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Abstract In Bayesian analysis of a statistical model, the
predictive distribution is obtained by marginalizing over
the parameters with their posterior distributions. Compared
to the frequently used point estimate plug-in method, the
predictive distribution leads to a more reliable result in
calculating the predictive likelihood of the new upcom-
ing data, especially when the amount of training data
is small. The Bayesian estimation of a Dirichlet mixture
model (DMM) is, in general, not analytically tractable. In
our previous work, we have proposed a global variational
inference-based method for approximately calculating the
posterior distributions of the parameters in the DMM ana-
lytically. In this paper, we extend our previous study for the
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DMM and propose an algorithm to calculate the predictive
distribution of the DMM with the local variational inference
(LVI) method. The true predictive distribution of the DMM
is analytically intractable. By considering the concave prop-
erty of the multivariate inverse beta function, we introduce
an upper-bound to the true predictive distribution. As the
global minimum of this upper-bound exists, the problem
is reduced to seek an approximation to the true predic-
tive distribution. The approximated predictive distribution
obtained by minimizing the upper-bound is analytically
tractable, facilitating the computation of the predictive like-
lihood. With synthesized data and real data evaluations, the
good performance of the proposed LVI based method is
demonstrated by comparing with some conventionally used
methods.

Keywords Predictive distribution · Dirichlet mixture
model · Bayesian inference · Local variational inference

1 Introduction

Predicting the likelihood of new upcoming data is a fun-
damental problem in statistical modeling [1]. The ultimate
goal of statistical modeling is to find a suitable distribution
to describe the underlying distribution of the training data
and apply this distribution properly to new data [1, 2]. One
frequently used method is to estimate the parameters of
the distribution by the maximum a posteriori (MAP) esti-
mation [2–4] and then plug in the estimated parameters to
get the distribution for the new upcoming data. However,
when the amount of training data is small, the variances of
the estimated parameters are large and the point estimate
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may lead to high uncertainty and unreliability. An alter-
native solution is to take the uncertainty of the parameters
into account and employ the predictive distribution. The
predictive density of a new vector x given the training data
X = [x1, x2, . . . , xN ] is

f (x|X) =
∫

f (x|θ)f (θ |X)dθ , (1)

where θ denotes the parameters in the likelihood function
f (x|θ) and f (θ |X) is the estimated posterior distribution
of the parameters θ given X (with hyperparameter omitted).
The predictive distribution averages all the possible pre-
dictive probabilities for all the possible parameter values,
which is actually the expected value of f (x|θ) with respect
to the posterior distribution. Hence, it is more reliable than
a simple point estimate plug-in method. This predictive
distribution, which is based on integrating out the posterior
distribution of the parameters, is referred to as the “posterior
predictive distribution” [5, 6]. Replacing the posterior distri-
bution by the prior distribution, the so-called “prior predic-
tive distribution” [5] can be obtained correspondingly. Usu-
ally, the prior distribution is assumed to be non-informative
when we have no prior knowledge. As we focus on calculat-
ing the predictive likelihood of new data given the training
data, we only consider the “posterior predictive distribu-
tion” and use the term “predictive distribution” to denote
the “posterior predictive distribution” throughout this paper.
It is worthy to note that, when the amount of training obser-
vations becomes sufficiently large, the posterior distribution
tends to be concentrated over a small region of the parame-
ter space [2]. In this case, the point estimate to the parameter
(e.g., the MAP estimate) could be considered to have a high
degree of certainty1 and the point estimate plug-in method
can be used as a reasonable approximation to the predictive
distribution as

f (x|X) ≈ f
(

x|θ̂
)

, (2)

where θ̂ is the point estimate. Figure 1 illustrates the concen-
tration of the posterior distributions with different amounts
of training data. Please note that this point estimate plug-
in method is not accurate when we have a small amount of
training data.

In statistical modeling, Gaussian distribution is the ubiq-
uitous probability distribution used in statistics, since it has
an analytically tractable probability density function (PDF)

1In an extreme case, if the posterior distribution has no variance, the
point estimate has absolute certainty.

and analysis based on it can be derived in an explicit form [7,
8]. Furthermore, by the technique of mixture modeling [9–
11], the corresponding Gaussian Mixture Model (GMM)
can be used to approximate arbitrary probability distribu-
tions. However, in real life, not all the data we would
like to model are Gaussian distributed [12, 13]. The Gaus-
sian distribution has unbounded support, while some data
are semi-bounded or bounded. For example, the digitalized
image pixel values are bounded, the signal-to-noise ratio of
wireless channel is always nonnegative (semi-bounded),
and the line spectral frequency parameters are bounded
and ordered. Therefore, they are non-Gaussian distributed.
Applying GMM to describe the underlying distribution of
these non-Gaussian distributed data would lead to a high
model complexity, e.g., many mixture components would
be spent on describing the edge of the data space. In
order to explicitly exploit the bounded/semi-bounded prop-
erties, some non-Gaussian distributions can be applied to
efficiently model the underlying distribution of the non-
Gaussian distributed data. Moreover, the consequent appli-
cations can also benefit from choosing the non-Gaussian
distributions. Many studies demonstrated that the usage of
non-Gaussian distributions is advantageous in applications
where the data is not Gaussian distributed (see e.g.,[14–16]).

The Dirichlet distribution, among other non-Gaussian
distributions, has been intensively studied and used to
model data distribution in various applications, such as
image processing [17, 18], multiview depth image enhance-
ment [19, Ma et al., Bayesian estimation of Dirichlet mix-
ture model with varitional inference, unpublished], speech
coding [16, 20], and data mining [18, 21]. In addition
to modeling the data’s distribution directly, the Dirichlet
distribution is also widely used to model the underlying dis-
tribution of the mixture weights in the mixture modeling
framework [9, 10]. In non-parametric Bayesian modeling,
the Dirichlet process is actually an infinite-dimensional gen-
eralization of the Dirichlet distribution so that an infinite
mixture model can be obtained [22–25]. In this paper, we
only study the finite Dirichlet mixture model (DMM) and
the work conducted can also be extended to the infinite
mixture modeling case.

