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water droplet with volume change
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Droplet freezing not only is of fundamental interest but also plays an important role in numerous natural
and industrial processes. However, it is challenging to numerically simulate the droplet freezing process due to
its involving a complex three-phase system with dynamic phase change and heat transfer. Here we propose
an axisymmetric lattice Boltzmann (LB) model to simulate the freezing process of a sessile water droplet
with consideration of droplet volume expansion. Combined with the multiphase flow LB model and the
enthalpy thermal LB model, our proposed approach is applied to simulate the sessile water droplet freezing
on both hydrophilic and hydrophobic surfaces at a fixed subcooled temperature. Through comparison with
the experimental counterpart, the comparison results show that our axisymmetric LB model can satisfactorily
describe such sessile droplet freezing processes. Moreover, we use both LB simulations and analytical models
to study the effects of contact angle and volume expansion on the freezing time and the cone shape formed on
the top of frozen droplets. The analytical models are obtained based on heat transfer and geometric analyses.
Additionally, we show analytically and numerically that the freezing front-to-interface angle keeps nearly
constant (smaller than 90°).
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I. INTRODUCTION

Liquid droplet freezing on cold surfaces is a common phase
change phenomenon happening in our daily life and many
industrial processes such as refrigeration, aerospace, food
processing, pharmaceutical manufacturing, etc. Undesirable
water droplet freezing can threaten the safety of society in
subzero environments and deteriorate the performance of heat
exchange equipment. Therefore, many anti-icing and de-icing
studies, focusing on searching for the effective icing resistance
methods, have been conducted in recent decades [1].

Single-droplet freezing is often used as a model system
to explore the underlying freezing mechanisms [2–5]. For a
water droplet freezing on a subcooled surface, the droplet
final frozen shape is pointed with a sharp tip. To explain such
tip formation, numerous experimental and theoretical studies
have been reported [6–15]. The volume expansion change
due to ice density shrinking was proposed as a major factor
for the tip formation, and the tip shape with a cone angle is
considered a universal value that depends on the density ratio
of water to ice [10]. Moreover, the surface tension makes the
unfrozen liquid have inward contraction of the triple-contact
line. For quantitative analyses, Anderson et al. discussed four
analytical conditions at the trijunction: the fixed contact angle,
fixed contact line, fixed growth angle, and dynamic growth
angle; and through comparison with the experiments they
found that only the dynamic growth angle is seen satisfactorily
[6]. Moreover, two freezing front shapes are assumed: one is
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flat [6], and the other is curved with its edge perpendicular
to the droplet interface [10]. When heat transfer is consid-
ered, Vu et al. [12,13] applied the front-tracking method to
numerically simulate the water droplet freezing considering
the volume change and the ice-water interface propagation.
However, their simulation results showed that the freezing
process cannot be completely computed because there is
always a small amount of liquid inevitably remaining on the
droplet tip. Considering the subcooling effect, Zhang et al.
[14,15] developed a numerical model to handle nucleation and
freezing into two stages, and they determined the movement
of the freezing front by using a one-dimensional (1D) energy
equation and Anderson et al.’s [6] contact line slip model. It
should be mentioned that the addition of other substances in
water may cause a change in the frozen droplet shape. Zhao
et al. [16] found that when nanoparticles are added into water,
the frozen droplet shape exhibits a flat plateau instead of the
pointy tip. Singha et al. [17] observed that the presence of
salinity in water can not only delay the droplet freezing time,
but also depress the formation of a pointy top. For these newly
reported phenomena, there is still no satisfactory explanation.

The lattice Boltzmann method (LBM) is a numerical ap-
proach used for studying complex fluid flow and heat transfer
problems, especially for phase-change-associated fluid sys-
tems. One-component and multicomponent multiphase mod-
els were used to simulate the liquid-vapor phase change
processes, including boiling [18], condensation [19], and
droplet and film evaporation [20]. In these works, the LBM
enables nontracking of the interface and the coupled equa-
tion of state (EOS) to adjust the separation of vapor and
liquid phases according to the local state parameters. Several
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enthalpy-based LB models were also developed to deal with
the solidification (or freezing) and melting processes [21–23].
To our best knowledge, no study has been reported using
LBM for simulating the water freezing phenomenon with
volume expansion or density change. Our search from the
open literature shows that the reported studies are on the
use of LBM to simulate water droplet freezing [24–26], in
which a two-dimensional (2D) droplet is considered with
fixed droplet interface and the same ice and water densities. Li
et al. [27] conducted a three-dimensional (3D) simulation of
the continuous phase change from water vapor condensation
to freezing on a cryogenic spot; in their work, the droplet
is not completely solidified, and the volume change is not
taken into account. Using a multicomponent multiphase LB
model, Xiong and Cheng [28] simulated the gas entrainment
effect on metal solidification processes. Recently, Gong et al.
[26,29] presented a 2D mesoscopic model with density change
for simulating water droplet freezing [26] and compared the
simulation results with their experimental ones.

