, Fundamental Re-
search Funds for the Central Universities under Grant
No. DUT19JC18, National Natural Science Foundation of
Chongqing under Grant No. cstc2019jcyj-msxmX0208, open
research fund of National Mobile Communications Research
Laboratory, Southeast University under Grant No. 2020D05,
and Shenzhen Science and Technology planning project under
Grant No. JCYJ20170818111012390.

APPENDIX

A. Proof of Proposition 2

In the formulated queueing system, the service rate is 1/τ
and the arriving workload is λt(βt). According to the state-
transition diagram, we can obtain the following equilibrium
equation:

λP0 =
P1

τ
,

λPn−1 +
Pn+1

τ
= (λt(βt) +

1

τ
)Pn, n ≥ 1,

(22)

Then we can obtain the state probability as:{
P0 = 1− λt(βt)τ,
Pn = (1− λt(βt)τ)(λt(βt)τ)n, n ≥ 1,

(23)

According to the definition of expectation, the congestion
delay can be calculated by:

TCt =

∞∑
n=0

nPn =

∞∑
n=0

(1− λt(βt)τ)(λt(βt)τ)n

=
τλt(βt)

1− τλt(βt)
, τλt(βt) < 1.

(24)

B. Proof of Theorem 1

Proof: To simplify the formulation, we use F (x, y) to
replace the objective function of problem P2. Then, we
formulate the Lagrangian function as:

L = F (x, y) + ϑ(−
N∑
m=1

Im +

N∑
m=1

Om)

+

N∑
m=1

am(φm + Im −Om) + bm

N∑
m=1

Im + cm

N∑
m=1

Om,

(25)
where ϑ, am, bm and cm are Lagrange multipliers. The first-
order Kuhn-Tucker condition of the optimal solution is:
∂L

∂Im
= V dm(φm+Im−Om)+δqm−ϑ+am+bm = 0, (26a)

∂L

∂Om
=− V dm(φm + Im −Om)− δqm

+ V g(λ) + ϑ− am + cm = 0,
(26b)

∂L

∂ϑ
= −

N∑
m=1

Im +

N∑
m=1

Om = 0, (26c)

φm + Im −Om > 0, am(φm + Im −Om) = 0,

am 6 0,∀m ∈ N ,
(26d)

Im > 0, bmOm = 0, bm 6 0,∀m ∈ N , (26e)

Om > 0, cmOm = 0, cm 6 0,∀m ∈ N , (26f)

By summing up (26a) and (26b), we have −V g(λ) = bm+
cm,∀m ∈ N . Since V > 0 and g(λ) > 0, we can determine
that either bm < 0 or cm < 0. According to (26e) and (26f),
there are three conditions for Im and Om:

12

(a) Im = 0 and Om = 0: By substituting these variables
into ω∗m = φm + Im −Om, we can obtain:

ω∗m = φm. (27)

In order to search optimal ω∗m for Neutral RSU, we first obtain
am = 0 by following (26d). Then, we substitute these variables
into (26a) and (26b) to obtain the following search inequation:

ϑ− δqm
V

≤ dm(ω∗m) ≤ ϑ+ g(λ)− δqm
V

. (28)

(b) Im = 0 and Om > 0: To satisfy (26f), we have cm = 0
and 0 6 ω∗m < φm. Then we substitute these variables into
(26a) and (26b), and can obtain:

ω∗m = [d−1
m (

1

V
(ϑ+ V g(λ∗)− δqm))]+. (29)

In order to search optimal ω∗m for Source RSU, we leverage
the following search inequation:

dm(ω∗m) ≥ ϑ+ g(λ∗)− δqm
V

. (30)

(c) Im > 0 and Om = 0: To satisfy (26d) and (26e), we
have ω∗m > φm, am = 0 and bm = 0. Then we substitute
these variables into (26a), and can obtain:

ω∗m = d−1
m (

1

V
(ϑ− δqm)) (31)

In order to search optimal ω∗m for Sink RSU, we leverage the
following search inequation:

dm(ω∗m) <
ϑ− δqm

V
. (32)

By considering (17c), (29) and (31), we can derive the
following workload flow equation:∑
m∈N

Im =
∑
m∈S

(d−1
m (

1

V
(ϑ− δqm))− φm)︸ ︷︷ ︸

inbound workloads

=
∑
m∈N

Om =
∑
m∈R

(φm − [d−1
m (

1

V
(ϑ+ V g(λ∗)− δqm))]+)︸ ︷︷ ︸

outbound workloads

.

