
Breakthrough to Adaptive and Cost-Aware
Hardware-Assisted Zero-Day Malware Detection:

A Reinforcement Learning-Based Approach

Zhangying He1, Hosein Mohammadi Makrani2, Setareh Rafatirad3, Houman Homayoun2, and Hossein Sayadi1

1Department of Computer Engineering and Computer Science, California State University, Long Beach, CA, USA
2Department of Electrical and Computer Engineering, University of California, Davis, CA, USA

3Department of Computer Science, University of California, Davis, CA, USA

Abstract—In this paper, we have identified and addressed
pressing challenges associated with online and cost-effective
malware detection based on Hardware Performance Counters
(HPCs) information. Existing Hardware-Assisted Malware Detec-
tion (HMD) methods guided by standard Machine Learning (ML)
algorithms have limited their study on detecting known signatures
of malicious patterns; thus, neglecting to address unknown (zero-
day) malware detection at run-time which is a more challenging
problem since the malware HPC data does not match any
known attack applications’ signatures in the existing database. In
addition, prior works have not presented a flexible and balanced
solution that considers the trade-off between detection rate and
implementation cost for adaptive selection of the best performing
ML algorithms for online malware detection. In this paper,
we first propose a unified feature selection method based on
a heterogeneous feature fusion technique to effectively deter-
mine the most important HPC events for low-cost yet accurate
malware detection. Next, we present Reinforced-HMD, a novel
reinforcement learning-based framework for adaptive and cost-
aware hardware-assisted zero-day malware detection based on
desired performance metric and available hardware resources. To
this aim, six classical and two reinforcement learning algorithms
are implemented and their efficiency is thoroughly analyzed for
detecting unknown malware using HPC events. Experimental
results demonstrate that our Reinforced-HMD framework based
on Upper Confidence Bound (UCB) learning approach achieves
an accurate and robust detection rate with a 96% in both F1-
score and AUC metrics for flexible and efficient zero-day malware
detection while utilizing an optimal set of built-in HPC events.

Keywords—Hardware Performance Counters, Machine Learn-
ing, Reinforcement Learning, Zero-Day Malware Detection.

I. INTRODUCTION
The last decade has witnessed a vast growth in the com-

plexity of cutting-edge digital systems. This has resulted in the
emergence of new security vulnerabilities making the systems
accessible targets for an increasing number of complicated
cyber attacks [1], [2], [3]. With malicious software (a.k.a.
malware) utilization continuing to rise across different applica-
tion domains, the development of efficient malware detection
techniques have grown to be more crucial as they feature
as an early protection mechanism to guard the integrity and
confidentiality of the authenticated users’ data [4], [5].

Hardware-Assisted Malware Detection (HMD) methods
[3], [6], [7], [8], [9], [10] have emerged to address the
inefficiency of software-based detection solutions, including
static analysis, incompetence in detecting obfuscated attacks,
and excessive computational overheads on resource-limited
systems. Figure 1 illustrates the general process of employing
low-level hardware events for distinguishing malware from

Benign

Malware

Applications (Malware/Benign)

Feature
Extraction and

Analysis

Malware

Benign

HPC events are collected from
the underlying processor

Machine learning classifier

Fig. 1: General process of detecting malware using hardware events.

benign applications. Such methods are based on classical Ma-
chine Learning (ML) algorithms utilized on microarchitectural
events collected from Hardware Performance Counter (HPCs)
registers’1 [11], [12], [13], [14]. Recent developments in the
field of machine learning have been sparked by a huge increase
in the volume of data in modern computer systems, leading to
applications of these intelligent methodologies in a range of
computing fields, including security [5], [15], [16], [17]. With
ML-based protection countermeasures, the hardware systems
could analyze patterns of applications to proactively respond to
altering behavior at run-time and prevent conceivable attacks.
In this work, as highlighted below we address important
challenges of adaptive and cost-effective hardware-assisted
malware detection that have been neglected in prior studies.

Challenge 1 : Unified Feature Selection for Online HMD.
Despite their high performance, most modern microprocessors
are equipped with a limited number of performance counter
registers (from 2 up to 8) since the design complexity and
cost of concurrent monitoring of HPC events are high [7],
[14]. Nonetheless, there exist numerous hardware events with
each of them representing a unique functionality in which
monitoring all of them leads to data with high dimensionality.
Our analysis shows that there have been different feature
selection methods used in prior HMD solutions with no ap-
parent justification [10], [14], [18], [19] ending up in different
sets of top HPC events. More importantly, no unified feature
selection solution exists that combines the functionality of
different selection methods used across various existing works
to determine the top HPC events for online and cost-effective
malware detection.

Challenge 2 : Recognizing Zero-Day Malware. Malicious
software has continued to evolve in sophistication and quantity
over the past decade. Zero-day attack is a type of serious
cybersecurity threat that exploits software security vulnerabili-
ties that are undocumented (unknown) in the training database

1HPCs are specialized registers embedded in modern microprocessors
to monitor the applications’ hardware events (e.g., number of cycles and
instructions that a program executed, its associated cache misses, etc.)

of the detection mechanism [20]. Lack of signature history
and clear remediation strategy has made detection of zero-
day malware a long-standing challenge using the traditional
off-the-shelf detection mechanisms such as static signature-
based approaches. In addition, existing machine learning-based
hardware-assisted malware detection methods have ignored the
important problem of zero-day malware detection. Therefore,
they are inherently unscalable and inflexible, as the inclusion of
any new malware types would require training of new models
which makes the solution inefficient.