In this work, we propose an axisymmetric LB model
to simulate the entire droplet freezing process with volume
change; the model is based on the pseudopotential multiphase
LB method for the density field and the enthalpy thermal LB
method for the temperature field. Compared to the conven-
tional CFD simulation methods [12–15] and the freezing front
models such as Anderson’s [6] and Marin’s [10], our proposed
LB model has two advantages: (1) the motion of the freezing
front and triple-phase point can be naturally determined by
the enthalpy equation and (2) the water-ice volume expansion
effect is introduced as an additional source term in the mass
transfer equation at the freezing front. Hence, the growth
angle and contact line slipping motion conditions discussed in
Ref. [6] are based on force balancing at the tri-junction rather
than the use of fitting relationships. We conduct the model
validation by comparing with our experiments for a water
droplet on a subcooled surface with different contact angle. In
our simulations, the droplet shape change during freezing and
the final tip formation under various solid-liquid density ratios
are studied. Additionally, the cone angle at the tip and the
freezing front to interface angle are examined and compared
with the assumptions made in previous research work.

II. LATTICE BOLTZMANN MODELS

In this section, the well-known Shan-Chen (SC) multiphase
LBM [30] is first outlined in a 2D Cartesian coordinate
system. Then the coordinate transformation is presented to
obtain an axisymmetric multiphase LBM in a cylindrical co-
ordinate system. The axisymmetric multiphase model is used
to construct the droplet-air system. After that, the solid-liquid
phase change model with volume change is introduced for the
density variation between water and ice phases. Finally, the
enthalpy-based thermal LBM in an axisymmetric multiphase
system is reported.

A. Shan-Chen (SC) lattice Boltzmann method

To track the liquid-vapor interface, the SC multiphase LB
model is adopted. The BGK evolution equation in D2Q9 form

is expressed as

fi(x + eiδt , t + δt ) − fi(x, t )

= − 1

τ

[
fi(x, t ) − f eq

i (x, t )
] + � fi(x, t ) + δt�i, (1)

where fi is the density distribution function, x and t , respec-
tively, are the current position and time, ei represents the nine
velocities set as [(0, 0), (0, ±1), (±1, 0), (±1, ±1)] c (with c
being the lattice velocity), τ is the relaxation time related to
the kinematic viscosity ν with τ = 3ν + 0.5, �i is the mass
source term, which will be discussed later, and fi

eq(x, t ) is the
corresponding equilibrium distribution function given by

f eq
i = ωiρ

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
, (2)

with ωi being the weighting coefficients and cs = 1/
√

3c
being the lattice sound speed. � fi(x, t ) in Eq. (1) is the body
force term that is specified in the exact difference method [31]

� fi(x, t ) = f eq
i

[
ρ(x, t ), u + Fδt

ρ

]
− f eq

i
(ρ(x, t ), u) (3)

in which F is the total body force term exerting on the particles
and is given by

F = F f (x) + Fs(x) + Fg(x), (4)

where F f is the interparticle interaction force, Fs is the
fluid-solid interaction force, and Fg is the gravitational force.
Based on the method described in Refs. [32–34], F f can be
calculated as

F f (x) = −βc0ψ (x)g ∇ψ (x) − (1 − β )

2
c0g ∇ψ2(x)

− 1

2
c2

s c0gψ (x)∇[∇2ψ (x)], (5)

where β is the weighting factor, c0 = 6 in D2Q9 and ψ (x) is
the so-called “effective mass” given by

ψ (ρ(x)) =
√

2
(
p − ρc2

s

)
c0g

, (6)

where p is calculated from a given EOS, and g is the interac-
tion strength, which will be eliminated in Eq. (5).

From the flow distribution function, the density and veloc-
ity in the flow field can be obtained from

ρ =
∑

i

fi, (7)

ρu =
∑

i

ei fi, (8)

and the macrovelocity is updated according to the momentum
balance before and after the collision

ũ = u + Fδt

2ρ
. (9)

B. Axisymmetric multiphase lattice Boltzmann model

Here we consider a 2D axisymmetric system in terms of
cylindrical coordinates as x = (r, z) instead of 2D Cartesian
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coordinates as x = (x, y). Hence, the velocity is transformed
from u = (ux, uy) into u = (ur, uz ). Through comparing the
Naiver-Stokes equations expressed in these two coordinate
systems, we find that an appropriate source term is needed to
recover the axisymmetric continuity equation and the momen-
tum equations [32,33], and these equations are expressed as

∂ρ

∂t
+ ∇c · (ρu) = −1

r
ρur, (10)

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z
= − 1

ρ

∂ p

∂r
+ μ

ρ

(
∇2

c uz − ur

r2

)
, (11)

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= − 1

ρ

∂ p

∂z
+ μ

ρ
∇2

c uz. (12)

Following Srivastava et al.’s work [32], we rewrite the
evolution of density distribution equation as

fi(x + eiδt , t + δt ) − fi(x, t )

= − 1

τ

[
fi(x, t ) − f eq

i (x, t )
] + � fi(x, t )

+ δt ki

(
x + 1

2
eiδt , t + 1

2
δt

)
, (13)

where ki is the induced source term due to the coordinate
transformation, and it has the following form according to
Eqs. (10)–(12):

ki = ωi

[
−ρur

r
+ 1

c2
s

(eizKz + eirKr )

]
(14)

with

Kr = eir

r

[
2μ

(
∂ur

∂r
− ur

r

)
− ρu2

r

]
, (15)

Kz = eiz

r

[
μ

(
∂uz

∂r
+ ∂ur

∂z

)
− ρuruz

]
. (16)

Apart from the source term in the evolution equation, the
gradient and Laplace operator in the force calculation also
should be changed in the cylindrical coordinates according to