(33)
Therefore, Theorem 1 can be proved.

C. Proof of Theorem 2

Proof: We introduce a supplemental Lemma to prove the
performance bound of the OMEN.

Lemma 2. There is a stationary and randomized policy Π
for P1 with an arbitrary υ > 0, which decides (xt, yt, βt)Π

independently from the current queue backlog. Then, we have
the following inequalities:

N∑
m=1

E{Tt(xt, yt, βt)Π} ≤ T opt + υ, (34a)

E{Ec,tm (βΠ,t)− Em} ≤ υ, (34b)

∆(Θ(t)) + V

N∑
m=1

E{Tt(xt, yt, βt)∗|Θ(t)}

≤ H + υΘ(t) + V (T opt + υ).

(34c)

Proof: Lemma 2 can be proved by Theorem 2 in [16].

By summing up (34c) in all time slots and setting υ → 0,
we have:

1

T

T−1∑
t=0

E{Tt(xt, yt, βt)∗}

≤ H

V
+ T opt − 1

TV
E{L(Θ(t))− L(Θ(0))}.

(35)

where L(Θ(t)) ≥ 0 and L(Θ(0)) = 0, yielding the upper-
bound for long-term network delay, i.e., H/V + T opt.

We rewrite υ, (T opt + υ) as −η and Γ(η) (Γ(η) < T opt),
respectively, and plug (34a), (34b) into (13):

∆(Θ(t)) + V

N∑
m=1

E{Tt(xt, yt, βt)∗|Θ(t)}

≤ H + V Γ(η)− ηΘ(t) < H + V T opt − ηΘ(t).

(36)

By summing up (36) in all time slots, we can derive the
bound of long-term energy deficit as:

1

T

T−1∑
t=0

M∑
m=1

E{Ec,tm (βt)− Em}

≤ 1

T

T−1∑
t=0

M∑
m=1

E{qi(t)} <
1

η
(H + V (Tmax − T opt)).

(37)

Therefore, Theorem 2 can be proved.

REFERENCES

[1] J. Zhao, S. Ni, L. Yang, Z. Zhang, Y. Gong, and X. You, “Multiband
cooperation for 5g hetnets: A promising network paradigm,” IEEE
Vehicular Technology Magazine, vol. 14, no. 4, pp. 85–93, 2019.

[2] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Vehicular Technology Magazine, vol. 12,
no. 2, pp. 36–44, 2017.

[3] K. Zhang, Y. Zhu, S. Maharjan, and Y. Zhang, “Edge intelligence and
blockchain empowered 5g beyond for the industrial internet of things,”
IEEE Network, vol. 33, no. 5, pp. 12–19, 2019.

[4] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 7944–7956, 2019.

[5] K. Zhang, Y. Mao, S. Leng, Y. He, S. Maharjan, S. Gjessing, Y. Zhang,
and D. H. Tsang, “Optimal charging schemes for electric vehicles
in smart grid: A contract theoretic approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 9, pp. 3046–3058, 2018.

[6] K. Zhang, S. Leng, X. Peng, L. Pan, S. Maharjan, and Y. Zhang,
“Artificial intelligence inspired transmission scheduling in cognitive
vehicular communications and networks,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1987–1997, 2019.

[7] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in IEEE
INFOCOM 2016, 2016, pp. 1–9.

[8] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Deep
learning empowered task offloading for mobile edge computing in urban
informatics,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7635–
7647, 2019.

[9] J. Yu, J. Liu, R. Zhang, L. Chen, W. Gong, and S. Zhang, “Multi-seed
group labeling in rfid systems,” to be appeared in IEEE Transactions
on Mobile Computing, DOI: 10.1109/TMC.2019.2934445, 2019.

13

[10] Z. Zheng, Y. Yang, J. Liu, H.-N. Dai, and Y. Zhang, “Deep and embed-
ded learning approach for traffic flow prediction in urban informatics,”
IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10,
pp. 3927–3939, 2019.

