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ISSN 0720-8766 Séminaire de Probabilités
ISBN 3-540-23973-1 Springer Berlin Heidelberg New York
DOI: 10.1007/b104072

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microf ilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
for prosecution under the German Copyright Law.

Springer is a part of Springer Science + Business Media
http://www.springeronline.com
c© Springer-Verlag Berlin Heidelberg 2005

Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specif ic statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready TEX output by the authors

41/3142/ du - 543210 - Printed on acid-free paper



C’est avec gratitude et admiration que nous dédions ce volume à

Jacques Azéma,

à l’occasion de son 65e anniversaire. Ses travaux, parmi lesquels ceux sur
le retournement du temps, le balayage, les fermés aléatoires et bien sûr la
martingale d’Azéma, ont prolongé, toujours avec originalité et élégance, la
théorie générale des processus.

Son apparente décontraction, sa réelle rigueur et ses incessantes questions
(“his healthy skepticism”, comme l’écrivait J. Walsh dans Temps Locaux), ont
été indissociables du Séminaire de Probabilités pendant de nombreuses années.

We are also indebted and grateful to Anthony Phan, whose patient and
time-consuming work behind the scene, up to minute details, on typography,
formatting and TEXnicalities, was a key ingredient in the production of the
present volume.

Volume XXXIX, which consists of contributions dedicated to the memory
of P. A. Meyer, is being prepared at the same time as this one and should
appear soon, also in the Springer LNM series. It may be considered as a
companion to the special issue, also in memory of Meyer, of the Annales de
l’Institut Henri Poincaré.

Finally, the Rédaction of the Séminaire is thoroughly modified: J. Azéma
retired from our team after Séminaire XXXVII was completed; now, following
his steps, two of us—M. Ledoux and M. Yor—are also leaving the board.

From volume XL onwards, the new Rédaction will consist of Catherine
Donati-Martin (Paris), Michel Émery (Strasbourg), Alain Rouault (Versailles)
and Christophe Stricker (Besançon). The combined expertise of the new mem-
bers of the board will be an important asset to blend the themes which are
traditionally studied in the Séminaire together with the newer developments
in Probability Theory in general and Stochastic Processes in particular.

M. Émery, M. Ledoux, M. Yor
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Tanaka’s Construction for Random Walks and
Lévy Processes

Ronald A. Doney

Department of Mathematics, University of Manchester
Oxford Road, Manchester, UK M13 9PL
e-mail: rad@maths.man.ac.uk

Summary. Tanaka’s construction gives a pathwise construction of “random walk
conditioned to stay positive”, and has recently been used in [3] and [8] to establish
other results about this process. In this note we give a simpler proof of Tanaka’s
construction using a method which also extends to the case of Lévy processes.

1 The random walk case

If S is any rw starting at zero which does not drift to −∞, we write S∗ for
S killed at time σ := min(n � 1 : Sn � 0), and S↑ for the for the harmonic
transform of S∗ which corresponds to “conditioning S to stay positive”. Thus
for x > 0, y > 0, and x = 0 when n = 0

P (S↑n+1 ∈ dy |S↑n = x) =
V (y)
V (x)

P (Sn+1 ∈ dy |Sn = x) =
V (y)
V (x)

P (S1 ∈ dy−x),
(1)

where V is the renewal function in the weak increasing ladder process of −S.
In [10], Tanaka showed that a process R got by time-reversing one by one
the excursions below the maximum of S has the same distribution as S↑;
specifically if {(Tk, Hk), k � 0} denotes the strict increasing ladder process of
S (with T0 = H0 ≡ 0) then R is defined by

R0 = 0, Rn = Hk +
Tk+1∑

i=Tk+1+Tk+1−n
Yi, Tk < n � Tk+1, k � 0. (2)

If S drifts to +∞, then it is well known (see [9]) that the post-minimum
process

−→
S := (SJ+n − SJ , n � 0), where J = max

{
n : Sn = min

r�n
Sr

}
(3)

also has the distribution of S↑. In this case a very simple argument was given
in [7] to show that the distributions of R and

−→
S agree, thus yielding a proof of

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 1–4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Ronald A. Doney

Tanaka’s result in this case. The first point of this note is to show that a slight
modification of this argument also yields Tanaka’s result in the oscillatory
case, without the somewhat tedious calculations in [10].

To see this, let S be any random walk with S0 ≡ 0, Sn =
∑n

1 Yr for
n � 1, introduce an independent Geometrically distributed random time G
with parameter ρ and put Jρ = max{n � G : Sn = minr�n Sr}. In [7] a
time-reversal argument was used to show that

(SJρ+n − SJρ , 0 � n � G− Jρ) D=
[
δ̂K(ρ), . . . , δ̂1(ρ)

]
(4)

D=
[
δ̂1(ρ), . . . , δ̂K(ρ)

]
,

where δ̂1(ρ), . . . , δ̂K(ρ) are the time reversals of the completed excursions be-
low below the maximum of Ŝ(ρ) := (SG−SG−n, 0 � n � G), and [. . . ] denotes
concatenation. Note that the post-minimum process on the left in (4) has the
same distribution as (Sn, 0 � n � G |σ > G). Now in Theorem 1 of [4] it was
shown that S↑ is the limit, in the sense of convergence of finite-dimensional
distributions, of (Sn, 0 � n � k |σ > k) as k → ∞. (Actually [4] treated the
case of conditioning to stay non-negative, and minor changes are required
for our case). However it is easy to amend the argument there to see that
as ρ ↓ 0 this post-minimum process also converges in the same sense to S↑.
Specifically a minor modification of Lemma 2 therein shows that

lim inf
ρ↓0

P{Sn � −x, n � G}
P{Sn � 0, n � G} � V (x), x � 0,

and the rest of the proof is the same. Noting that δ̂1(ρ), . . . , δ̂K(ρ) are indepen-
dent and identically distributed and independent of K, and that δ̂1(ρ)

D→ δ̂1

and K P→ ∞ as ρ ↓ 0, we conclude that S↑ D= [δ̂1,δ̂2, . . . ]
D= R, which is the

required result.

2 The Lévy process case

The main point of this note is that, although the situation is technically
more complicated, exactly similar arguments can be used to get a version of
Tanaka’s construction for Lévy processes.

We will use the canonical notation, and throughout this section P will be a
measure under which the coordinate processX = (Xt, t � 0) is a Lévy process
which does not drift to −∞ and is regular for (−∞, 0]. For x > 0 we can use
a definition similar to (1), with V replaced by the potential function for the
decreasing ladder height subordinator to define a measure P

↑
x corresponding

to conditioning X starting from x to stay positive. But for x = 0 we need to
employ a limiting argument. The following result is an immediate consequence
of results in Bertoin [2]; see also Chaumont [5].
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Theorem 1 (Bertoin). Let τ be an Exp(ρ) random variable independent of
X, and put

Jρ = sup{s < τ : Xs = Xs} where Xs = inf{Xu : u < s}.
Write P−→

(ρ) for the law of the post-minimum process {XJρ + s −XJρ, 0 � s <

τ − Jρ} under P0; then for each fixed t and A ∈ Ft
lim
ρ↓0

P−→
(ρ){A} = P ↑{A},

where P ↑ is a Markovian probability measure under which X starts at 0 and
is such that the conditional law of Xt+·, given Xt = x > 0, agrees with P ↑x .

Remark 1. It has recently been shown that, under very weak assumptions, P ↑x
converges to P ↑ as x ↓ 0 in the sense of convergence of finite-dimensional
distributions. See [6].

Next, we recall another result due to Bertoin which is the continuous time
analogue of the result from [7] which we have stated as (4). Noting that (2)
can be written in the alternative form

Rn = S̄Tk+1 +
(
S̄ − S

)
Tk+Tk+1−n

, Tk < n � Tk+1,

we introduce X̄s = supu<sXu and

g(t) = sup
(
s < t : Xs = X̄s

)
, d(t) = inf

(
s > t : Xs = X̄s

)
,

the left and right endpoints of the excursion of X̄ − X away from 0 which
contains t, and define Rt = X̄d(t) + R̃t, where

R̃t =
{(
X̄ −X

)
(d(t)+g(t)−t)− if d(t) > g(t),

0 if d(t) = g(t).

We also introduce the future infimum process for X killed at time τ by

X
=
t = inf{Xs : t � s � τ},

and note that X
=

0 = XJρ . The following result is established in the proof of

Lemme 4 in [1]; note that, despite the title of the paper, this Lemme 4 is valid
for any Lévy process which drifts to +∞, and the result for the killed process,
which is what we need is clearly valid for any Lévy process.

Theorem 2 (Bertoin). Under P0 the law of {(R̃t, X̄d(t)), 0 � t < g(τ)}
coincides with that of

{((
X −X

=

)
Jρ+t

, X
=
Jρ+t −X

=
0

)
, 0 � t < τ − Jρ

}
.

Of course, an immediate consequence of this is the equality in law of

{Rt, 0 � t < g(τ)} and
{
XJρ+t −X

=
0, 0 � t < τ − Jρ

}
.

Letting ρ ↓ 0 and appealing to Theorem 1 above we deduce

Theorem 3. Under P0 the law of {Rt, t � 0} is P
↑.
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Some Excursion Calculations
for Spectrally One-sided Lévy Processes

Ronald A. Doney

Department of Mathematics, University of Manchester
Oxford Road, Manchester, UK M13 9PL
e-mail: rad@maths.man.ac.uk

1 Introduction.

Let X = (Xt, t � 0) be a spectrally negative Lévy process and write Y and
Ŷ for the reflected processes defined by

Yt = Xt − It, Ŷt = St −Xt, t � 0,

where
St = sup

0�s�t
(0 ∨Xs), It = inf

0�s�t
(0 ∧Xs).

In recent works by Avram, Kyprianou and Pistorius [1] and Pistorius [8]
some new results about the times at which Y and Ŷ exit from finite intervals
have been established. The proofs of these results in the cited papers involve
a combination of excursion theory, Itô calculus, and martingale techniques,
and the point of this note is to show that these results can be established
by direct excursion theory calculations. These calculations are based on the
known results for the two-sided exit problem for X in Bertoin [3], together
with representations for the characteristic measures n and n̂ of the excursions
of Y and Ŷ away from zero. The representation for n has been established
by Bertoin in [2] and that for n̂ follows from results in Chaumont [4], (for a
similar result for general Lévy processes see [5]), and are described in the next
section.

2 Preliminaries

Throughout we assume that X = (Xt, t � 0) is a Lévy process without
positive jumps which is neither a pure drift nor the negative of a subordinator,
and we adopt without further comment the notation of Chapter VII of [2].
In particular ψ and Φ denote the Laplace exponent of X and its inverse,

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 5–15, 2005.
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6 Ronald A. Doney

andW denotes the scale function, the unique absolutely continuous increasing
function with Laplace transform

∫ ∞

0

e−λxW (x) dx =
1

ψ(λ)
, λ > Φ(0).

The scale function determines the probability of X exiting at the top or
bottom of a 2-sided interval, and the q-scale function W (q), which informally
is the scale function of the process got by killing X at an independent Exp(q)
time, determines also the distribution of the exit time. Specifically W (q) de-
notes the unique absolutely continuous increasing function with Laplace trans-
form ∫ ∞

0

e−λxW (q)(x) dx =
1

ψ(λ) − q , λ > Φ(q), q � 0, (1)

and for convenience we set W (q)(x) = 0 for x ∈ (−∞, 0). We also need the
“adjoint scale function” defined by Z(q)(x) = 1 for x � 0 and

Z(q)(x) = 1 + q
∫ x

0

W (q)(y) dy for x > 0. (2)

Extending previous results due to Emery [6], Takacs [11], Rogers [9], and
Suprun [10], in [3] Bertoin gave the full solution to the 2-sided exit problem
in the following form:

Proposition 1. Define for a � 0 the passage times

Ta = inf(t � 0 : Xt > a), T̂a = inf(t � 0 : −Xt > a).