∇ψ = ∇cψ. (17)

∇2ψ = ∇2
c ψ + 1

r

∂ψ

∂r
. (18)

Therefore, the interaction force between fluid particles should
be changed into

F f (x) = −βc0ψ (x)g ∇cψ (x) − (1 − β )

2
c0g ∇cψ

2(x)

+ 1

2
c2

s c0gψ (x)∇c

[
1

r

∂ψ (x)

∂r

]
. (19)

When dealing with the gradient and Laplace terms, we use
the following second-order compact schemes:

∂ψ

∂x
= 1

2c2
s δt

∑
α

ωiei[ψ (x + ei ) − ψ (x − ei )], (20)

∂2ψ

∂x2
= 1

c2
s δt

∑
α

ωiei[ψ (x + ei ) + ψ (x − ei ) − ψ (x)]. (21)

C. Solid-liquid phase change with volume change

When freezing occurs, the streaming process of distribu-
tion is divided into two parts: the freezing part is bounced back
with a fraction B, and the remaining part remains streaming
[27]. Then the evolution equation becomes

fi(x + eiδt , t + δt ) − fi(x, t )

= (1 − B)

{
− 1

τ

[
fi(x, t ) − f eq

i (x, t )
] + � fi(x, t )

}
+ B
s

i

+ δt ki

(
x + 1

2
eiδt , t + 1

2
δt

)
+ δVi (22)

with


s
i = fī(x, t ) − fi(x, t ) + f eq

i (ρ, us) − f eq
ī

(ρ, u), (23)

where us is the velocity of the freezing interface and ī is the
opposite indirection of i. B is a weighting factor related to the
volume fraction of solid phase fs, and fs is associated with
enthalpy, which will be discussed in the next section,

B = τ − 0.5

0.5 − fs + τ
fs. (24)

The above evolution equation scheme with B is widely applied
in the liquid-solid phase change simulations with the LB
model [21–28]. In these works, the solid density equals the
liquid one. Thus, the total volume of the two phases stays
constant because of mass conservation. However, for the water
freezing density ratio γ = ρs/ρl < 1.0 exists, which results in
volume expansion. Here, for our numerical treatment, we first
assume the ice density to be the same as the liquid one, and
thus the calculated total mass increases as freezing proceeds.
By doing so, we can numerically transfer the volume expan-
sion problem to a liquid-solid phase change problem with
an additional mass source term accounting for the volume
expansion, which is written as δVi:

δVi = f eq
i (δρ, ũ), (25)

where δρ denotes the assumed additional mass due to volume
expansion and is given by

δρ = (1 − γ )ρ
∂ fs

∂t
. (26)

Because of the additional mass, the simulated freezing solid
density appears to be larger than the saturated liquid density
ρl , resulting in a difference between the obtained expansion
volume and the expected value. Therefore, when the density
is larger than ρl , an approach towards reducing liquid and
solid phase compressibility is proposed by calculating the
equilibrium distribution function as

f eq
i =

⎧⎨
⎩

ωiρl
[
1 + ei·u

c2
s

+ (ei·u)2

2c4
s

− u2

2c2
s

]
i = 0

ωi
ρ−ω0ρl

1−ω0

[
1 + ei·u

c2
s

+ (ei·u)2

2c4
s

− u2

2c2
s

]
i �= 0

. (27)

With this treatment of fi
eq, we can readily find that the mass

is conserved, while the distribution in surrounding directions
is adjusted. When the density is smaller than ρl , Eq. (2) is still
used.
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With the assumption of the volume expansion, the solid
phase density needs a correction to obtain the real value and
eliminate the effect due to the additional mass source, and the
following correction is used:

ρ̃ = ρ(1 − fs + γ fs). (28)

D. Enthalpy thermal lattice Boltzmann model

Neglecting the viscous dissipation, we can write the energy
equation as [35]

∂T

∂t
+ ∇ · (ũT ) = ∇ ·

(
λ

ρ̃cp
∇T

)
+ φ. (29)

where λ and cp are the thermal conductivity and the specific
heat capacity, respectively, and φ is the source term, which,
consists of three parts in the cylindrical coordinate system:
The first part is due to the thermal property difference between
the gas, liquid, and freezing solid phase. This part ensures
continuous heat flux across the interface [18]:

φ1 = 1

ρ̃cp
∇ · (λ∇T ) − ∇ ·

(
λ

ρ̃cp
∇T

)
. (30)

Based on Eqs. (17) and (18), we can show that this term in the
axisymmetric system can be written as

φ1 = 1

ρ̃cp
∇c · (λ∇cT ) − ∇c ·

(
λ

ρ̃cp
∇cT

)

+ 1

rρ̃cp

∂ (λ∇cT )

∂r
− 1

r

∂
(

λ
ρ̃cp

∇cT
)

∂r
. (31)

The second part of φ is due to the liquid-solid phase change
associated latent heat:

φ2 = �Hls

cp

∂ fs

∂t
. (32)

The third part is resulted from the coordinate system transfor-
mation given as [36]

φ3 = −T
ũr

r
+ λ

rρ̃cp
∇T . (33)

To solve the energy equation, another distribution function for
temperature gi is used to simulate the thermal field with the
evolution equation given by

gi(x + eiδt , t + δt ) − gi(x, t ) = − 1

τT

[
gi(x, t ) − geq

i (x, t )
]

