Zeeshan Ahmed

Zeeshan Ahmed
Eindhoven University of Technology | TUE · Department of Built Environment

About

17
Publications
16,231
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,423
Citations
Citations since 2016
17 Research Items
1406 Citations
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
20162017201820192020202120220100200300400
Introduction
Zeeshan Yunus Ahmed completed his master’s in Architectural Design from Bartlett, University College London, and is currently a Ph.D. student in the Department of Built Environment, Eindhoven University of Technology (TU/e). His research is focused on digital design and manufacturing of 3d concrete printed (3DCP) structures. Key research topics include developing entrainment processes for reinforcing 3DCP structures and is involved in developing large-scale application 3DCP .

Publications

Publications (17)
Article
Full-text available
In this work, a framework for large-scale structural applications of 3D printed concrete is presented. The steps in this framework, consisting of a design phase, testing phase and manufactur-ing phase, towards a final output were presented and discussed theoretically. The framework was then applied to the case of a 29 m 3D printed bridge, construct...
Chapter
Full-text available
The scope of this one-year research, carried out within a graduation studio consisting of 16 students, was to explore how this novel technique can lead to the development of new architectural forms. The graduation-studio called ‘De Centrale Gent, with 3D Concrete Printing’ explored the technique of 3DCP within the historical city of Ghent and throu...
Chapter
The use of high strength steel cables directly entrained into printed concrete during the printing process, has previously been introduced as a method to provide reinforcement to objects being manufactured through a layer-extrusion based 3D concrete printing process. The bond between the cable and the cementitious mortar is a crucial parameter for...
Chapter
Additive manufacturing (AM) or 3D printing is a rapid prototyping process that has captured the attention of architects and designers worldwide in the last few years. Multiple research groups and commercial entities are exploring different areas of 3D concrete printing (3DCP) with one of the main topics being the potential to improve the design fre...
Article
Full-text available
Extrusion based additive manufacturing of cementitious materials has demonstrated strong potential to become widely used in the construction industry. However, the use of this technique in practice is conditioned by a feasible solution to implement reinforcement in such automated process. One of the most successful ductile materials in civil engine...
Article
Full-text available
The rapid development of additive manufacturing of cementitious materials has enabled the emergence of a new design paradigm, namely functional grading of material properties by location. Target performance parameters could be material weight and insulation value or (particularly important) ductility. A generic concept to achieve this, is through t...
Article
Full-text available
New additive manufacturing methods for cementitious materials hold a high potential to increase automation in the construction industry. However, these methods require new materials to be developed that meet performance requirements related to specific characteristics of the manufacturing process. The appropriate characterization methods of these m...
Chapter
Case study projects based on Digitally Fabricated Concrete (DFC) are presented in an increasing pace around the globe. Generally, though, it is not reported what structural requirements (if any) these structures meet and how compliance to these requirements was established. Published material research is often not connected to the presented case st...
Article
One of the geometrical restrictions associated with printed paste materials such as concrete, is that material must be self-supporting during printing. In this research paper a new methodology for 3D Printing Concrete onto a temporary freeform surface is presented. This is achieved by setting up a workflow for combining a Flexible Mould developed a...
Article
Full-text available
The current state of research and development into the additive manufacturing of concrete is poised to become a disruptive technology in the construction industry. Although many academic and industrial institutions have successfully realised full-scale structures, the limitations in the current codes of practice to evaluate their structural integri...
Chapter
Recent years have seen a rapid growth of additive manufacturing methods for concrete construction. A recurring issue associated with these methods, however, is the lack of ductility in the resulting product. In cases this is solved by combining printing with conventional casting and reinforcing techniques. Alternatively, this paper presents first f...
Article
Full-text available
The Material Deposition Method (MDM) is enjoying increasing attention as an additive method to create concrete mortar structures characterised by a high degree of form-freedom, a lack of geometrical repetition, and automated construction. Several small-scale structures have been realised around the world, or are under preparation. However, the natu...
Article
Additive manufacturing is gaining ground in the construction industry. The potential to improve on current construction methods is significant. One of such methods being explored currently, both in academia and in construction practice, is the additive manufacturing of concrete (AMoC). Albeit a steadily growing number of researchers and private ent...
Conference Paper
The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In r...

Network

Cited By