
Joint Optimization of Chain Placement and Request
Scheduling for Network Function Virtualization

Qixia Zhang1 Yikai Xiao1 Fangming Liu∗1 John C.S. Lui2 Jian Guo1 Tao Wang1
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology
2The Chinese University of Hong Kong

Abstract—Compared with executing Network Functions (NFs)
on dedicated hardwares, the recent trend of Network Function
Virtualization (NFV) holds the promise for operators to flexibly
deploy software-based NFs on commodity servers. However,
virtual NFs (VNFs) are normally “chained” together to provide
a specific network service. Thus, an efficient scheme is needed to
place the VNF chains across the network and effectively schedule
requests to service instances, which can maximize the average
resource utilization of each node in service and simultaneously
minimize the average response latency of each request. To this
end, we formulate first VNF chains placement problem as a
variant of bin-packing problem, which is NP-hard, and we model
request scheduling problem based on the key concepts from open
Jackson network. To jointly optimize the performance of NFV, we
propose a priority-driven weighted algorithm to improve resource
utilization and a heuristic algorithm to reduce response latency.
Through extensive trace-driven simulations, we show that our
methods can indeed enhance performance in diverse scenarios.
In particular, we can improve the average resource utilization
by 33.4% and can reduce the average total latency by 19.9% as
compared with the state-of-the-art methods.

I. INTRODUCTION

In today’s enterprise and datacenter networks, middleboxes

(e.g., firewall, load balancer, WAN accelerator)—also known

as Network Functions (NFs)—play a critical role in ensuring

security and enhancing performance [1]. Recently, the emerg-

ing Network Function Virtualization (NFV) technology shifts

the way of how those NFs are implemented, by migrating

them from dedicated hardwares to commodity servers. The

trend of NFV makes it easy for operators to flexibly manage

the network [2]–[4] and quickly deploy and scale up NFs to

meet the traffic demand [5].

Typically, Virtual Network Functions (VNFs) are chained

together—known as NF chaining—to provide a specific net-

work service [6]–[8]. For instance, in datacenters, some flows

need to traverse a firewall function and a load balancer

function, while other flows need only to traverse the firewall

function for processing. Since datacenter traffic exhibits high

volume and high variation in both temporal and spatial di-

mensions [9], [10], an appropriate method is needed to place

various VNF chains in datacenter networks so that they can

serve requests effectively.

*This work was supported in part by the National 973 Basic Research
Program under Grant 2014CB347800, and in part by NSFC under Grant
61520106005. (Corresponding author: Fangming Liu)

To flexibly process VNFs so as to achieve high resource
utilization and low response latency in datacenters, we need

to deal with two important tasks: (1) efficiently placing VNFs

on commodity servers to achieve high resource utilization and

(2) effectively scheduling requests to achieve low response

latency, which includes both queuing latency and processing

latency [11]. For the first task, Fig. 1 shows that low uti-

lization of computing resource often increases the number of

computing nodes in service, which furthermore increases the

propagation delay and transmission cost of network flows [12].

For the second task, Fig. 2 shows that effectively scheduling

requests can reduce the average queuing delay and processing

latency of service instances. Here, a service instance means

an instance of a VNF that is set up on a computing node and

can serve requests with a positive service rate [13]. Besides,

the second way of scheduling requests in Fig. 2 also lowers

the job rejection rate, where job rejection rate refers to the

ratio of requests rejected by the service instances among all

requests due to the admission control mechanism.

Considering several essential characteristics of VNF chains

and requests, we meet three major challenges when dealing

with these two tasks:

• Since a request’s arrival process at a VNF is associated

with the service process at the former VNF (if there is

any), this “chaining” requirement makes it inappropriate

to place each VNF independently. Besides, different

requests often require different VNF chains, which makes

this problem even more challenging. Hence, we need to

find an appropriate model so as to capture these important

properties.

• Due to the difference in resource capacity among comput-

ing nodes and the difference in resource demand among

VNFs, it is usually computational expensive to find out

the optimal solution for placing all VNFs. Hence, we

aim to find a near-optimal solution which can improve

the average resource utilization of each computing node

and reduce the execution cost simultaneously.

• Since each service instance of a VNF can be shared by

multiple requests, improper scheduling of requests will

lead to frequent congestions and high job rejection rate.

Thus, an effective method is needed to schedule multiple

requests to VNF instances, which would reduce queuing

latency and job rejection rate.

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.232

2028

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.232

2025

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.232

731

(a) Inter-server processing

Node2

(b) Intra-server processing

Node1Node2Node1
VNF2 VNF3 VNF2 Free

VNF1

Free

Free FreeVNF1

VNF3

Fig. 1: An example of two ways to place a VNF chain. By mov-
ing VNF3 from Node2 to Node1 (which has sufficient remaining
resources to serve these three VNFs), the VNF chain is converted
from (a) inter-server processing to (b) intra-server processing [11].

Instance1

Instance2

Instance1

Instance2

1 100

2 50
2 50

1 100

(a) (b)
VNF VNF

Fig. 2: An example of two ways to schedule two requests, where
λ1 and λ2 represent the average packet arrival rate of each request.
Instance1 and Instance2 are two service instances of a VNF, which
are serving different numbers of requests respectively.

Differing from previous works, our work comprehensively

addresses these three challenges. We tackle the first challenge

by applying the theory of open Jackson network to model

VNF chains in datacenter networks. For the second challenge,

we formulate the VNF placement problem as a variable sized

bin packing problem to prove its NP-hardness, and then

we propose a cost-effective scheme to ensure near-optimal

placement of VNFs. We also carefully design a heuristic

algorithm to solve the third challenge.

In summary, we study the VNF chain placement and request

scheduling problem, which is a timely important problem in

datacenters. The contributions of this paper are as follows:

• We apply the theory of open Jackson network to model

VNF chains. Our model not only captures the actual

network traffic characteristics in datacenter networks, but

also includes network congestions (reflected by packet

loss rate) and job rejection rate.

• In order to maximize the average resource utilization,

we propose a priority-driven weighted algorithm to

achieve near-optimal placement of VNF chains with a

theoretically-proved worst-case performance bound; and

in order to minimize the average response latency, we

propose a heuristic algorithm to schedule requests cost-

effectively.

• Through theoretical analysis and extensive trace-driven

simulations, we show that our methods improve the

average resource utilization by 33.4% and reduce the

average total latency by 19.9% as compared with the

state-of-the-art methods.

II. RELATED WORK

At present, previous works on VNF placement problem tend

to map it into two NP-hard problems: Virtual Network Embed-

ding (VNE) problem and location-routing problem [13]–[15].