To model distribution with multimodality, the mixture
modeling technique [9, 10] can be applied to get a DMM. To
fit the DMM to the training data, the maximum likelihood
(ML) estimation, which can be carried out by the expec-
tation maximization (EM) algorithm [11], was proposed
in [17, 20]. However, there are some general drawbacks in
the ML estimation: 1) the estimated model might be over-
training to the data [11, 13]; 2) due to the integral expres-
sion in the multivariate-inverse-beta (MIB) function in the
Dirichlet PDF, the maximization step involves numerical
calculation [17, 20, 26], which is computationally costly;
and 3) the EM based algorithm cannot decide the model
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(a) N = 10
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(b) N = 50
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(c) N = 100
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(d) N = 10
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(e)N = 50
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(f) N = 100

Figure 1 Comparisons of the true posterior distribution and the
approximating one obtained by VI. The true posterior distribution was
obtained by the rejection sampling method [2], where the reference
sampling distribution is the Laplace approximation to the true one.
Different amounts of training data were generated from the Dirichlet
distribution with known u. The red star shows the true parameter. The
black dot is the posterior mean in either the true posterior distribution

or the posterior distribution obtained by VI. a–c show the comparison
with u = [3 5 8]T. d–f show the comparison with u = [10 6 20]T.
The mismatch between the true and the approximating posterior dis-
tributions is illustrated, which is due to the assumption of mutual
independence of the parameters in the Dirichlet distribution. How-
ever, the difference becomes smaller as the amount of training data
increases.

complexity automatically by itself. To overcome these prob-
lems, Bayesian estimation of the generalized Dirichlet mix-
ture model was proposed in [27]. With minimum message
length criterion, the over-training problem could be avoided
and the model complexity can be decided based on the data.
However, the update strategy employed numerical calcula-
tion and, therefore, it is computationally costly, especially
when dealing with high-dimensional data.

In order to obtain an analytically tractable solution, we
proposed a Bayesian estimation method for the DMM in
Ma et al., Bayesian estimation of Dirichlet mixture model
with varitional inference (unpublished).2 The proposed

2There was another Bayesian estimation method proposed in [28].
However, the method introduced in [28] used the multiple lower-
bounds (MLB) approximation to derive an analytically tractable
solution. Different from [28], the method presented in Ma et al.,
Bayesian estimation of Dirichlet mixture model with varitional infer-
ence (unpublished) used the single lower-bound (SLB) approximation.
As discussed in Ma et al., Bayesian estimation of Dirichlet mixture
model with varitional inference (unpublished), the MLB approxima-
tion based solution cannot guarantee the convergency, while the SLB
approximation based solution is more concise and can guarantee the
convergency.

method utilized the variational inference (VI) framework.
With the relative convexity3 [29, 30] of the MIB function,
we approximated the MIB function by its first-order Taylor
expansion with respect to the logarithm of the variables.
By the principle of the extended factorized approximation
(EFA) [14, 31–33], an analytically tractable solution to the
Bayesian estimation of the DMM was obtained and the
parameter estimation was facilitated Ma et al., Bayesian
estimation of Dirichlet mixture model with varitional infer-
ence (unpublished). This VI-based method introduced some
systematic bias, because the Dirichlet parameters were
assumed to be mutually independent. However, with a suffi-
ciently large amount of training data, the variance is small.
As suggested in Ma et al., Bayesian estimation of Dirich-
let mixture model with varitional inference (unpublished),
the posterior mean can be used as the point estimate to
the parameters. Another Bayesian estimation method for
a single Dirichlet distribution, which was based on the
expectation propagation (EP) framework [34, 35], was also

3If a function f (x) is not convex in x but convex in ln x, it is called
“convex relative to” ln x.
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proposed in [36]. Different from the VI-based method, the
EP-based method approximated the posterior distribution of
the parameters in a Dirichlet distribution by a multivari-
ate Gaussian distribution, which captured the correlations of
the parameters but violated the nonnegativity of the param-
eters. The EP-based method proposed in [36] performed
better than the VI-based method with a smaller amount
of training data. The price for improvement is the numer-
ical calculation employed in the moment-matching step.
Moreover, the EP-based method was only proposed for
a single Dirichlet distribution, not a mixture of Dirichlet
distributions.

As mentioned above, the predictive distribution is more
reliable than the point estimate plug-in method when
predicting the likelihood of upcoming data. Thus, it is of
interest to study the predictive distribution of the DMM. In
the context of calculating the predictive distribution of the
DMM, there are two challenging tasks: one is to obtain the
posterior distributions of the parameters and the other is to
derive an analytically tractable solution to approximately
calculate the predictive distribution. The first problem has
been addressed in Ma et al., Bayesian estimation of Dirich-
let mixture model with varitional inference (unpublished),
where the posterior distributions of the parameters in a
Dirichlet distribution are approximated by a product of
mutually independent gamma distributions. In this paper,
we will focus on solving the second problem with the local
variational inference (LVI) framework [2]. Unlike the VI
framework, which can be referred to as the global VI (GVI)
method, the LVI method seeks a bound on a subset of the
variables in a model [2]. With the LVI framework, we have
already proposed an approximation to the predictive distri-
bution of a single beta distribution in [37]. The Dirichlet
distribution is an extension of the beta distribution. The
MIB function in the Dirichlet distribution is approximated
by its first-order Taylor expansion. This expansion is an
upper-bound of the MIB function, as the MIB function is
jointly concave [38] with respect to all its variables. With
this approximation and by the principle of the LVI method,
the true predictive distribution is approximated by an ana-
lytically tractable expression, which is an upper-bound to
the true one. It can be shown that the global minimum of
this upper-bound exists. By minimizing this upper-bound
and with normalization, we get an approximation to the true
predictive distribution. The obtained approximation can be
expressed in an analytically tractable form. With synthe-
sized data and real data evaluations, the good performance
of the proposed method is demonstrated, especially when
the amount of training data is small.

The remaining parts of this paper are organized as fol-
lows: Section 2 describes the DMM. In Section 3, the
Bayesian estimation of the DMM is introduced, from which
we can obtain the point estimates to the parameters. With

the obtained posterior distribution in Section 3, we approx-
imately calculate the predictive distribution of the DMM in
Section 4. The evaluations with synthesized data and real
data are presented in Section 5. Finally, the conclusions are
drawn in Section 6.

2 Dirichlet Mixture Model

Given a K dimensional vector x = [x1, x2, . . . , xK ]T,
which contains only nonnegative elements and the summa-
tion of these elements equals one, the underlying distribu-
tion of x could be described by a Dirichlet distribution as4

Dir (x; u) =
�

(∑K
k=1 uk

)
∏K

k=1 �(uk)

K∏
k=1

x
uk−1
k , uk > 0, (3)

where
∑K

k=1 xk = 1, u = [u1, . . . , uK ]T is the param-
eter vector, and �(·) is the gamma function defined as
�(z) = ∫ ∞

0 tz−1e−t dt . The shape of the Dirichlet distri-
bution depends on the parameters. When uk > 1, k =
1, . . . , K , it is unimodally distributed. This is a typical case
in practical applications. Thus in this paper, we only study
the Dirichlet distribution with all its parameters greater than
one.