Then for 0 � x � a we have

Ex

(
e−qTa ;Ta < T̂0

)
=
W (q)(x)
W (q)(a)

, (3)

and

Ex

(
e−qT̂0 ; T̂0 < Ta

)
= Z(q)(x)− W

(q)(x)Z(q)(a)
W (q)(a)

. (4)

Furthermore let U (q) denote the resolvent measure of X killed at the exit time
σa := Ta ∧ T̂0; then U (q) has a density which is given by

u(q)(x, y) =
W (q)(x)
W (q)(a)

W (q)(a− y)−W (q)(x− y), x, y ∈ [0, a). (5)

Remark 1. Suppose that P
a is a measure under which X is a Lévy process

having the same characteristics as under P except that Π is replaced by

Πa(dx) = Π(dx)1{x�−a} +Π
(
(−∞,−a)

)
δ−a(dx),
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where δ−a(dx) denotes a unit mass at −a. Then it is clear that up to time σa,
X behaves the same under P

a as it does under P. Thus the righthand sides of
(3) and (4) are unchanged if W (q) is replaced by W (q)a, the scale function for
X under P

a. It then follows that we must have the identity

W (q)(x) ≡W (q)a(x) for 0 � x � a.

Note that the behaviour of Y and Ŷ up to the time that they exit the interval
[0, a] is also the same under P

a as it is under P.

Remark 2. The probability measures P and P
# are said to be associates if X

is also a spectrally negative Lévy process under P
# and there is a constant

δ �= 0 such that

P
#(Xt ∈ dx) = eδx P(Xt ∈ dx), −∞ < x <∞.

It is known that if X drifts to −∞ under P then P
# exists, is unique, and

δ = Φ(0) > 0 is a zero of ψ. (See [2], p. 193.) On the other hand, if X drifts
to ∞ under P then P

# may or may not exist; if it does it is unique, and δ is a
negative zero of ψ. In both cases the corresponding scale functions are related
by W#(x) = eδxW (x). Note that if the Lévy measure is confined to a finite
interval, as Πa is in Remark 1, then ψ(λ) exists for all real λ, and if EX1 �= 0
then it has 2 real zeros, so the associate measure exists.

We also need some information about the excursion measures n and n̂ of
Y and Ŷ away from zero. (n.b. this notation is the opposite of that in [2]).
In what follows it should be noted that whereas 0 is always regular for (0,∞)
for Y , it is possible for 0 to be irregular for (0,∞) for Ŷ . (This situation was
excluded in [8].) In this case we adopt the convention outlined on p. 122 of [2],
which allows us to assume that Ŷ has a continuous local time at 0.

In the following result ζ denotes the lifetime of an excursion and Qx and
Q
∗
x denote the laws of X and −X killed on entering (−∞, 0) respectively.

Proposition 2. Let A ∈ Ft, t > 0, be such that n(Ao) = 0 (respectively
n̂(Ao) = 0), where Ao is the boundary of A with respect to the J-topology
on D. Then there are constants k and k̂ (which depend only on the normal-
izations of the local time at zero of Y and Ŷ ) such that

n(A, t < ς) = k lim
x↓0

Qx(A)
W (x)

, (6)

and, assuming further that if X drifts to +∞ under P then the associate
measure P

# exists,

n̂(A, t < ς) = k̂ lim
x↓0

Q
∗
x(A)
x

. (7)
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Proof. According to Propositions 14 and 15, p. 201–202 of [2] for any A ∈ Ft
we have

n(A, t < ς) = k E
↑(W (Xt)−1; A

)
, (8)

where P
↑ is the weak limit in the Skorohod topology as x ↓ 0 of the measures

P
↑
x which correspond to “conditioning X to stay positive”, and are defined by

P
↑
x(Xt ∈ dy) =

W (y)
W (x)

Qx(Xt ∈ dy), x > 0, y > 0.

Combining these results and using the assumption on A gives (6). The proof
of (7) is similar. If X does not drift to +∞ under P the potential function of
the increasing ladder height process is given by

V (x) =
{
x if EX1 = 0,
1− e−xΦ(0) if EX1 < 0,

so that V (x) � cx as x ↓ 0 in both cases. The analogue of (8) is

n̂(A, t < ς) = k E
∗↑(V (Xt)−1; A

)

where, by Theorem 6 of [4], P
∗↑ is the weak limit of the measures

P
∗↑
x (Xt ∈ dy) =

V (y)
V (x)

Q
∗
x(Xt ∈ dy), x > 0, y > 0.

If X does drift to +∞ under P then it is easy to check that, with ε = (ε(t),
t � 0) denoting a generic excursion and n̂# denoting the excursion measure
of Ŷ under the associate measure P

#,

n̂
(
A, ε(t) ∈ dy, t < ς

)
= e−δy n̂#

(
A, ε(t) ∈ dy, t < ς

)
. (9)

Since X drifts to −∞ under P
# we can apply the previous result and the fact

that
Q
∗
x(Xt ∈ dy) = e−δ(y−x) Q

#∗
x (Xt ∈ dy)

to complete the proof. 	


Remark 3. One way to check (9) is to use our knowledge of the Wiener–Hopf
factors and equation (7), p. 120 of [2] to compute the double Laplace trans-
forms of n̂(ε(t) ∈ dy, t < ς) and e−δyn̂#(ε(t) ∈ dy, t < ς).

We also need some facts about W (q):

Lemma 1. (i) limx↓0
W (q)(x)
W (x) = 1;

(ii) If X has unbounded variation then W (q)′(x), the derivative with respect
to x of W (q)(x) exists and is continuous for all x > 0.
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(iii) If X has bounded variation let D denote {x : Π has positive mass
at −x}. Then W

(q)′
+ (x) and W

(q)′
− (x), the right and lefthand derivatives of

W (q)(x) exist at all x > 0, agree off D, and

lim
y↓x

W
(q)′
+ (y) = W

(q)′
+ (x) for all x ∈ D.

Proof. (i) This follows from the expansion

W (q)(x) =
∞∑

k=1

qk−1W (k∗)(x), (10)

where W (k∗) denotes the k-fold convolution of W , together with the bound

W (k∗)(x) � xk−1W (x)k

(k − 1)!
, k � 1, x � 0.

(ii) Provided X does not drift to −∞ under P, we have the representation

W (x) = c exp
(
−
∫ ∞

x

n̂(h(ε) > t) dt
)
,

(see [2], p. 195). As pointed out in [8], this implies that

W ′+(x) = W (x) n̂
(
h(ε) > x

)
, W ′−(x) = W (x) n̂

(
h(ε) � x

)
,

and the result follows when q = 0 since n̂ has no atoms in the case of un-
bounded variation, (see [7]). If X does drift to −∞ under P we use the device
of the associate measure P

# introduced in Remark 2. Since X drifts to ∞
and has unbounded variation under P

#, it is easy to check that the result also
holds in this situation. The case when q > 0 again follows easily, using (10).

(iii) In this case excursions of Ŷ away from 0 start with a jump, and then
evolve according to the law of −X . Since 0 is irregular for (−∞, 0), this shows
that n̂(h(ε) = x) > 0 for all x ∈ D, but the fact that X has an absolutely
continuous resolvent means that n̂(h(ε) = x) = 0 for all x /∈ D, and this
implies the stated results for q = 0. Again the results for q > 0 follow easily,
using (10). 	


To demonstrate the use of the above result, we calculate below the n and n̂
measures of a relevant subset of excursion space. Put h(ε) := supt<ζ ε(t) and
Ta(ε) = inf{t : ε(t) > a} for the height and the first passage time of a
generic excursion ε whose lifetime is denoted by ς(ε), and with Λq denoting
an independent Exp(q) random variable set A = B ∪ C, where

B = {ε : h(ε) > a, Ta(ε) � ς(ε) ∧ Λq} and C = {ε : h(ε) � a, Λq < ς(ε)}.

Since we will only be concerned with ratios of n and n̂ measures in the fol-
lowing we will assume that k = k̂ = 1.
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Lemma 2. In all cases

α := n(A) =
Z(q)(a)
W (q)(a)

, (11)

and, provided that if X drifts to +∞ under P then the associate measure P
#

exists,

α̂ := n̂(A) =
W

(q)′
+ (a)

W (q)(a)
. (12)

Proof. Since ([2], p. 202)

n
(
h(ε) > x

)
= c/W (x)

is continuous, we see from (6) that

n
(
h(ε) > a, Ta(ε) ∈ dt

)
= lim
x↓0

Qx{Ta ∈ dt}
W (x)

= lim
x↓0

Px{Ta < T̂0, Ta ∈ dt}
W (x)

,

and

n(εt ∈ dy, Ta(ε) > t) = lim
x↓0

Qx{Xt ∈ dy, Ta > t}
W (x)

= lim
x↓0

Px{Xt ∈ dy, σa > t}
W (x)

.

Thus

α = n(B) + n(C) = lim
x↓0

1
W (x)

(
Ex

{
e−qTa ; Ta < T̂0

}
+ Px{Λq < σa}

)

= lim
x↓0

1
W (x)

(
1− Ex

{
e−qT̂0 ; T̂0 < Ta

})
.

Combining this with (4) gives

α = lim
x↓0

1− Z(q)(x)
W (x)

+
Z(q)(a)
W (q)(a)

lim
x↓0

W (q)(x)
W (x)

=
Z(q)(a)
W (q)(a)

.

Note next that the results of Lemma 2.3 show that the right-hand side of (12)
is a cadlag function of a; since it is easy to see that the same is true of the
left-hand side, it suffices to establish these results for a /∈ D . In this case
we have n̂(h = a) = 0, so the required J-continuity holds and by a similar
argument we can use (7) and (3) to get

â = lim
x↓0

1
x

(
Ea−x

{
e−qT̂0 ; T̂0 < Ta

}
+ Pa−x{Λq < σa}

)

= lim
x↓0

1
x

(
1− Ea−x

{
e−qTa ; Ta < T̂0

})

= lim
x↓0

1
x

(
W (q)(a)−W (q)(a− x)

W (q)(a)

)
=
W

(q)′
+ (a)

W (q)(a)
. 	
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3 Exit results for the reflected processes

We use the following notation for passage times of Y and Ŷ : for a > 0

τa = inf{t � 0 : Yt > a}, τ̂a = inf{t � 0 : Ŷt > a}.

Note that when x � 0 the initial value of Ŷ under Px is −x.
Our main result gives the q-resolvent measures R(q)(x,A) and R̂(q)(x,A)

of Y and Ŷ killed on exiting the interval [0, a].

Theorem 1 (Pistorius [8]). (i) The measure R(q)(x,A) is absolutely con-
tinuous with respect to Lebesgue measure and a version of its density is

r(q)(x, y) =
Z(q)(x)
Z(q)(a)

W (q)(a− y)−W (q)(x − y), x, y ∈ [0, a). (13)

(ii) For 0 � x � a we have R̂(q)(x, dy) = r̂(q)(x, 0) δ0(dy)+ r̂(q)(x, y) dy where

r̂(q)(x, 0) =
W (q)(a− x)W (q)(0)

W
(q)′
+ (a)

, (14)

r̂(q)(x, y) =
W (q)(a− x)W (q)′

+ (y)

W
(q)′
+ (a)

−W (q)(y − x), 0 < y � a, (15)

and δ0 denotes a unit mass at 0.

Proof. (i) We start with the obvious decomposition

r(q)(x, y) = u(q)(x, y) + Ex

{
e−qT̂0 ; T̂0 < Ta

}
r(q)(0, y),

where u(q)(x, y), the resolvent density of X killed at time σa, is given by (5).
Together with (4) this means that we need only show that

r(q)(0, y) =
W (q)(a− y)
Z(q)(a)

.

To do this we first establish that

r(q)(0, y) dy =
n{Λq < ζ, ε(Λq) ∈ dy, ε(Λq) � a}

α
, (16)

where ε(t) = sups�t ε(s). For this, note first that the lefthand side of (16) is

P{Y (Λq) ∈ dy, Y (Λq) � a}.

Next, with L denoting the local time at zero of Y and εs the excursion of Y
at local time s, we can write
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{Y (Λq) ∈ dy, Y (Λq) � a}

=
⋃

t>0

(⋂

s<t

{
εs ∈ D

(
L−1(s−)

)}
∩
{
εt ∈ E

(
L−1(t−)

)})
,

where
D(x) = {ε : h(ε) � a, x+ ς(ε) � Λq},

and

E(x) =
{
ε : Λq ∈

(
x, x+ ς(ε)

)
, ε(Λq − x) ∈ dy, ε(Λq − x) � a

}
.