Usually they do such mapping for showing NP-hardness and

then solve the VNF placement problem accordingly. Cohen

et al. [14] propose the NFV location problem and map it to

two NP-Hard problems: the facility location problem and the

Generalized Assignment Problem, and they solve the problem

by jointly placing network functions and calculating path in

the embedding process. Similarly, Mehraghdam et al. [13]

hierarchically solve the placement of VNFs and then the

chaining problem. In [15], Moens and Turck decouple the

legacy VNE problem into VNF chaining and VM embedding

problem, and they specify both VM requests and service

requests. Xia et al. [16] provide an NFV network model for

ISP operations.

Nevertheless, these NP-hard problems do not integrate some

key characteristics in the VNF chain placement problem.

For instance, the VNE problem mainly focuses on how to

deploy VNFs on physical networks, specifically on different

templates of VMs, while a request usually requires a chain of

VNFs. In other words, chaining requirements are not addressed

well in the VNE problem [14]. Furthermore, combining the

VNE problem and the location-routing problem still does not

address the problem well. Even though [13] and [15] consider

the chaining requirements, their proposed solutions do not

scale well for large problem instances. Moreover, most existing

works just assume that the network is uncongested and do

not consider packet loss situations. In fact, congestions do

occur in datacenter networks, hence queuing delay and packet

losses should not be ignored. In addition, retransmission of

packets will bring in feedbacks among requests, which makes

previous approaches not applicable. To cover these aspects,

request scheduling should be jointly considered when placing

VNF chains. Thus, an effective scheme to schedule requests

is urgent needed in datacenter networks.

Differing from existing works, we apply the theory of

open Jackson network to capture the actual network traffic

characteristics in datacenter networks. Our model includes

both network congestions (reflected by packet loss rate) and

job rejection rate. We jointly optimize VNF chain placement

and request scheduling by proposing two heuristic algorithms

to achieve high resource utilization and low response latency,

both of which outperform the state-of-the-art methods.

III. MODEL AND FORMULATION

In this section, we first present our model as key notations

are listed in Table I and II. Then we elaborate on why we

apply the open Jackson network to model VNF chains. Lastly,

we formally present our objectives combined with constraints.

A. Mathematical Model

We model the datacenter network as a connected graph

G = (V,E), where V is the set of computing nodes and

E is the set of edges (or links) for connecting computing

nodes through switch nodes (which are not included in set V).

Since datacenter network provides high bi-sectional bandwidth

[17], queuing latency on switch nodes is relatively low. We

assume that there are sufficient switch capacities to ensure

20292026732

the connectivity of the network, and we only consider placing

VNFs on computing nodes in our model.

The computing resource consumption of a VNF can be

expressed in terms of CPU, memory and network bandwidth.

According to the related works, such as [3], [13] and [16],

we find that CPU is usually defined as the bottleneck resource

in most VNFs, while other hardware resources are relatively

sufficient in most cases. Consequently, we define Av as the

CPU-bounded resource capacity of computing node v ∈ V ,

while other resources (e.g., memory, network bandwidth) are

modeled as additional constraints.

A VNF f ∈ F can be placed at any computing node v ∈ V
if it has sufficient resource capacity, where F is the set of

VNFs. We use a binary variable xfv to indicate whether VNF

f ∈ F is deployed at node v ∈ V (1 if so, 0 otherwise). Since

multiple VNFs can be placed at the same computing node, we

also define a binary variable yv indicating whether computing

node v ∈ V has deployed any VNF f ∈ F . The relationship

between yv and xfv can be expressed in Eq. (1).

∀v ∈ V : yv =

⎧⎪⎪⎨
⎪⎪⎩

0,
∑
f∈F

xfv = 0,

1,
∑
f∈F

xfv > 0.
(1)

In fact, multiple service instances of a VNF can be deployed

at the same computing node to deal with multiple requests. We

use Mf to indicate the number of service instances that VNF

f ∈ F can deploy. To satisfy the constraint of the integrity of

each VNF, we suggest placing all service instances of a VNF

at one computing node, which actually helps the operators to

save the setup cost. If all the service instances still cannot

cope with all the requests, we can then place some replicas of

the VNF on different nodes, and regard each replica as a new

VNF. Hence, we have Eq. (2).

∀f ∈ F :
∑
v∈V

xfv = 1. (2)

We use a notation R to represent the set of requests. A chain

of VNFs should be applied to a request r ∈ R in a specific

order, hence we use a symbol Uf
r to indicate whether VNF

f ∈ F is required in request r ∈ R (1 if so, 0 otherwise). Since

some service instances can be shared by multiple requests, we

have inequality (3).

∀f ∈ F : Mf ≤
∑
r∈R

Uf
r . (3)

We assume that the service time for packets on each service

instance of VNF f ∈ F follows an exponential distribution

with a parameter μf . We distinguish the service instances by

a positive integer k ≤Mf . We define a binary variable zfr,k to

indicate whether a request r ∈ R uses the k-th service instance

of VNF f ∈ F . We also define a binary variable ηrv to indicate

whether a request r ∈ R traverses any VNF on node v ∈ V .

TABLE I: Set

Symbol Description

G The graph G = (V,E) representing the datacen-
ter network

V The set of computing nodes within the network
E The set of edges (or links) within the network
F The set of Virtual Network Functions (VNFs)
R The set of requests, where each request needs to

traverse a specific VNF chain

TABLE II: Parameter and Variable

Symbol Description

Av Resource capacity of computing node v ∈ V
Df Resource demand of each service instance of

VNF f ∈ F
Mf Number of service instances of VNF f ∈ F that

can be deployed

Uf
r 1 if request r ∈ R uses VNF f ∈ F , 0 otherwise

μf Average service rate of VNF f ∈ F , μf > 0
λr Average packet arrival rate of request r ∈ R,

λr > 0
Λf

k Equivalent total arrival rate of packets at the k-th
service instance of VNF f ∈ F , Λf

k > 0
Pr Probability of packets of request r ∈ R that are

received correctly by the destination, 0 < Pr ≤ 1
ηr
v 1 if request r ∈ R needs to traverse any VNF

placed at computing node v ∈ V , 0 otherwise

xf
v 1 if VNF f ∈ F is placed at computing node

v ∈ V , 0 otherwise
yv 1 if there is any VNF f ∈ F placed at computing

node v ∈ V , 0 otherwise

zfr,k 1 if request r ∈ R uses the k-th (k < Mf) service
instance of VNF f ∈ F , 0 otherwise

Their relationship can be described as follows:

∀r ∈ R, v ∈ V : ηrv =

⎧⎪⎪⎨
⎪⎪⎩

0,
∑
f∈F

xfvU
f
r = 0,

1,
∑
f∈F

xfvU
f
r > 0.

(4)

For each request r ∈ R using VNF f ∈ F , it should be

mapped to exactly one service instance of f . In other words,

if it does not traverse a VNF, none of its service instances can

be used by this request. Hence, we have Eq. (5).

∀r ∈ R, f ∈ F :

Mf∑
k=1

zfr,k = Uf
r . (5)

A request can be allocated to any service instance if needed.