To model the multimodality of the data, the mixture mod-
eling technique [9] is usually applied to build a DMM.
With I mixture components, the PDF of a DMM can
be represented, given a set of N i.i.d. observations X =
[x1, x2, . . . , xN ], as

f (X; �, U) =
N∏

n=1

I∑
i=1

πiDir (xn; ui ) , (4)

where � = [π1, . . . , πI ]T and U = [u1, . . . , uI ] are the
parameter sets. As the gamma function in the multivariate-

inverse-beta (MIB) function
�

(∑K
k=1 uk

)
∏K

k=1 �(uk)
is expressed by

an integral form, the maximization step in the EM algo-
rithm [17, 20] cannot be carried out by an analytically
tractable solution. Some greedy search algorithms, e.g., the
Newton–Raphson algorithm, are required to calculate the
stationary points numerically. Although the computational
load in the Newton-Raphson algorithm has been signifi-
cantly reduced by some matrix tricks [26], the EM algorithm
is still computationally costly.

4To prevent confusion, we use f (x; a) to denote the PDF of x param-
eterized by parameter a. f (x|a) is used to denote the conditional PDF
of x given a, where both x and a are random variables. Both f (x; a)

and f (x|a) have exactly the same mathematical expressions.
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3 Bayesian Estimation of the Dirichlet Mixture Model
by the Global Variational Inference

As belonged to the exponential family, the conjugate prior
of the Dirichlet distribution writes

f
(
u; β0, ν0

) = 1

C
(
β0, ν0

)
⎡
⎣�

(∑K
k=1 uk

)
∏K

k=1 �(uk)

⎤
⎦

ν0

e−βT
0 (u−1K),

(5)

where β0 = [β10 , . . . , βK0]T and ν0 are the hyperparame-
ters in the prior distribution. C

(
β0, ν0

)
is the normalization

factor. 1m denotes an m dimensional vector with all ele-
ments equal to one. Combining (3) and (5) together and by
Bayes’ rule, the posterior distribution of the parameters u
can be obtained as

f
(
u|X; βN, νN

)

= Dir (X|u) f
(
u; β0, ν0

)
∫

Dir (X|u) f
(
u; β0, ν0

)
du

= 1

C
(
βN, νN

)
⎡
⎣�

(∑K
k=1 uk

)
∏K

k=1 �(uk)

⎤
⎦

νN

e−βT
N(u−1K), (6)

where βN = β0−ln X×1N and νN = ν0+N are the hyper-
parameters in the posterior distribution. Obviously, some
sufficient statistics, e.g., the mean, the covariance matrix,
cannot be calculated by an analytically tractable form, so
that it is not convenient to use the posterior distribution
derived in Eq. 6.

In order to seek easy-to-use conjugate prior and pos-
terior distributions, a Bayesian estimation method, which
is based on the global variational inference (GVI) frame-
work, was proposed in Ma et al., Bayesian estimation of
Dirichlet mixture model with varitional inference (unpub-
lished). By assuming the elements in u are mutually inde-
pendent, the prior distribution in Eq. 5 was approximately
factorized into a product of several gamma distributions as
Ma et al., Bayesian estimation of Dirichlet mixture model
with varitional inference (unpublished)

f
(
u; β0, ν0

) ≈ f
(
u; μ0, α0

)

=
K∏

k=1

Gam
(
uk; μk0 , αk0

)
, (7)

where μk0 , αk0 , k = 1, 2, . . . , K are the hyperparameters
in the prior distribution and

Gam (u; μ, α) = αμ

�(μ)
uμ−1e−αu. (8)

With the relative convexity [29], the logarithm of the
MIB function was approximated by its first-order Taylor

expansion, which is a lower-bound to it. Afterwards, with
Jensen’s inequality, the variational objective function (vari-
ational lower-bound in the GVI framework) was lower-
bounded by an auxiliary function. Using the principles of
the extended factorized approximation (EFA) method [14,
33], the posterior distribution of each variable, i.e., f (uk|X),
was shown to be gamma distributed as

f (uk|X) = Gam
(
uk|X; μ∗

k, α
∗
k

)
, (9)

where μ∗
k and α∗

k are the optimal posterior hyperparameters
obtained by an analytically tractable solution. Finally, the
posterior distribution of u was approximated as

f
(
u|X; βN, νN

) ≈ f
(
u|X; μ∗, α∗)

=
K∏

k=1

Gam
(
uk|X; μ∗

k, α
∗
k

)
. (10)

The assumption of mutually independence among the
elements in u violates the correlation, this assumption intro-
duced some systematic bias due to the EFA framework.
However, when the amount of observations increases, both
the true posterior distribution and the approximating one
are concentrated in a small region of the parameter space,
and then the effect of this bias is small. Figure 1 shows
comparisons between the true and the approximating pos-
terior distributions. Therefore, when the amount of training
data is sufficiently large, the posterior means, i.e., uk =
E[uk] = μ∗

k/α
∗
k , can be taken as point estimates to the

parameters, as suggested by Ma et al., Bayesian estima-
tion of Dirichlet mixture model with varitional inference
(unpublished).

4 Predictive Distribution of the Dirichlet Mixture Model

When calculating the predictive likelihood of new data with
a small amount of training data, the predictive distribution in
Eq. 1 is more reliable than the point estimate plug-in method
in Eq. 2. The true predictive distribution of the Dirichlet
distribution writes

f (x|X) =
∫

Dir(x|u)f
(
u|X; βN, νN

)
du. (11)

Since the true posterior distribution is not feasible in prac-
tice, the approximating posterior distribution obtained in
Ma et al., Bayesian estimation of Dirichlet mixture model
with varitional inference (unpublished) can be used to
approximately calculate the predictive distribution.
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The predictive distribution of the Dirichlet distribution,
with the approximated posterior distribution in Eq. 10, is

f (x|X) =
∫

Dir(x|u)f
(
u|X; μ∗, α∗) du

=
∫ �

(∑K
k=1 uk

)
∏K

k=1 �(uk)

K∏
k=1

x
uk−1
k

×
K∏

k=1

(
α∗

k

)μ∗
k

�
(
μ∗

k

)u
μ∗

k−1
k e−α∗

k uk du

=
∫

· · ·
∫ �

(∑K
k=1 uk

)
∏K

k=1 �(uk)

× x
u1−1
1

(
α∗

1

)μ∗
1

�
(
μ∗

1

)u
μ∗

1−1
1 e−α∗

1u1

· · ·
× x

uK−1
K

(
α∗

K

)μ∗
K

�
(
μ∗

K

) u
μ∗

K−1
K e−α∗

KuK du1 · · · duK.

(12)

Apparently, the integration in Eq. 12 cannot be calculated
by an analytically tractable form. One way to calculate
it numerically is to employ the sampling method, which
requires generation of a huge amount of samples from the
posterior distribution and is computationally inefficient. In
the following paragraph, we will focus on deriving an ana-
lytically tractable expression to approximately calculate the
predictive distribution.