+ δtωiφ. (34)

In Eq. (34), gi
eq is the temperature equilibrium distribution

function given by

geq
i = ωiT

[
1 + ei · ũ

c2
s

+ (ei · ũ)2

2c4
s

− ũ2

2c2
s

]
, (35)

and τT is the relaxation time for temperature

τT = 3λ

ρ̃cp
+ 0.5. (36)

With the evolution equation (34), the temperature can be
calculated by using

T =
∑

i

gi. (37)

Then the enthalpy can be obtained from the calculated tem-
perature [27]

H = fscp,sT + (1 − fs)cp, f T + fs�Hls. (38)

Since the fluid phase contains both liquid and gas phases, to
refine the liquid-gas and solid-gas interfaces, the gas fraction
fg is also used to revise the enthalpy as

H̃ = fg(Hl + �Hgl ) + (1 − fg)H (39)

with

fg = ρl − ρ

ρl − ρg
. (40)

Using the revised enthalpy, we can express the solid fraction
fs as [27]

fs =

⎧⎪⎨
⎪⎩

0 H � Hl
H−Hs
Hl −Hs

Hs < H < Hl

1 H � Hs

, (41)

where Hl is the liquid phase enthalpy when the solidification
phase change starts, and Hs is the solid phase enthalpy when
the phase change process ends. The difference between Hl and
Hs is the solid-liquid phase change-related latent heat �Hls,
and the corresponding temperature point (the freezing point)
is marked with Tf .

Here we provide a summary of our proposed axisymmetric
LB model for simulating the freezing process of a sessile
water droplet as detailed in Secs. II A–II C. We first use the
classical S-C multiphase model to obtain a liquid-gas two
phase system with nonfixed diffuse interface described by
Eq. (1). Then through the coordinate transformation from
the 2D Cartesian coordinate to the axisymmetric cylindrical
coordinate, we extend the S-C multiphase model for simulat-
ing the dynamic freezing process of a sessile water droplet
with consideration of the volume expansion effect so that
the evolution equation (1) is developed into Eq. (22). With
Eq. (22) and its relevant equations, the dynamic freezing front
and the trijunction point can be obtained. Then the freezing
front shape and motion are described by the temperature
evolution in the system governed by Eq. (34). The temperature
field is used to calculate the solid fraction field ( fs), which
connects the mass evolution Eq. (22) and the heat transfer
Eq. (34).

III. EXPERIMENTAL SETUP

To validate our proposed LB based numerical model, we
conducted experiments for single water sessile droplet freez-
ing on a cold substrate surface (made from silicon wafer) by
using a setup schematically illustrated in Fig. 1. The detailed
description of the setup can be found in our previous work
[37]. In brief, the setup consists of five parts: an enclosed
chamber, droplet generation unit, imaging system, gas supply
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FIG. 1. Schematic of the experimental setup for single water sessile droplet freezing on a subcooled substrate surface.

unit, and thermal control system. The chamber is made from
insulating acrylic sheets. Teflon is used as the insulating
material to isolate the heat sink. Nitrogen gas is used before
the start of experiment to purge vapor in the chamber. With
a micropipette, a single droplet a volume of about 4.5 μl is
put on the silicon plate whose temperature is maintained at
−15 °C through a dual cooling achieved by a Peltier and a
water bath. The droplet freezing process is recorded by using
a high-resolution CMOS camera at a frame rate of 25 fps.

IV. RESULTS AND DISCUSSION

A. Simulation domain, selection of parameters, and description
of boundary conditions

In this section, we will use the proposed LBM to simulate
the droplet freezing on a cold flat plate as shown in Fig. 2.
The size of the simulation domain is described by a lattice
number of Lr in the r direction and Lz in the z direction. Before
the freezing process begins, the simulation system contains a
liquid droplet and a gas phase filled in the rest of the domain
space. For the two-phase system, the Peng-Robinson equation
of state is used,

p = ρRgT0

1 − bρ
− aρ2ε(T0)

1 + 2bρ − b2ρ2
, (42)

where ε(T0) = {1 + (0.37464 + 1.54226ω − 0.26992ω2)[1−
(T0/Tc)0.5]}2, with ω being the acentric factor chosen as 0.344
for water, and Rg is gas constant. Following our previous work
[18,38], we choose a = 2/49, b = 2/21, and Rg = 1, and then
the fluid-gas density ratio is determined by temperature T0.
Also, the fluid density variation with temperature is assumed
to be negligible during the freezing process, and hence the
initial temperature T0 is not involved in the temperature field
evolution described in Sec. II C. Here we set T0 = 0.85Tc,

which gives the density ratio of ρl/ρg = 20. Because of the
low thermal conductivity of the gas phase and negligible
liquid-vapor phase change, the higher density ratio has little
effect on simulations. On the other hand, a higher saturated
temperature can reduce the negative effects of spurious cur-
rents in both phases [34].

Initially, the droplet on the surface is of a circular shape
with its radius of R0. The density field is initialized with
saturated liquid density ρl , the gas phase around it is initial-
ized with saturated vapor density ρg, and the droplet interface

FIG. 2. Schematic of the axisymmetric simulation domain with
a water droplet placed on the substrate surface. The boundary condi-
tions used for computations are indicated.
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density is expressed as [39]

ρ = 1

2
(ρl + ρg) − 1

2
(ρl − ρg)

× tanh

[
2
√

(r − r0)2 + (z − z0)2 − R0

W

]
, (43)

where (r0, z0) denotes the droplet center coordinates, R0 is
the initial droplet radius, and W is the thickness of interface,
which is about 5 in lattice units and thus much smaller
than R0.