Hence, the resource demand Df of each service instance of

VNF f ∈ F can be estimated by the number of requests

allocated to it. Since we can place multiple VNFs at the

same computing node if and only if it has sufficient resource

capacity, we express this constraint in inequality (6).

∀v ∈ V :
∑
f∈F

xfv ·Mf ·Df ≤ Av. (6)

For each request, packets arrive as a Poisson stream with

an arrival rate λr. Let Pr (0 < Pr ≤ 1) be the probability

20302027733

that packets of request r ∈ R are received correctly by

the destination. Lost or incorrectly-received packets would be

retransmitted from source to destination as a feedback. We use

Λf
k to indicate the equivalent total arrival rate of the packets

at the k-th service instance of VNF f with a packet loss rate

(1−Pr). Hence, we have the relationship between λr and Λf
k :

∀f ∈ F : Λf
k =
∑
r∈R

(λr/Pr) · zfr,k. (7)

B. Applying the Theory of Open Jackson Network

First of all, we explore the Input Process, Queuing Disci-
pline and Service Process of our problem according to the

queuing network theory [18].

• Input Process - Packets of a request r arrive stochastically

as a Poisson stream with an arrival rate λr. The arrival

process of each packet is independent of each other.

• Queuing Discipline - When a packet arrives at an idle

service instance, it will get served immediately; Other-

wise, the packet will be queuing in a buffer. Packets are

served on a first-come, first-served basis.

• Service Process - Each service instance of a VNF handles

packets independently. We assume that the service time

is exponentially distributed and each service instance of

VNF f has a single server fixed rate μf .

Based on the discussion above, we elaborate on how we

apply the theory of open Jackson network to model requests.

A request with a packet loss feedback. For instance, as

shown in Fig.3, packets of a request traverse two VNFs from

source to destination, named by VNF1 and VNF2 respectively.

Packets arrive as a Poisson stream with an arrival rate λ0. The

service time of both VNFs are exponentially distributed with

a parameter μ1 and μ2 respectively. When a packet arrives, it

is served by these two VNFs successively and then leaves the

network. A NACK is sent by the destination when a packet

has lost or not been properly received [11]. If so, the packet

will be retransmitted as soon as the NACK is received by

the source. We denote by P the probability of a packet being

received correctly. Hence, packet loss rate can be expressed

as (1− P).

Since the total stream entering the network must be equal

to the total stream leaving the network, we have:

λ0 + (1− P)λ2 = λ,λ = λ1 = λ2,

According to Burke’s Theorem [18], when the network reaches

its steady state, we have:

λ = λ0/P.

Let E[Ni] be the average number of packets in the queue

of VNFi and E[Ti] be the average response latency of each

packet in the queue (i.e., the buffer) of VNFi. Based on

Jackson’s theorem [18], we have:

E[Ni] =
λ0

Pμi − λ0
, i = 1, 2,

E[Ti] =
1

Pμi − λ0
, i = 1, 2.

11 22
1 2Poisson

stream
1VNF 2VNFP

Source

1 2
0

Destination
2(1)P

2P

Fig. 3: An example of a request traversing two VNFs from source
to destination with an Poisson arrival rate λ0 and a packet loss rate
(1− P).

Besides, the total response time of this request is:

E[T] =

2∑
i=1

E[Ti] =
1

Pμ1 − λ0
+

1

Pμ2 − λ0
.

In conclusion, we notice that this queuing network must

satisfy two conditions: (1) the interval time distribution of

arriving requests follows a Poisson distribution; and (2) the

service time of each service instance follows an exponential

distribution. Based on Jackson’s Theorem, we can model each

service instance as an M/M/1 queue with the same packet

arrival rate. Since an M/M/1 queue captures the growth in

delay for low loads and high costs near system capacity, this

model suits our hypothesis well. This way, we consequently

model each request as an open Jackson network. Besides, with

the growth of multi-processing capabilities, powerful network

processors manage to keep the average response latency under

a manageable threshold on traditional network nodes, despite

the increased time that it takes for complex packet processing

functions [19].

Multiple requests in a datacenter network. In a datacenter

network, different VNFs can be distributed on different com-

puting nodes. Since different requests may require different

VNF chains, and some VNFs can be shared by multiple

requests, several flows of packets may merge at the same

node. Accordingly, all requests in a datacenter network can

be modeled as a large interconnected network. Considering

the influence among multiple requests, we believe that it is

valid to apply the theory of open Jackson network.

Fig. 4 describes an example of this situation, where there

are three requests r1, r2 and r3, with their average packet

arrival rate λ1, λ2 and λ3. As we can see, packets of different

requests traverse different VNFs. Besides, this figure also

depicts how the requests are allocated to the service instances.

For example, request r2 uses the second service instance of

VNF2, and it shares the second service instance of VNF3

with request r1. Due to the sharing characteristic of service

instances, an effective method is needed to merge the flows.

Based on Kleinrock’s Approximation [18], we define λi as the

equivalent total arrival rate at a service instance i, which can

be expressed by:

λi = λ0i +
k∑

j=1

λjPji, i = 1, ..., k.

Where λ0i refers to external flows of requests and λjPji refers

to internal flows merging into service instance i.

This way, we merge several flows of requests into an service

instance as one flow. Each service instance i behaves as

20312028734

1

2

3

2r
3r

1rRequests:

1

2

3

1VNF

2VNF

3VNF

2

3

1r

1r

2r

3r

1VNF

2VNF

3VNF
2

1

1

1r
2r
3r

2 3+

1 3

Fig. 4: An example of scheduling three requests to multiple service
instances of three VNFs.

if the arrival stream Λi were Poissonian. Due to the state-

independent service rate of each instance, we can calculate the

probability of having n packets in the queue, π(n), and the

utilization of a service instance, ρfk , which can be expressed

as follows.

∀f ∈ F : π(n) = (1− Λf
k

μf
)(
Λf
k

μf
)n, n ∈ N (8)

∀f ∈ F : ρfk = Λf
k/μf . (9)

where k is the k-th service instance of VNF f , k = 1, ...,mf ;

and ρfk should satisfy ρfk < 1. When the arrival rate is larger

than the service rate, the admission control mechanism will

drop some requests to ensure the normal operation of the

services. As mentioned in Sec. I, we use the job rejection

rate to measure this metric.

In an open Jackson network, when each service instance

reaches its steady state, the average number of packets N(f, k)
can be expressed in Eq. (10).

∀f ∈ F : N(f, k) =
ρfk

1− ρfk
. (10)

Based on the additivity property of Poisson streams [20] and

Little’s formula [18], we can express the average response
latency W (f, k) in Eq. (11), which contains both queuing

latency and processing latency.

∀f ∈ F : W (f, k) =
N(f, k)∑

r∈R

λrz
f
r,k

=
ρfk

(1− ρfk)
∑
r∈R

λrz
f
r,k

.