4.1 Local Variational Inference

The global variational inference (GVI) framework used in
Ma et al., Bayesian estimation of Dirichlet mixture model
with varitional inference (unpublished) can be considered as
a “global” method because it uses bound to approximate the
variational objective function in terms of all the variables.
As an alternative method to the GVI, an “local” approach
involves finding bounds on a subset of the variables or a
part of the objective function [2]. This method is referred
to as the local variational inference (LVI) framework. The
purpose of using the LVI framework to introduce a bound
is to simplify the resulting distribution. For multiple vari-
ables, this local approximation can be applied in turn until a
tractable approximation is obtained [2]. Suppose we would
like to evaluate an analytically intractable integration

F =
∫

f (x)g(x)dx, (13)

where f (x) is the PDF of x and g(x) is a function of x. If
there exits an auxiliary function h(x, σ ) such that

1. h(x, σ ) ≥ g(x)

2.
∫

f (x)h(x, σ )dx can be calculated explicitly,

then the integration in Eq. 13 can be approximated, by the
principle of the LVI, as

F ≤ G(σ ) =
∫

h(x, σ )g(x)dx. (14)

Thus, an upper-bound to F, i.e., G(σ ), is obtained. As G(σ )

is only a function of σ , the true value F can be approximated
by finding the optimal σ ∗, which minimizes G(σ ) as

σ ∗ = arg min
σ

G(σ ). (15)

In general, the optimized value G(σ ∗) is not exactly the
same as the true one. However, the LVI based method
facilitates the calculation by little loss of accuracy [37].

4.2 Approximation to a Single Dirichlet Distribution

In this section, we firstly study the concave property of the
multivariate-inverse-beta (MIB) function and then derive an
upper-bound to the true predictive distribution of a single
Dirichlet distribution. Afterwards, we discuss the existence
of the global minimum and approximate it by a simple but
efficient form. Finally, the approximation to the true predic-
tive density will be expressed by an analytically tractable
expression.

4.2.1 Concavity of the Multivariate-Inverse-Beta Function

Theorem 1 The logarithm of the MIB function is

Q(u) = ln
�

(∑K
k=1 uk

)
∏K

k=1 �(uk)
= ln �

(
K∑

k=1

uk

)
−

K∑
k=1

ln �(uk).

(16)

This function is jointly concave with respect to all its
variables u = [u1, u2, . . . , uK ]T.

Proof Concavity of Q(u) The elements in the Hessian
matrix of Q(u) writes

Hij =
⎧⎨
⎩

ψ ′
(∑K

k=1 uk

)
− ψ ′(ui) i = j

ψ ′
(∑K

k=1 uk

)
i �= j

, (17)

where ψ ′(·) is the derivative of the digamma function

ψ ′(x) = ∂ψ(x)

∂x
and ψ(x) = ∂ ln �(x)

∂x
.

In matrix form, the Hessian matrix can be expressed as

H = zzT − A, (18)
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where

z = [z1, z2, . . . , zK ]T,

z1 = z2 = · · · = zK =
√√√√ψ ′

(
K∑

k=1

uk

)
, (19)

and

A =
⎡
⎢⎣

ψ ′(u1) 0
. . .

0 ψ ′(uK)

⎤
⎥⎦ . (20)

For any k = 1, 2, . . . , K , the upper-left k × k sub-matrix of
H writes

Hk = zkzT
k − Ak, (21)

where zk contains the first k elements in z and Ak is the
upper-left k × k sub-matrix of A.

The concavity of Q(u) can be proved as follows:

1. When k = 1, we have

H1 = ψ ′
(

K∑
k=1

uk

)
− ψ ′(u1) < 0 (22)

because ψ ′(x) is a monotonously nonnegative decreas-
ing function of x and uk > 1.

2. When k = 2, the determinant of H2 is

|H2| = | − A2|
[
1 − zT

2 (A2)
−1z2

]

=
k∏

i=1

ψ ′(ui)

{
1 − ψ ′

(
K∑

k=1

uk

)

×
[

1

ψ ′(u1)
+ 1

ψ ′(u2)

]}
. (23)

In Eq. 23, we used the matrix calculus trick [39]
∣∣∣A + xyT

∣∣∣ = |A|
(

1 + yTA−1x
)

, (24)

where A is a square m × m matrix and x, y are vectors
of size m × 1.

Before deriving the sign of |H2|, let us study the sign
of the function

G(u1, u2) = ψ ′(u1)ψ
′(u2) − [

ψ ′(u1) + ψ ′(u2)
]
ψ ′(u1 + u2).

(25)

By fixing u1 = ũ1, it is observed that G(ũ1, u2)

is monotonously decreasing function of u2. Since
limu2→∞ G (ũ1, u2) = 0, we conclude that G (ũ1, u2)

> 0 for any u2. For the same reasoning, by fix-
ing u2 = ũ2, we also have G (u1, ũ2) > 0 for

any u1. Combining these two arguments together, we
have

G(u1, u2) > 0 (26)

for any u1 and u2.
From Eq. 26, the following inequality holds as

1 − ψ ′(u1 + u2)

[
1

ψ ′(u1)
+ 1

ψ ′(u2)

]
> 0. (27)

Recall that ψ ′(x) is a monotonously decreasing non-
negative function, we have

1 − ψ ′
(

K∑
k=1

uk

) [
1

ψ ′(u1)
+ 1

ψ ′(u2)

]
> 0. (28)

Substituting (28) into (23), it is easily to get

|H2| =
K∏

k=1

ψ ′(uk)︸ ︷︷ ︸
>0

{
1 − ψ ′

(
K∑

k=1

uk

) [
1

ψ ′(u1)
+ 1

ψ ′(u2)

]}

︸ ︷︷ ︸
>0

> 0

(29)

f (x|X) ≤
∫

· · ·
∫ �

(∑K
k=1 ũk

)
∏K

k=1 � (ũk)

× e

∑K
k=1

[
ψ

(∑K
k=1 ũk

)
−ψ(ũk)

]
(uk−ũk )

× x
u1−1
1

(
α∗

1

)μ∗
1

�
(
μ∗

1

)u
μ∗

1−1
1 e−α∗

1u1

× · · · × x
uK−1
K

(
α∗

K

)μ∗
K

�
(
μ∗

K

) u
μ∗

K−1
K e−α∗

KuK du1 · · · duK

=
�

(∑K
k=1 ũk

)
∏K

k=1 � (ũk)
× e

− ∑K
k=1 ũk

[
ψ

(∑K
k=1 ũk

)
−ψ(ũk)

]

×
K∏

k=1

(
α∗

k

)μ∗
k

xk�
(
μ∗

k

)
∫

e
−uk

[
α∗

k −ln xk−ψ
(∑K

k=1 ũk

)

+ψ (ũk)
]
u

μ∗
k−1

k duk

� fupp(x|X). (30)

3. When k ≥ 3 and k is odd, the determinant of Hk is

|Hk| = | − Ak|
[
1 − zT

k (Ak)
−1zk

]

= −
k∏

i=1

ψ ′(ui)

{
1 − ψ ′

(
K∑

k=1

uk

) [
k∑

i=1

1

ψ ′(ui)

]}
.