[11] Z. Ning, K. Zhang, X. Wang, M. S. Obaidat, L. Guo, X. Hu, B. Hu,
Y. Guo, B. Sadoun, and R. Y. Kwok, “Joint computing and caching in
5g-envisioned internet of vehicles: A deep reinforcement learning-based
traffic control system,” IEEE Transactions on Intelligent Transportation
Systems, 2020.

[12] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep reinforce-
ment learning for vehicular edge computing: An intelligent offloading
system,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 10, no. 6, pp. 1–24, 2019.

[13] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys, vol. 50, no. 2,
pp. 21:1–21:35, 2017.

[14] Z. Zhou, H. Yu, C. Xu, Y. Zhang, S. Mumtaz, and J. Rodriguez,
“Dependable content distribution in d2d-based cooperative vehicular
networks: A big data-integrated coalition game approach,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 953–
964, 2018.

[15] L. T. Tan, R. Q. Hu, and L. Hanzo, “Twin-timescale artificial intelli-
gence aided mobility-aware edge caching and computing in vehicular
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4,
pp. 3086–3099, 2019.

[16] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM,
2018, pp. 207–215.

[17] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[18] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial compu-
tation offloading scheme for mobile edge computing enabled internet of
things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4804–4814,
2019.

[19] G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative task offloading
in vehicular edge multi-access networks,” IEEE Communications Mag-
azine, vol. 56, no. 8, pp. 48–54, 2018.

[20] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, and X. Wang, “Learning-
aided computation offloading for trusted collaborative mobile edge
computing,” IEEE Transactions on Mobile Computing, pp. 1–1, 2019.

[21] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, October 2016.

[22] Y. He, F. R. Yu, N. Zhao, V. C. Leung, and H. Yin, “Software-defined
networks with mobile edge computing and caching for smart cities: A
big data deep reinforcement learning approach,” IEEE Communications
Magazine, vol. 55, no. 12, pp. 31–37, 2017.

[23] N. Cheng, F. Lyu, J. Chen, W. Xu, H. Zhou, S. Zhang, and X. S. Shen,
“Big data driven vehicular networks,” IEEE Network, vol. 32, no. 6, pp.
160–167, 2018.

[24] K. Wang, Y. Tan, Z. Shao, S. Ci, and Y. Yang, “Learning-based task
offloading for delay-sensitive applications in dynamic fog networks,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 11 399–
11 403, Nov 2019.

[25] K. Lin, J. Luo, L. Hu, M. S. Hossain, and A. Ghoneim, “Localization
based on social big data analysis in the vehicular networks,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1932–1940,
2017.

[26] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[27] C. Newell, Applications of queueing theory. Springer Science &
Business Media, 2013, vol. 4.

[28] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks,” IEEE Transactions
on Mobile Computing, vol. 16, no. 5, pp. 1382–1393, 2017.

[29] S. Ni, J. Zhao, H. H. Yang, and Y. Gong, “Enhancing downlink
transmission in mimo hetnet with wireless backhaul,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 7, pp. 6817–6832, 2019.

[30] M. R. Garey and D. S. Johnson, Computers and intractability. wh
freeman New York, 2002, vol. 29.

[31] L. Blumrosen and S. Dobzinski, “Welfare maximization in congestion
games,” IEEE Journal on Selected Areas in Communications, vol. 25,
no. 6, pp. 1224–1236, August 2007.

[32] M. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, May 2017, pp. 1–9.

[33] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, p. 27, 2011.

[34] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[35] Q. Liao and D. Aziz, “Modeling of mobility-aware rrc state transition for
energy-constrained signaling reduction,” in IEEE GLOBECOM, 2016,
pp. 1–7.

[36] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy
on handheld devices: A partition scheme,” in Proceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems. ACM, 2001, pp. 238–246.

Zhaolong Ning (M’14-SM’18) received the M.S.
and PhD degrees from Northeastern University,
Shenyang, China. He was a Research Fellow at
Kyushu University, Japan. He is an associate Pro-
fessor Dalian University of Technology, China, and
an Adjunct Professor with Chongqing University
of Posts and Telecommunications, China. He has
published over 100 scientific papers in international
journals and conferences. His research interests in-
clude Internet of vehicles, mobile edge computing,
and artificial intelligence.