(11)

When Pr = P, ∀r ∈ R, we have:

W (f, k) =
1/P

μf −
∑
r∈R

Λf
k

=
1

Pμf −
∑
r∈R

λrz
f
r,k

. (12)

where k = 1, ...,mf is the k-th service instance of VNF f .

To sum up, considering various requests in a datacenter

network, we apply the theory of open Jackson network for

modeling. Based on Kleinrock’s Approximation and Jackson’s

Theorem, we merge several flows of requests into an service

instance as one flow, and model each service instance as an

M/M/1 queue. Packets loss rate and job rejection rate are both

included in our model.

C. Objectives

In the sections above, we have formulated some relations

between parameters and variables. We assume all these con-

straints should be satisfied once defined. In general, we have

the following two objectives.

Objective 1: Maximize the average resource utilization
of each computing node. To this end, we aim to take full

advantage of the resource capacity of each computing node in

service, thus we have:

max
∑
v∈V

((
∑
f∈F

xfv ·Mf ·Df)/Av)/
∑
v∈V

yv

s.t.

⎧⎪⎪⎨
⎪⎪⎩

∑
v∈V

xfv = 1, ∀f ∈ F

∑
f∈F

xfv ·Mf ·Df ≤ Av, ∀v ∈ V

(13)

Insight: To achieve Eq. (13), we find another objective that

is complementary to Objective 1— minimizing the total num-
ber of computing nodes in service. We express this objective

in Eq. (14).

min
∑
v∈V

yv (14)

To reduce the total number of computing nodes in service,

we have to fully utilize the resources of each used comput-

ing node, which means to max
∑
f∈F

xfv for ∀v ∈ V , when

yv = 1. This in return improves the resource utilization of

each computing node. Thus, we can conclude that Eq. (14)

and Eq. (13) are complementary to each other. Besides, from

the operators’ perspective, using fewer computing nodes (i.e.,

commodity servers) is beneficial for saving operation cost.

Objective 2: Minimize the average response latency of each
service instance. We express this objective in Eq. (15).

min

Mf∑
k=1

W (f, k)/Mf

s.t.

Mf∑
k=1

zfr,k = Uf
r , ∀r ∈ R, f ∈ F

(15)

Insight: In Eq. (12), we notice that W (f, k) is positively

correlated with
∑
r∈R

λrz
f
r,k when Pr = P is a constant. Since

each VNF f can deploy Mf service instances to serve
∑
r∈R

Uf
v

requests, we aim to find an appropriate way to allocate the

requests effectively. Considering Eq. (7), we find it advisable

to balance the
∑
r∈R

λrz
f
r,k of each service instance as nearly

equal as possible. This way, we can minimize the average

response latency W (f, k) of each service instance of VNF f .

The coordination of Objective 1 and Objective 2. The

utilization and response time may usually be conflicting goals,

hence we want to find a method to balance the tradeoff. To

achieve Objective 1, we suggest minimizing the total number

20322029735

of computing nodes in service, as declared in Eq. (15). This is

conducive to reducing the interval traffic cost so as to reduce

the total propagation and transmission delay of all requests.

To achieve Objective 2, we aim to minimize the total response

latency of all service instances. Therefore, by jointly achieving

Objective 1 and Objective 2, we can minimize the total latency

of all requests, which can be expressed in Eq. (16).

min
∑
r∈R

(
∑
f∈F

Mf∑
k=1

zfr,kU
f
r W (f, k) + (

∑
v∈V

ηrv − 1)L) (16)

Where L is the sum of average propagation delay and trans-

mission delay on the link between two computing nodes [11].

In short, Eq. (16) adds up two independent parts of the total

latency of all requests (the total response latency on computing

nodes plus the sum of communication latency on links). This

way, we explore the coordination of these two objectives. By

jointly achieving Objective 1 and Objective 2, we can flexibly

place VNFs with high resource utilization and process requests

with low response latency in datacenters.

IV. ALGORITHM DESIGN

In order to jointly optimize VNF chain placement and

request scheduling, we manage to solve the problem in a

two-phase way. In phase one, we prove that the VNF chain

placement (VNF-CP) problem is NP-hard and propose a

priority-dirven weighted algorithm. Then we propose a heuris-

tic algorithm to solve the request scheduling problem. Finally,

we analyze the optimality and complexity of both algorithms.

A. VNF Chain Placement

To achieve Eq.(13), we find it helpful to refer to a NP-

hard problem, the Variable Sized Bin Packing (VSBP) problem

[21]. Even consider the simplified version of the VNF-CP

problem, where each computing node v ∈ V has the same

resource capacity Av = a, we can prove it still NP-hard.

Theorem 1. The VNF-CP problem defined in Eq. (13) is NP-
hard.

Proof: First of all, coming back to the bin packing

problem, there is a set of pieces with different sizes W =
{w1, w2, ..., wn|wi ∈ (0, 1], i = 1, ..., n}. Let Q be the set of

bins with each size of 1. The target is to put all the pieces in

these bins and minimize the total number of the bins used:

min
n∑

i=1

yi

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

wixij ≤ 1, xij ∈ {0, 1}

yi = 0, if

n∑
j=1

xij = 0; yi = 1, if

n∑
j=1

xij > 1

(17)

Given an instance I = (w1, ..., wn, n, q) of the bin packing

problem, we map an instance of Eq. (13), I ′ = (|F | =
n,MfDf = wi, (Av = a) = q) to I , where MfDf stands for

the total resource demand of each VNF. Obviously, we can do

such mapping in polynomial time. We denote the total demand

of all requests by a constant C =
∑
f∈F

MfDf . Considering

Eq. (2), we have:

max
∑
v∈V

((
∑
f∈F

xfv ·Mf ·Df)/Av)/
∑
v∈V

yv

⇒ max (
∑
v∈V

∑
f∈F

xfv ·Mf ·Df/
∑
v∈V

a)/
∑
v∈V

yv

⇒ max (C/|V |a)/
∑
v∈V

yv

⇒ max 1/
∑
v∈V

yv

⇒ min
∑
v∈V

yv

Therefore, if there exists an solution for I in the bin packing

problem, then it also solves the VNF-CP problem, and vice
versa. As a result, the VNF-CP problem can be formulated

as a variant of the bin packing problem, which is NP-hard as

well.

Although we prove the NP-hardness of the VNF-CP prob-

lem by mapping it to the bin packing problem, we notice some

significant differences between them, which makes existing

solutions to the VSBP problem not applicable to the VNF-CP

problem. In the VSBP problem, there are unlimited bins of

each size; while in the VNF-CP problem, each computing node

is regarded as one and only node with a unique resource ca-

pacity. Hence, we carefully design a priority-driven weighted

algorithm BFDSU (Best Fit Decreasing using Smallest Used

nodes with the largest probability) to find a near optimal

solution cost-effectively.