(31)
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The inequality in Eq. 27 could also be written as

1

ψ ′(u1)
+ 1

ψ ′(u2)
<

1

ψ ′(u1 + u2)
. (32)

Using this inequality iteratively, we get

k∑
i=1

1

ψ ′(ui)
= 1

ψ ′(u1)
+ 1

ψ ′(u2)
+ 1

ψ ′(u3)

+ · · · + 1

ψ ′(uk)
<

1

ψ ′(u1 + u2)

+ 1

ψ ′(u3)
+ · · · + 1

ψ ′(uk)

<
1

ψ ′(u1 + u2 + u3)
+ · · · + 1

ψ ′(uk)· · ·
<

1

ψ ′
(∑k

i=1 ui

)

<
1

ψ ′
(∑K

k=1 uk

) ,

which can also be written as

ψ ′
(

K∑
k=1

uk

) [
k∑

i=1

1

ψ ′(ui)

]
< 1. (33)

Substituting (33) into (31), we conclude that

|Hk| < 0, k ≥ 3 and k is odd. (34)

4. Similarly, when k ≥ 3 and k is even, we have

|Hk| > 0, k ≥ 3 and k is even. (35)

As all the kth order leading principal minors of H are neg-
ative when k is odd and positive when k is even, it is
sufficient to prove that H is negative-definite. Therefore,
Q(u) is jointly concave with respect to u [38].

The logarithm of the MIB function has been proved to be
concave, which indicates the following relation:

ln
�

(∑K
k=1 uk

)
∏K

k=1 �(uk)
≤ ln

�
(∑K

k=1 ũk

)
∏K

k=1 � (ũk)

+
K∑

k=1

[
ψ

(
K∑

k=1

ũk

)
−ψ (ũk)

]
(uk−ũk) ,

(36)

where ũk, k = 1, 2, . . . , K is any point from the posterior
distribution. Taking the exponential of both sides, we have

�
(∑K

k=1 uk

)
∏K

k=1 �(uk)
≤

�
(∑K

k=1 ũk

)
∏K

k=1 � (ũk)

× e

∑K
k=1

[
ψ

(∑K
k=1 ũk

)
−ψ(ũk)

]
(uk−ũk)

, (37)

which means the RHS of Eq. 37 is an upper-bound to the
MIB function.

4.2.2 Upper-bound of the Predictive Distribution

To approximate the predictive distribution in Eq. 12, the
LVI method [2] can be applied to introduce an upper-bound.
Substituting (37) into (12) and with some mathematics, an
upper-bound to the predictive distribution is obtained as in
Eq. 30. Denoting

G
(
xk, ũ

) = α∗
k − ln xk − ψ

(
K∑

k=1

ũk

)
+ ψ (ũk) , (38)

where k = 1, 2, . . . , K , the integrand in each integration of
Eq. 30 is recognized to have the same form of the gamma
distribution (in terms of uk). By this, the integrations in
Eq. 30 is then calculated as

∫
e−ukG(xk,ũ)u

μ∗
k−1

k duk =
⎧⎨
⎩

�(μ∗
k)

[G(xk,ũ)]μ∗
k

G
(
xk, ũ

)
> 0

∞ G
(
xk, ũ

) ≤ 0
.

(39)

With the assumption that G
(
xk, ũ

)
> 0 for any k, the finite

upper-bound of the predictive distribution is written in an
analytically tractable form as

fupp(x|X) =
�

(∑K
k=1 ũk

)
∏K

k=1 � (ũk)
× e

− ∑K
k=1 ũk

[
ψ

(∑K
k=1 ũk

)
−ψ(ũk)

]

×
K∏

k=1

(
α∗

k

)μ∗
k

xk

[
G

(
xk, ũ

)]μ∗
k

. (40)

For any data vector x, the upper-bound to the predictive
distribution is only a function of ũ, because α∗

k , μ∗
k, k =

1, 2, . . . , K are the hyperparameters in the posterior dis-
tribution and fixed once the Bayesian estimation of the
parameters is done.

4.2.3 Existence of the Upper-bound’s Global Minimum

The derived upper-bound in Eq. 42 is equal to the predic-
tive distribution in Eq. 12 only if the Taylor expansion is
tight to the original function. This requires the posterior dis-
tribution of uk to be a Dirac delta function and has zero
variance. When increasing the amount of training data, the
posterior distribution gets concentrated in a small region
of the parameter space. The upper-bound is asymptotically
tight to the true function when the amount of observa-
tions goes to infinity. Thus, there exists a systematic gap
between (42) and (12) and we need to find the minimum
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value of fupp(x|X) to reduce the gap. In order to do this, the
following constrained optimization problem must be solved:

minũ P(x, ũ)

s.t. G(xk, ũ) > 0
, (41)

where fupp(x|X) is rewritten as

fupp (x|X) = P(x, ũ)

K∏
k=1

(
α∗

k

)μ∗
k

xk

(42)

and

P(x, ũ) =
�

(∑K
k=1 ũk

)
∏K

k=1 �(ũk)
× e

− ∑K
k=1 ũk

[
ψ

(∑K
k=1 ũk

)
−ψ(ũk)

]

×
K∏

k=1

1

G(xk, ũ)μ
∗
k

. (43)

The objective function P(x, ũ) is not strictly convex or con-
cave, but we will now show that a global minimum of
P(x, ũ) exists, for any given x.

Firstly, we study the properties of the constraints. By
considering ũj is the only changing variable in P(x, ũ) and
fixing the rest ũi , i = 1, 2, . . . , K, i �= j , it can be
shown that G(xj , ũ) is a monotonously increasing function
of ũj while G(xi, ũ) is monotonously decreasing in terms
of ũj . This statement comes from the fact that ψ(x) is a
monotonously increasing function of x.

Then, the constraints can be categorized into two groups.
The increasing constraint is

G
(
xj , ũ

) = G
(
xj , ũ\j , ũj

)
5

= α∗
j − ln xj − ψ

⎛
⎝ K∑

k=1,k �=j

ũk + ũj

⎞
⎠ + ψ

(
ũj

)

> 0. (44)

There exists an point ul
j so that G

(
xj , ũ\j , ul

j

)
= 0. Then

we have ũj > ul
j to satisfy this constraint. Meanwhile, the

decreasing constraint, for i = 1, 2, . . . , K, i �= j , is

G(xi, ũ) = G
(
xi, ũ\j , ũj

)

= α∗
i − ln xi − ψ

⎛
⎝ K∑

k=1,k �=j

ũk + ũj

⎞
⎠ + ψ (ũi)

> 0. (45)

When G
(
xi, ũ\j , uri

j

)
= 0, i = 1, 2, . . . , K, i �= j ,

we have ũj < mini u
ri
i to satisfy these K − 1 decreasing

constraints. Thus, for the known ũ\j , there exists an open
interval for ũj as ul

j < ũj < mini u
ri
j . Hence, for any ele-

ment ũk in ũ, when ũ\k is fixed, there exists an open interval
to satisfy all the K constraints. The above discussions show