As indicated in Fig. 1, the bottom surface denoted by
z = 0 has constant subcooled temperature Tw and contact
angle θ . Here we follow Ding and Spelt [40] to treat such a
surface as a diffuse interface, and specifically we obtain the
effective mass of every wall lattice (at z = 0, and the cells
are also regarded as ghost cells adjacent to the solid wall)
from the information of its surrounding lattices. The detailed
mathematical formulation is given by [40]

ψi,0 = ψi,2 + tan
(π

2
− θ

)
|ψi+1,1 − ψi−1,1|, (44)

where the first and second subscripts, respectively, denote the
coordinates tangential and normal to the wall, 0 is the layer on
the surface and 1, 2 are the two layers above the surface.

Since the left side of the domain is the axisymmetric axis,
the mirror reflection bounce-back boundary condition is used.
Furthermore, as 1/r is present in several terms in the model
formulations (see Sec. II B), the symmetric axis is chosen at
a midlattice point r0 = 0.5 instead of r = 0. Therefore, the
terms associated with 1/r should be changed into 1/(r − r0).

For the right and upper sides of the domain, the Neumann
boundary is applied as shown in Fig. 2. In the LB scheme, a
mixed boundary condition is used by combining the bounce-
back boundary with the infinity boundary to ensure better
numerical stability, and such a condition is expressed as

fi(x, t ) = 1
2 fī(x, t ) + 1

2 fi(x − eiδt , t ). (45)

This scheme is also adopted for the temperature boundary of
these two sides as

gi(x, t ) = 1
2 gī(x, t ) + 1

2 gi(x − eiδt , t ). (46)

To convert the lattice units to physical units, the dimension-
less length is chosen as the initial droplet radius R0, the
dimensionless time is denoted by the Fourier number, and
the dimensionless temperature is defined from the reference
temperature T0 and the surface temperature Tw

L∗ = L

R0
, t∗ = λl t

ρl cpR2
0

, T ∗ = T − Tw

T0 − Tw

, (47)

where σ is the temperature-dependent surface tension, which
is in respect to the reference temperature T0, and its value σ =
0.0176 is taken from our previous work [41]. Based on the
length scale and temperature, several dimensionless numbers
are defined to characterize the freezing process; they include
the Bond number, Prandtl number, Fourier number, and Stefan

FIG. 3. Water droplet profiles with different grid schemes: (a)
before freezing; (b) after freezing.

number, respectively, given by

Bo = gR2
0(ρl − ρg)

σ
, Pr = μl cp

λl
, Fo = t∗ = λl t

ρl cpR2
0

,

St = cp(Tf − Tw )

Hls
, (48)

With these dimensionless numbers, the gravity acceleration,
water dynamic viscosity, thermal conductivity, time, and
freezing latent heat can be determined in the simulations.
Then the properties of gas and ice phases can be obtained
based on their actual ratio with water phase at reference
temperature, and a linear interpolation method is applied at
the interface as in Ref. [35].

B. Model validation

To simulate the droplet freezing process with our pro-
posed model, first, the grid independence test is conducted.
Figure 3 shows the droplet profiles for four different droplet
sizes R0 = 50, 75, 100, and 125 before and after the freezing
process. The computation domain has the same ratio as the
characteristic length, Lr = Lz = 2R0. Also, the Bond number,
Prandtl number, and Stefan number are, respectively, chosen
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as Bo = 0.22, Pr = 13.47, and St = 0.19, which are the exact
values of those for water at 0 °C. The density ratio of liquid
and ice is set as γ = 0.9, and the contact angle is θ = 90◦.
At beginning, a hemispherical droplet with its radius of R0 is
placed on the bottom surface as described in Sec. IV A. Then
the bottom surface is imposed with a given contact angle θ and
temperature T0, and nearly 30 000 steps are needed to ensure
that the droplet reaches its steady state on the surface. In the
following, the surface temperature reduces to Tw. When the
temperature at the droplet’s bottom falls to the freezing point
Tf , the enthalpy of this location decreases and also releases
latent heat, indicating that the icing process occurs.

As shown in Fig. 3(a), the four droplet profiles, which
are drawn using the average density between gas and liquid
under a stationary state, namely, ρ = (ρl + ρg)/2, are almost
coincident with each other in a dimensionless scale. However,
Fig. 3(b) shows a noticeable difference in the frozen droplet
profile for different values of R0. Specifically, for the coarse
grids (i.e., R0 < 100), the tip of the droplet is at a lower
position compared to the dense grids. This is because the
droplet with a smaller R0 takes much less time for its freezing
process, leading to a larger ice density than what is expected,
since the increasing mass on the freezing front is unable to
enter the liquid phase quickly. Nonetheless, the grid inde-
pendence is verified when R0 is larger than 100. Therefore,
the characteristic length is chosen as R0 = 100; this gives the
computation square as Lr × Lz = 200 × 200, which will be
used in the following simulations.