Using the lack of memory property of Λq we see that L{inf(s : εs /∈
D(L−1(s−))} is exponentially distributed with parameter n(D(0)c) = n(A) =
α, and noting that E(x) ⊂ D(x)c we get

P{Y (Λq) ∈ dy, Y (Λq) � a} =
∫ ∞

0

αE
−αtn

(
E(0)

∣∣ D(0)c
)
dt =

n
(
E(0)

)

α
,

and this is (16). The result now follows, since α = Z(q)(a)/W (q)(a) by (11)
and

n{Λq < ζ, ε(Λq) ∈ dy, ε(Λq) � a} = lim
x↓0

Px{Λq < σa, X(Λq) ∈ dy}
W (x)

= lim
x↓0

u(q)(x, y) dy
W (x)

= lim
x↓0

W (q)(a− y)W (q)(x) dy
W (x)W (q)(a)

=
W (q)(a− y) dy

W (q)(a)
.

(ii) First note that if X drifts to ∞ under P then by Remark 1 we can
assume that Π((−∞,−a)) = 0, and then by Remark 2 we know that the
associate measure P

# exists, and we are free to use the results of Proposition
2.2 and Lemma 2.4.

For y > 0 a calculation similar to that in (i) gives

r̂(q)(0, y) dy =
n̂{Λq < ζ, ε(Λq) ∈ dy, ε(Λq) � a}

α̂
,

where α̂ = W
(q)′
+ (a)/W (q)(a) by (12). But

n̂{Λq < ζ, ε(Λq) ∈ dy, ε(Λq) � a} = lim
x↓0

Pa−x{Λq < σa, X(Λq) ∈ a− dy}
x

= lim
x↓0

u(q)(a− x, a− y) dy
x

= lim
x↓0

{W (q)(y)W (q)(a− x) −W (q)(a)W (q)(y − x)} dy
xW (q)(a)

=
{W (q)(a)W (q)′

+ (y)−W (q)(y)W (q)′
+ (a)} dy

W (q)(a)
.
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Thus

r̂(q)(0, y) =
W (q)(a)W (q)′

+ (y)

W
(q)′
+ (a)

−W (q)(y).

We conclude by substituting this into the decomposition

r̂(q)(x, y) = u(q)(a− x, a− y) + Ea−x
{
e−qTa ; Ta < T̂0

}
r̂(q)(0, y),

to get (15).
For the case y = 0 the fact that

R̂(q)(x, {0}) = Ea−x
{
e−qTa ;Ta < T̂0

}
R̂(q)(0, {0})

means we need only consider the case x = 0. Recall that B = {ε : h(ε) >
a, Ta(ε) � ς(ε) ∧ Λq}; then by arguments similar to those we have already
used we see that

n̂(B) = lim
x↓0

1
x

Ea−x
{
e−qT̂0 ; Ta > T̂0

}

= lim
x↓0

1
x

{
Z(q)(a− x)− W

(q)(a− x)Z(q)(a)
W (q)(a)

}

= lim
x↓0

1
x

(
{W (q)(a)−W (q)(a− x)}Z(q)(a)

W (q)(a)
+ Z(q)(a− x)− Z(q)(a)

)

=
W (q)′(a)Z(q)(a)

W (q)(a)
− qW (q)(a) =

W
(q)′
+ (a)Z(q)(a)
W (q)(a)

− qW (q)(a),

so that

P{τ̂a � Λq} =
n̂(B)
α̂

=

W
(q)′
+ (a)Z(q)(a)

W (q)(a)
− qW (q)(a)

W
(q)′
+ (a)/W (q)(a)

= Z(q)(a)−
q
(
W (q)(a)

)2

W
(q)′
+ (a)

.

(17)
Using these facts and a straight forward integration gives

qR̂(q)(0, {0}) = P(Λq < τ̂a)− q
∫ a

0

r̂(q)(0, y) dy

= 1− Z(q)(a) +
q
(
W (q)(a)

)2

W
(q)′
+ (a)

−
(
qW (q)(a){W (q)(a)−W (q)(0)}

W
(q)′
+ (a)

− {Z(q)(a)− 1}
)

=
qW (q)(a)W (q)(0)

W
(q)′
+ (a)

,

and this is (14) with x = 0. (Note that W (q)(0) = W (0) = 0 whenever X has
unbounded variation.) 	
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An immediate consequence of the Theorem is the following, which is a
result in [1]:

Corollary 1. For 0 � x � a and q � 0 we have

Ex{e−qτa} =
Z(q)(x)
Z(q)(a)

(18)

and

E−x
{
e−qτ̂a

}
= Z(q)(a− x) − qW

(q)(a− x)W (q)(a)

W
(q)′
+ (a)

. (19)

Proof. For (18) just use (13) to compute Px{τa > Λq}. For (19) use (17), the
fact that

E−x{e−τ̂a} = E−x
{
e−qT̂−a ; T̂−a < T0

}
+ E−x

{
e−qT0 ; T0 < T̂−a

}
E
{
e−qτ̂a

}

= Ea−x
{
e−qT̂0 ; T̂0 < Ta

}
+ Ea−x

{
e−qTa ; Ta < T̂

}
P{τ̂a � Λq},

and (3) and (4). 	


Remark 4. Using (15) and the standard formula

E−x
{
e−qτ̂a ; Ŷ (τ̂a−) ∈ dy, Ŷ (τ̂a) ∈ dz

}
= Π{−dz + y} r̂(q)(x, y) dy

yields a refinement of (19).

Acknowledgement. The author is grateful to Andreas Kyprianou for sev-
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References

1. Avram, F., Kyprianou, A. E., Pistorius, M. R. Exit problems for spectrally
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Summary. We give a review of some fluctuation theory for spectrally negative Lévy
processes using for the most part martingale theory. The methodology is based on
the techniques found in Kyprianou and Palmowski (2003) which deal with similar
issues for a general class of Markov additive processes.

1 Introduction

Two and one sided exit problems for spectrally negative Lévy processes have
been the object of several studies over the last 40 years. Significant contribu-
tions have come from Zolotarev (1964), Takács (1967), Emery (1973), Bing-
ham (1975) Rogers (1990) and Bertoin (1996a, 1996b, 1997). The principal
tools of analysis of these authors are the Wiener–Hopf factorization and Itô’s
excursion theory.

In recent years, the study of Lévy processes has enjoyed rejuvenation.
This has resulted in many applied fields such as the theory of mathematical
finance, risk and queues adopting more complicated models which involve an
underlying Lévy process. The aim of this text is to give a reasonably self
contained approach to some elementary fluctuation theory which avoids the
use of the Wiener–Hopf factorization and Itô’s excursion theory and relies
mainly on martingale arguments together with the Strong Markov property.
None of the results we present are new but for the most part, the proofs
approach the results from a new angle following Kyprianou and Palmowski
(2003) who also used them to handle a class of Markov additive processes.
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2 Spectrally negative Lévy processes

We start by briefly reviewing what is meant by a spectrally negative Lévy pro-
cess. The reader is referred to Bertoin (1996a) and Sato (1999) for a complete
discussion.

Suppose that (Ω,F ,F, P ) is a filtered probability space with filtration F =
{Ft : t � 0} satisfying the usual conditions of right continuity and completion.
In this text, we take as our definition of a Lévy process for (Ω,F ,F, P ), the
strong Markov, F-adapted process X = {Xt : t � 0} with right continuous
paths having the properties that P (X0 = 0) = 1 and for each 0 � s � t,
the increment Xt−Xs is independent of Fs and has the same distribution as
Xt−s. In this sense, it is said that a Lévy process has stationary independent
increments.

On account of the fact that the process has stationary independent incre-
ments, it is not too difficult to show that

E
(
eiθXt

)
= etΨ(θ),

where Ψ(θ) = logE(exp{iθX1}). The Lévy–Khinchine formula gives the gen-
eral form of the function Ψ(θ). That is,

Ψ(θ) = iµθ − σ
2

2
θ2 +

∫

(−∞,∞)

(
eiθx − 1− iθx1|x|<1

)
Π(dx) (1)

for every θ ∈ R where µ ∈ R, σ > 0 and Π is a measure on R\{0} such that∫
(1 ∧ x2)Π(dx) <∞.

Finally, we say that X is spectrally negative if the measure Π is sup-
ported only on (−∞, 0). We exclude from the discussion however the case
of a descending subordinator, that is a spectrally negative Lévy process with
monotone decreasing paths. Included in the discussion however are descending
subordinators plus an upward drift (such as one might use when modelling
an insurance risk process, dam and storage models or a virtual waiting time
process in anM/G/1 queue) and a Brownian motion with drift. Also included
are processes such as asymmetric α-stable processes for α ∈ (1, 2) which have
unbounded variation and zero quadratic variation. By adding independent
copies of any of the above (spectrally negative) processes together one still
has a spectrally negative Lévy process.

For spectrally negative Lévy processes it is possible to talk of the Laplace
exponent ψ(λ) defined by

E
(
eλXt

)
= eψ(λ)t, (2)

in other words, ψ(λ) = Ψ(−iλ). Since Π has negative support, we can safely
say that ψ(λ) exists at least for all λ � 0. Further, it is easy to check that ψ
is strictly convex and tends to infinity as λ tends to infinity. This allows us to
define for q ∈ R,



18 Andreas E. Kyprianou and Zbigniew Palmowski

Φ(q) = sup{λ � 0 : ψ(λ) = q},
the largest root of the equation ψ(λ) = q when it exits. Note that there exist
at most two roots for a given q and precisely one root when q > 0. Further we
can identify ψ′(0+) = E(X1) ∈ [−∞,∞) which, as we shall see in the next
section, determines the long term behaviour of the process.

Suppose now the probabilities {Px : x ∈ R} correspond to the conditional
version of P where X0 = x is given. We simply write P0 = P . The equality
(2) allows for a Girsanov-type change of measure to be defined, namely via

dP cx
dPx

∣∣∣∣
Ft

=
Et(c)
E0(c)

for any c � 0 where Et(c) = exp{cXt − ψ(c)t} is the exponential martingale
under Px. Note that the fact that Et(c) is a martingale follows from the fact
that X has stationary independent increments together with (2). It is easy
to check that under this change of measure, X remains within the class of
spectrally negative processes and the Laplace exponent of X under P cx is
given by

ψc(θ) = ψ(θ + c)− ψ(c)

for θ � −c.

3 Exit problems

Let us now turn to the one and two sided exit problems for spectrally negative
Lévy processes. The exit problems essentially consist of characterizing the
Laplace transforms of τ+

a , τ−0 and τ+
a ∧ τ−0 where

τ−0 = inf{t � 0 : Xt � 0} and τ+
a = inf{t � 0 : Xt � a}

for any a > 0. Note that X will hit the point a when crossing upwards as it
can only move continuously upwards. On the other hand, it may either hit 0
or jump over zero when crossing 0 from above depending on the components
of the process.

It has turned out (cf. Zolotarev (1964), Takács (1967), Emery (1973),
Bingham (1975), Rogers (1990) and Bertoin (1996a, 1996b, 1997)) that
one and two sided exit problems of spectrally negative Lévy processes can
be characterized by the exponential function together with two families,
{W (q)(x) : q � 0, x ∈ R} and {Z(q)(x) : q � 0, x ∈ R} known as the scale
functions which we defined in the following main theorem of this text.

Theorem 1. There exist a family of functions W (q) : R → [0,∞) and

Z(q)(x) = 1 + q
∫ x

0

W (q)(y) dy, for x ∈ R

defined for each q � 0 such that the following hold (for short we shall write
W (0) = W ).
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One sided exit above. For any x � a and q � 0,

Ex
(
e−qτ

+
a 1(τ+a <∞)

)
= e−Φ(q)(a−x). (3)

One sided exit below. For any x ∈ R and q � 0,

Ex
(
e−qτ

−
0 1(τ−0 <∞)

)
= Z(q)(x)− q

Φ(q)
W (q)(x), (4)

where we understand q/Φ(q) in the limiting sense for q = 0, so that

Px(τ−0 <∞) =
{

1− ψ′(0)W (x) if ψ′(0) > 0
1 if ψ′(0) � 0.

