Predicting the Changeability of Software Product Lines for Business Application

Zdravko Roško
University of Zagreb
Faculty of Organization and Informatics
Varaždin, Croatia

Abstract
The changeability, a sub-characteristic of maintainability, refers to the level of effort which is required to do modifications to a software product line (SPL) application component. Assuming dependencies between SPL application components and reference architecture implementation (a platform), this paper empirically investigates the relationship between 7 design metrics and changeability of 46 server components of a product line for business applications. In addition, we investigated the usefulness of Platform Responsibility (PR) metric as an indicator of product line component changeability. The results show that most of the design metrics are strongly related to the changeability of server component and also indicate statistically significant correlation between Maintainability Index (MI) and PR metric. The assessment is based on a case study of the implementation of the product line for business applications in a financial institution. The results show that PR metric can be used as good predictor of changeability in the software product line environment.

Keywords: Software product lines, changeability, maintainability index, metrics, reuse, reference architecture, platform responsibility.

1. Motivation
Software maintenance is the most expensive activity that consumes about 50 - 70 percent of development cost [22]. There were many attempts to find ways to minimize maintenance cost by introducing better development approaches that can minimize the costly effects of change, simplify understanding of source code, facilitate early detection of faults, etc. One of the most successful approaches is Software Product Lines (SPL) approach, a set of software-intensive systems that share a common, managed set of features satisfying the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way [12]. This approach and its techniques make a system better maintainable as stated in [15]: "The same design techniques that lead to good reuse also lead to extensibility and maintainability over time".

Business applications are traditionally developed as standalone systems, each having specific architecture. As opposed to traditional approaches that focus on one application, the product line approach means a fundamental shift of focus from the individual system to the product line, i.e. a set of applications that rely on a common product line platform. A software platform is a set of software subsystems and interfaces that form a common structure from which a set of derivative products can be efficiently developed and produced [26]. A common rule of thumb found in literature is that a product lines approach will pay off only after the development of the software product platform and an initial set of products in the family. The relevant literature also claims that there is a significant reduction in costs associated with managing the evolution of the products when a product line approach is followed [23]. Due to the fact that any change in the platform can be relatively easily propagated to all of the product line members, the advantages of using a platform-based approach are even more significant.
The level of effort needed to maintain a software product line is related to the technical quality of the source code. Many software metrics have been proposed as indicators for technical quality of source code [17], [39]. Oman et al. proposed the Maintainability Index [35], [13] which attempts to objectively determine the maintainability of software system based upon the characteristics of the source code. In the ISO/IEC 9126 standard (replaced by ISO/IEC 25010:2011), maintainability is seen as one of the 6 main characteristics of software product quality. IEEE (1990) defines maintainability as “The ease with which a software system or component can be modified to correct faults, improve performance or other attributes, or adapt to a changed environment” [18]. The maintainability is further decomposed into the sub characteristics of analyzability, changeability, stability and testability [21]. Changeability characterizes the amount of effort to change a system (ISO/IEC 9126). In the context of software product lines, where many applications rely on a common platform, the technical quality of source code has its specifics comparing it with an ordinary system, since it is an important determinant for software product lines changeability. Changeability, the subject of this paper, is a key success factor in application areas such as business systems, in which applications are evolving at a rapid pace.

In [29] we have proposed Platform Responsibility (PR), a product line reference architecture coupling metric, to address the product component changeability prediction. In this paper, we further discuss the various issues arising when trying to assess the changeability of software product line components.

Object of the study. Object of this research study is the software product line server side application components and their changeability characteristics.

Purpose. The purpose of the study is to investigate the relationship between a number of design metrics and changeability of software product line components. Specifically, we would like to investigate metrics that can be used as good indicator of product line components changeability.

Perspective. This study targets two perspectives, one from the point of view of the researcher and the second of a developer, i.e. the researcher or developer would like to find out if there are any systematic differences in the changeability based on the design metrics of the individual product line component.

Quality focus. The main objective of this research is to determine whether there is a significant correlation between MI and PR metrics. In case there is a significant correlation between them, we will investigate the usefulness of PR metric as a predictor of product line components changeability, instead of using MI metric since it is too generic and yet not adapted to the product line environment specifics.

Context. The context of the experiment is a software product line for business applications in a financial institution. As a case for a survey we took 46 server side software components used by 9 different business applications within the product line.