5ũ\j denotes all the elements in ũ except ũj .

that, to satisfy the constraint G(xk, ũ) > 0 for any k, ũ
should fall in an K dimensional space defined as

F
K =

{
ũ :

⋂K

k=1
G(xk, ũ) > 0

}
. (46)

It is noteworthy that P(x, ũ) = +∞, if ũ does not fall in F
K

(see Eq. 39).
Secondly, we consider the case when ũ falls on the

boundary of F
K . The boundary of F

K is defined by{
ũ : ⋃K

k=1G(xk, ũ) = 0
}

. From Eq. 39, it can be shown

that P(x, ũ) = +∞ if ũ is on the boundary of FK . Thus,
when P(x, ũ) is finite, ũ is not on the boundary. Then the
constraint G(xk, ũ) > 0 for any k can be extended to
G(xk, ũ) ≥ 0, without any influence on the minimization
operation in Eq. 41.

As the maximum of P(x, ũ) is +∞ and P(x, ũ) is a con-
tinuous nonnegative function, the minimum value of P(x, ũ)

exists. Assuming that P(x, ũ) has M stationary points, each
of which satisfies ∇P

(
x, ũ∗

m

) = 0, m = 1, 2, . . . , M . Then
minũ P(x, ũ) can be found by comparing all the P

(
x, ũ∗

m

)
and choosing the smallest as

min
ũ

P(x, ũ) = P(x, ũ∗). (47)

Therefore, the optimal solution is

ũ∗ = arg min
ũ∗

m

P
(
x, ũ∗

m

)
. (48)

4.2.4 Approximation to minũ P(x, ũ)

Some numerical algorithms can be applied to obtain ũ∗.
However, no matter what kind of method it is, the result of
the optimization procedure depends on x. Thus, for any new
x, the optimization problem has a different optimal solution
and must be solved again. This is computationally costly
and practically infeasible in Bayesian learning applications.

An alternative way to solve this problem is to make the
optimal solution in Eq. 41 independent of x, i.e., to approx-
imate the optimal point ũ∗ by a value that does not depend
on x. Then, given the estimated posterior distribution, the
global minimum of P(x, ũ) is fixed for any x.

To this end, we use the posterior mean of u from the
posterior distribution in Eq. 10 to approximate the optimal
solution in Eq. 41. There are three reasons for this choice:

1. fupp(x|X) was obtained by using the first-order Taylor
expansion as an upper-bound. It is observed that [14;
33, Ma et al., Bayesian estimation of Dirichlet mixture
model with varitional inference, unpublished], when
taking the Taylor expansion around the expected value
of the argument, this bound is tight.

2. In principle, the value of ũ can be arbitrarily selected in
the domain of u. However, as u is distributed according
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to the posterior distribution in Eq. 10, it is reason-
able to use a representative point from the posterior
distribution to approximate the optimal solution. As
each element in u is gamma distributed and the gamma
distribution is unimodal, the posterior mean can be con-
sidered as a representative point. Moreover, when the
posterior distribution concentrates in a small region, this
approximation becomes more accurate.

3. The posterior mean does not depend on x, which facili-
tates the calculation.

Thus, it is reasonable to take the posterior mean to approxi-
mate the true optimal solution as

min
ũ

P(x, ũ) ≈ P(x, u). (49)

Indeed, this approximation approach will lead to some
unknown bias. Substituting this approximation into (42)
and with normalization (see next section for details), the
approximation to the predictive distribution is obtained.
Table 1 shows the Kullback–Leibler (KL) divergences6

from the true predictive distribution to the approximat-
ing one. It can be observed that both methods (one is
based on greedy search (47) and the other is based on the
posterior mean (49)) can approximate the true predictive
distribution properly. The predictive distribution approxi-
mate by using the posterior mean (f post.

appx (x|X) in Eq. 52)
is slightly worse than the one obtained by greedy search
(f search

appx (x|X) in Eq. 53). This is because of using the
posterior mean to approximate the optimal solution. How-
ever, as argued above, the variance introduced by using the
posterior mean approximation decreases when the amount
of observations increases. Table 2 shows the comparison
of the KL divergence from the predictive distribution
approximated by greedy search to the one approximated by

Algorithm 1 Predictive Distribution of the DMM

1. Run the Bayesian estimation method proposed in
Ma et al., Bayesian estimation of Dirichlet mixture
model with varitional inference (unpublished), obtain
the mixture weights � and the hyperparameters α∗ μ∗
from the posterior distribution.

2. For each mixture component, calculate the posterior
means from the hyperparameters as ui = μ∗

i � α∗
i .7

3. Calculate the normalization factor Ci for each mixture
component.

4. For any upcoming x, the predictive distribution can be
approximately calculated by Eq. 55.

6The KL divergence from f (x) to g(x) is calculated as KL(f ‖g) =∫
f (x) ln f (x)

g(x)
dx

7� is the element-wise division.

Table 1 Comparisons of the KL divergences (×104) of the true
predictive distribution (in Eq. 11) from the approximating one.
f search

appx (x|X) is the predictive distribution approximated by using (47)

and f
post.
appx (x|X) is the one approximated by using (49).

Method N = 10 N = 20 N = 30 N = 40 N = 50

f search
appx (x|X) 2.035 0.764 0.550 0.404 0.358

f
post.
appx (x|X) 9.453 1.406 0.575 0.429 0.368

N = 60 N = 70 N = 80 N = 90 N = 100

f search
appx (x|X) 0.296 0.304 0.295 0.284 0.289

f
post.
appx (x|X) 0.304 0.318 0.314 0.299 0.294

The true predictive distribution was obtained by the importance sam-
pling method [2]. Different amounts of data were generated from a
Dirichlet distribution with parameter u = [10 6 20]T. The means
of 20 rounds of simulations are reported. Similar performance can
be obtained by some other parameter settings and we show only one
example here

using the posterior mean. The differences between these
two methods are very small. As using the posterior mean
can facilitate the calculation significantly with little loss of
accuracy, it is acceptable in practice.

4.2.5 Final Approximation

In the above section, we discussed the global minimum of
P(x, ũ) and proposed an approximation to the global min-
imum by using the posterior mean of u. Substituting (49)
into (42), the global minimum of the upper-bound can be
expressed as

min
ũ

fupp(x|X) = min
ũ

P
(
x, ũ

) K∏
k=1

(α∗
k )μ

∗
k

xk

≈ P (x, û)

K∏
k=1

(α∗
k )μ

∗
k

xk

. (50)

Table 2 Comparisons of the KL divergences (×104) from
f search

appx (x|X) to f
post.
appx (x|X).