Two sided exit. For any x � a and q � 0,

Ex
(
e−qτ

+
a 1(τ−0 >τ

+
a )

)
=
W (q)(x)
W (q)(a)

, (5)

and

Ex
(
e−qτ

−
0 1(τ−0 <τ

+
a )

)
= Z(q)(x)− Z(q)(a)

W (q)(x)
W (q)(a)

. (6)

Further, for any q � 0, we have W (q)(x) = 0 for x � 0 and W (q) is character-
ized on (0,∞) by the unique left continuous function whose Laplace transform
satisfies ∫ ∞

0

e−βxW (q)(x) dx =
1

ψ(β)− q for β > Φ(q). (7)

Remark 2. Let us make a historical note on the appearance of these formulae.
Identity (3) can be found in Emery (1973) and Bertoin (1996a). Identity (4)
appears in the form of a Fourier transform again in Emery (1973). Identity
(5) first appeared for the case q = 0 in Zolotarev (1964) followed by Takács
(1967) and then with a short proof in Rogers (1990). The case q > 0 was first
given in Bertoin (1996b) for the case of a purely asymmetric stable process
and then again for a general spectrally negative Lévy process in Bertoin (1997)
(who refered to a method used for the case q = 0 in Bertoin (1996a)). Finally
(6) belongs originally to Suprun (1976) with a more modern proof given in
Bertoin (1997).

Remark 3. By changing measure using the exponential martingale, one may
extract identities from the above expressions giving the joint Laplace trans-
form of the time to overshoot and overshoot itself. For example we have for
any v with ψ(v) <∞, u � ψ(v) ∨ 0 and x ∈ R,

Ex

(
e
−uτ−0 +vX

τ
−
0 1(τ−0 <∞)

)
= evx

(
Z(p)
v (x) − p

Φ(p)
W (p)
v (x)

)
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where W (p)
v and Z

(p)
v are scale functions with respect to the measure P v,

p = u − ψ(v) and p/Φ(p) is understood in the limiting sense if p = 0, as
in (3). In fact, it was shown in Bertoin (1997) that for each x ∈ R, W (q)(x) is
analytically extendable, as a function in q, to the whole complex plane; and
hence the same is true of Z(q)(x). In which case arguing again by analytic
extention one may weaken the requirement that u � ψ(v)∨0 to simply u � 0.

The proof we give of (3) is not new and follows as an easy consequence
of Doob’s optional stopping theorem applied to the exponential martingale;
a technique traditionally attributed to Wald. The proof of the remaining re-
sults in Theorem 1 are a direct consequence of a special martingale which
we shall discuss in Section 5. The proofs of (5), (4) and (6) are given in Sec-
tions 6, 7 and 8 respectively. The structure of this text is based on new results
and methodology for a general class of Markov additive processes given in
Kyprianou and Palmowski (2003).

4 Proof: one sided exit above

Assume that x � a and q > 0. Since t ∧ τ+
a � t is a bounded stopping time

and Xt∧τ+a � a, it follows from Doob’s Optional Stopping Theorem that

Ex

(Et∧τ+a (Φ(q))
E0(Φ(q))

)
= Ex

(
eΦ(q)(X

t∧τ
+
a
−x)−q(t∧τ+a )

)
= 1.

By dominated convergence and the fact that Xτ+a = a on τ+
a <∞ we have,

Ex
(
e−qτ

+
a 1(τ+a <∞)

)
= e−Φ(q)(a−x). (8)

The case for q = 0 is dealt with by taking the limit as q ↓ 0 in the above
identity.

5 The Kella–Whitt martingale

As already mentioned in the introduction, we shall base our proofs for the
most part on martingale arguments. A martingale which plays a fundamental
role in our calculations is the Kella–Whitt martingale, introduced in Kella and
Whitt (1992). This martingale has close links to so called Kennedy martingales
(cf. Kennedy (1976)). For completeness we shall introduce the Kella–Whitt
martingale in the following theorem.

Theorem 4. Let Xt = sup0�u�tXu, and Zt = Xt −Xt, then for α � 0

Mt := ψ(α)
∫ t

0

e−αZs ds+ 1− e−αZt − αXt, t � 0 (9)

is a martingale.
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Proof. Let Et(α) = exp{αXt − ψ(α)t} and note that

dEt(α) = Et−(α)
(
α dXt − ψ(α) dt

)
+

1
2
α2Et−(α) d[X,X ]ct

+ {�Et(α)− αEt−(α)�Xt}.

Note also that

dMt = ψ(α)e−αZt− dt+ αe−αZt− dZt −
1
2
α2e−αZt− d[X,X ]ct

− {�e−αZt + α�Zt} − α dXt

= e−αXt+ψ(α)t
[
ψ(α)Et−(α) dt+ αEt−(α)

(
dXt − dXt

)

− 1
2
α2Et−(α) d[X,X ]ct

− Et−(α){eα�Xt − 1− α�Xt}
− αeαXt−ψ(α)t dXt

]

= e−αXt+ψ(α)t
{
−dEt(α) + α

(
Et(α)− eαXt−ψ(α)t

)
dXt

}
,

where we have used that Xt− = Xt. Since Xt = Xt if and only ifXt increases,
we may write

dMt = e−αXt+ψ(α)t
{
−dEt(α) + α

(
Et(α)− eαXt−ψ(α)t

)
1(Xt=Xt)

dXt
}

= −e−αXt+ψ(α)t dEt(α)

showing that Mt is a local martingale since Et(α) is a martingale. To prove
that M is a martingale, it suffices to show that for each t > 0,

E

(
sup
s�t

|Ms|
)
<∞.

To this end note that since the events
{
Xeq > x

}
and {τ+

x < eq} are almost
surely equivalent where eq is an exponential distribution with intensity q > 0
independent of X , it follows from (8)

P
(
Xeq > x

)
= E

(
e−qτ

+
x 1(τ+x <∞)

)
= e−Φ(q)x

showing that Xeq is exponentially distributed with parameter Φ(q). It follows
that

E
(
Xeq

)
=
∫ ∞

0

qe−qtE
(
Xt

)
dt =

1
Φ(q)

<∞

and hence, since Xt is an increasing process, we have E
(
Xt

)
< ∞ for all t.

Now note by the positivity of the process Z and again since X increases,
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E

(
sup
s�t

|Ms|
)

� ψ(α)t + 2 + αE
(
Xt

)
<∞

for each finite t > 0. 	


An application involving this martingale, brings us to an identity which is
effectively the Wiener–Hopf factorization in disguise. Alternatively one may
say that the Wiener–Hopf factorization for spectrally negative Lévy processes
brings one to the same conclusion.

Theorem 5. Let Xt = inf0�u�tXu and suppose that eq is an exponentially
distributed random variable with parameter q > 0 independent of the process
X. Then for α > 0,

E
(
eαXeq

)
=

q(α− Φ(q))
Φ(q)(ψ(α) − q) . (10)

Proof. We begin by noting some facts which will be used in conjunction with
the martingale (9). Recall that eq is an exponentially distributed random
variable with parameter q > 0 independent of the process X .

First note that by an application of Fubini’s theorem,

E

∫ eq

0

e−αZs ds =
∫ ∞

0

e−qs E
(
e−αZs

)
ds =

1
q
E
(
e−αZeq

)
.

Next we recall a well known result, known as the Duality Lemma, which
can best be verified with a diagram. That is by defining the process {X̃s =
X(t−s)− − Xt : 0 � s � t} as the time reversed Lévy process from the fixed
moment, t, the law of X̃ and {−Xs : 0 � s � t} are the same. In particular,
this means that

− inf
0�s�t

Xs
d= sup

0�s�t
X̃s = Xt −Xt.

From Theorem 4 we have that E
(
Meq

)
= EM0 = 0 and hence using the

last two observations we obtain

ψ(α)− q
q

E
(
eαXeq

)
= αE

(
Xeq

)
− 1.

Recall from the proof of Theorem 4 that Xeq is exponentially distributed with
parameter Φ(q). It now follows that

ψ(α) − q
q

E
(
eαXeq

)
=
α− Φ(q)
Φ(q)

(11)

and the theorem is proved. 	
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Remark 6. Recall that Xeq is exponentially distributed with parameter Φ(q).
It thus follows that for α < Φ(q)

E
(
eαXeq

)
=

Φ(q)
Φ(q)− α (12)

and hence (11) reads

E
(
eαXeq

)
E
(
eαXeq

)
=

q

q − ψ(α)
= E

(
eαXeq

)
.

which is a conclusion that also follows from the Wiener–Hopf factorization.

In the previous section it was remarked that ψ′(0+) characterizes the
asymptotic behaviour of X . We may now use the results of the previous
Remark and Theorem to elaborate on this point. We do so in the form of
a Lemma.

Lemma 7. We have that

(i) X∞ and −X∞ are either infinite almost surely or finite almost surely,
(ii) X∞ = ∞ if and only if ψ′(0+) � 0,
(iii) X∞ = −∞ if and only if ψ′(0+) � 0.

Proof. On account of the strict convexity ψ it follows that Φ(0) > 0 if and
only if ψ′(0+) < 0 and hence

lim
q↓0

q

Φ(q)
=

{
0 if ψ′(0+) � 0
ψ′(0+) if ψ′(0+) > 0.

By taking q to zero in the identity (10) we now have that

E
(
eαX∞

)
=
{

0 if ψ′(0+) � 0
ψ′(0+)α/ψ(α) if ψ′(0+) > 0.

Next, recall from (12) that for α > 0

E
(
e−αXeq

)
=

Φ(q)
Φ(q) + α

and hence by taking the limit of both sides as q tends to zero,

E
(
e−αX∞

)
=
{

(α/Φ (0) + 1)−1 if ψ′(0+) < 0
0 if ψ′(0+) � 0.

Parts (i)–(iii) follow immediately from the previous two identities by consid-
ering their limits as α ↓ 0. 	
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6 Proof: two sided exit above

Our proof first deals with the case that ψ′(0+) > 0 and q = 0, then the case
that q > 0 (no restriction on ψ′(0+)) or q = 0 and ψ′(0) < 0. Finally the case
that ψ′(0+) = 0 and q = 0 is achieved by passing to the limit as q tends to
zero.

Assume then that ψ′(0+) > 0 so that −X∞ is almost surely finite. As
earlier seen in the proof of Lemma 7, by taking q to zero in (10) it follows
that

E
(
eαX∞

)
= ψ′(0)

α

ψ(α)
.

Integration by parts shows that

E
(
eαX∞

)
=

∫

[0,∞)

e−αx P (−X∞ ∈ dx)

= α

∫ ∞

0

e−αxP (−X∞ < x) dx

= α

∫ ∞

0

e−αxPx(X∞ > 0) dx.

Now define the function

W (x) =
1

ψ′(0+)
Px(X∞ > 0). (13)

Clearly W (x) = 0 for x � 0, is left continuous since it is also equal to the
left continuous distribution function P (−X∞ < x) and therefore is uniquely
determined by its Laplace transform, 1/ψ(α) for all α > 0. [Note: this shows
the existence of the scale function when ψ′(0+) > 0 and q = 0]. A simple
argument using the law of total probability and the Strong Markov Property
now yields for x ∈ (0, a)

Px(X∞ > 0)
= Ex Px(X∞ > 0 | Fτ+a )

= Ex

(
1(τ+a <τ

−
0 )Pa(X∞ > 0)

)
+ Ex

(
1(τ+a >τ

−
0 )PXτ

−
0

(X∞ > 0)
)

(14)

= Pa(X∞ > 0)Px(τ+
a < τ

−
0 ),

where the second term in the second equality disappears as Xτ−0 � 0 and
Px(X∞ > 0) = 0 for x � 0. That is to say

Px(τ+
a < τ

−
0 ) =

W (x)
W (a)

(15)

and clearly the same equality holds even when x � 0.
Now assume that q > 0 or ψ′(0) < 0 and q = 0. In this case, by convexity

of ψ, we know that Φ(q) > 0 and hence ψ′Φ(q) (0) = ψ′ (Φ(q)) > 0 (again
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by convexity). Changing measure using the Girsanov density, we have for
x ∈ (0, a)

Ex

(
e−qτ

+
a 1(τ+a <τ

−
0 )

)
= Ex

(Eτ+a (Φ(q))
E0(Φ(q))

1(τ+a <τ
−
0 )

)
e−Φ(q)(a−x)

= e−Φ(q)(a−x)PΦ(q)
x

(
τ+
a < τ

−
0

)
.