Challenge 3 : Limitation of Standard ML Models for
Adaptive On-device HMD. The existing ML-based HMD
strategies lack a structured method to account for the per-
formance vs. cost trade-offs within their target function. In
addition, while standard ML-based approaches have proven to
be more effective than their signature-based counterparts in
recognizing formerly unknown malware, they typically suffer
from a noticeably high false positive rate, which makes the
application of a single standard ML-based detector for adaptive
hardware-assisted malware detection inefficient. To success-
fully tackle the performance vs. cost-efficiency challenge of
HMD methods, each HPC data needs to be analyzed by the
most cost and computationally efficient ML model needed
to correctly classify the HPC sample at run-time. However,
such an adaptive on-device solution is not aligned with the
application of standard ML-based malware detection methods
with limited efficacy.

Challenge 4 : Inefficiency of Ensemble-based Detectors.
Inspired by ensemble learning-based methods, using ML-
based malware detectors together (e.g., voting, stacking, and
boosting) have shown to enhance the detection rate and
reduce the false positive rate of detection process. Despite
the potential security enhancement, ensemble-based detection
methods often incur significant overheads in terms of design
cost and computational latency. In particular, the processing
time required to analyze each sample is equal to or higher
than that of the most time consuming ML model and the large
number of detectors requires expensive computing resources
(new hardware or cloud server) which makes the solution
impractical for fast and low-cost on-device malware detection.

In response to the aforementioned challenges, in this
work we propose Reinforced-HMD, an adaptive and cost-
aware framework for online hardware-assisted zero-day mal-
ware detection. Reinforced-HMD is equipped with a novel
heterogeneous ensemble feature selection method followed by
an effective reinforcement learning-guided decision-maker that
adaptively selects the most accurate and cost-efficient ML
model for detecting unknown malware signatures. An effective
feature selection based on a heterogeneous fusion method is
presented by exploiting the correlation between HPCs from
different selection methods to specify the most prominent
HPC events for online malware detection without hampering
the detection accuracy. Next, Reinforced-HMD formulates the
hardware malware detection as a Reinforcement Learning (RL)
problem [21], [22] by examining the ability of an autonomous
agent in learning to take optimal actions/decisions for online
malware detection to maximize a reward function while inter-
acting with a stochastic environment.

As we will demonstrate in our work, a cost-sensitive selec-
tion model is required that takes into account both detection
rate and implementation costs (e.g, latency, area overhead,

Fig. 2: Performance comparison of single best ML model (e.g, J48) with all
tested ML models (case a), and three weak classifiers (case b) for online
malware detection using hardware events.

etc.) of the base ML models and determines the best malware
detector at run-time. For the purpose of thorough analysis,
six classical and two well-known reinforcement learning al-
gorithms are implemented and their efficiencies are com-
prehensively analyzed across different evaluation metrics for
detecting unknown malware. To the best of our knowledge, this
is the first work that addresses major challenges of adaptive,
cost-efficient, and on-device unknown malware detection using
a limited number of hardware features and introduces a unified
and intelligent RL-guided solution to address them all. This
research highlights the importance of adaptive scheduling of
learning algorithms for flexible and efficient on-device mal-
ware detection. Furthermore, its outcome will aid the security
researchers and computer architects to implement accurate
and low-cost intelligent countermeasures for securing modern
computer systems based on users’ preferences and available
hardware resources.

II. PROPOSED METHODOLOGY
In this section, we describe the proposed cost-aware, adap-

tive RL-guided framework for detecting zero-day malware
using optimal hardware events.

A. Motivational Case Studies
Question 1: Is using the best ML model for on-device HMD

enough? Figure 2-(a) compares using just one of the best ML
classifiers (e.g., J48) for unknown malware detection versus
the case where multiple ML models are analyzed for adaptive
HMD. We observed that the detection accuracy is increased
by 4.5% (from 90.9% to 95.4%) when all MLs’ efforts are
examined. Moreover, as shown, the False Negative Rate (FNR)
is decreased by 6% when multiple ML classifiers are examined
for online HMD.

Question 2: Can including weak models be useful in
improving the overall accuracy? Clearly, when each individ-
ual ML model is evaluated separately, including weak ML
models into analysis seems to be useless due to their lower
performance and/or larger overhead. However, our experiments
indicate that in adaptive HMD by selecting the most accurate
and cost-efficient ML model during run-time, including weak
classifiers to our examination could lead into a higher overall

detection rate. To this end, we traced the effect of using one
of the best ML models (e.g., J48) versus using three weak
ML models including Logistic Regression (LR), Multi-layer
Perceptron (MLP), and OneR. As seen in Figure 2-(b), the
accuracy is increased by 4% and the FNR is decreased by 3%
when including the extra three weak ML models’ outcomes
compared with only the best ML model.

B. Hardware Features Analysis
Figure 3 shows an overview of Reinforced-HMD that is

mainly comprised of four components: data acquisition, feature
fusion, training of RL system, and inference of RL system
for defending against zero-day attacks during run-time. Benign
and malware programs are profiled on an Intel Xeon X5550
machine. In order to effectively address the non-determinism
and overcounting issues of HPC registers in hardware-based
security analysis discussed in recent works [10], [23], we
have extracted low-level CPU events available under Perf tool
using a static performance monitoring approach where we can
profile applications several times measuring different events
each time. HPC events are monitored using the Perf tool with
a sampling time of 10ms by running applications in an Linux
Containers (LXC) as an isolated profiling environment [24].
LXC is an operating-system-level virtualization technique that
allows developers to package and isolate applications with their
entire runtime environment and unlike common virtual plat-
forms such as VMWare, provides access to actual performance
counters events. We executed more than 5,000 benign and
malware applications. Benign applications include real-world
applications comprising MiBench [25] and SPEC2006 [26],
Linux system programs, browsers, and text editors. Malware
applications, collected from and categorized by VirusShare
and VirusTotal online repositories which comprise nine types
of malware including Worm, Virus, Botnet, Ransomware,
Spyware, Adware, Trojan, Rootkit, and Backdoor. After data
acquisition, the HPC events are thoroughly analyzed using
effective feature analysis methods.