Figure 4(a) depicts the evolution of droplet freezing pro-
cess at different stages. Since the simulated total freezing
time is t∗ = 76, we choose three intermediate time points as
t∗ = 19, 38, and 57, corresponding to dash, dot, and dash
dot lines, respectively. As time elapses, the liquid-ice freezing
front moves upwards, and the ice edge (i.e., the triple contact
line point) deviates from its original profile more and more
because of the volume expansion effect. The shape of the
freezing front interface changes from nearly flat to concave,
indicating a larger freezing velocity at the edge than that in
the center. Then the freezing front keeps the concave shape
and moves upward, which also can be seen in the simulation
results by other researchers [12–15]. Shown in Fig. 4(b) is
the computed droplet volume change with its definition as
V = ∫∫

2πrdrdz for both liquid water and solid ice phases.
V0 is the liquid droplet volume at t∗ = 0. Clearly, the speed
of volume expansion decreases with increasing time. For
instance, at the middle point t∗ = 38, more than two-thirds
of the droplet undergoes the phase change. When the freezing
process is completed, the volume ratio V/V0 approaches the
density radio of liquid and ice density 1/γ . This also verifies
the mass conservation achieved by using our axisymmetric
LB model for the freezing process with density change.
Figures 4(c) and 4(d), respectively, show the dimensionless
temperature (T ∗) and enthalpy [H∗ = (H − H0)/Hf g] con-
tours in the simulation domain at the time point t∗ = 38.
The solid and dashed lines in Fig. 4(c) denote the droplet
profile and the freezing front in the droplet, respectively,
which are completely coincident with the enthalpy interfaces
in Fig. 4(d). Temperature in the droplet is continuous, and its
highest value is located near the top part. The temperature
gradient below the freezing front is small, indicating the latent

FIG. 4. Simulated droplet freezing process on the substrate sur-
face of contact angle θ = 90◦ with the ice-water density ratio γ =
0.9: (a) time evolution of the droplet profiles at different freezing
stages (time, with the simulated total freezing time as t∗ = 76);
(b) droplet volume change during the entire freezing process (here
V0 is the original liquid droplet volume at t∗ = 0); (c) temperature
contours at t∗ = 38; (d) enthalpy contours and velocity vectors at
t∗ = 38.
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heat dissipation from the front to the substrate. However, the
enthalpy is nearly uniform in each phase but has obvious
differences between ice, water, and gas. We also present the
velocity vectors in the simulation domain in Fig. 4(d). To
make the velocity field clearer, the velocity value in water and
ice is shown with 10×, while the velocity in the gas remains
the same. Clearly, there is no interflow in the ice, and the flow
in the water moves upward due to the volume expansion at the
freezing front.

C. Comparison with experimental results

It is known that the density ratio of pure water and ice
is about γ = 0.916. Considering dissolved gas in water in-
evitably to expand into visible bubbles in ice, the actual
volume ratio before and after freezing may be larger. This
can be confirmed by comparing the images of the water and
ice droplets after excluding the condensation factor. In our
experiments, the real volume ratio is about 0.895 according
to the volume comparison between before and after freezing.
In addition, before the freezing front appears, a nucleation
stage, also called the recalescence stage, occurs. In this stage,
liquid water turns into a mixture of water and ice. Since
the nucleation time is much shorter compared to the whole
freezing period, this makes it difficult to simulate such a small
timescale. Hence, the numerical simulation takes the time
right before the nucleation stage as the initial state.

With the simulation conditions set with the same dimen-
sionless values, Fig. 5 compares the experimental images
(here the dashed lines indicate the horizontal freezing front)
with the numerical simulation results and is shown in Fig. 5.
In particular, Figs. 5(a) and 5(b) present the freezing evolution
on a hydrophilic surface (θ = 64◦) and a hydrophobic surface
(θ = 98◦), respectively, in each figure the left side being the
experimental images and the right side being the simula-
tion results. A quantitative comparison of the experimental
and simulation results for the final droplet height shows the
largest relative errors, respectively, as 1.6% and 2.0% for
the hydrophilic and hydrophobic cases, indicating a reason-
able agreement between the experiments and the simulations.
Moreover, with introducing τ ∗ as the dimensionless time with
respect to the total freezing time, we obtain the total freezing
time in our experiment and simulation as t∗ = 60.1 and t∗ =
51.4 on the hydrophilic surface, respectively; t∗ = 85.2 and
t∗ = 87.3 on the hydrophobic surface, respectively. Also, gas
bubbles are seen in the experimental figures. The freezing
front inside the droplet is of concave shape. The formation of
the pointed cone after the freezing (τ ∗ = 1.0) is very similar
in both hydrophilic and hydrophobic cases. Considering that
our model is based on axisymmetric coordinates, the droplet
shape change is in line with the actual volume expansion
coefficient, i.e., the density ratio of liquid and ice 1/γ .