We use a set Used_list to save the computing nodes in

service and a set Spare_list to save the spare computing

nodes. Another set, VNF_list saves the VNFs that haven’t

been placed. Let RST(v) be the remaining resource capacity of

computing node v. In BFDSU, we place VNFs from the most

resource-demanding one to the least. When placing a VNF f ,

we try to find out a subset Vrst(f) = {v ∈ V |RST(v) ≥
Dsum

f = DfMf} that contains all nodes with sufficient

resources RST(v) for placing it. We first search the Used_list
for these nodes, and place f at one of the most suitable nodes

in Vrst(f) (if Vrst(f) �= ∅); Otherwise, we attempt to place f
at one of the most suitable spare node in the Spare_list and

move that node from the Spare_list to the Used_list.
Intuitively, the most suitable node v for placing VNF f

should be the one with minimal RST(v) in Vrst(f). However,

placing f at such node may not ensure a feasible solution.

Instead, we introduce a weighted probability strategy, where

we place the VNF at such node with the maximum probability.

Specifically, for all the nodes v ∈ Vrst(f), we calculate the

probability of placing f at node v by its reciprocal of RST(v).

Definition Prst(v) refers to the weight of v ∈ Vrst(f)
(assuming all computing nodes in Vrst(f) have been sorted in

ascending order by their RST (v)) to place VNF f ∈ F and

Prob_sum refers to the sum of all weights. Then we have the

20332030736

upper bound of the probability of node vk, Prob_bound(vk):

Prst(v) = 1/(1 +RST (v)−Dsum
f)

Prob_sum =
∑

v∈Vrst(f)

(1/(1 +RST (v)−Dsum
f))

Prob_bound(vk) =
k∑

i=1

Prst(v)/Prob_sum

where ∀f ∈ F, v ∈ Vrst(f), k = 1, 2, ..., |Vrst(f)|. Note

that a constant, 1 is added to the denominator of Prst(v) to

make it nonzero. We also assume there is a virtual node v0
and its Prob_bound(v0) = 0 for simplifying the procedure.

When we place VNF f , we first generate a random number

ξ within Prob_sum. If ξ belongs to [Prob_bound(vk−1),
Prob_bound(vk)), then place VNF f at node vk.

In addition, we have considered dynamically adding or

removing VMs. However, this work needs to cooperate with

underlying mechanism of SDN [22]. Besides, placing a VNF

at a computing node suffers from large setup cost (i.e., to

get domain isolation, we would have to run each middlebox

inside a Linux virtual machine and this will take around five

seconds to boot [23]). Some existing works have solved this

problem (e.g., ClickOS manages to reduce the setup time

within 30 ms [23]). Differing from these works, we aim to find

out an efficient scheme to place VNF chains on commodity

servers, with a fixed number of VMs on each server. To avoid

introducing this sizable setup cost, we should not frequently

add or remove VMs.

B. Request Scheduling

To achieve Eq. (15), let us consider another NP-hard prob-

lem, the Multi-Way Number Partitioning (MWNP) problem

[24]. It aims to divide a set of integers into a collection of

subsets so that the sum of the integers in each subset is as

equal as possible. Even the simplest version, a 2-way number

partitioning is proved NP-hard [24]. There are some existing

approximation algorithms for solving the MWNP problem,

such as CGA (Complete Greedy Algorithm) and CKK (Com-

plete Karmarkar-Karp) algorithm [24]. However, they do not

scale well as the number of instances increases. Thus we

carefully design a heuristic algorithm RCKK (Reverse Com-

plete Karmarkar-Karp) to solve the request scheduling problem

effectively.

Note that ∀f ∈ F , W (f, k) = 1/(μf −Λf
k), hence W (f, k)

is positively correlated with Λf
k , which can be represented

by W (f, k) ∝ Λf
k . Hence, when we allocate each λr of∑

r∈R

Uf
v requests to Mf instances, we balance the

∑
r∈R

λrz
f
r,k

of each service instance as equal as possible. This way, we

can minimize the average response latency W (f, k) of each

service instance of VNF f .

We use a set Rf = {r|∀r ∈ R,Uf
r = 1} to save the requests

requiring VNF f ∈ F . For each request r ∈ Rf , we initiate

a partition in form of (λr,0,..,0) consisted of m values (one

λr and m − 1 zeros) in each position. Here, position i (i =
1, 2, ...,m) represents the i-th service instance. We maintain

Algorithm 1 BFDSU: VNF Chain Placement Procedure

Input: The set of resource capacity of each computing node, A =
{Av|∀v ∈ V };
The set of total resource demand of each VNF, D =
{Dsum

f |∀f ∈ F};
Other sets: Used_list, Spare_list, VNF_list and Vrst(f);

Output: The set of placement result of each VNF, X = {xf
v |∀f ∈

F, v ∈ V };
1: Begin: Initiate Used_list = ∅, Spare_list = V , VNF_list = F ;
2: Sort all VNFs in the VNF_list in descending order by their total

resource demand;
3: while VNF_list �= ∅ do
4: Get the first VNF f in the VNF_list, reset Vrst(f) = ∅;
5: Search the Used_list and add each computing node v into

Vrst(f) if it satisfies RST(v) ≥ Dsum
f ;

6: if Vrst(f) = ∅ then
7: Search the Spare_list and add each computing node v into

Vrst(f) if it satisfies RST(v) ≥ Dsum
f ;

8: end if
9: if Vrst(f) = ∅ then

10: Go back to Begin;
11: end if
12: Sort all computing nodes in Vrst(f) in ascending order by

their RST(v);
13: Calculate the weighted probability Prst(v) of each node in

Vrst(f) and each probability upper bound Prob_bound(vk);
14: Generate a random number ξ within Prob_sum;
15: if ξ ∈ [Prob_bound(vk−1), P rob_bound(vk)) then Place

VNF f at node vk, xf
vk = 1;

16: end if
17: Remove VNF f from the VNF_list and move the node vi to

the Used_list if it’s from the Spare_list;
18: end while
19: return Z.

the state of each service instance by a state table, which saves

the number of requests allocated to it. Then we add all the

partitions into a set named by Partition_list. We use a set si to

save the requests that allocated to the i-th instance. We search

the Partition_list for two partitions with the largest value at the

first position, namely a = (a1,a2,...,am) and b = (b1,b2,...,bm).

Then we combine them into a new partition (a1 + bm,a2 +
bm−1,...,am+b1). We resort it, normalize it by subtracting the

value at the m-th position from each position and replace a and

b by it. Meanwhile, we combine the request sets accordingly.

For instance, if ai + bm−i is the value in the i-th position of

the new partition, we should also combine the request set si
of partition a and sm−i of b into a new set s′i.

C. Optimality Analysis

First of all, we summarize some properties of the BFDSU

algorithm: (1) we use two sets, Used_list and Spare_list to

distinguish whether a computing node has placed any VNF

and preferentially place a VNF at a computing node in service;

and (2) we bring in weighted probability for finding a feasible

solution; hence we try to place a VNF at a computing node

with the highest probability if its remaining resource is min-

imal. Both methods help to improve the resource utilization

of each computing node in service and meanwhile reduce the

total number of the computing nodes in service.