2. Related Work

Changeability is related concept to maintainability and it is generally considered as its sub characteristic. Due to the fact that there are a number of different dimensions of maintainability, there exists a great deal of inconsistency in terminology. Matinlassi et al. proposed three maintainability abstraction levels; system, architecture and component [24]. The focus of our study is on component changeability, a sub characteristic of major importance for maintainability [32][8]. Several empirical studies have been carried out to investigate the maintainability of software product line artifacts [6], [9], [4], [24], [31] but a review of the literature fails to note significant research related to the changeability of SPL components in the context of external and internal dependencies.

There are different approaches used for the assessment of changeability. Most of them are based on change impact analysis and some of them are based on design metrics. We are using the latter approach.

Ingram and Riddle [20] used six metrics: LOC (lines of code), DIT (Depth of Inheritance Tree), WMC (Weighted Methods per Class), CBO (Coupling Between Objects) and
McCabe's Cyclomatic complexity to demonstrate a correlation between software size/complexity and change proneness. In their study change tendency was measured as the number of files changed for each revision. The result of the study suggests that classes with the highest CBO were the most likely to change.

Chaumun et al. used experiment which showed a high correlation, across systems and across changes, between changeability and the access to a class by other classes through method invocation or variable access. This relationship refers to the so called afferent coupling (Ca), the number of classes in other packages that depend upon classes within the package. The more a class is used through invocation of its methods and outside references to its variables, the larger the impact of a change to such a class. On the other hand, no result could support the hypothesis that the depth of the inheritance tree has some influence on changeability [3].

Wilkie and Kitchenham [37] tested the usefulness of the CBO (Coupling Between Objects) metric in predicting the classes that are likely to be affected by a change. Their object of study was a multimedia conferencing system which consists of 25,000 lines of code. The metrics used in their study were: CBO, WMC (weighted methods per class) and number of functions per class. The research results show that the CBO metric is useful in identifying the most change prone classes. Also the same metric does not identify the classes likely to experience ripple effect changes.

Aldekoa [17] extended the Maintainability Index where the maintainability index of each features is measured. The metric is based on the average of the McCabe’s Cyclomatic Complexity value [25] which directly measures the number of linearly independent paths through a program’s source code.

Tizzei et al. [31] tested positive and negative change impact of component and aspect based design on Product Line Architecture (PLA) stability. They concluded that the combination of aspects and components supports the design of high cohesive and loosely coupled PLAs and improve modularity.

In our study, we focus on the changeability assessment based on the product line component dependencies. The dependency may exist between product line components and internally owned (e.g. SPL platform) or externally owned (e.g. Spring) components. We presume that changeability of a component is better and more under control of internal development when the number of external dependencies that exist for a component is lower. This assumption is along the lines of the recommendations of good modular design, which seeks to achieve a high degree of internal cohesion, and the less external communication (coupling).

These external and internal dependencies among components and between components and the product line platform can serve to assess the impact of change as changes can propagate from one component to other components through the dependencies.

3. Experimental Design

Here, we provide some background on the product line for business application investigated in this study, describe goals, hypotheses, dependent and independent variables.

3.1. System Investigated

The source of data we have collected for this study was a product line for business applications in a financial institution. The data we have collected include two versions of the 9 applications and its corresponding server components. First version included 43 server components, while the second version included 46 components, having 3 additional components added to the product line. The selection of the product line was influenced by its technical complexity and the fact that the author has been involved in its development. The product line is a Java-based group of 9 applications based on the shared platform. It is a closed-source system built with several external components which include: Apache POI, which is used for reading and writing Microsoft Office files, iText for reading and writing
PDF files, Apache Shiro for user authentication with Active Directory, Apache uploads, for uploading files to a server, Aktiviti for process engine and Jasperreports used for the generation of business reports.

To study the product line component changeability, the maintenance data were limited to the Java source code which was collected from Subversion Edge source code repository [14]. Maintenance tasks carried out on non-java application artifacts were out of the scope of this study.

3.2. Goals, Variables and Hypotheses

The main goal of this study is to determine the design metrics that can be used as good indicators of product lines component changeability. In order to determine that, we collected historical maintenance data from a product line for business applications. The objective of this study is to determine the differences in changeability for software product lines components using the product line platform as a base. Motivation for this study is a need to understand the differences in changeability among components within the product line. One objective of introducing software product line is to provide the environment for better changeability. In order to support the better changeability, it is important to understand what differences can be expected within the product line, and explain them in order to improve the product line changeability.