N = 10 N = 20 N = 30 N = 40 N = 50

8.240 0.389 0.367 0.130 0.066

N = 60 N = 70 N = 80 N = 90 N = 100

0.032 0.025 0.023 0.011 0.001

The data were generated from a Dirichlet distribution with parame-
ter u = [10 6 20]T. The reported values are the means of 20 rounds
of simulations. Similar performance can be obtained by some other
parameter settings and we show only one example here
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Since minũ fupp(x|X) is unnormalized, we can calculated
the normalization factor

Cpost. =
∫

min
ũ

fupp(x|X)dx

=
∫

P(x, û)dx
K∏

k=1

(
α∗

k

)μ∗
k

xk

. (51)

Thus, the approximation to the true predictive distribution is
finally obtained as

f (x|X) ≈ f
post.
appx (x|X)

= 1

Cpost.
× P(x, û) ×

K∏
k=1

(
α∗

k

)μ∗
k

xk

. (52)

If we use the true global minimum in Eq. 47, the approxi-
mation writes

f (x|X) ≈ f search
appx (x|X)

= 1

Csearch
× P(x, ũ∗) ×

K∏
k=1

(
α∗

k

)μ∗
k

xk

. (53)

It is noteworthy that the only numerical calculation required
is to calculated the normalization factor C. Once this nor-
malization factor is calculated, the predictive likelihood
of any x can be obtained in an analytically tractable form.
Compared to the true predictive distribution in Eq. 11,
which requires numerical calculation for each new x, this
method indeed reduces computational cost.

4.3 Approximation to the Predictive Distribution
of the Dirichlet Mixture Model

The posterior distribution of the DMM can be obtained
by the Bayesian estimation method proposed in Ma et al.,
Bayesian estimation of Dirichlet mixture model with vari-
tional inference (unpublished). The predictive likelihood of
an upcoming data given an estimated DMM is

f (x|X) =
I∑

i=1

πi

∫
Dir(x|ui )f (ui |X)dui . (54)

With the LVI framework and using the approximation
derived in Eq. 52, the predictive distribution of the DMM
can be approximated as

f (x|X) ≈f LVI
appx(x|X)

=
I∑

i=1

πi

[
1

Ci

× P(x, ûi ) ×
K∏

k=1

(α∗
ki)

μ∗
ki

xk

]
.

(55)

The algorithm of the LVI based predictive distribution for
the DMM is presented in Algorithm 1.

5 Experimental Results and Discussion

The proposed LVI based method is evaluated with both
synthesized and real data. In the synthesized data evalua-
tion, different amounts of data are generated from a known
model and the LVI based method is compared with two
conventional point estimate plug-in methods, namely the
GVI based method and the ML based method. In the real
data evaluation, the proposed method is applied to classify
Electroencephalogram (EEG) signal.

5.1 Synthesized Data Evaluation

In statistical modeling, there are several ways to approxi-
mate the predictive distribution. The proposed LVI based
method can approximately calculate the predictive distri-
bution. In addition to this method, there are two other
conventionally used approximations, which are all based on
the point estimate plug-in method. One approximation is
based on the ML estimation to the parameters [20], which
can be written as

f (x|X) ≈ f ML
appx(x|X) =

I∑
i=1

πiDir
(

x; ûML
i

)
, (56)

where ûML
i is the ML estimate to the ith mixture compo-

nent. The other approximation, which is based on the GVI
framework (Ma et al., Bayesian estimation of Dirichlet
mixture model with varitional inference, unpublished) and
uses the posterior mean as the point estimates, writes

f (x|X) ≈ f GVI
appx(x|X) =

I∑
i=1

πiDir
(

x; uGVI
i

)
, (57)

where uGVI
i is the posterior mean of u in the ith mixture

component.
The comparisons between the true and the approximat-

ing predictive distributions are illustrated in Fig. 2. The
predictive likelihood difference (�PL) is the absolute dif-
ferences between the true predictive distribution and the
approximating one as

�PL =
∣∣∣f (x|X) − f k

appx(x|X)

∣∣∣ , k ∈ {LVI, GVI, ML}.
It can be observed that the LVI based method can approx-
imate the true predictive distribution more accurate than
both the GVI based and the ML based methods, especially
when the amount of training data is small (e.g., N = 10).
For different amounts of observations, the �PL via the
LVI based method is smaller than both of the other two
referred methods. Moreover, as the amount of training data
increases, all the three methods show improving approxima-
tion performance.

To compare the LVI based method with the GVI based
and ML based methods qualitatively, we also evaluated
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the KL divergences from the true predictive distribution
to the approximating one. Different amounts of data were
generated from a known Dirichlet distribution. The KL
divergences were calculated numerically by replacing the
integration operation with the summation operation. Table 3
shows the comparisons. As expected, the LVI based method
yields significantly smaller KL divergences than the other
two methods, especially when the amount of training data
is small. This is because the predictive distribution obtained
by integration marginalizes over the uncertainty of the
parameter and, therefore, leads to a robust prediction.

In the synthesized data evaluation, we used a three
dimensional Dirichlet distribution purely for the purpose of
an easy visualization. Similar performance can be obtained
by other parameter settings. Moreover, since the true pos-
terior distribution of the DMM cannot be obtained analyt-
ically (only the posterior distribution to a single Dirichlet

distribution can be obtained by Eq. 6), the comparisons were
made based on a single Dirichlet distribution and the LVI
based method performs superior to both the GVI based and
the ML based methods. As shown in Eq. 54, the predic-
tive distribution of the DMM is the weighted sum of several
single predictive distributions. Thus, when approximating
the predictive distribution of DMM, the LVI based method
potentially permits better performance than the other two
referred methods.

5.2 Real Data Evaluation

Classification of the Electroencephalogram (EEG) signal is
a challenging task in the design of brain-computer interface
(BCI) systems [40]. The EEG signal, which can be acquired
non-invasively, is a recording of the electrical activity along
the scalp while a person is imagining a kind of action. For
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Figure 2 Comparisons of different approximations to the true pre-
dictive distribution. The true predictive distribution was obtained
numerically by the importance sampling method [2]. Different
amounts of training data were generated from the Dirichlet dis-
tribution Dir(x; u) with known u = [3 5 8]T. As the degrees of
freedom equals 2, we have x3 = 1 − x1 − x2 and omitted axis x3 in

the figure. For the convenience of visualization, these figures show
the top-down view of the three dimensional predictive distributions
and their differences. The mismatch is illustrated by the absolute
difference (�PL) between the true and the approximating predictive
density. The difference becomes smaller as the amount of training data
increases.
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Table 3 KL divergences (×104) from the true predictive distribution
to the approximating one.