Due to the NP-hardness of the VNF-CP problem, it is

computational expensive to find out the optimal solution. In

order to analyze the optimality of our algorithm, we derive

20342031737

Algorithm 2 RCKK: Request Scheduling Procedure

Input: Number of instances that VNF f ∈ F deploys, m = Mf ;
The set of requests using VNF f ∈ F , Rf = {r|∀r ∈ R,Uf

r =
1}, assume that n = |Rf |;
The set of partitions, Partition_list = {(λr, 0, .., 0)|∀r ∈ Rf};
The set of arrival rates of requests which require VNF f ∈ F ,
Ω = {λr|∀r ∈ Rf};

Output: The set of scheduling results for each request, Z =
{zfr,k|∀r ∈ Rf , k = 1, ...,Mf};

1: Sort all partitions in descending order by their value at the 1-th
position (λr ∈ Ω) in the Partition_list;

2: while Partition_list has more than one partition do
3: Combine the first two partitions Pa and Pb (with their sets)

by adding each position’s value in reverse order and get a new
partition P ;

4: Resort P by the value at each position in descending order;
5: Normalize P by subtracting the value at the m-th position

from each position and get P
′
;

6: Replace Pa and Pb by P
′

and add P
′

into the Partition_list
according to the value at the 1-th position;

7: end while
8: for i = 1 to m do
9: For all requests r in set si, z

f
r,i = 1;

10: end for
11: return Z.

the asymptotic worst-case performance bound of algorithm

BFDSU, which is defined as S∞
BFDSU [25].

S∞
BFDSU = lim

n→∞ sup{SUM(V)/OPT(V)}
where SUM(V) refers to the sum of computing nodes used in

BFDSU and OPT(V) refers to the sum of computing nodes

used in the optimal solution. In other words, OPT(V) stands

for the minimal number of nodes used for placing all VNFs.

Theorem 2. The asymptotic worst-case performance bound
of Algorithm BFDSU is 2, that is S∞BFDSU = 2.

Proof: We use m =
∑
v∈V

yv to represent the sum of nodes

in service. We normalize Av in (0,1] and normalize Dsum
f

accordingly. Thus, we have d(v) =
∑
f∈F

xfvD
sum
f . We sort the

set of computing nodes {v1, v2, ..., vm} by Av in descending

order.

If m = 1, only one node is used, thus SUM(V) = OPT(V).
Else if m ≥ 2, for i = 1, ...,m − 1, we have d(vi) +

d(vi+1) > Avi and d(v1) + d(vm) > Av1 ; Otherwise, a shift

from d(vi+1) to d(vi) must be done. Then we have:

2OPT(V) ≥ 2
m∑
i=1

d(vi) = d(v1) + (d(v1) + d(v2)) + ...

+ (d(vm−1) + d(vm)) + d(vm)

> d(v1) +

m−1∑
i=1

Avi + d(vm)

>
m−1∑
i=1

Avi +Av1 ≥
m∑
i=1

Avi

≥ SUM(V)

Therefore, SUM(V)/OPT(V) ≤ 2. We can infer that

S∞
BFDSU = lim

n→∞ sup{SUM(V)/OPT(V)} = 2.

Let ε be a dimensionless, assume that we only have pieces

of size 1/2 + ε and bins of size 1 and 1/2 + ε. In this

case, we can conclude that the asymptotic worst-case perfor-
mance bound is 2. Although this theoretical bound gives a

performance guarantee, this worst case hardly occurs in real

scenarios. As we evaluated in Sec. V, the simulation results

proves that our methods improve the resource utilization rate

by around 30% as compared with the state-of-the-art methods.

As for algorithm RCKK, there is usually no optimal k-way

partitioning, where each sum of partition is equal. Even if

there is an optimal solution, due to the NP-hardness of the

problem and the diversity of the partitions, it is computational

expensive to figure out. More details about the optimality can

be found in [24]. In fact, for a m-way partitioning, there are

m! ways to combining two partitions. In order to get a high-

quality solution, but not increase too much execution time,

we attempt to combine two normalized partitions in reverse

order. This way, we achieve a very cost-effective solution to

the request scheduling problem.

D. Complexity Analysis

For BFDSU, note that there are m = |F | VNFs and n =
|V | computing nodes. First, sorting m VNFs in descending

order requires O(mlogm) computation. Note that Used_list∩
Spare_list = V , searching both sets terminates in n iterations.

Besides, sorting the Vrst(f) terminates in logn iterations and

placing a VNF costs needs O(n) computation. Thus, the time

complexity of BFDSU is O(m(logm+ nlogn)).
For RCKK, as we have defined in Sec. V, we have m = Mf

service instances and n = |Rf | requests. First, we sort

the requests in descending order, which can be finished in

O(nlogn). Note that there are n − 1 iterations in the loop.

In each iteration, step 3 needs O(m) computation, step 4

needs O(mlogm) computation and step 6 needs at most O(n)
computation. Due to n ≥ m, as stated in Eq. (3), the total

time complexity of RCKK is O(nmlogm).

V. EVALUATION AND ANALYSIS

We conduct extensive trace-driven simulations to evaluate

the performance of both algorithms as compared with the state-

of-the-art methods. Our experiment setup is based on real-

world traces in datacenter networks.

A. Simulation Setup

1) Diverse VNF chains: First, Li and Chen in [26] sum-

marize more than thirty commonly-used VNFs and classify

them into nine categories. Traced by this survey, we scale

the number of VNFs from 6 to 30, including at least six

commonly-deployed VNFs, such as Network Address Trans-

lator (NAT), Firewall (FW), Intrusion Detection System (IDS),

Load Balancer (LB), WAN Optimizer and Flow Monitor (FM).

The number of requests ranges from 30 to 1000. Each request

traverses a VNF chain consisted of at most 6 VNFs.

2) Scale-up network topologies: We adopt a connected graph

to model the datacenter network based on [27], which contains

20352032738

0 200 400 600 800 1000
Number of Requests

60

80

100

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

BFDSU
NAH
FFD

Fig. 5: The average resource uti-
lization of 10 nodes under three
algorithms.

6 12 18 24 30
Number of VNFs

40

60

80

100

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

BFDSU
NAH
FFD

Fig. 6: The average resource uti-
lization of used nodes handling
1000 requests under three algo-
rithms.

10 20 30 40 50
Number of Nodes

0

50

100

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

BFDSU
NAH
FFD

Fig. 7: The average resource uti-
lization of used nodes for placing
15 VNFs under three algorithms.