3.3. Dependent Variables

In this paper, Platform Responsibility (PR) [29] and Maintainability Index (MI) [35] are both used as the dependent variables to quantify product line components changeability. Our goal here is to show that both, PR and MI measure the changeability of components, but from different perspectives. The objective of the research is to verify the hypothesis that PR is more suitable dependent variable for studying the relationship between design metric and component changeability in software product line environment.

Figure 1 shows the elements the PR metric is calculated from. When introduced at [29], PR metric is analyzed within the Distance framework of measurement theory [28] and framework based on desirable properties which serves guidance provided to define proper measures for specific problem [10]. These frameworks ensure that the metrics developed using these guidelines are tested to be valid and that they can be used as measurement instruments [29].

PR is a combination of three coupling metrics: D3 - number of distinct references outside the platform that depend upon classes within the platform, D4 - the number of distinct references inside the component that depend upon classes within environment (e.g. Java RTE), D5 - number of distinct references inside the component that depend upon classes within external components. It measures the “level of responsibility” of a reference architecture implementation (a platform) to communicate to the external components needed by application component in order to provide business logic to an application. The more the component delegates a communication to the external components the more it is protected from frequent changes to the external third party components. The three coupling metrics are combined and used to calculate the PR value, stated by equation 1.

\[
PR = \left(1 - \frac{D4 + D5}{D3 + D4 + D5}\right) \times 100
\]

(1)

The range for this metric is from 0 to 100. The larger the PR, the more maintainable is the product line component. Components with a PR less than 50 are more difficult to maintain than components with PR between 50 and 100 which have reasonable maintainability.
MI, our second dependent variable, is a combination of widely-used and commonly-available measures \[4, 27, 30, 35, 36, 38\]. MI is a complex calculation involving a number of different metrics: Cumulative Halstead Effort of all the parts of a class, Number of methods in class, Total Cyclomatic Complexity of all the methods in the class, Total Number of Java Statements in class \[34\]. The metrics are combined into parts and then used to calculate the MI value, stated by equation 2.

\[
\begin{align*}
\text{EffortPart} &= 3.42 \times \log(\text{HEFF}/\text{NOMT}) \\
\text{CyclomaticPart} &= 0.23 \times \log(\text{TCC}/\text{NOMT}) \\
\text{LinesPart} &= 16.2 \times \log(\text{NOS}/\text{NOMT})
\end{align*}
\]

\[
MI = 171 - \text{effortPart} - \text{cyclomaticPart} - \text{linesPart}
\] \hspace{1cm} (2)

The larger the MI, the more maintainable is the product line component. Components with a MI less than 65 are difficult to maintain, components between 65 and 85 have reasonable maintainability and those with MI above 85 have excellent maintainability. Since MI measurement is not a trivial task, we used JHawk 5.1 tool to measure MI for each product line component.

3.4. Independent Variables

The selection of the independent variables includes 7 object oriented design metrics of size, complexity, coupling and inheritance. The definition of those object oriented design metrics is given in Table 1. The metrics selection is based on the previous research results which have indicated that ACC, ADIT, AMC, and AWMC have statistically significant effects on maintainability \[38\]. The selection is based on the metrics selection criteria, a set of criteria for choosing suitable metric set \[1\]. Also, the metric selection is based on distinct metrics characteristics which we have identified and used to omit the metrics which measure the same thing. Finally the metrics selection was limited by available tools we could have used for this case study. The goal of our metrics selection criteria was to avoid measuring too much or measuring too little and not gaining sufficient insight into the desired objective. These metrics are commonly used and have been validated \[7\].

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABD</td>
<td>Average block depth</td>
</tr>
<tr>
<td>ACC</td>
<td>Average cyclomatic complexity</td>
</tr>
<tr>
<td>ADIT</td>
<td>Average depth of inheritance hierarchy</td>
</tr>
<tr>
<td>AMC</td>
<td>Average number of methods per class</td>
</tr>
<tr>
<td>ALCM</td>
<td>Average lines of code per method</td>
</tr>
<tr>
<td>AWMC</td>
<td>Average weighted methods per class</td>
</tr>
<tr>
<td>NMETH</td>
<td>Number of methods</td>
</tr>
</tbody>
</table>
Some metrics such as CC, DIT, MC, LCM, and WMC are originally defined at the class level. However, this study is performed at the product line component level. Therefore, those metrics may not be directly used as independent variables. In order to use them in this study, for each such metric, its mean among classes is calculated and used as an independent variable. Naming of those metrics is prefixed by an “A”, for example, the average CC metric is named ACC, when used at the component rather than at the class level.