Method N = 10 N = 20 N = 30 N = 40 N = 50

LVI 2.12 0.62 0.30 0.23 0.17

GVI 48.94 12.12 5.60 3.09 1.87

ML 512.85 268.06 138.41 83.85 98.55

N = 60 N = 70 N = 80 N = 90 N = 100

LVI 0.13 0.12 0.11 0.09 0.08

GVI 1.30 0.91 0.69 0.54 0.39

ML 73.33 69.42 60.77 59.46 55.72

They were evaluated with the data generated from Dir(x; u),
u = [3 5 8]T

different actions, EEG signals differ so that the type of
actions can be estimated from the EEG signals. Thus, to
classify the EEG signals properly is an essential part of a
BCI system [41, 42].

The most frequently used feature in the EEG classifica-
tion is the marginalized discrete wavelet transform (mDWT)
coefficients [43, 44]. For each channel (i.e., recording posi-
tion on the scalp), the EEG signals were recorded separately
and the mDWT coefficients were extracted. The mDWT
coefficients from a single channel has the following prop-
erties: 1) all the coefficients are nonnegative and 2) the
summation of the coefficients equals one [42]. To uti-
lize these properties explicitly, a classifier based on the
super-Dirichlet mixture model (sDMM) [45] was proposed
in [42], where the classifier’s evaluation was based on the
well-known BCI competition III [46]. During the EEG
signal recording, a subject performed two imagined move-
ments: 1) the left small finger movement and 2) the tongue
movement. In the end, two classes of EEG signals were
obtained. The brain activities were recorded from 8 × 8
ECoG platinum electrode grid which was placed on the
contralateral (right) motor cortex. In total, we have 64 chan-
nels of signals. 278 trials were recorded as the labeled
training set and 100 trials were recorded as the unlabeled
test set. In both the training set and test set, the data are
evenly recorded for each imaginary movement. It is unclear
which channels are more relevant for the imaginary task
than the others [47] and the signals recorded from irrelevant
channels may be noisy for the classification task [41]. As
suggested in [42], the Fisher ratio (FR), which presents how
strongly a channel correlates with class labels {−1, +1}, is
applied to select the relevant channels. The FR is calculated
as [48]

FR(m) = max
d

dT
[
μ(m)+1 − μ(m)−1

] [
μ(m)+1 − μ(m)−1

]T d

dT
[
�(m)+1 + �(m)−1

]
d

,

(58)

Table 4 Comparisons of the average classification rates (in %) of the
EEG signal over the top 25 channels.

Method N = 10 N = 20 N = 30 N = 40 N = 50

LVI 52.15 52.97 52.68 52.81 53.00

GVI 52.01 52.12 51.89 52.17 52.42

N = 60 N = 70 N = 80 N = 90 N = 100

LVI 53.61 53.89 53.71 53.80 53.85

GVI 53.58 53.76 53.62 53.78 53.73

N = 110 N = 120 N = 130 N = 139 (All)

LVI 53.78 53.72 53.69 53.88

GVI 53.61 53.65 53.66 53.72

N denotes the amount of training observations for each class which
were randomly selected from the training set. The means of 20
simulation rounds are reported

where μ(m)j and �(m)j , m = 1, . . . , 64, j ∈ {+1, −1}
are the mean and the covariance matrix of class j in channel
m, respectively. d is a vector with the same size of μ(m)j .
The channels with larger FRs are preferable. The reported
results in [42] showed that the sDMM based classifier per-
formed best when combining the top 21 or 24 channels that
were selected by the FRs.

Thus, in this paper, we use only the top 25 channels,
instead of all the 64 channels, to evaluate the proposed LVI
based method. Moreover, as the ML estimation based pre-
dictive distribution performed far worse than either the LVI
or the GVI based method (see Table 3), we only compare
the LVI based and the GVI based methods. To highlight the
advantage of the integration based predictive distribution,
we train the classifier with different amounts of data from
the training set. All the data from the test set are used for
classification. Firstly, we studied the single channel based
classification. The DMM was used to model the distribu-
tion of one class of EEG signal from a selected channel and
estimated by the Bayesian estimation method (Ma et al.,
Bayesian estimation of Dirichlet mixture model with vari-
tional inference, unpublished). Afterwards, the proposed
LVI based method and the GVI based method (Ma et al.,
Bayesian estimation of Dirichlet mixture model with vari-
tional inference, unpublished) were applied respectively to
carry out the classification task. The average classification
rates for all the 25 selected channels are listed in Table 4. It
can be observed that the LVI based method yield better clas-
sification rate than the GVI based method for a wide range
of amounts of observations. When the amount of observa-
tion increases, the classification performance is improved,
although not monotonously. Secondly, we took a similar
approach as [42] to carry out the classification task on more
than one channel by the sDMM based classifier. For the
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Figure 3 Classification rates of
the EEG signal based on
multiple channel combination
for different amount of training
data. The numbers above the
solid line are the top L channels
with which the LVI based
method performs the best. The
numbers below the dash line are
the top L channels with which
the GVI based method performs
the best.
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mDWT coefficients from L channels,8 the PDF of a single
super-Dirichlet distribution is

sDir(xsup; usup) =
L∏

l=1

Dir(xl; ul)

=
L∏

l=1

�
(∑K

k=1 ulk

)
∏K

k=1 �(ulk)

K∏
k=1

x
ulk−1
lk , (59)

where

xsup =
⎡
⎢⎣

x1
...

xL

⎤
⎥⎦ and usup =

⎡
⎢⎣

u1
...

ul

⎤
⎥⎦ . (60)

As a super-Dirichlet distribution is a cascade version of
several single Dirichlet distribution [45], the Bayesian esti-
mation method for DMM (Ma et al., Bayesian estimation of
Dirichlet mixture model with varitional inference, unpub-
lished) can be easily extended and applied to the sDMM.
Similarly, the proposed LVI based predictive distribution in
this paper can also be easily extended for sDMM. Figure 3
shows the classification rates obtained by multiple chan-
nels combination. The LVI based method performs better
than the GVI based method for different amounts of train-
ing data. We believe this is because of the advantage of the
integration-based predictive distribution.

6 Conclusion

The predictive distribution is, in general, more reliable than
the point estimate plug-in method when calculating the

8Here, the dimensionalities of the mDWT coefficients are the same for
all the channels.

predictive likelihood for new data, especially with a smaller
amount of training observations. To approximately calculate
the predictive distribution of the Dirichlet mixture model
(DMM), we applied the local variational inference (LVI)
framework to get an upper-bound to the multivariate inverse
beta (MIB) function, by using the concavity of the MIB
function. Then the predictive distribution is upper-bounded
by an analytically tractable expression. The global mini-
mum of this upper-bound expression was shown to exist
and an efficient approximation was applied to calculate
the global minimum. Finally, the predictive distribution of
the DMM was approximated by an analytically tractable
form, which facilitates the calculation of the predictive
likelihood of the upcoming data. With synthesized and
real data evaluations, the proposed LVI based method was
superior in performance to the conventionally used global
variational inference method and the maximum likelihood
method.
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