1) Features Selection: As mentioned earlier, feature se-
lection is a critical step of developing effective ML-based
malware detectors based on hardware events. Also, counting
all possible features would result in high-dimensional data,
which increases computational complexity and induces delay.
Moreover, including irrelevant features could reduce the per-
formance of classifiers. To address this challenge, as shown
in Figure 3 we introduce a unified two-step feature analysis
process based on a heterogeneous ensemble feature selection
technique that includes different feature selection methods
followed by an effective feature fusion method to determine the
most prominent HPC events. To explore the effect of different
feature selection methods on the disparity of top HPC events,
we first implement three feature selection methods in Scikit
Learn [27] and record the top four features as a result of each
method. The tested feature selection methods in this work are
described below:
- Recursive Feature Elimination (RFE): RFE is a feature
analysis method that fits an ML model and removes the
weakest feature(s) till it reaches a specified features number
[27]. RFE begins by building a Decision Tree classifier on
the entire dataset and computing the weights of each and all
features. It then gradually eliminates the less important features
till the desired set is found.
- Mutual Information (MI): MI is a feature selection tech-

nique that calculates the mutual information between the HPC
features X and labels Y . It primarily evaluates the amount of
information for the target application’s class (either malware
or benign) gained from each HPC feature in X . Mutual
information between features X and label Y are calculated
based on the entropy estimation from each point’s k-nearest
neighbors [28].
- Sequential Feature Selection (SFS): Lastly, we employ
a sequential feature selection with a backward reduction in
Scikit Learn [27], [29]. Backward-SFS is a greedy procedure
that starts with all the dataset and greedily removes the less
important features till meeting the desired number of features.

Algorithm 1 Feature Fusion Method for Online HMD

Input: Top 8 HPC features’s feature importance selected by three Feature
Selection (FS) methods

Output: Unified 4 HPCs
Preparation:

- Normalize the feature importance for each FS method to [0,1]
- Merge them to one normalized p matrix tabular data
- Assign a initial weight matrix, wj = 1/8 for all 8 HPCs

while run VIKOR do
1. Determine the best and the worst values of all criteria function
max(fi,j) and min(fi,j), i=1,2,...,length of p matrix, j=1,2,...,8;
2. Compute the Values Si and Ri, where
Si =

∑n
j=1 wj(f

∗
j − fij)/(f

∗ − f−
j), and

Ri = maxj [wj(f
∗
j − fij)/(f

∗ − f−
j)];

3. Compute the Values Qi, where
Qi = v(Si − S∗)/(S− − S∗) + (1− v)(Ri −R∗)/(R− −R∗),
i = 1, 2, ..., length of p matrix, v = (n+ 1)/2n, n = 8;
4. Rank the Alternatives, sorting by the values S, R, and Q in ascending
order;
5. Produce a Compromised Solution A(1), which is the best ranked by
the measure Q (minimum) if the following two conditions are satisfied:
(1) Q(A(2))−Q(A(1)) ≥ 1/(m− 1) where A(2) is the second
ranked alternative by the measure Q;
(2) The alternative A(1) must also be the best ranked by S and/or R.

end

2) Feature Fusion (FF): Table I reports the top 4 HPC
features chosen from the three tested feature selection methods.
The result clearly shows the disparity of different selection
methods’ decisions. As observed, the top four most significant
HPCs appear across ten features making the selection of the
top four features uncertain. This highlights the importance of
presenting a unified feature selection solution that accounts for
functionality of different methods to determine the top HPC
events for online and cost-efficient HMD.

To this end, Reinforced-HMD adopts a novel fusion tech-
nique called Multi-Criteria Decision-Making (MCDM) [30]
that evaluates the conflicting criteria from several feature
selection methods to obtain the final feature subset. MCDM is
a powerful tool for making optimal decisions based on mul-
tiple criteria, including conflicting ones. In our experiments,
given that three feature selection methods chose inconsistent
hardware features, MCDM method assists to structure the
goal and select a small set of essential features. MCDM has
broad applications in many engineering problems with a rich
set of algorithms. In our work, we employ a suitable one
called VIKOR algorithm as our feature fusion method [31].
Algorithm 1 describes our implementation of the VIKOR
feature fusion algorithm that contains five distinct steps and
the pipeline of running the aggregated HPCs. The VIKOR
method determines a compromise solution that the Q measure

Application Level

Hardware Level

Users‘ programs running on
the system (benign vs.

malware attacks)

Monitoring hardware events (HPCs) from target processor, and
ranking events for online and cost-aware malware detection

…

Ranker 1

Ranker 2

Ranker n

Rank
Fusion

Final Fused Hardware
Features Set

Heterogeneous Ensemble Feature Selection CPU Monitoring

ML-based Detector 1

ML-based Detector 6

RL Agent
RL Environment

𝐴 = {𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 1, 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 2,… , 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 6,𝑀𝑎𝑙𝑤𝑎𝑟𝑒, 𝐵𝑒𝑛𝑖𝑔𝑛}

Reward (R)

State (S)

Action (A)

Actions for each ML-based Detector Classification Results

…

Zero-day Hardware Events (4HPCs) Best Detector Selected Prediction

Reinforced-HMD Inference

ML-based Detector 2

Argmax(R1, R2, …, R6)

Reinforced-HMD Agent
Takes an Action

Argmax(R1, R2, …, R6)

Feature Analysis

Feature Analysis

Feature Analysis

Prediction

Prediction

Prediction

Detectors Evaluation
(Perf vs. Cost Analysis)

Evaluate
Reinforced-HMD

Fig. 3: Overview of Reinforced-HMD, a reinforcement learning-guided framework equipped with a novel heterogeneous ensemble feature selection method for
adaptive and cost-aware hardware-assisted malware detection.