3.5. Hypotheses

The hypotheses that relate metrics to product line components maintainability are listed and described in Table 2. The relationship column (+/-) indicates the direction of correlation between each metric and changeability (PR), where “+” means positive and “−” means negative correlation. Different authors have measured correlation between source code metrics and maintainability [2, 16, 38]. To date various methods have been developed and introduced to measure maintainability, however, there are a software product lines specifics, since they heavily rely on the platform used by its components. It will be addressed by this study. This experiment introduces a new relation measurement, the correlation between PR and MI metrics, since they potentially measure the same thing, but from different perspective, one (MI) from a generic perspective, the other (PR) from the product line specific perspective.

<table>
<thead>
<tr>
<th>Metric</th>
<th>+/-</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>+</td>
<td>Measure the same thing as PR</td>
</tr>
<tr>
<td>ABD</td>
<td>-</td>
<td>Component become more complex</td>
</tr>
<tr>
<td>ACC</td>
<td>-</td>
<td>Component become more complex</td>
</tr>
<tr>
<td>ADIT</td>
<td>-</td>
<td>Component coupling increases</td>
</tr>
<tr>
<td>AMC</td>
<td>-</td>
<td>Component become more complex</td>
</tr>
<tr>
<td>ALCM</td>
<td>-</td>
<td>Component become more complex</td>
</tr>
<tr>
<td>AWMC</td>
<td>-</td>
<td>Control flows are more complex</td>
</tr>
<tr>
<td>NMETH</td>
<td>-</td>
<td>Number of faults and difficulty increases</td>
</tr>
</tbody>
</table>

4. Execution

The experiment was based on data (Java source code) collected through the two major releases of the product line in a financial institution. To ensure the data validity, the Java source code metrics of collected data are measured twice, once using CodePro Analytix™ tool [19], and again with JHawk tool [33], but just for the metrics which could be measured by both of the tools. These tools measure and report on key quality indicators in a body of Java source code. In cases the results from the tools were different, we used JHawk results as representative, since the JHawk tool was also used to measure the MI metrics which depends on some of the other measured metrics.

4.1. Sample

The product line reference architecture implementation (platform) together with 9 applications has all together 161,376 lines of Java source code without comments (LOC). The rest of the source code has been written by using Transact-SQL, XML, HTML, CSS, Java Script languages. In this study we analyze the Java source code used by server side business application components, consisting of 33,139 LOC, and of 27,252 Java statements (NOS). Table 3 provides a summary of the maintenance tasks and the impacts on the product line components between the two releases of the product line applications.
Table 3. The component changes and their impact

<table>
<thead>
<tr>
<th>Maintenance type</th>
<th>Components affected</th>
<th>Classes affected</th>
<th>LOC affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>35</td>
<td>68</td>
<td>7314</td>
</tr>
<tr>
<td>Change</td>
<td>33</td>
<td>61</td>
<td>101</td>
</tr>
<tr>
<td>Delete</td>
<td>11</td>
<td>0</td>
<td>87</td>
</tr>
</tbody>
</table>

The results from the table show that most of these maintenance tasks were addition of the new functionalities.

5. Analysis

In this study we focus on investigating the capability of Platform Responsibility (PR) metric to serve as indicator of application component changeability. As indicated earlier in Section 2 (related work) and in [11], [5], many studies have already investigated the OO and coupling (Ca, Ce) metrics for this purpose, however, the metrics to measure coupling between product line application components and their reference architecture implementation (platform) has not been used as a predictor of product components changeability.

5.1. Descriptive Statistics

Table 4 shows the descriptive statistics for two accumulated versions of the server business components. The selection of these metrics is based on the fact that they measure different structural properties of a component: size, coupling, complexity, and inheritance, and since they refine classical object-oriented (Chidamber and Kemerer metrics) [3], which are well established and based on sound measurement theory.