According to our previous calculations for the case that q = 0 and ψ′(0+) > 0,
we can now identify

Ex

(
e−qτ

+
a 1(τ+a <τ

−
0 )

)
=
W (q)(x)
W (q)(a)

(16)

such that W (q)(x) = eΦ(q)xWΦ(q)(x) where WΦ(q)(x) is identically zero on
(−∞, 0], is left continuous and has Laplace transform 1/ψΦ(q)(α) for all α > 0.
Taking Laplace transforms of W (q)(x) it appears now that for α > Φ(q),

∫ ∞

0

e−αxW (q)(x) dx =
∫ ∞

0

e−(α−Φ(q))xWΦ(q)(x) dx

=
1

ψΦ(q)(α − Φ(q))

=
1

ψ(α)− q , (17)

where in the last equality we have used the fact that for c > 0, ψc(θ) =
ψ(θ+c)−ψ (c). [Note again that this last calculation again justifies that W (q)

exists for the regime that we are considering.]
As mentioned at the beginning of the proof, the final missing case of X not

drifting to infinity (ie ψ′(0+) = 0) and q = 0 is achieved by passing to the limit
as q ↓ 0. Since WΦ(q) has Laplace transform 1/ψΦ(q) for q > 0, integration by
parts reveals that

∫

(0,∞)

e−βxWΦ(q)(dx) =
β

ψΦ(q)(β)
. (18)

One may appeal to the Extended Continuity Theorem for Laplace Transforms,
see Feller (1971) Theorem XIII.1.2a, and (18) to deduce that since

lim
q↓0

∫

(0,∞)

e−βxWΦ(q)(dx) =
β

ψ(β)

then there exists a measureW ∗ such that in the weak senseW ∗ = limq↓0WΦ(q)

and ∫

(0,∞)

e−βxW ∗(dx) =
β

ψ(β)
.

Integration by parts shows that its left continuous distribution,
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W (x) := W ∗(−∞, x) = lim
q↓0
W (q)(x)

satisfies ∫ ∞

0

e−βxW (x) dx =
1

ψ(β)
(19)

for β > 0. Considering the limit as q ↓ 0 in (16) and remembering that
W (q)(x) = eΦ(q)xWΦ(q)(x) we recover the required identity (15).

7 Proof: one sided exit below

Taking (17) and (18) into account, we can interpret (10) as saying that

P
(
−Xeq

∈ dx
)

=
q

Φ(q)
W (q)(dx) − qW (q)(x) dx

and hence with an easy manipulation, for x > 0

Ex
(
e−qτ

−
0 1(τ−0 <∞)

)
= Px

(
eq > τ−0

)

= Px
(
Xeq

< 0
)

= 1 + q
∫ x

0

W (q)(y) dy − q

Φ(q)
W (q)(x)

= Z(q)(x) − q

Φ(q)
W (q)(x). (20)

Note that since Z(q)(x) = 1 and W (q)(x) = 0 for all x ∈ (−∞, 0], the state-
ment is valid for all x ∈ R. The proof is now complete for the case that
q > 0.

Recalling that limq↓0 q/Φ(q) is either ψ′(0+) or zero, the proof is completed
by taking the limit in q.

8 Proof: two sided exit below

Fix q > 0. The Strong Markov Property together with the identity (20) give
us that

Px

(
Xeq

< 0
∣∣∣ Ft∧τ+a ∧τ−0

)

= e−q(t∧τ
+
a ∧τ

−
0 ) PX

t∧τ
+
a ∧τ

−
0

(
Xeq

< 0
)

= e−q(t∧τ
+
a ∧τ

−
0 )

(
Z(q)

(
Xt∧τ+a ∧τ−0

)
− q

Φ(q)
W (q)

(
Xt∧τ+a ∧τ−0

))

showing that the right hand side is a martingale for t � 0. Note also that with a
similar methodology we have (using that W (q)

(
Xτ−0 ∧τ

+
a

)
= 1(τ+a <τ

−
0 )W

(q)(a))
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Ex

(
e−qτ

+
a 1(τ+a <τ

−
0 )

∣∣∣ Ft∧τ+a ∧τ−0
)

= 1(t<τ−0 ∧τ
+
a )e
−qtEXt

(
e−qτ

+
a 1(τ+a <τ

−
0 )

)
+ 1(t>τ−0 ∧τ

+
a )e
−qτ+a 1(τ+a <τ

−
0 )

= 1(t<τ−0 ∧τ
+
a )e
−qt W

(q)(Xt)
W (q)(a)

+ 1(t>τ−0 ∧τ
+
a )e
−q(τ−0 ∧τ

+
a )
W (q)(Xτ−0 ∧τ+a )

W (q)(a)

= e−q(t∧τ
+
a ∧τ

−
0 )
W (q)(Xt∧τ−0 ∧τ+a )

W (q)(a)

showing again that the right hand side is a martingale for t � 0.
Now it follows by linearity that

e−q(t∧τ
+
a ∧τ

−
0 )

(
Z(q)

(
Xt∧τ+a ∧τ−0

)
− Z(q)(a)
W (q)(a)

W (q)
(
Xt∧τ+a ∧τ−0

))

is also a martingale for t � 0. In fact it is a uniformly integrable martingale
and hence its terminal expectation is equal to its initial expectation. That is
to say

Ex

(
e−q(τ

+
a ∧τ

−
0 )

(
Z(q)

(
Xτ+a ∧τ−0

)
− Z(q)(a)
W (q)(a)

W (q)
(
Xτ+a ∧τ−0

)))

= Ex

(
e−qτ

−
0 1(τ+a >τ

−
0 )

)

= Z(q)(x)− Z(q)(a)
W (q)(a)

W (q)(x),

where as usual we have used the fact that

Z(q)
(
Xτ+a ∧τ−0

)
= 1 and W (q)

(
Xτ+a ∧τ−0

)
= 0 if τ−0 < τ+

a ,

and

Z(q)
(
Xτ+a ∧τ−0

)
= Z(q)(a) and W (q)

(
Xτ+a ∧τ−0

)
= W (q)(a) if τ−0 > τ+

a .

For the case that q = 0, we again take limits as q tends to zero.

9 Final Remarks

We conclude with some final remarks concerning some more subtle points of
the calculations we have made which are not necessarily immediately obvious.
The definition of τ−x = inf{t � 0 : Xt � x} requiring weak first passage
below the level x forces the definition of W proportional to Px(X∞ > 0) in
the case that q = 0 and ψ′(0+) > 0 in (13). This in turn determines the left
continuity of W (q) for all q � 0, a fact which is seen to be of importance in the
calculation (14) as well as later, for example in Section 8, where it is stated that
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W (q)(Xτ−0 ∧τ+a ) = 1(τ+a <τ
−
0 ). However, Bertoin (1997) works with a definition

of strong first downward passage equivalent to τ−x = inf{t � 0 : Xt < x}.
Following the analysis here one sees in (13) that W should then be taken as

W (x) =
1

ψ′(0+)
Px

(
X∞ � 0

)
=

1
ψ′(0+)

P
(
−X∞ � x

)
.

But then, if 0 is irregular for (−∞, 0) for X we have P (τ−0 > τ+
a ) > 0, which

itself is a result of the definition of τ−0 in the strong sense. The effect of
this definition is that W (q) is now right continuous. None the less, with very
subtle adjustments, all the arguments go through as presented. An example
of a calculation which needs a little extra care is (14).

In this case, it is possible that Xτ−0 = 0 with positive probability, that is to
say X may creep downwards over zero, and hence in principle the second term
in (14) may not be zero. However, it is known that spectrally negative Lévy
processes may only creep downwards if and only if a Gaussian component is
present (cf. Bertoin (1996a) p. 175). In this case P (X∞ � 0) = 0 anyway and
the calculation goes through.

To some extent, it is more natural to want work with the right continuous
version of W (q) because one captures the probability of starting at the origin
and escaping at a before entering (−∞, 0) in the expression W (0)/W (a) as
opposed to W (0+)/W (a) for the left continuous case. However we promised in
the introduction a self contained approach to our results which avoids the use
of the Wiener–Hopf factorization. Hence we have opted to present the case
of left continuity in W (q) thus avoiding the deeper issue of creeping, which is
intimately connected to the Wiener–Hopf factorization.

For other recent perspectives and new proofs of existing results concerning
fluctuation theory of spectrally negative Lévy processes see Doney (2004),
Pistorius (2004) and Nguyen-Ngoc and Yor (2004).
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cesses with Lévy input, J. Appl. Probab. 29, 396–403.
9. Kennedy, D. (1976) Some martingales related to cumulative sum tests and single

server queues, Stoch. Proc. Appl. 29, 261–269.
10. Kyprianou, A.E. and Palmowski, Z. (2003) Fluctuations of spectrally negative

Markov additive processes, submitted.
11. Nguyen-Ngoc, L. and Yor. M. (2004) Some martingales associated to reflected
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spectrally negative Lévy processes, in this volume.
13. Rogers, L. C. G. (1990) The two-sided exit problem for spectrally positive Lévy
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Summary. In this note we consider first exit problems of completely asymmetric
(reflected) Lévy processes and present an alternative derivation of their Laplace
transforms essentially based on potential theory of Markov processes.

Key words: Potential theory, first passage, Wiener–Hopf factorisation, Lévy pro-
cesses

1 Introduction and main results

Let X be a spectrally negative Lévy process, i.e. a stochastic process with
càdlàg paths without positive jumps that has stationary independent incre-
ments defined on some probability space (Ω,F , P ) that satisfies the usual
conditions. By (Px, x ∈ R) we denote the family of measures under which the
Lévy process X is translated over a constant, that is Px denotes the measure
P conditioned on {X0 = x}. We exclude the case that X has monotone paths.
By the absence of positive jumps, the moment generating function ofXt exists
for all θ � 0 and is given by

E
[
eθXt

]
= exp

(
t ψ(θ)

)
, θ � 0,

for some function ψ(θ) which is well defined at least on the positive half axis,
where it is convex with the property limθ→∞ ψ(θ) = +∞. Let Φ(0) denote its
largest root. On [Φ(0),∞) the function ψ is strictly increasing and we denote
its right-inverse function by Φ : [0,∞) → [Φ(0),∞). Denote by I and S the
past infimum and supremum of X respectively, that is,

It = inf0�s�t(Xs ∧ 0), St = sup0�s�t(Xs ∨ 0)

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 30–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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and write Y = X − I for X reflected at its past infimum I. By T−a , T+
a we

denote

T−a = inf{t � 0 : Xt < a}, T+
a = inf{t � 0 : Xt > a},

the first passage times of X into the sets (−∞, a) and (a,∞), respectively.
Similarly, we write

τ+
a = inf{t � 0 : Yt > a}

for the first passage time of Y into the set (a,∞). The following theorem gives
the form of the Laplace transforms of these passage times:

Theorem 1. (i) For q > 0, the q-potential measure of X

U q(dx) =
∫ ∞

0

e−qtP (Xt ∈ dx) dt (1)

is absolutely continuous with respect to the Lebesgue measure and a version of
its density on [0,∞) is given by

uq(x) = Φ′(q) exp
(
−Φ(q)x

)
. (2)

(ii) For q � 0, there exists a continuous increasing function W (q) : [0,∞) →
[0,∞) with Laplace transform

∫ ∞

0

e−λxW (q)(x) dx =
(
ψ(λ)− q

)−1
, λ > Φ(q)

and, denoting by uq a version of U q(dx)/dx, it holds that for q > 0

W (q)(x) = Φ′(q) exp(Φ(q)x) − uq(−x) for a.e. x � 0. (3)

(iii) (Exit from a half-line) For q � 0, x � a and y � 0 we have

Ex

[
e−qT

+
a I(T+

a <∞)

]
= eΦ(q)(x−a); (4)

Ey

[
e−qT

−
0 I(T−0 <∞)

]
= Z(q)(y)− q Φ(q)−1W (q)(y), (5)

where
Z(q)(x) = 1 + q

∫ x

0

W (q)(y) dy

and for q = 0, qΦ(q)−1 is understood in the limiting sense, limq↓0 q Φ(q)−1.
(iv) (Exit from a finite interval) For x ∈ [0, a] and q � 0 we have

Ex

[
e−qT

+
a I(T+

a <T
−
0 )

]
=
W (q)(x)
W (q)(a)

; (6)

Ex

[
e−qT

−
0 I(T+

a >T
−
0 )

]
= Z(q)(x) − Z(q)(a)

W (q)(x)
W (q)(a)

; (7)

Ex

[
e−qτ

+
a

]
=
Z(q)(x)
Z(q)(a)

. (8)
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Remark. The functionW (q) is called the q-scale function ofX in the literature.
In particular, one calls W = W (0) the scale function of the Lévy process, in
analogy with the theory of diffusions.