TABLE I: Disparity of four most significant HPC events across different feature selection methods (MI, RFE, and SFS)
HPCs bus-

cycles
cache-
references

node-
loads

branch-
loads

L1-dcache-
loads

LLC-
loads

L1-dcache-
stores

L1-dcache
load misses

iTLB-load-
misses

dTLB-store-
misses

MI
RFE
SFS

provides a minimum of individual regrets for not selecting
other features. We sort Q measure for all HPC features in
ascending order and select the top four smallest Q measure
corresponding HPC features. The final top four features are L1-
dcache-loads, node-stores, node-loads, and L1-dcache-stores.
In summary, our feature fusion algorithm includes the
following five steps:
Step 1. Determine the best (f∗

j) and the worst (f−
j) values

of all criteria functions. The best value represents the benefit
while the worst value represents the cost of selecting the
criterion.
Step 2. Compute the Values Si and Ri. Si is the summation
of the difference between the benefits and the costs among
eight features’ data points. Ri is the maximum benefits over
costs along eight features’ data points.
Step 3. Compute the Values Qi by the relation of Si

and Ri by calculating the majority of the criteria, where
Qi = v(Si −S∗)/(S− −S∗)+ (1− v)(Ri −R∗)/(R− −R∗),
i = 1, 2, ..., length of p matrix. S∗ is the minimum of the
sum of the benefits, S− is the maximum of the sum of the
costs, R∗ is the minimum benefits for each criteria, R− is
the maximum cost for each criteria. v is a weight for the
strategy of the ”majority of criteria”, 1-v is the weight of the
individual regret.
Step 4. Rank the Alternatives, sorting by the values S
(summation of benefits), R (maximum benefits), and Q (the
regrets) in ascending order. The results are three ranking lists.
Step 5. Propose a Compromise Solution A(1), which is the
best ranked by the measure Q (minimum regrets) if the
following two conditions are satisfied:
(1) Q(A(2))−Q(A(1)) ≥ 1(m− 1) where A(2) is the second
ranked alternative by the measure Q (minimum regrets). The
difference between the alternative solution A(2) and proposed
solution A(1) is larger than a threshold meaning the alternative
solution has a solid higher regrets than the proposed solution;
(2) The alternative A(1) must also be the best ranked by S

and/or R so that the suggested solution A(1) shows stability
regarding summation of the benefits (S) and the maximum
benefits (R) in step 4.

C. Threat Model
Recently developed ML-based malware detection methods

have typically examined the effectiveness of their models
using two major validation methods, including cross-validation
and percentage splits. The cross-validation method splits the
dataset into K(1, ..., n) folds and selects one of them as a
target testing dataset while the rest folds are used for the
training dataset. And in the percentage split method, the dataset
is divided into two sections based on the percentage setting
allocated to training and the other to the testing set. However,
the major issue with these validation techniques is that the
testing data is split from the large dataset and is part of
the same data type used in the training dataset. Hence, such
validation methods could not imitate the zero-day or unknown
testing results in real-world applications in which the trained
ML classifiers should have never seen the testing dataset.

We use the top four HPCs to generate sub-datasets for train-
ing, validating, and testing baseline ML detectors, ensemble
methods, and the RL agents. To model the zero-day malware
threat type in our experiments, among all nine malware types,
we randomly considered four types of malware from rootkit,
backdoor, virus, and ransomware as the target zero-day test
data. Also, we held 30% of all benign data as a zero-day
test benign dataset. We kept both malware and benign aside
to imitate the zero-day testing data in real-world applications
in which the trained machine learning classifiers should have
no knowledge about the new malware types and have never
seen the testing dataset. The rest of the five types of malware
and benign samples are considered for training and known test
purposes, and we randomly split them into 70% for training
and 30% for known testing. Notably, our Reinforced-HMD
framework adopts the same settings for training and testing.

D. Reinforced-HMD: Training and Inference
As depicted in the top right part of Figure 3, the training

process of the Reinforced-HMD includes the autonomous RL
agents and RL environment. The goal of the RL system is
to find the best-parameterized reward function such that the
RL agent can select the most accurate and cost-effective mal-
ware detectors (according to users’ preferences and available
resources) that lead to high rewards (e.g., high detection rate,
low hardware overhead). For base detectors, we examined
the suitability of various standard machine learning classifiers
including JRIP, J48, OneR, MultiLayer Perceptron (MLP), Lo-
gistic Regression (LR), and RepTree classifiers. These models
are selected from different branches of machine learning and
their detection models can be a binary classification model
aligned with the zero-day malware detection task. In addition,
the figure shows the inference and evaluation process of the
RL system by presenting a case study on feeding tabular
HPCs data into the Reinforced-HMD for adaptive scheduling of
detectors. Algorithm 2 describes the Reinforced-HMD training
and inference procedures.