Column "Skewness" is a measure of the asymmetry that shows whether the data distribution is skewed. Column "Kurtosis" is a measure of the "peakedness" that shows whether the data are peaked or flat relative to a normal distribution.

The low mean for NMETH and AWMC indicate that there are a small number of components which are having very high number of methods. Their distribution and the distribution of AMC metrics show high variations across the product line, which may reflect the lack of development experience of the programmers involved in those components. Figures 2 and 3 show the PR and MI metric frequency distribution. Both of the metrics distributions form a symmetrical, bell-shaped pattern, which approximates a normal distribution of the data. Second, the mean, mod and median for both metrics are equal and are located at the center of the distribution. Third, most of the values are clustered around the center of the distribution.

Table 4. Descriptive statistics of the server components

<table>
<thead>
<tr>
<th>Metric</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Mean value</th>
<th>Standard deviation</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>46.87</td>
<td>85.71</td>
<td>59.95</td>
<td>6.88</td>
<td>1.17</td>
<td>2.79</td>
</tr>
<tr>
<td>MI</td>
<td>88.42</td>
<td>119.01</td>
<td>101.95</td>
<td>5.82</td>
<td>0.58</td>
<td>0.62</td>
</tr>
<tr>
<td>ABD</td>
<td>1.11</td>
<td>1.7</td>
<td>1.41</td>
<td>0.12</td>
<td>-0.38</td>
<td>-0.58</td>
</tr>
<tr>
<td>ACC</td>
<td>1.19</td>
<td>2.47</td>
<td>1.63</td>
<td>0.27</td>
<td>0.89</td>
<td>0.71</td>
</tr>
<tr>
<td>ADIT</td>
<td>3</td>
<td>6.29</td>
<td>4.29</td>
<td>0.78</td>
<td>0.54</td>
<td>-0.16</td>
</tr>
<tr>
<td>AMC</td>
<td>2.4</td>
<td>22.8</td>
<td>7.75</td>
<td>4.19</td>
<td>1.70</td>
<td>3.18</td>
</tr>
<tr>
<td>ALCM</td>
<td>6</td>
<td>20.44</td>
<td>12.26</td>
<td>3.24</td>
<td>0.06</td>
<td>-0.29</td>
</tr>
<tr>
<td>AWMC</td>
<td>3.8</td>
<td>44.2</td>
<td>12.86</td>
<td>7.68</td>
<td>1.99</td>
<td>4.79</td>
</tr>
<tr>
<td>NMETH</td>
<td>6</td>
<td>255</td>
<td>45.09</td>
<td>48.26</td>
<td>2.45</td>
<td>7.17</td>
</tr>
</tbody>
</table>
Figure 2. PR metric histogram

Figure 3. MI metric histogram

Figure 4, the scatterplot, shows the relationship between PR and MI variables. The scatterplot shows an upward trend, a positive correlation, in which a direct relationship exists between PR and MI variables. That means that an increase in PR is related to an increase in MI, and a decrease in PR is related to decrease in MI. The figure also shows that the homoscedasticity assumption is met, because the variability of the PR variable, pretty much remains relatively constant from one MI value to the next. The two outliers (PR=86, MI=118 and PR=86, MI=119) shown at the upper right corner at figure 4, are due to the rare event of components
which interface is designed but their business logic was never implemented. This components are candidates to be dropped from the product line and could be excluded from the analysis.

5.2. Hypothesis Testing

Correlation technique was used to analyze the relationship between design metrics and both PR and MI metrics, and also between MI and PR metrics them self. Since our goal was to prove that PR metric can be used as a changeability predictor, we needed to find out if there is a positive correlation between MI, widely-used measure, and PR, newly proposed measure. The significance of the correlation was tested at 99% confidence level (i.e. p-level ≤ 0.01) and at 95% confidence level (i.e. p-level ≤ 0.05). The results obtained by applying this analysis are given in table 5 and 6, where ** and * values indicate statistically significant correlations.

Among the 7 design metrics used in this study, all were found to have significantly correlated negative effect on changeability (PR). ALCM (Average Lines of Code per Method) shows the highest negative correlation followed by ACC and AWMC. It is most probably the result of tendency that class methods with more lines of code than average, are using more of the external components than average methods, which makes the component less changeable. Therefore, the hypotheses related to those metrics are supported.