10 12 15 20 25 30 40 50
Number of Nodes

0

10

20

N
od

es
 in

 S
er

vi
ce BFDSU

NAH
FFD

Fig. 8: The average number of
nodes in service for placing 15
VNFs under three algorithms.

from four to fifty computing nodes. There are sufficient switch

capacities and network bandwidth for serving each request.

The resource capacity of each computing node scales from 1

to 5000. One unit of resource capacity refers to the ability

to handle one unit of workload per second, precisely, 64

Bytes packets at 10 kpps in our simulations. According to

the reference [28], one CPU core can handle 64 Bytes packets

at 1.5 Mpps, which equals to 150 units of resource capacity.

Hence, in our simulations, a computing node with 5000 units

of resource capacity indicates that it needs 34 CPU cores.

Currently, most providers (e.g., Amazon EC2) can provide

such VMs with up to 64 CPU cores, which should be enough

to host our peak-time workload [29].

3) Arrival process and service process: Measured in data-

centers, the arrival rate of requests follows the flow inter-arrival

time distribution [9]. We assume that any external arrival to

the network follows Poisson distribution with an arrival rate λ
ranging from 1 to 100 pps. Each service instance of VNF f has

the same exponential service rate μf . We estimate the latency

of a request by its arrival time and the service rate that it gets

at a service instance. The probability of packets being received

correctly by the destination, P scales from 0.98 to 1. Besides,

one unit of workload can be obtained by estimating (1) the

arrivals of requests (from 1 to 100 pps), (2) the number of

requests scheduled to each service instance (from 1 to 200) and

(3) the number of service instances deployed on a computing

node (from 1 to 25). Hence, we can adjust the grain size of

the workload according to the actual demand.

B. Performance Evaluation for VNF Chain Placement

To evaluate the performance of BFDSU, we compare it with

two state-of-the-art algorithms, FFD (First Fit Decreasing)

and NAH (Node Assignment Heuristic algorithm for VNF

placement) [12]. As introduced in [12], for each VNF chain,

NAH first places the most resource-demanding VNF at the

node with the largest remaining resource capacity. It then tries

10 20 30 40 50
Number of Nodes

0

0.5

1

1.5

R
es

ou
rc

e
O

cc
up

at
io

n

×104

BFDSU NAH FFD

Fig. 9: The average resource oc-
cupation for placing 15 VNFs
under three algorithms.

30 50 100 200 350 500 7501000
Number of Requests

0

20

40

60

Ite
ra

tio
ns

BFDSU
NAH
FFD

Fig. 10: The iterations of execut-
ing three algorithms for placing
15 VNFs.

10 15 25 50 100 150 200 250

Number of Requests

0

0.2

0.4

0.6

0.8

1

E
nh

an
ce

m
en

t R
at

io

0

2

4

6

W

ER RCKK CGA

Fig. 11: The average response
time of two algorithms and their
enhancement ratio (P = 0.98).

10 15 25 50 100 150 200 250

Number of Requests

0

0.2

0.4

0.6

0.8

1

E
nh

an
ce

m
en

t R
at

io

0

2

4

6

W

ER RCKK CGA

Fig. 12: The average response
time of two algorithms and their
enhancement ratio (P = 1.00).

to place the other VNFs of that service chain at the same node

as many as possible. Both FFD and NAH do not save the state

of whether a computing node has placed any VNF or not.

Average resource utilization. As illustrated in Fig. 5,

when the number of requests scales from 30 to 1000, all

three algorithms’ average resource utilization of used nodes

remains stable. Precisely, it is 91.76%, 68.63% and 66.89%

for BFDSU, FFD and NAH. We also observe this trend

in Fig. 6, as we scale the number of VNFs from 6 to

30 and the number of nodes from 4 to 20. Our algorithm

enhances the performance by 31.61% as compared with FFD

and 33.41% with NAH. Fig. 7 also demonstrates that as the

number of computing nodes scales from 6 to 30, the average

resource utilization of FFD and NAH decreases while BFDSU

stabilizes.

Insight: BFDSU improves the average resource utilization

of computing nodes in service by around 30% as compared

with two state-of-the-art algorithms, FFD and NAH.

Total computing nodes in service. We also have some

interesting findings about the total number of computing

nodes in service, as the number of computing nodes available

increases. As shown in Fig. 8, with more computing nodes

available, the average total number of used nodes increases

slightly. We observe that BFDSU always uses fewest nodes

while FFD uses most. According to the figure, BFDSU, NAH

and FFD uses 8.56, 10.55 and 10.80 computing nodes in av-

erage. Besides, we also evaluate the total resource occupation

of all computing nodes in service as a performance metric. As

illustrated in Fig. 9, we find that our method maintains a stably

low resource occupation, while FFD and NAH both show a

growing trend in the resource occupation as the number of

computing nodes increases.

Insight: As compared with the state-of-the-art methods,

BFDSU achieves the minimal total number of computing

nodes in service and the minimal resource occupation.

Execution Cost. To evaluate the execution cost of the three

20362033739

2 3 4 5 6 7 8 9 10
Number of Instances

0

0.1

0.2

0.3

0.4

E
nh

an
ce

m
en

t R
at

io

1

2

3

W

ER RCKK CGA

Fig. 13: The average response
time of two algorithms and their
enhancement ratio (P = 0.98).

2 3 4 5 6 7 8 9 10
Number of Instances

0

0.1

0.2

0.3

0.4

E
nh

an
ce

m
en

t R
at

io

1

2

3

W

ER RCKK CGA

Fig. 14: The average response
time of two algorithms and their
enhancement ratio (P = 1.00).

algorithms, we measure their numbers of iterations for finding

a feasible solution. Fig. 10 plots that the average number

of iterations of BFDSU, NAH and FFD is 11, 32 and 1

respectively. As the number of requests increases, the iterations

of FFD stay constantly lowest, while NAH takes nearly triple

execution time than BFDSU.

Insight: Considering both the performance metrics and

execution cost, BFDSU performs as the most cost-effective

algorithm as compared with the state-of-the-art algorithms.

C. Performance Evaluation for Request Scheduling

For the request scheduling problem, we compare RCKK

with CGA. We execute both algorithms for 1000 times and

calculate the average values as the simulation results.

Average response time. We fix the number of service

instances at 5, while the number of requests scales from 15 to

250. W refers to the average response latency, which is the

main performance metric in Eq. (15). The enhancement ratio is

defined as (WCGA −WRCKK)/WCGA to show the improvement

of W from CGA to RCKK. We scale μf with the number

of requests to eliminate its dominant influence. To reflect the

network congestion degree, we set the probability of a packet

being received correctly, P , at two values, precisely 1 and 0.98

(i.e., packet loss rates are 0% and 2%).

Fig. 11 and Fig. 12 plot the average response time of five

instances with P = 0.98 and 1.00 respectively. As illustrated

in these two figures, RCKK always outperforms CGA in W
as the number of requests increases under different packet loss

rates. With P = 0.98 and 1.00, the enhancement ratio between

CGA and RCKK, W , is reducing from 41.89% to 2.10% and

from 33.49% to 1.17% respectively.