Remark (probabilistic derivation of formula (3)). Noting that, for q > 0,
{exp(Φ(q)Xt − qt), t � 0} is a martingale, we define the tilted measure PΦ(q)

by
PΦ(q)(A) = E

[
exp

(
Φ(q)Xt − qt

)
IA

]
, A ∈ Ft.

Under the measure PΦ(q) the process X is still a Lévy process and its char-
acteristic exponent ψΦ(q) can be checked to be given by

ψΦ(q)(λ) = ψ
(
Φ(q) + λ

)
− ψ

(
Φ(q)

)
= ψ

(
Φ(q) + λ

)
− q.

We write WΦ(q) for the scale function of X under PΦ(q). Comparing Laplace
transforms yields the identity

W (q)(x) = eΦ(q)xWΦ(q)(x).

Since quq(x) dx = P (Xη(q) ∈ dx), where η(q) denotes an independent expo-
nential time, the strong Markov property yields for x < 0

q−1P (Xη(q) ∈ dx)

=
∫
E
[
e−qT

−
x ; XT−x ∈ dy

]
uq(x− y) =

∫
E
[
e−qT

−
x ; XT−x ∈ dy

]
Φ′(q) eΦ(q)(y−x)

= Φ′(q) e−Φ(q)xE
[
e−qT

−
x +Φ(q)X

T
−
x

]
= Φ′(q) e−Φ(q)xPΦ(q)(T−x <∞)

= Φ′(q) e−Φ(q)x

(
1−

WΦ(q)(−x)
WΦ(q)(∞)

)
= Φ′(q) e−Φ(q)x −W (q)(−x),

where in the first line we used the explicit form (2) and in the second line
a change of measure. The third line follows by letting a → ∞ and taking
q = 0 in (6) and noting next that WΦ(q)(∞) = limx→∞WΦ(q)(x) is equal to
1/ψ′(Φ(q)) = Φ′(q) by a Tauberian theorem applied to the Laplace–Stieltjes
transform λ/ψΦ(q)(λ) of WΦ(q).

The explicit form of the potential density given in Theorem 1 allows one
to determine whether X is transient of recurrent. Let U0 denote the potential
measure of X , given by (1) with q = 0.

Definition. The process X is called transient if U0(K) <∞ for every com-
pact set K ⊂ R and it is called recurrent if U0(B) = ∞ for every open interval
of the form B = (−r, r), r > 0.

Corollary 1. The process X is recurrent if

Φ′(0+) := lim
q↓0

Φ(q) − Φ(0)
q

= ∞.
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Otherwise, Φ′(0+) <∞ and X is transient, and the potential measure U0(dx)
of X is given by

U0(dx) =
(
Φ′(0+) exp(−Φ(0)x) −W (−x)I(x<0)

)
dx. (9)

Another consequence from Theorem 1 is the following result on the down-
ward ‘creeping’ of X . The process X is said to creep across the level x < 0
if X first enters (−∞, x) continuously, that is if XT−x = x. Recall that we
excluded the case where X is a negative deterministic drift and denote by
σ2 = 2 limλ→∞ λ−2ψ(λ) the Gaussian coefficient of X .

Corollary 2. The process X creeps across x < 0 if and only if X has a
nonzero Gaussian coefficient σ2 and then

P
(
XT−x = x

)
=
σ2

2
[W ′(−x)− Φ(0)W (−x)], x < 0. (10)

In the literature there exist already several proofs for the statements in
Theorem 1 and Corollaries 1 and 2. The one-sided exit identities (4) – (5) were
first studied by Zolotarev [17], although formulated in a different form. The
existence and properties of the scale function were proved by Bingham [4] and
Emery [8]. The well established identities (4) – (5) and (6) – (7) are related
to the two-sided exit problem to which among others Takács [16], Rogers [14],
Emery [8] and Bertoin [2] made significant contributions. In its current form
it was first formulated by Bertoin [2, 3]. The given proofs rely on (complex-)
analytic and combinatorial methods or invoke Itô-excursion theory applied
to the excursions of X away from its supremum S. The identity (8) was first
proved in [13] using a martingale argument. Recently, these identities received
more attention in the literature and several short proofs were given. Kyprianou
and Palmovski [12] gave proofs for the identities invoking the Kella–Whitt
martingale [11] and Doney [7] used excursion theory to prove the identity (8).

Here we follow yet another approach which exploits the connection between
potential analysis and Markov processes: We show that, essentially, potential
theory allows us to give simple proofs of the above results. For a deeper
analysis of the relationship between Markov processes on the one hand and
potential analysis on the other hand, we refer the reader to the classical works
by Blumenthal and Getoor [5] and Dellacherie and Meyer [6].

The rest of this note is organised as follows. In the next section, we state
and prove a first hitting time identity for a certain class of continuous time
Markov processes in terms of their potential density. In the third section, we
then derive explicit expressions for the potential densities of X killed upon
entering a negative half-line and of X reflected at its infimum and give the
proofs of Theorem 1 and Corollaries 1 and 2.

2 Potential theory and first hitting

Denote by (S,B(S)) a measurable space consisting of some interval S of the
real line and its Borel sigma-algebra B(S) and fix a ∈ S. Let Z be a continuous
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time strong Markov process with state space (S,B(S)) defined on a probability
space (Ω,F , P ) that satisfies the usual conditions. In the sequel we restrict
ourselves to processes Z which are quasi-left continuous, that is, if (Tn, n ∈ N)
is an increasing sequence of stopping times with T = limn→∞ Tn almost surely,
then ZT = limn→∞ ZTn almost surely on the event {T < ∞}. For x ∈ S we
denote by U q(x, ·) the potential measure of Z

U q(x,A) =
∫ ∞

0

e−qtPx(Zt ∈ A) dt, A ∈ B(S),

where Px denotes the measure P conditioned on {Z0 = x}. Assume that for
any x ∈ S, U q(x, ·) restricted to some open interval containing a is absolutely
continuous with respect to the Lebesgue measure with density uq(x, ·), say.
Denote the first passage time of Z into the set A by

T ′A = inf{t � 0 : Zt ∈ A}, A ∈ B(S). (11)

Below the Laplace transform of T ′{a} is expressed in terms of known quantities.
To formulate the result we define for any ε > 0 the open sets Ba(ε) = (a −
ε, a+ ε)2 and Da(ε) = {(x, y) ∈ R

2 : x < y, a− ε < y < a+ ε}.

Proposition 1. Let x ∈ S and q � 0.
(i) If, for some ε0 > 0, uq restricted to Ba(ε0) is continuous, we have

Ex

[
e−qT

′
{a}I(T ′{a}<∞)

]
=
uq(x, a)
uq(a, a)

, (12)

provided uq(a, a) > 0.
(ii) If Z has no positive jumps, for some ε0 > 0, uq restricted to Da(ε0) is
continuous and uq(a−, a) = limε↓0 uq(a− ε, a) > 0, the identity (12) holds for
x < a with uq(a, a) replaced by uq(a−, a).

Proof. Write T ′ε as shorthand for T ′(a−ε,a+ε). The strong Markov property of
Z yields that, for ε > 0, 1

ε U
q(x, (a− ε, a+ ε)) is equal to

1
ε

∫ a+ε

a−ε
uq(x, y) dy =

∫
Ex

[
e−qT

′
ε ; ZT ′ε ∈ dz

]1
ε

∫ a+ε

a−ε
uq(z, y) dy. (13)

If ε tends to zero, T ′ε increases to a stopping time, T say, with T � T ′{a}. By
quasi-left continuity of Z we find that ZT ′ε tends to ZT = a on {T < ∞}
almost surely and thus T = T ′{a} on {T < ∞}. If we let ε tend to zero the
measures Ex[e−qT

′
ε ;ZT ′ε ∈ dz] vaguely converge to Ex[e−qT{a} ] δ0, where δ0

denotes the unit mass in zero. Combined with the continuity of uq in an open
neighbourhood of (a, a) we end up with (12) if we let ε ↓ 0 in (13). In the
second case, by the fact that Z has no positive jumps, (13) reduces to

1
ε

∫ a+ε

a−ε
uq(x, y) dy = Ex

[
e−qT

′
ε

]1
ε

∫ a+ε

a−ε
uq(a− ε, y) dy.
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Letting again ε tend to zero, the assumed continuity of uq leads to the required
identity. 	


Consider now the set {a, b} for some a, b ∈ S. A related question that
arises then is: what is the probability that Z hits {a} before {b}? To be more
precise, can we find an expression for

tqa,b(x) = Ex

[
e−qT{a,b}I(T{a}<T{b}, T{a,b}<∞)

]
, x ∈ [a, b],

in terms of known quantities? The answer in terms of the potential density
uq is given in the following result.

Corollary 3. Let, for some ε0 > 0, uq restricted to Ba(ε0) ∪ Bb(ε0) be con-
tinuous. Then we have for q > 0

tqa,b(x) =
uq(x, a)uq(b, b)− uq(x, b)uq(b, a)
uq(a, a)uq(b, b)− uq(a, b)uq(b, a) , x ∈ [a, b], (14)

provided uq(a, a)uq(b, b) > 0. If q = 0, the identity (14) remains valid, where
the right-hand side of (14) is to be understood in the limiting sense of q ↓ 0
if u0(a, a)u0(b, b) = u0(a, b)u0(b, a).

Proof. If uq(a, a) > 0, the strong Markov property combined with Proposi-
tion 1 yields that for q � 0

uq(x, a)/uq(a, a) = tqa,b(x) + tqb,a(x)u
q(b, a)/uq(a, a), x ∈ [a, b].

By interchanging the role of a and b, we can derive a similar second identity.
For q > 0, this system of two equations is non-singular. Indeed, since T{a} > 0
Pb-a.s., Eb

[
e−qT{a}

]
< 1 and it follows from (12) that uq(b, a) < uq(a, a).

Interchanging a and b, we find that uq(a, b)uq(b, a) < uq(a, a)uq(b, b). Solving
this system finishes the proof for q > 0. Note that tqa,b(x) increases to t0a,b(x) if
q ↓ 0. Hence t0a,b(x) is equal to the limit of q ↓ 0 of the right-hand side of (14).
If u0(a, a)u0(b, b) �= u0(a, b)u0(b, a) then this limit is given by (14) for q = 0
as the previously derived system is non-singular. 	


Example. For a Brownian motion Z the potential density uq is given by
uq(x, a) = (2q)−1/2e−

√
2q |x−a|. By Corollary 3 and de l’Hôpital’s rule we find

back the well known identity

Px
(
T{a} < T{b}

)
= (b− x)/(b − a), x ∈ [a, b].

3 Proofs of Theorem 1 and Corollaries 1 and 2

Let η(q) denote an independent exponential random variable with parameter
q > 0. We start recalling the following results which we will frequently use in
the proof of Theorem 1:
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Lemma 1. Let X be a Lévy process.
(i) For each fixed t > 0, (St −Xt, St) has the same law as (−It, Xt − It).
(ii) The processes X − I and S −X are strong Markov process.
(iii) For q > 0, Sη(q) −Xη(q) is independent of Sη(q).