Table 6 shows the correlations between design metrics and MI, where only 3 metrics (ABD, ACC, and ALCM) were found to have statistically significant negative effect on maintainability (MI). ALCM (average lines of code per method) shows the highest negative correlation followed by ABD and ACC.

The correlation between Maintenance Index (MI) and Platform Responsibility (PR) is moderate, \(r = 0.526** \) which we consider strong in the context of the software product lines environment. The correlation indicates that PR can be used for the same purpose as MI in
case we are predicting product line component changeability. Therefore, as the values of these metrics increase, the changeability of the components and hence the product line decreases.

Table 5. PR and metrics correlations

<table>
<thead>
<tr>
<th>Metric</th>
<th>Pearson correlation coefficient (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABD</td>
<td>-.296**</td>
</tr>
<tr>
<td>ACC</td>
<td>-.353**</td>
</tr>
<tr>
<td>ADIT</td>
<td>-.304**</td>
</tr>
<tr>
<td>AMC</td>
<td>-.313**</td>
</tr>
<tr>
<td>ALCM</td>
<td>-.477**</td>
</tr>
<tr>
<td>AWMC</td>
<td>-.374**</td>
</tr>
<tr>
<td>NMETH</td>
<td>-.277**</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the .01 level (2-tailed)

Table 6. MI and metrics correlations

<table>
<thead>
<tr>
<th>Metric</th>
<th>Pearson correlation coefficient (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABD</td>
<td>-.777**</td>
</tr>
<tr>
<td>ACC</td>
<td>-.751**</td>
</tr>
<tr>
<td>ADIT</td>
<td>.016</td>
</tr>
<tr>
<td>AMC</td>
<td>-.050</td>
</tr>
<tr>
<td>ALCM</td>
<td>-.941**</td>
</tr>
<tr>
<td>AWMC</td>
<td>-.239*</td>
</tr>
<tr>
<td>NMETH</td>
<td>-.072</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the .01 level (2-tailed)

*. Correlation is significant at the .05 level (2-tailed)

6. Interpretation

The data analysis is interpreted with respect to the hypotheses stated in section 3.5. All hypotheses are tested using Pearson correlation. It can be concluded that there are significant differences among the components, depending on their design metrics characteristics. This is true for all the hypotheses. Furthermore, there is significant correlation between MI and PR metrics, and thus the exceptional usage of PR instead of MI in software product line environment can be suggested.

A strong relation between import coupling metrics (efferent) and maintainability characteristics has been reported by Dagpinar *et al.* [16]. Import coupling considers interactions of the class or component that is using the functionality of other classes or the component.

The results of this study, where we used the PR dependency metrics, also measure the import coupling for server component which is using the functionality of the platform (D3), environment (D4) and external components (D5). The results are consistent with those of other study and suggest that changeability of product line components depends on source code design characteristics.

There are limits of this study to generalize the results of our experiment to industrial practice. The specific business environment, programing language, developers experience and technical environment are not representative of the population we want to generalize to, but the threats are reduced by making the experimental environment as realistic as possible.
7. Conclusion and Future Work

In this paper we have investigated the relationships between 7 design metrics and software product line component changeability, a sub-characteristic of maintainability, based on a software product line implementation in a financial institution. The metrics used here, measure coupling, size, inheritance and complexity of a product line components used by the 9 applications from the product line. The Maintainability Index (MI) was used as the dependent variable together with recently proposed Platform Responsibility (PR) metric. Our goal was to find out if PR metric can be used instead of the MI metric in case the study is carried over within software product line environment. Pearson correlation analysis results indicate a statistically significant correlation between PR and MI metrics, and also between most of the individual metrics and component changeability represented by those metrics. We have also found the ability of the design metrics to predict components changeability, when design metrics are used together. The results of this research support the idea to use the PR metric as predictor of changeability in the software product line environment. The correlation between MI and PR is interesting because it is much easier to measure PR than MI metric. This indicates that PR metric may be used more often in the future as a predictor for product line component changeability. The major limitation of this study was the sample size and the specific technical environment which was used to develop the product line in a financial institution. This study contributes preliminary and novel empirical knowledge about the relationships between some design metrics and product line components changeability. In the future work we will employ classical linear regression to investigate the relationship between design metrics and changeability of software product line components. Also, the future work will include the analysis of influences of individual design metrics.

References