Algorithm 2 Process of RL-guided Reinforced-HMD

pre-process experience replay data;
initialize state S, RL agent θ, reward policy π;
let e← design criteria (F1, AUC, latency, area);
let d← selected malware detector;
let ML← ML model;
while training of RL system do

agent gets state st;
agent predicts y−tk = MLt(st), k = 1, 2, ..., 6 ML detectors;
agent performs action
at ← max{π(at1|st, y−t1, et1), ..., π(at6|st, y

−
t6, et6)},

action is selected based on detection and cost analysis of all ML
detectors;
agent receives reward rt and new state st+1;
update RL agent parameters θ;
end

while Inference of RL system do
for zero-day test data: 0→ n do

agent gets state st;
agent perform action to select a detector dt;
agent assigns the best dt to defend, gets y−t = (at|st, θ);
if y−t == yt true label then

increment detection rate;
record hardware overhead, selected detector dt;

else
end
calculate RL system detection metrics (F1, Accuracy, AUC) and overhead
(latency, area) for all test data.

end

1) RL Environment: We customize the Reinforced-HMD’s
RL environment based on OpenAI’s Gym [32]. OpenAI Gym
is an open-source interface that provides RL environments
for researchers to develop and benchmark new algorithms.
It also offers a structured interface for customizing our RL
environment. The Reinforced-HMD environment consists of
the following four key components and corresponding settings:

• State S consists of one set of experience replay data
pre-processed inside the RL environment and available to the
RL agent during run-time. It contains each row as a set of
four HPCs data, the predictions (correct/incorrect predictions)
from the six malware detectors, and their detection metrics
(F1, AUC) and hardware overheads (latency, area). The state

spaces (S) corresponds to six ML-based detectors regarding
their experience replay data.

• Action Spaces A are a set of all valid actions given
to the RL agent to choose from. Our RL environment has
six discrete action spaces available to the agent. Each action
corresponds to one of the six tested malware detectors.
Various actions will result in different consequences for
getting a reward or not, and how many rewards the agent can
receive. The RL agent is inclined to select the detector dt that
receives the highest rewards among the action space.

• Reward Policy π is a rule provided to the RL agent to
decide its best action at each step. The Reinforced-HMD’s
environment provides a deterministic policy that maps S

R→
A, where S is the set of possible states from experience
replay data. A is the action space containing all six de-
tectors. The reward policy depends on the design criteria
in our case. For the purpose of comprehensive analysis
of metrics trade-offs, we define five performance and de-
sign criteria (F1, AUC,AUC/Latency, F1/Area, and F1 ∗
AUC/Latency ∗ Area) as various target measurements to
motivate the RL agent to take action. The reward policy based
on F1 leads the agent to select the detector with the highest F-
measure among all correct-predicted ML models at time step
t. The reward policy based on (F1∗AUC)/(Latency∗Area)
will have a more balanced view to consider selecting the detec-
tor with a high detection rate and a low hardware overhead at
time step t. The goal of the reward policy is to enable the RL
agent to select proper actions to maximize total future rewards
for accurate and cost-aware HMD process.

• Experience Replay Data: To simulate the interaction
between the RL agent and environment, Reinforced-HMD uses
an algorithm to collect all the possible outcomes for different
malware detectors as the experience replay data. The presented
pipeline reads each state, goes through each classifier for each
state, and records the model detection performance (F1, AUC)
and hardware overhead (Latency, Area). Then, we collect all
the experience replay dataset for both known-test data (Train
RL) and zero-day data (Test RL). As mentioned earlier, we
consider three dataset partitions including train, known-test,
and zero-day test. The training dataset is used to train and
validate the ML detectors. These ML detectors are placed in
the branches of the RL environment so that the RL agent
can adaptively decide which branch to activate and use for
cost-aware malware detection. Furthermore, the unknown-test
dataset is a dataset that is set aside during the initial dataset
split and is used to train the RL agent. In this setting, we train
the RL agent such that each branch of the ML detector has not
seen the data before so that the RL agent can learn from the
new dataset. Once the RL agent is well-trained, the zero-day
test data is used to examine the RL agent on an unseen RL
environment. This is because the zero-day test dataset contains
new malware types, and both malware and benign data have
never been seen by either the ML detectors or the RL agent.

2) RL Agents: In Reinforced-HMD implementation, we
defined two model-free, deterministic RL agents to interact
with the environment. At each step, we trace the selected
detector dt chosen by RL agent. We let the selected ML model
defend at each time step to evaluate the HMD performance.
The goal is to determine if an adaptive selection of the optimal
detector would result in increasing the detection rate while

reducing the resource and computational overheads.

Algorithm 3 Upper Confidence Bound (UCB)

Input: Experience replay data
Output: Agent’s actions A = [a1, a2, ..., a6] is a set of detectors
-Set up observation space O, action space A, reward function R;

-Initialize the number of times of detector selected Nj for each detector all
as 0; initialize episode length as 20;
-Initialize upper bound value as 1e5, let episodes
τ = ⌊ length of training data

episode length
⌋;

while episodes τ is not terminal do
for step in each episode do

for j=1,2,...,6 detectors do
1) calculate average reward

-
rj(n) = Rj(n)/Nj(n) if Nj is

not zero, otherwise use the default value of 1e5

2) calculate delta δj(n) =

√
3
2

log(n)
Nj(n)

3) update upper bound =
−
r j(n) + δj(n)

4) a← detector j having maximum upper bound
4) return S

′
, r, a to the agent

end
Agent takes action a, record accumulated rewards
Update current state S ← S

′
.

end
end

- Upper Confidence Bound (UCB): UCB is a deterministic
algorithm that leverages a maximum confidence boundary to
decide whether to explore or exploit the RL environment. As
shown in Algorithm 3, it firstly assigns a high maximum
confidence boundary of 1e5 for each branch that the RL
agent shall learn from the data and gradually update it for
each branch later when explorations progress. Initially, the
RL agent randomly selects one of the branches to explore.
Depending on how much reward this branch leads to, this
branch’s corresponding confidence interval is either increased
or reduced. In the next round, the RL agent chooses the branch
with the highest upper bound to explore and update rewards
in the confidence interval.