Kaiyuan Zhang received B.S. degree from Dalian
University of Technology, Dalian, China, in 2017.
He is currently working toward the M.S. degree in
the same university. His research interests include
mobile edge computing, artificial intelligence and
network caching.

Xiaojie Wang received the M.S. degree from North-
eastern University, China, in 2011. From 2011 to
2015, she was a software engineer in NeuSoft Cor-
poration, China. She received the PhD degree from
Dalian University of Technology, Dalian, China, in
2019. Currently, she is a postdoctor in the Hong
Kong Polytechnic University. Her research interests
are wireless networks, mobile edge computing and
machine learning.

Lei Guo received the Ph.D. degree from the U-
niversity of Electronic Science and Technology of
China, Chengdu, China, in 2006. He is currently a
Full Professor with Chongqing University of Posts
and Telecommunications, Chongqing, China. He has
authored or coauthored more than 200 technical
papers in international journals and conferences.
He is an editor for several international journals.
His current research interests include communica-
tion networks, optical communications, and wireless
communications.

14

Xiping Hu is a professor with Shenzhen Institutes
of Advanced Technology, Chinese Academy of Sci-
ences, China. He was the co-founder and CTO of
Bravolol Limited in Hong Kong, a leading language
learning mobile application company with over 100
million users, and listed as top 2 language educa-
tion platform globally. He has around 90 papers
published and presented in prestigious conferences
and journals, such as IEEE TETC/TVT/TII/IoT jour-
nal, ACM TOMM, IEEE COMST, IEEE Commu-
nications Magazine, IEEE Network, HICSS, ACM

MobiCom, and ACM WWW etc. His research areas consist of distributed
intelligent systems, crowdsensing, social networks, and cloud computing. He
holds a PhD in Electrical and Computer Engineering from The University of
British Colombia, Vancouver, Canada.

Jun Huang received the Ph.D. (Hons.) degree in
communication and information system from the
Institute of Network Technology, Beijing University
of Posts and Telecommunications, Beijing, China, in
2012. He is currently a Full Professor of Computer
Science with the Chongqing University of Posts and
Telecommunications, Chongqing, China. He has au-
thored more than 100 publications including papers
in prestigious journal and conferences. His current
research interests include network optimization and
control, machine-to-machine communications, and

the Internet of Things.

Bin Hu (M’10-SM’15) is currently a professor in
Lanzhou University and a guest professor in ETH
Zurich, Switzerland. He is an IET Fellow, co-chairs
of IEEE SMC TC on Cognitive Computing, and
Member at Large of ACM China, Vice President
of International Society for Social Neuroscience
(China committee) etc. He has published more than
100 papers in peer reviewed journals, conferences,
and book chapters including Science, Journal of
Alzheimer’s Disease, PLoS Computational Biology,
IEEE Trans., IEEE Intelligent Systems, AAAI, etc.

He has served as Chairs/Co-Chairs in many IEEE international confer-
ences/workshops, and associate editors in peer reviewed journals on Cognitive
Science and Pervasive Computing, such as IEEE Trans. Affective Computing,
Brain Informatics, IET Communications, etc.

Ricky Y. K. Kwok (F’14) received a B.Sc. degree in
Computer Engineering from the University of Hong
Kong in 1991, and the M.Phil. and Ph.D. degrees,
both in Computer Science, from the Hong Kong
University of Science and Technology (HKUST) in
1994 and 1997, respectively. His research focus has
been on designing efficient communication protocols
and robust resources management algorithms toward
enabling large scale distributed mobile computing. In
these research areas, he has authored one textbook,
co-authored another two textbooks, and published

more than 200 technical papers in various leading journals, research books,
and refereed international conference proceedings. He is a Fellow of the HKIE,
the IEEE, and the IET. From March 2006 to December 2011, Ricky served
on the Editorial Board of the Journal of Parallel and Distributed Computing
as a Subject Area Editor in Peer-to-Peer Computing. He also served as
an Associate Editor for the IEEE Transactions on Parallel and Distributed
Systems from January 2013 to December 2016.