Figure 6 gives comparisons between experiments and sim-
ulations for the freezing front dimensionless height and radii
during freezing process. On the hydrophilic surface shown in
Fig. 6(a), the numerical and experimental curves are nearly
coincident with each other except for the final stage. The
freezing front radii exhibit almost linear time dependence, and
the freezing front height increases with time at a gradually re-
ducing speed. On the hydrophobic surface shown in Fig. 6(b),

FIG. 5. Comparison of water droplet freezing shapes at different
times between experiment (left) and simulation (right): (a) substrate
contact angle θ = 64◦; (b) substrate contact angle θ = 98◦.

though both the numerical and experimental curves show the
same trends as those in Fig. 6(a), the difference between
the numerical and the experimental results is larger, with
the largest relative error of about 13% in the dimensionless
freezing front height. In both Figs. 6(a) and 6(b), at the early
stage, the experimental and numerical freezing front positions
are almost overlapping each other, and then the difference
between them gradually gets larger. The reason lies in that
the freezing process starts experimentally from the nucleation
stage, and within this stage the droplet with certain expansion
occurs in a very short time. An ice skeleton is present inside
the unfreezing water phase, thereby enhancing heat transfer
and reducing the water-ice latent heat released. These effects
lead to a smaller St number in the experiment than in the
simulation, resulting in a lower freezing velocity in the sim-
ulation during most portion of the freezing period. However,
the simulated freezing velocity in the final stage significantly
increases on both surfaces, indicating that the freezing front
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FIG. 6. Comparison of the droplet freezing front height and radii
between experimental and simulation results: (a) substrate contact
angle θ = 64◦; (b) substrate contact angle θ = 98◦.

approaches the droplet’s top rapidly. This transition is due
to the enthalpy model used to deal with the liquid-solid
phase change. In the final stage, the unfrozen water remains
negligibly on the droplet’s top, and its temperature reduces to
the freezing temperature. Liquid enthalpy decreases at a larger
velocity, and the fraction f s increases to unit one rapidly.
Evidently, in Zhang et al.’s simulation with the VOF model,
similar results on the front moving were also observed in the
final freezing stage [15].

D. Effects of surface wettability and volume expansion on
droplet freezing

To examine the effect of surface wettability, we conducted
the simulations with different contact angles varying from
θ = 45◦ to θ = 135◦, while keeping the droplet volume and
dimensionless numbers unchanged. For the superhydrophilic
or superhydrophobic surfaces with smaller or larger contact
angle, the droplet interface becomes very close to the domain
boundary, leading to large computation errors because of the
need of calculating tangential values with Ding and Spelt’s
scheme [40]. Figure 7(a) depicts the frozen droplet profiles
with the same droplet volume and the density ratio γ = 0.9

FIG. 7. Droplets with the same initial volume on the substrate
surface of different contact angle: (a) final frozen droplet shapes; (b)
total freezing time versus contact angle with a comparison among the
simulations, theoretical predictions, and experiments.

for different contact angles. With increasing the contact angle,
the bottom radius rb and the height ht of the frozen droplet
decreases and increases, respectively. The total freezing time
for a droplet on the surface with various contact angles is pre-
sented in Fig. 7(b), which shows the freezing time increases
rapidly with increasing the contact angle. Under the assump-
tion of pseudo-steady, 1D conduction heat transfer in the ice,
the problem is simplified to a one-zone solidification problem,
and thus we can obtain the linear temperature distribution in
ice and thus constant cooling flux from the subcooled surface
to the droplet. Then the freezing time can be estimated by
using the thermal energy balance

t = ρV Hf g

πr2
bq′′ (49)

in which the numerator part is the total latent heat released
during freezing and the denominator part is the heat trans-
ferred to the cold substrate surface per unit time. Neglecting
the gravity effect, we can treat the droplet as a spherical cap
and hence obtain a relationship between its volume V and
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FIG. 8. Droplet frozen shapes for different volume expansion
coefficient on the substrate surface of contact angle θ = 90◦.

bottom radius rb as

V = r3
b fV (θ ) = πr3

b

3

(
2 − 3 cos θ + cos3θ

sin3θ

)
. (50)

Combining Eqs. (49) and (50), we can analytically estimate
the dimensionless total freezing time t∗ (with respect to θ =
90◦) as a function of contact angle, which is displayed as the
solid line in Fig. 7(b). Moreover, based on the numerically
simulated rb and Eq. (49), another prediction of t∗ is plotted in
the dash line for a comparison. The comparison results show
that except for lager contact angle cases (i.e., θ > 130◦), both
the numerically simulated results and the analytical predic-
tions can well capture the trend of our experimental results
(note: the largest relative error is within 20%). The differences
result from the facts that for high contact angles, the droplet
height ht becomes larger and the droplet contact area with the
bottom surface get much smaller. More specifically, on the
one hand, a larger ht is associated with a longer diffusion heat
time tdiff ∼ ht

2 and also the possible presence of temperature
gradient in the liquid zone. On the other hand, a smaller con-
tact surface area likely causes more complicated heat transfer,
both leading to violation of the assumption of pseudo-steady,
1D conduction heat transfer in the ice, which in turn gives rise
to a smaller freezing time than the predicted value.

As for the effect of volume expansion coefficient γ , Fig. 8
shows such an effect on the final frozen droplet profiles with
different γ values (0.87 � γ � 1.0) for the droplets with the
same radius R0 = 100 and contact angle θ = 90◦. When there
is no volume expansion (γ = 1.0), the frozen droplet keeps
the same shape as the water droplet. As γ reduces, the frozen
droplet shape changes with rising the droplet height. The
droplet’s top shape remains smooth when γ > 0.91. When
γ � 0.91, the cone-shape tip appears on the frozen droplet.
This suggests that the surface tension indeed has a suppression
effect on the formation of droplet cone shape, and it plays a
dominant role when γ is not large enough (γ � 0.91).