At the end of round N, the UCB-based RL agent calculates
the average reward rj(n) and δj(n), and updates the upper
bound boundary interval [rj(n) − δj(n), rj(n) + δj(n)]
where rj(n) is the average reward of all rounds of N,
δj(n) is the knowledge gained from the current round. Delta
δj(n) encourages more exploration, and the average rewards
rj(n) facilitates exploitation. When the RL agent has little
knowledge of the best branch, it favors more explorations to
search through all branches. As more rounds of exploration
progress, more knowledge of the possible best branch is
gained, the RL agent gradually shifts to exploitation to
select the branch with the highest upper bound value. UCB
greedily trials each detector on each round of exploration
and evaluates the possible rewards according to the reward
policy. Given different base classifier, UCB algorithm can
almost explore the maximum potential rewards among the
six malware detectors, with a relatively longer computation
time. Since our environment is lightweight, the time used
for executing UCB is slightly longer than Q-learning but
very trivial. Detailed implementation is shown in Algorithm 3.

- Q-Learning: Q-Learning is an off-policy algorithm to
determine the best action given the current state by keeping
track of a Q-table that gets updated after each episode with its
row corresponding to the state and its column to the action.
An episode ends after a set of actions is completed. In the

end, the Q-table suggests the optimal policy. We implement
Q-learning as shown in Algorithm 4.

Algorithm 4 Q-Learning
(1) Input: Experience replay data
(2) Output: Agent’s actions A = [a1, a2, ..., a6] is a set of detectors

- Set up observation space O, action space A, reward function R;
- Initialize Q table Q[si, aj]← 0 for 20 steps/episode for 6 detectors, with
the initial value Nj , the number of detector selected for each detector as 0;
- Initialize learning rate α, discount factor γ, epsilon ϵ; let episodes
τ = ⌊ length of training data

episode length
⌋;

while episodes τ is not terminal do
(3) for step in each episode do

Generate a random number X ∼ [0, 1];
if X > ϵ then

a← max(Q(si, aj), j = 1, 2, ...6);
end
else

a← X;
end

(4) Agent takes action a, record accumulated rewards;
(5) Update current state S ← S

′
;

(6) Update Q table:
Q(s, a)← Q(s, a) + α[R+ γ ·maxQ(st+1, at+1)−Q(s, a)];

end
end

As shown in Algorithm 4, the RL agent deploys Q-table to
track the maximum reward for the action it takes at each state.
Initially, the Q value for each of the six branches is zero. The
RL agent randomly selects a branch to explore. The parameter
of epsilon ϵ helps the agent to decide on whether to explore
or to exploit. The initial value for epsilon ϵ is a small value
between [0,1]. In experiments, we found that 0.5 is the best
value. The Q-function uses the Bellman equation as shown in
line 6 of Algorithm 4 to update the Q-value at each step.

The Q value considers both the current reward R and the
discounted future rewards. Current rewards are more important
than future rewards when the RL agent makes a decision. This
is an iterative process until all training data are explored. As
the RL agent starts to explore the environment, the Q-function
gives optimal approximations by continuously updating the Q-
values in the table. We initially set the learning rate alpha α,
the discount factor gamma γ, and epsilon each as a small value
of [0,1], and we train the RL agent to learn the most optimal
values of them. Our final alpha α is 0.35, gamma γ is 0.3,
epsilon ϵ is 0.5.

3) Online Inference: We evaluated Reinforced-HMD on 1)
sum of rewards, 2) RL system’s malware detection accuracy,
3) RL system’s detection and cost-effectiveness. Figure 3
right bottom shows a case study for inference and evaluation
process. As shown, first each row of the four zero-day tests
HPCs (state st) is fed into the RL environment. The RL agent
loads all six ML-based detectors in different branches to run
predictions. Among all six models, any ML which predicts the
sample HPC correctly is eligible to receive a reward from the
environment. If all ML models predict wrongly, the system
assigns the least-costly ML (in terms of latency and hardware
overhead) as the default detector with a reward granted.

In many situations, multiple ML models perform a correct
prediction in which the RL system will evaluate detection and
cost analysis for all six ML models to select the detector with
the highest reward. The selected detector is then recorded one
by one for all test data until the adaptive branching selection
through the RL system is complete. Lastly, to evaluate the

effectiveness of the RL system, we use the recorded selection
of malware detector at each time step to reproduce the defend-
ing process to obtain the result. We first load the ML model
selected by the RL system at each time step and feed with the
same row of four HPCs data to let each model run prediction.
We record each prediction for all test data and calculate the
RL system’s evaluation metrics.

III. EVALUATION RESULTS
This section presents a detailed analysis of experimental

results on the effectiveness of proposed RL-guided framework
for adaptive and on-device zero-day malware detection.