Proof. (i) This result follows as consequence of the duality lemma (see e.g.
Lemma II.2 and Proposition VI.3 in [2]).
(ii) This follows straightforwardly from the independence and stationarity of
the increments of X . See e.g. [2, Prop. VI.1] for a proof.
(iii) The independence can for example be proved using Itô-excursion theory
applied to the excursions of the Markov process S − X away from zero, see
Greenwood and Pitman [10]. 	


Proof of Theorem 1(i)–(iii). We divide the proof in several steps.
Step 1: Absolute continuity of the potential measure U q. By the strong

Markov property of X and the spatial homogeneity we note that

P
(
Sη(q) > t+ s

)
= P

(
Sη(q) > s

)
P
(
Sη(q) > t

)
for all t, s � 0, q > 0.

Hence we deduce that Sη(q) is exponentially distributed with parameter λ(q),
say. Using then Lemma 1(iii), we get that

P
(
Xη(q) ∈ dx

)
=

∫ ∞

0∨x
P
(
Sη(q) ∈ d(z − x)

)
P
(
(S −X)η(q) ∈ dz

)
� λ(q) dx.

Step 2: Existence of the scale function W (q) for q � 0. Next we show,
following Bingham [4], that, for θ > Φ(q), the function θ/(ψ(θ) − q) can be
represented as a Laplace–Stieltjes transform. To be more precise, we prove
that there exists a measure dW (q) on [0,∞) such that
∫ ∞

0

θ e−θxW (q)(x) dx =
∫ ∞

0

e−θxW (q)(dx) = θ
/(
ψ(θ)− q

)
, θ > Φ(q). (15)

By the Lévy–Khintchine formula and by partial integration we have the fol-
lowing representation for ψ and θ ∈ [0,∞)

ψ(θ) = aθ +
σ2

2
θ2 +

∫ ∞

0

(
e−θx − 1 + θxI(x<1)

)
Λ(dx)

= θ

(
a′ +

σ2

2
θ −

∫ ∞

0

(
e−θx − I(x<1)

)
Λ
(
(x,∞)

)
dx

)
,

(16)

where a, σ are constants and a′ = a− Λ((1,∞)) with Λ a measure satisfying∫∞
0

(1 ∧ x2)Λ(dx) < ∞. The measure Λ is related to the Lévy measure ν of
X by ν(dx) = Λ(−dx). From the previous display, we see that

d
dθ
ψ(θ) − q

θ
=
σ2

2
+
∫ ∞

0

x e−θxΛ
(
(x,∞)

)
dx+

q

θ2
.
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Hence (ψ(θ)− q)/θ has derivatives that oscillate in sign and has thus a com-
pletely monotone derivative. Since also 1/θ is completely monotone it follows
(e.g. Feller [9, XIII.4, Criterion 2]) that θ/(ψ(θ)−q) itself is completely mono-
tone. By Feller [9, XII.4, Thm. 1a] a function on [0,∞) is completely monotone
if and only if it can be represented as Laplace–Stieltjes transform of a measure.
Partial integration yields then also the first identity of (15) and the claim is
proved.

Step 3: Form of the potential density uq. Denote by uq a version of the
density of U q with respect to the Lebesgue measure. For q > 0 the Fourier
transform of uq, Fuq, is given by

Fuq(ξ) =
∫

eixξuq(x) dx = q−1E
[
eiξXη(q)

]
=

(
q − ψ(iξ)

)−1
.

Note that ξ �→ ψ(iξ) is an analytic function in �(ξ) < 0. By the independence
from Lemma 1(iii) and the fact from part 1 above that Sη(q) has an exponential
distribution with mean λ(q)−1, we see that for ξ ∈ R

q
(
q − ψ(iξ)

)−1 = E
[
eiξXη(q)

]
= E

[
eiξSη(q)

]
E
[
e−iξ(S−X)η(q)

]

= λ(q)
(
λ(q)− iξ

)−1
E
[
e−iξ(S−X)η(q)

]
.

Since ξ �→ E
[
e−iξ(S−X)η(q)

]
can be analytically extended to �(ξ) < 0, this

identity remains valid for ξ in �(ξ) < 0. In particular, we see that (q−ψ(iξ))−1

is meromorphic in �(ξ) < 0 with one pole in ξ = −iλ(q). Since ψ(λ) = q has
only one positive real root in λ = Φ(q), we deduce that λ(q) = Φ(q). The
inversion formula for characteristic functions yields now that for a > 0

U q([0, a]) = lim
T→∞

1
2π

∫ T

−T

1− e−iξa

iξ
1

q − ψ(iξ)
dξ =

1− e−Φ(q)a

Φ(q)ψ′(Φ(q))
, (17)

where the second equality can be seen as follows. Let CT be the (clockwise)
contour in the complex plane that consists of the interval [−T, T ] on the real
axis joined to the semi-circle RT of radius T in the lower half of the complex
plane and set f(ξ) = 1−e−iξa

2πiξ (q − ψ(iξ))−1. Then by Cauchy’s theorem,

∫

CT

f(t) dt = 2πi ·Rest=−iΦ(q)f(t) = −2π
(

1− e−Φ(q)a

Φ(q)

)(
−ψ′(Φ(q))−1

)
.

On the other hand, since we also have that
∫

CT

f(t) dt =
∫ T

−T
f(t) dt+

∫

RT

f(t) dt,

where, by Jordan’s lemma,
∫
RT
f(t) dt converges to zero as T tends to infinity,

the result (17) follows.
Noting that ψ′(Φ(q)) = Φ′(q)−1 and differentiating (17) with respect to a

we find that uq(a) = Φ′(q) exp(−Φ(q)a) for a > 0.
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Step 4: An identity between Laplace transforms. Note that for q, λ > 0
with q > ψ(λ) (or equivalently Φ(q) > λ) one has that

(
q − ψ(λ)

)−1 = q−1E
[
eλXη(q)

]
=

∫ ∞

0

eλxuq(x) dx +
∫ ∞

0

e−λxuq(−x) dx

= Φ′(q)
/(
Φ(q)− λ

)
+
∫ ∞

0

e−λxuq(−x) dx. (18)

By analytic continuation in λ, the identity (18) remains valid for �(λ) > 0
except for λ = Φ(q) and then by continuity for all λ with �(λ) � 0. Inverting
the Laplace transforms in λ leads then to equation (3).

Step 5: Wiener–Hopf factorisation. Since a Lévy process is quasi left con-
tinuous (e.g. [2, Proposition I.7]) and satisfies the strong Markov property
(e.g. [2, Proposition I.6]), we deduce from Proposition 1(ii) that

P
(
Sη(q) > x

)
= E

[
e−qT

+
x I(T+

x <∞)

]
= uq(x)/uq(0+) = e−xΦ(q). (19)

Lemma 1(i), (iii) imply then that

E
[
exp

(
λIη(q)

)]
= E

[
eλXη(q)

]
E
[
eλSη(q)

]−1 =
q

q − ψ(λ)
× Φ(q)− λ

Φ(q)
.

Using (15) to invert this transform we find that

P
(
−Iη(q) ∈ dx

)
=

q

Φ(q)
W (q)(dx)− qW (q)(x) dx, x � 0. (20)

Step 6: The function q �→ W (q)(x) is analytic for x � 0. Following Bertoin
[3], we invert the Laplace transform (term wise)

(
ψ(λ) − q

)−1 =
∑

k�0

qkψ(λ)−k−1

to find the series expansion

W (q)(x) =
∑

k�0

qkW �k+1(x) x, q � 0, (21)

where W �k denotes the kth convolution power of W , W �k = W � · · ·�W . This
series converges since

W �k(x) � W (x)kxk/k!, k � 1, x � 0

as W is increasing (recalling that dW = dW (0) is a nonnegative measure).
Step 7: Continuity of the function x �→ W (q)(x). The next step is to prove

that P (−Iη(q) ∈ dx) has no atoms. Applying the strong Markov property we
get that for x, q > 0

P
(
−Iη(q) = x

)
= E

[
e−qT

−
−xI(X

T
−
−x

=−x, T−−x<∞)

]
P
(
Iη(q) = 0

)
. (22)
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If 0 is regular for (−∞, 0), the second factor of the right-hand side of (22) is
zero, whereas if 0 is irregular for (−∞, 0), the paths of the infimum form step
functions almost surely and the first factor of the right-hand side of (22) is
zero. Combining with (20) we see that the measure dW (q) has no atoms and
thus x �→ W (q)(x) is continuous for q > 0. Since W = W (0) is increasing, a
discontinuity of W at a > 0 would imply limx↓aW (x) > limx↑aW (x). In view
of the continuity of x �→W (q)(x) for q > 0 on the one hand and the expansion
(21) on the other hand, this would yield a contradiction. 	


To prove the identities in Theorem 1(iv), we express the resolvents of
the strong Markov processes X† (X killed upon entering the negative half
line (−∞, 0)) and Y = X − I (Lemma 1(ii)) in terms of the scale functions
W (q), Z(q) and then invoke Proposition 1(ii).

Lemma 2. For x, y > 0, we have

Px
(
Xη(q) ∈ dy, η(q) < T−0

)

dy
= q e−Φ(q)yW (q)(x) − 1{x>y}qW (q)(x− y). (23)

Px(Yη(q) ∈ dy)
dy

= Φ(q) e−Φ(q)yZ(q)(x)− 1{x>y}qW (q)(x− y). (24)

Proof. A proof of the first identity can be found e.g. in Bertoin [3] or Suprun
[15] and of the second identity in [13]. In order to be self-contained we provide
the proofs here.

(i) Invoking the identities (19) and (20) and the independence and duality
(Lemma 1(iii,i)) and noting that η(q) < T−−x iff Iη(q) > −x we find that
q−1Px(Xη(q) ∈ dy, η(q) < T−0 ) is equal to

q−1

∫ x

0

P
(
−Iη(q) ∈ dz

)
P
(
(X − I)η(q) ∈ d(y − x+ z)

)

=
∫ x

(x−y)∨0

e−(y−x+z)Φ(q)W (q)(dx)−
∫ x

(x−y)∨0

Φ(q) e−(y−x+z)Φ(q)W (q)(x) dx.

The identity (23) follows now by performing a partial integration on the first
integral in the second line of above display.

(ii) The strong Markov property of Y at the stopping time τ0 = inf{t �
0 : Yt = 0} implies that

Px
(
Yη(q) ∈ dy

)
= Px

(
Yη(q) ∈ dy, η(q) < τ0

)
+ Ex

[
e−qτ0

]
P0

(
Yη(q) ∈ dy

)
(25)

= Px
(
Xη(q) ∈ dy, η(q) < T−0

)
+ Ex

[
e−qT

−
0
]
P0

(
Yη(q) ∈ dy

)
,

where in the second line we used that (Yt, t � τ0) has the same law as (Xt, t �
T−0 ). By integrating (20) we find the Laplace transform of T−0 to be equal to

P
(
Iη(q) < −x

)
= Ex

[
e−qT

−
0
]

= Z(q)(x) − q Φ(q)−1W (q)(x), x > 0. (26)

Substituting (26) and (23) into (25) and recalling that Yη(q) has an exponential
distribution with mean Φ(q)−1, we end up with the required identity (24). 	
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Now we can finish the proof of Theorem 1.

Proof of Theorem 1(iv). Since a Lévy process is a quasi left continuous strong
Markov process and W (q) is continuous (proved above in part 6), it follows
by combining with Lemma 2 that the conditions of Proposition 1 are met
for the Markov processes X† and Y (Lemma 1(ii)). Taking for uq in (12)
the resolvents (23), (24) we find (6) and (8) respectively. Finally, the strong
Markov property yields that

Ex
[
e−qT

−
0
]

= Ex

[
e−qT

−
0 I(T−0 <T

+
a )

]
+ Ex

[
e−qT

−
a I(T−0 >T

+
a )

]
Ea

[
e−qT

−
0
]
. (27)

Inserting (26) and (6) in (27) completes the proof. 	