Additionally, we study the cone angle of frozen droplet
tip. Marin et al. [10] provided a theoretical analysis of the tip
formation based on a geometric illustration shown in Fig. 9(a).

FIG. 9. Cone angle 2α formed on the frozen droplet: (a) sketch
of the tip geometry on the droplet at the last freezing stage with the
freezing front-to-interface angle indicated as θu + θd [10]; (b) cone
angle versus volume expansion coefficient; (c) cone angle versus
contact angle; (d) time evolution of angles θu and θd for the case
θ = 90◦ and γ = 0.9.
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When close to the final stage of freezing, the remained liquid
volume Vl is assumed to have two parts: a spherical cap and a
circular truncated cone with two angles θu and θd , and hence
Vl can be expressed as

Vl = r3 fV (θu) + r3 fV (θd ), (51)

where the function fV is given in Eq. (50). After the freezing
completes, the solid ice volume Vi is assumed to be the sum
of a spherical cone and the same circular truncated cone as in
Vl , and hence Vi can be given by

Vi = π

3

r3

tan α
+ r3 fV (θd ), (52)

where α is half of the cone angle. The two volumes have
the relationship of Vl = γVi, based on which together with
Eqs. (51) and (52) we can get α. Figures 9(b) and 9(c) present
the simulated cone angle 2α versus density ratio γ (while
keeping a fixed θ = 90◦) and contact angle θ (while keeping
a fixed γ = 0.9), respectively. Also, in Figs. 9(b) and 9(c),
the lines denote the theoretical predictions calculated from
the analytical model given in Eq. (51) and Eq. (52). It should
be noted that in Marin et al.’s analysis [10], the freezing
front-to-interface angle, i.e., θu + θd , is assumed to be 90°,
which is in line with their 2D-like Hele-Shaw cell exper-
imental observations. Our simulations for an axisymmetric
droplet (i.e., 3D simulations), however, show much differently
from the predicted line θu + θd = 90◦. Instead, the simulated
cone angle 2α is closer to the lines of θu + θd = 60◦ and
θu + θd = 75◦ [Fig. 9(b)]. Moreover, as shown in Fig. 9(c),
a nearly constant cone angle of about 65° is obtained within
a range of θ = 60◦ to θ = 130◦, which agrees well with the
predicted dash line of θu + θd = 75◦. To further explore the
reason causing such difference, we present the time evolution
of freezing front angles, θu and θd , during the whole freezing
process for the case of θ = 90◦ and γ = 0.9 in Fig. 9(d). As
the freezing front moves up, θu decreases from about 90° to
20°, and at the same time θd increases from zero to about
60°. During the most freezing period, the sum θu + θd keeps
about 75°. This matches well with those results presented in
Figs. 9(b) and 9(c). Therefore, our simulation results suggest
that the freezing front-to-interface angle θu + θd does not
simply keep at 90° even at the final stage of freezing. This
conclusion was experimentally supported by Zhang et al.’s
[42] recent work.

In Marin et al.’s [6] self-similar freezing dynamic analysis
on a droplet, the frozen part is assumed to be of a coni-
cal shape, and the freezing front forms a spherical surface
centered at the cone tip. Thus, the two surfaces (the cone
surface and the freezing front) are perpendicular to each other,
making θu + θd = 90◦ naturally. Based on the assumptions,

each part of θu + θd should also be constant as θu is equal to
90◦ − α. However, an accurate measurement of θd is difficult
in a free sessile freezing droplet, and the confined freezing
experiment in a 2D Hele-Shaw cell inevitably affects the
two angles at a triple contact line. Based on our simulations,
though their sum remains a nearly constant value, both θu

and θd individually change even in the final stage. As the
trijunction shrinks continuously to finally become a single
point, the assumed cone tip’s location keeps rising because
of the volume expansion. At the same time, the angle θu

will also be changed accordingly. Moreover, the variation of
θd indicates the normal velocity of the freezing front is not
uniform at different radius locations. Then the freezing front
shape cannot be treated as spherical at a different time. Further
research is needed on this issue.

V. CONCLUDING REMARKS

In this work, we have proposed an axisymmetric lattice
Boltzmann model for describing liquid-solid phase change
problems to simulate the freezing process of a sessile droplet
with volume expansion. We have validated the proposed
model by carrying out both grid independence and mass
conservation tests. Also, we have made a comparison between
the LB simulations and the experiments of the frozen droplet
shape and freezing front results for a sessile water droplet
freezing on both hydrophilic and hydrophobic subcooled sur-
faces and obtained reasonable agreement. In addition, we have
used both our proposed LB model and our derived analytical
models to examine the effects of contact angle and volume
expansion coefficient on the droplet freezing time and the
cone angle of frozen droplet tip. The analytical models for the
droplet freezing time and the cone angle of a frozen droplet tip
are derived based on thermal energy balance and geometric
analysis, respectively. The results show that except for large
contact angle cases (i.e., θ > 130°), both the simulated
results and the analytical predictions can well capture our
experimental trend for the freezing time, which rises rapidly
with increasing contact angle. However, above θ > 130°, the
assumptions used for deriving the analytical model of the
droplet freezing time become invalid. Finally, we have shown
that the droplet volume expansion has noticeable effect on the
cone angle. Both our LB simulations and analytical model
predictions have shown that during the droplet freezing, the
freezing front-to-interface angle, θu + θd , does not stay at 90°,
which was assumed by Marin et al. [10].
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