A. Base ML-based Malware Detectors
Table II shows the base ML-based malware detectors’ de-

tection metrics and hardware overheads. Given the importance
of analyzing hardware overhead of ML classifiers used for
efficient on-device malware detection, we develop the ML-
based malware detectors at the hardware level and analyze
their associated area and latency overheads. We used Vivado
HLS compiler to develop the HDL implementation of the
classifiers on Xilinx Virtex 7 FPGA. The latency is considered
as the number of clock cycles (cycles @10 ns) and the area
overhead is calculated using the total number of utilized LUTs,
FFs, and DSP units in the FPGA. We evaluate ML models
in two ways. Firstly, we benchmark the RL-based method
with ML-based and ensemble methods. Secondly, the six pre-
trained MLs are available to the RL agents to select one ML
at each step that returns the highest reward. This metric shows
that the J48 decision tree can achieve the highest detection
performance, 87% in F1-score and 89% in AUC, respectively.
The results highlights the cost-inefficiency of MLP and LR
algorithms with highest latency and area overhead among
others. However, regarding latency, OneR is the fastest with 1
ms outperforming J48 (3 ms). Also, regarding the area, JRIP
classifier outperforms both OneR and J48 classifiers.
TABLE II: Base classifiers’ detection rate and overhead for unknown HMD.

ML Models Accuracy F1-score AUC Latency (ms) Area

JRIP 0.91 0.86 0.89 2 156
J48 0.91 0.87 0.89 3 584
Logistic Reg. 0.62 0.14 0.50 59 11815
MLP 0.62 0.14 0.51 102 25667
OneR 0.70 0.46 0.63 1 292
RepTree 0.90 0.86 0.88 3 377

B. Reinforced-HMD Evaluation
1) Learning Performance: Figure 4 illustrates the training

speed in episode rewards (left) and the sum of rewards (right)
for the two RL agents UCB and Q-learning used in Reinforced-
HMD, over the zero-test test episodes for the design criteria of
F1∗AUC/Latency∗Area. Since UCB is a greedy algorithm
that exhaustively searches for the best-optimal detector at
every step, it learns faster giving the most sum of rewards.
Whereas, Q-learning is trained with a set of parameters, and
the agent takes more episodes to explore. As shown, UCB is
a more stable decision-maker to be used in Reinforced-HMD
for selecting the optimal detector along with all episodes.

2) Performance vs. Cost-Efficiency Analysis against State-
of-the-Art ML Models: Table III reports the detection per-
formance and hardware overhead improvement of using our
presented RL-guided framework as an adaptive and cost-aware
model as compared with using the best classical ML model
(J48) and widely used ensemble models. As seen, RL-UCB
has a nearly perfect capability (99.65%) to select the most

Fig. 4: Learning speed (left) and Sum of Rewards (right) of the two RL agents:
UCB (blue) and Q-learning (orange). Both analysis are based on the design
criteria of (F1*AUC)/(Latency*Area).

optimal malware detector that helps the RL system reaches
a 96% detection rate in both F1-score and AUC, which is
1% higher than majority voting and a 9% up than J48. Since
the RL system considers a balanced strategy across detection
metrics and low hardware overhead, RL-UCB has much less
hardware latency, 12 times lower than ensemble-based majority
voting, and 44% lower than the light-weight J48 algorithm.
Meantime, UCB consumes 36 times less hardware area than
majority voting, 2.34 times less than J48.
TABLE III: Analysis of the proposed RL-guided techniques with the best
detector (J48) and ensemble-based methods for adaptive and cost-aware zero-
day malware detection strategy.

Approach Selection
Probability

RL System
F1-score

RL System
AUC

HW
Latency
(ms)

HW
Area

J48 N/A 0.87 0.89 3 584
Majority
Voting 51% 0.95 0.95 28 6482

Stacking 25% 0.91 0.91 28 6482
RL-UCB 99.65% 0.96 0.96 2.08 175
RL-Q-
learning 89% 0.93 0.93 6.1 1190

To accordingly account for malware detection rate and area
overhead impact, in Figure 5 we show the trade-off analysis
between the five tested ML-based detectors regarding their
detection rate (F1-score) vs. models’ hardware overhead (area).
We use F1-score over area to determine the models that require
small area and yet can detect the maliciousness of program
with high performance. A classifier with a higher value in
F1 and low value in area is considered more effective. As
observed, an RL-based UCB is the best balanced solution
with a high F1-score (96%) while occupying a minimal area
outperforming other models. The majority voting has a high
F1-score (95%) but with an increased area that makes the
solution impractical for efficient on-device malware detection.
Also, stacking method is the least optimal selector with 91%
F1-score while consuming a high area on the host hardware.

Fig. 5: Detection rate vs. area overhead comparison of RL (UCB, Q-learning),
ensemble (majority voting, stacking) and best ML model (J48).

Figure 6 depicts the relationship between all methods’
selection probability of the optimal detector versus the cost-
efficiency measured across two design criteria of F1/AUC

Fig. 6: The relationship between all RL and ensemble methods’ selection
probability of the optimal detector vs. system efficiency with two design
criteria: F1/Area (Design 1) and (F1*AUC)/(Latency*Area) (Design 2).

and (F1 ∗ AUC)/(Latency ∗ Area). The results show that
the Reinforced-HMD based on UCB agent leads to a higher
selection probability for both designs in choosing the most
optimal malware detectors during run-time which leads to a
higher cost-efficiency. Overall, UCB outperforms Q-learning
by 11% in selection probability, which results in an increment
of 20% efficiency measured in (F1∗AUC)/(Latency∗Area).
Moreover, RL-based UCB outperforms majority voting by
nearly 49% to select the most optimal malware detector at
run-time while delivering a five times higher cost-efficiency.

