Zelin Peng

Zelin Peng
  • Doctor of Engineering
  • Shanghai at Shanghai Jiao Tong University

About

19
Publications
686
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
206
Citations
Current institution
Shanghai Jiao Tong University
Current position
  • Shanghai

Publications

Publications (19)
Article
Unsupervised hyperspectral change detection (UHCD), detecting subtle changes between bi-temporal images without manual annotations, is an essential but challenging task in the earth observation community. The current modus operandi often performs it in a feature comparison manner, which is limited by variations in imaging conditions. We observe tha...
Article
Land cover analysis using hyperspectral images (HSI) remains an open problem due to their low spatial resolution and complex spectral information. Recent studies are primarily dedicated to designing Transformer-based architectures for spatial-spectral long-range dependencies modeling, which is computationally expensive with quadratic complexity. Se...
Preprint
Full-text available
Open-vocabulary semantic segmentation seeks to label each pixel in an image with arbitrary text descriptions. Vision-language foundation models, especially CLIP, have recently emerged as powerful tools for acquiring open-vocabulary capabilities. However, fine-tuning CLIP to equip it with pixel-level prediction ability often suffers three issues: 1)...
Article
Weakly supervised object detection (WSOD) and semantic segmentation with image-level annotations have attracted extensive attention due to their high label efficiency. Multiple instance learning (MIL) offers a feasible solution for the two tasks by treating each image as a bag with a series of instances (object regions or pixels) and identifying fo...
Article
A fundamental task in the realms of computer vision, Low-Rank Matrix Recovery (LRMR) focuses on the inherent low-rank structure precise recovery from incomplete data and/or corrupted measurements given that the rank is a known prior or accurately estimated. However, it remains challenging for existing rank estimation methods to accurately estimate...
Article
Segment Anything Model (SAM) has received remarkable attention as it offers a powerful and versatile solution for object segmentation in images. However, fine-tuning SAM for downstream segmentation tasks under different scenarios remains a challenge, as the varied characteristics of different scenarios naturally requires diverse model parameter spa...
Preprint
Full-text available
Segment Anything Model (SAM) has received remarkable attention as it offers a powerful and versatile solution for object segmentation in images. However, fine-tuning SAM for downstream segmentation tasks under different scenarios remains a challenge, as the varied characteristics of different scenarios naturally requires diverse model parameter spa...
Article
The rapid development of deep learning has made a great progress in image segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed a...
Preprint
The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an incr...
Conference Paper
Full-text available
Weakly supervised object detection (WSOD) is a challenging task, in which image-level labels (e.g., categories of the instances in the whole image) are used to train an object detector. Many existing methods follow the standard multiple instance learning (MIL) paradigm and have achieved promising performance. However, the lack of deterministic info...
Preprint
Weakly supervised object detection (WSOD) is a challenging task, in which image-level labels (e.g., categories of the instances in the whole image) are used to train an object detector. Many existing methods follow the standard multiple instance learning (MIL) paradigm and have achieved promising performance. However, the lack of deterministic info...
Preprint
Full-text available
Semantic segmentation has been continuously investigated in the last ten years, and majority of the established technologies are based on supervised models. In recent years, image-level weakly supervised semantic segmentation (WSSS), including single- and multi-stage process, has attracted large attention due to data labeling efficiency. In this pa...

Network

Cited By