Different from the simulations above, Fig. 13 and Fig. 14

plot the performance metrics when the number of service

instances scales from 2 to 10. As shown in Fig. 13, when the

number of service instances grows, RCKK reduces the average

response time by 5.24% to 25.05% as compared with CGA.

When P = 1.00, as illustrated in Fig. 14, the enhancement

ratio is from 3.16% to 18.53%. We can also conclude that

with a higher packet loss rate, the average response time is

increasing accordingly and so is the enhancement ratio.

In addition, some tail statistics attract our attention, where

tail refers to the 99th percentile response time in 1000 sim-

ulation results. With the number of requests scaling from

10 to 200, we find that RCKK reduces the 99th percentile

response time of by 44.54% to 5.18% as compared with CGA.

For instance, when we schedule fifty requests to five service

0 50 100 150 200 250
Number of Requests

0

10

20

R
ej

ec
tio

n
R

at
e

(%
)

RCKK
CGA

Fig. 15: The average job rejection
rate of two algorithms under a
low packet loss rate (P = 0.997).

0 50 100 150 200 250
Number of Requests

0

20

40

60

R
ej

ec
tio

n
R

at
e

(%
)

RCKK
CGA

Fig. 16: The average job rejection
rate of two algorithms under a
high packet loss rate (P = 0.984).

instances with P = 0.98, we find that the 99th percentile

response time of RCKK is within 1.23 while CGA is within

1.60, and the enhancement ratio is 23.17%.

Insight: Generally, RCKK outperforms CGA in minimizing

the total response latency under two packet loss rates when we

successively vary the number of requests and service instances.

Job rejection rate: As declared in Sec. I, when the arrival

rate of the requests is larger than the service rate of a

service instance, the admission control mechanism drops some

requests to ensure the normal operation of the services. We

measure this metric under two packet loss rates (1 − P). As

shown in Fig. 15 and Fig. 16, we find that with a higher packet

loss rate, the job rejection rate is consequently higher. Under a

low packet loss rate, when P = 0.997, RCKK nearly maintains

a zero job rejection rate while this rate of CGA rises as the

number of requests increase. Fig. 16 plots that under a low

packet loss rate, when P = 0.984, the average job rejection

rate of RCKK and CGA is 4.87% and 28.28% respectively.

Insight: RCKK achieves a lower job rejection rate as

compared with CGA under different packet loss rates.

VI. CONCLUSIONS

In this paper, we present a hierarchically two-phase solution

for joint optimization of VNF chain placement and request

scheduling problem. We apply the theory of open Jackson

network to model VNF chains. Our model not only cap-

tures the actual network traffic characteristics in datacenter

networks, but also includes network congestions (reflected by

packet loss rate) and job rejection rate. In order to maximize

the resource utilization rate, we formulate the VNF chain

placement problem as a variant of variable-sized bin-packing

problem, and propose a priority-driven weighted algorithm

BFDSU to ensure a near-optimal solution with theoretically

proved worst-case performance bound. To minimize the aver-

age response latency of each service instance, we also propose

a heuristic algorithm RCKK to optimize request scheduling

cost-effectively. Through extensive trace-driven simulations,

we show that our methods scale well in diverse scenarios. In

particular, BFDSU improves the average resource utilization

by 31.6% and 33.4% as compared with FFD and NAH

respectively. Besides, BFDSU achieves the minimal nodes in

service for placing all VNFs. Under different packet loss rates,

RCKK not only reduces the average response latency of each

instance by 19.9%, but also lowers the average job rejection

rate by 23.4% as compared with CGA.

20372034740

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” 2012.

[2] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in ACM Proc. of
SOSP, 2015.

[3] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Dynamic
chaining of Virtual Network Functions in cloud-based edge networks,” in
Network Softwarization (NetSoft), 2015 1st IEEE Conference on. IEEE,
2015, pp. 1–5.

[4] B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, and P. Cheng,
“ClickNP: Highly flexible and High-performance Network Processing
with Reconfigurable Hardware,” pp. 1–14, 2016.

[5] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network
function control,” 2015.

[6] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in USENIX Proc. of NSDI, 2014.

[7] P. Quinn and T. Nadeau, “Service function chaining problem statement,”
draft-ietf-sfc-problem-statement-10 (work in progress), 2014.

[8] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: taking the v out of nfv,” in Usenix Conference on Operating
Systems Design and Implementation, 2016, pp. 203–216.

[9] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM Proc. of IMC, 2010.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in ACM Proc. of
IMC, 2009.

[11] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach.

[12] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for NFV chaining in packet/optical datacenters,”
Journal of Lightwave Technology, vol. 33, no. 8, pp. 1565–1570, 2015.

[13] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE Proc. of CloudNet, 2014.

[14] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE Proc. of INFOCOM,
2015.

[15] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in IEEE Proc. of CNSM, 2014.

[16] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network func-
tions placement and routing optimization,” in IEEE Proc. of CloudNet,
2015.

[17] F. Liu, J. Guo, X. Huang, and J. C. S. Lui, “eBA: Efficient Bandwidth
Guarantee Under Traffic Variability in Datacenters,” IEEEACM Trans-
actions on Networking, pp. 1–14, 2016.

[18] E. Gelenbe, G. Pujolle, and J. Nelson, Introduction to queueing net-
works. Wiley Chichester, 1998.

[19] A. Dwaraki and T. Wolf, “Adaptive Service-Chain Routing for Virtual
Network Functions in Software-Defined Networks,” in Workshop, 2016,
pp. 32–37.

[20] G. M. Kamath, E. Şaşoğlu, and D. Tse, “Optimal haplotype assembly
from high-throughput mate-pair reads,” in IEEE Proc. of ISIT, 2015.

[21] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 4, pp. 455–466, 2014.

[22] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller
assignment in data center networks: Stable matching with transfers,”
pp. 1–9, 2016.

[23] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualization,”
in USENIX Proc. of NSDI, 2014.

[24] R. E. Korf, “Multi-Way Number Partitioning,” in IJCAI. Citeseer, 2009,
pp. 538–543.

[25] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approximation
algorithms for bin packing: a survey,” in Approximation algorithms for
NP-hard problems. PWS Publishing Co., 1996, pp. 46–93.

[26] Y. Li and M. Chen, “Software-defined network function virtualization:
a survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[27] S. Orlowski, R. Wessaly, A. Tomaszewski, and R. Wess, “Sndlib 1.0
survivable network design library,” in Networks, 2010, pp. 276–286.

[28] Z. Xu, F. Liu, T. Wang, and H. Xu, “Demystifying the energy efficiency
of Network Function Virtualization,” in Quality of Service (IWQoS),
2016 IEEE/ACM 24th International Symposium on. IEEE, 2016, pp.
1–10.

[29] Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2/

20382035741