IV. CONCLUSION
Prior studies on Hardware-Assisted Malware Detection

(HMD) have not presented a flexible and balanced solu-
tion that accounts for the detection performance and cost-
efficiency trade-off analysis for accurate yet low-cost online
malware detection. In this work, for the first time we have
highlighted and tackled major issues with adaptive and cost-
aware zero-day malware detection using low-level hardware
events. We first propose a unified feature selection method
based on a heterogeneous feature fusion technique to effec-
tively determine the most prominent HPC events for on-device
HMD. We further present Reniforced-HMD, a novel reinforce-
ment learning-guided framework for adaptive and cost-aware
hardware-assisted zero-day malware detection using an optimal
number of hardware features. The results indicate that our
novel framework obtains a superior detection performance
(96% in both F1-score and AUC) for recognizing unknown
malware using a limited number of hardware events facilitating
an accurate, flexible, and low-cost on-device HMD.

V. ACKNOWLEDGMENT
This work is supported by the National Science Foundation
under Award No. 2139034.

REFERENCES
[1] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in

2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 1–19.
[2] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”

in 27th USENIX Security Symposium (USENIX Security 18), Baltimore,
MD, Aug. 2018, pp. 973–990.

[3] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” in ISCA’13. ACM, 2013, pp. 559–570.

[4] A. Bettany et al., “What is malware?” in Windows Virus and Malware
Troubleshooting. Springer, 2017, pp. 1–8.

[5] H. Sayadi et al., “Recent advancements in microarchitectural security:
Review of machine learning countermeasures,” in MWSCAS’20, 2020,
pp. 949–952.

[6] A. Tang et al., “Unsupervised anomaly-based malware detection using
hardware features,” in RAID’14. Springer, 2014, pp. 109–129.

[7] H. Sayadi et al., “Ensemble learning for effective run-time hardware-
based malware detection: A comprehensive analysis and classification,”
in Design Automation Conference (DAC’18), 2018, pp. 1–6.

[8] M. Ozsoy et al., “Malware-aware processors: A framework for efficient
online malware detection,” in HPCA’15, 2015, pp. 651–661.

[9] H. Sayadi et al., “2smart: A two-stage machine learning-based approach
for run-time specialized hardware-assisted malware detection,” in De-
sign, Automation Test in Europe Conference Exhibition (DATE’19),
March 2019, pp. 728–733.

[10] B. Zhou et al., “Hardware performance counters can detect malware:
Myth or fact?” in ASIACCS’18, 2018, pp. 457–468.

[11] K. Basu, P. Krishnamurthy, F. Khorrami, and R. Karri, “A theoretical
study of hardware performance counters-based malware detection,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp.
512–525, 2019.

[12] H. Sayadi et al., “Stealthminer: Specialized time series machine learning
for run-time stealthy malware detection based on microarchitectural
features,” in GLSVLSI’20, 2020, p. 175–180.

[13] S. M. P. Dinakarrao et al., “Cognitive and scalable technique for
securing iot networks against malware epidemics,” IEEE Access, vol. 8,
pp. 138 508–138 528, 2020.

[14] B. Singh et al., “On the detection of kernel-level rootkits using hardware
performance counters,” in ASIACCS’17, 2017, pp. 483–493.

[15] H. M. Makrani et al., “Adaptive performance modeling of data-intensive
workloads for resource provisioning in virtualized environment,” ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS), vol. 5, no. 4, pp. 1–24, 2021.

[16] H. Sayadi and H. Homayoun, “Scheduling multithreaded applications
onto heterogeneous composite cores architecture,” in 2017 Eighth
International Green and Sustainable Computing Conference (IGSC).
IEEE, 2017, pp. 1–8.

[17] H. Wang et al., “Hybrid-shield: Accurate and efficient cross-layer
countermeasure for run-time detection and mitigation of cache-based
side-channel attacks,” in ICCAD’20, 2020.

[18] A. P. Kuruvila et al., “Analyzing the efficiency of machine learning
classifiers in hardware-based malware detectors,” in ISVLSI’20. IEEE,
2020, pp. 452–457.

[19] K. N. Khasawneh et al., “Ensemble learning for low-level hardware-
supported malware detection,” in RAID’15, 2015, pp. 3–25.

[20] L. Bilge and T. Dumitras, “Before we knew it: An empirical study
of zero-day attacks in the real world,” in CCS’12. ACM, 2012, p.
833–844.

[21] V. FrancoisLavet et al., “An introduction to deep reinforcement learn-
ing,” Foundations and Trends in Machine Learning, vol. 11, no. 3-4,
pp. 219–354, 2018.

[22] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for
cyber security,” IEEE Transactions on Neural Networks and Learning
Systems, 2019.

[23] S. Das et al., “Sok: The challenges, pitfalls, and perils of using hardware
performance counters for security,” in IEEE SP, 2019, pp. 20–38.

[24] M. Helsely, “Lxc: Linux container tools,” in IBM developer works
technical library, 2009.

[25] M. R. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in IISWC’01, Dec 2001, pp. 3–14.

[26] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[27] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[28] B. C. Ross, “Mutual information between discrete and continuous data
sets,” PLoS ONE, vol. 9, 2014.

[29] F. Ferri et al., “Comparative study of techniques for large-scale feature
selection,” in Pattern Recognition in Practice IV, ser. Machine Intel-
ligence and Pattern Recognition, E. S. Gelsema et al., Eds. North-
Holland, 1994, vol. 16, pp. 403–413.

[30] A. Hashemi et al., “Mfs-mcdm: Multi-label feature selection using
multi-criteria decision making,” Knowledge-Based Systems, vol. 206,
p. 106365, 08 2020.

[31] J. P. N. Papathanasiou, Multiple Criteria Decision Aid: methods, exam-
ples and python implementations. Springer, 2019.

[32] G. Brockman et al., “Openai gym,” 2016.