Proof of Corollary 1. Since ψ is differentiable, convex and increasing on (0,∞),
it follows that the right-derivative of ψ in Φ(0) is finite and non-negative and
equal to (Φ′(0+))−1. Thus limq↓0(Φ(q)−Φ(0))/q is positive and finite or equal
to +∞. Suppose first that the latter is the case. By the identity (2) it then
follows, taking q ↓ 0, that U0((−r, r)) is infinite for r > 0.

In the case Φ′(0+) < ∞, we show that the identity (9) holds true. The
fact that ψ(·) is C1 on (0,∞) in conjunction with the implicit function the-
orem applied to ψ(λ) = q implies that Φ and Φ′ are continuous. Combin-
ing with the continuity of q �→ W (q) we find that, for any compact set K,
U0(K) = limq↓0

∫
K u

q(x)dx by dominated convergence. On the other hand,
monotone convergence implies that U0(K) = limq↓0 U q(K). Using then the
explicit formulas (2) and (3), equation (9) follows and the proof is finished. 	

Proof of Corollary 2. Let q > 0 and let T ′{x} be as in (11). If X creeps across
x < 0, this implies that T ′{x} is smaller than T−b for all b < x by right-
continuity of its sample paths. On the other hand, if XT−x < x, X enters
(−∞, x) by a jump and it follows that there exists an ε0 > 0 such that
T ′{x} > T

−
b for all b ∈ (x − ε0, x). Thus {T ′{x} < T

−
b } increases to {XT−x = x}

as b ↑ x and we have

E
[
e−qT

′
{x}I(X

T
−
x

=x)

]
= lim
b↑x
E
[
e−qT

′
{x}I(T ′{x}<T

−
b

)

]
. (28)

Invoking Proposition 1 applied to the Markov process X̃† (X killed upon
entering (−∞, b)) in conjunction with Lemma 2 we see that the right-hand
side of (28) is equal to

lim
b↑x

W (q)(−b)− e−Φ(q)(x−b)W (q)(−x)
W (q)(x − b) =

σ2

2

(
W

(q)′
+ (−x)−Φ(q)W (q)(−x)

)
, (29)

where W (q)′
+ is the right-derivative of W (q) (see e.g. Lemma 1 in [13] for a

proof of the right-differentiability of W (q)(·)) and we used that z/W (q)(z)
converges to σ2/2 for z ↓ 0 (e.g. Lemma 4 in [13]). Letting now q ↓ 0 in (29)
and using the differentiability of W (q) if σ > 0 (e.g. Lemma 1 in [13]) and
continuity of the maps q �→ W (q)(x), W (q)′

+ (x), we end up with (10) and the
proof is complete. 	
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trally negative Lévy processes and applications to (Canadized) Russian options.
Ann. Appl. Probab. 14, 215–238.
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Some Martingales Associated to
Reflected Lévy Processes
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Summary. We introduce and describe several classes of martingales based on re-
flected Lévy processes. We show how these martingales apply to various problems,
in particular in fluctuation theory, as an alternative to the use of excursion methods.
Emphasis is given to the case of spectrally negative processes.

Key words: Lévy processes, Kella–Whitt and Kennedy martingales, fluctuation
theory, Wiener–Hopf factorization

1 Introduction and notations

Let us fix a probability space (Ω,A,P). Let X denote a real Lévy process,
started at 0 under P. We call Px the law of x + X under P. Also, we let
Ft denote the usual right-continuous, universal augmentation of the filtration
generated by X . We shall be concerned with the process X reflected at its
supremum: if St = sups�tXs, the reflected process is defined by Rt = St−Xt.
We recall that R is a Feller process with respect to (Ft,P), and we denote by
PR0=r the probability under which R starts at r.

Our goal in this paper is to present various martingales related to the
process R; these martingales generalize the corresponding ones in the case of
Brownian motion, where they have proved quite useful in the study of a num-
ber of questions. Also for Lévy processes, some of the martingale properties
we present are already known in special cases, and have been used in various
contexts; some other seem to be new, though quite simple. For example, we
recover the following special case of Kella–Whitt [13]: for every u ∈ R, the
process (M (u)

t , t � 0) is a local martingale, where

M
(u)
t = eiu(Xt−St) − 1 + Ψ(u)

∫ t

0

eiu(Xr−Sr) dr

+ iuSct −
∑

r�t
eiu(Xr−Sr)

(
1− eiu∆Sr

)
,

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 42–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Ψ being the Lévy exponent of X as defined below; in fact, we shall prove
under mild assumptions, that M (u) is a class (D) martingale on every interval
[0, t]. We also show that if X is spectrally negative, and a martingale, then
for any locally bounded Borel function g, the process

(
G(St)− (St −Xt)g(St), t � 0

)

with G(x) =
∫ x
0
g(y) dy, is a local martingale, which extends a previous result

of Azéma and Yor [5] in the Brownian case.
We shall give various applications of these and other martingales; in par-

ticular, they can be used as an alternative to excursion methods to derive
some results in fluctuation theory.

In our presentation, we have tried to keep the results as general as possible,
but the case of spectrally negative processes is still particularly interesting,
due mostly to the existence of their scale function, which naturally arise in
fluctuation theory.

Let us introduce some further notations that will be needed throughout.
We write the Lévy–Itô decomposition of X in the form

Xt = at+ ξt +
∑

s�t
∆Xs1|∆Xs|>1; (1)

here, a ∈ R and ξ is the square integrable martingale σBt +
∫ t
0

∫
|x|�1 x (µ −

n)(ds, dx) with σ � 0 and µ the random measure associated to the jumps ofX .
Lastly n is the compensator of µ, and is given by n(ds, dx) = ds ν(dx) where
ν is the Lévy measure of X .

We denote by Ψ the Lévy exponent of X , defined by E
[
eiλXt

]
= e−tΨ(λ)

(λ ∈ R), and recall that Ψ is given by the Lévy–Khintchine formula

Ψ(λ) = −iaλ+
σ2

2
λ2 −

∫ (
eiλx − 1− iλx1|x|�1

)
ν(dx). (2)

Given x ∈ R, we denote by T+
x and T−x the first time X goes above or below x:

T±x = inf{t : Xt ≷ x}.

We now turn to the introduction of some objects which are specific to the
situation when X is spectrally negative. Hence, until the end of this introduc-
tion, we assume that the Lévy measure ν is carried by (−∞, 0).

In this case, we denote by ψ the Laplace exponent of X , which is defined
by E

[
eλXt

]
= etψ(λ) (�(λ) � 0), and is related to the Lévy exponent by

ψ(λ) = −Ψ(−iλ). Moreover, the function ψ is strictly convex and strictly
increasing on the interval (Φ(0),∞) where Φ(0) is the largest root of ψ, and
we denote by Φ the inverse function of ψ, defined on (0,∞).

Our martingale methods allow us, in this case, to recover the existence of
the q-scale function W (q), which is characterized by: W (q)(x) = 0 if x � 0,
and
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∫ ∞

0

e−λxW (q)(x) dx =
1

ψ(λ)− q , λ > Φ(q),

and which satisfies the following property: for all a < x < b, the process
e−q(t∧T )W (q)(Xt∧T − a) is a Px-martingale, where T = inf{t : Xt /∈ (a, b)}
(see Example 3). Lastly, the following primitive ofW (q) will play an important
role:

Z(q)(x) =






1, x � 0

1 + q
∫ x

0

W (q)(y) dy, x > 0.

Note that there exists no scale function unless X is spectrally negative—or
spectrally positive—see e.g. [17].

The rest of the paper is organized as follows. In Section 2, we show how a
martingale property related toX translates into a martingale property related
to the reflected process R. In Section 3, we give some martingale properties
involving both X and R, which generalize those of Kennedy [14] for Brow-
nian motion. Examples are given at the end of the section in the spectrally
negative case.

Some applications are presented in Section 4. Precisely, under mild as-
sumptions on X , we give a proof of the Wiener–Hopf factorization, each step
of which is elementary in that it uses only the property that martingales have
constant expectation. Moreover, only simple processes are involved, in par-
ticular we never refer to any path-valued process as in excursion theory. At
this stage, a warning is in order: that the proof is elementary does by no
means imply that the result is easy; actually avoiding the use of excursion
theory leads us to quite long computations. While this is done in a general
setting, the next application concerns only spectrally negative processes. For
such processes, we specify the behavior of X at the first passage times of R
and we also study some related first passage problems involving R and S.

These problems have already been studied via excursion theory (see e.g.
[6] for the Wiener–Hopf factorization, [4] for the first exit of R), which is
the natural tool to use, since it is the continuous time counterpart of the
renewal property at ladder times for random walks. However, it is interesting
to examine these problems via martingale theory. First, this leads to more
elementary proofs of the results, if perhaps less intuitive. Second, it may shed
light on the relationship between martingale theory and excursion theory in
this context.

2 From X-martingales to R-martingales

In this section, we show how a martingale property for X “translates” into a
martingale property for R. Before turning to this topic, we recall the following
well-known martingale property related to the jumps of a Lévy process:
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Lemma 1 (Basic compensation). Let Z be a d-dimensional Lévy process
with Lévy measure νZ . Let f : R+ × R

d → R be a Borel measurable function
such that, for every t > 0,

∫ t
0

ds
∫

Rd\{0} |f(s, z)| νZ(dz) <∞. Then the process

(
∑

s�t
f(s,∆Zs)1∆Zs �=0 −

∫ t

0

ds
∫

Rd\{0}
f(s, z) νZ(dz), t � 0

)

is a martingale.

The above lemma will be used a lot in this paper, and we shall refer to it
as “basic compensation”.

We now turn to the main result of this section, which is the following

Proposition 1. Let f : R+ × R → R be a C1,1, function and for 0 < a < b,
set T = inf{t : Xt /∈ (a, b)}. Assume that (f(t ∧ T,Xt∧T ), t � 0) is a Px-
martingale for all x ∈ (a, b). Set

Mf
t = f(t,Xt − St) +

∫ t

0

fx(s, 0) dScs +
∑

s�t

(
f(s,∆Ss)− f(s, 0)

)
1∆Ss>0 (3)

Then for all x ∈ (a, b), (Mf
t∧τ , t � 0) is a martingale under P[ . |R0 = x],

where τ = inf{t : Rt /∈ (a, b)}.

Remarks 1.

1. Derivatives with respect to t, x, etc., will be denoted whenever convenient
either by ft or by ∂tf and so on. . .

2. If f ∈ C1,2(R+ × R,R), Prop. 1 is an immediate consequence of Itô’s
formula. The proof only consists in showing that one can actually weaken
the regularity requirement on f to: f ∈ C1,1(R+ × R,R). This is needed
later in applications (see 4.2).

3. Of course, there is a similar result with X−I instead of S−X . Specifically,
assume that f(t,Xt) is a martingale; then

f(t,Xt − It) +
∫ t

0

fx(s, 0) dIcs +
∑

s�t

(
f(s,∆Is)− f(s, 0)

)
1∆Is<0 (4)

is a martingale. The fact that fx is evaluated at 0 in the integrals with
respect to dSc and dIc is intuitively clear from the fact that Sc and Ic

are local times at 0 for the processes S −X and X − I respectively (see
Section 4 for an explanation of this fact). The measures dSc and dIc are
then respectively carried by {S = X} and {I = X}.

4. Here we have treated the special case with S or I as the bounded variation
process which perturbs X , but it is clear from the proof that one could
work as well with a general bounded variation process Y (in the spirit
of [13]). In this case, the only difference would be that one cannot say
anything about the value of X + Y on the support of dY .
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Proof. Let (φn, n � 1) be an approximation of unity (e.g. φn(x) = nφ(nx),
where φ ∈ C∞ has compact support containing 0 and satisfies

∫
φ = 1), and

set
fn(t, x) =

∫
φn(y)f(t, y + x) dy.

Then fn is smooth in x, and the functions fn, ∂tfn and ∂xfn converge uni-
formly on compacts to f , ∂tf and ∂xf respectively.

Denote by [αn, βn] the support of φn (αn < 0 < βn) and introduce Tn =
inf{t : Xt /∈ (an, bn)} with an = a− αn and bn = b− βn. If n is large enough,
we have a � a − αn � b − βn � b. Since the support of φn shrinks to {0} as
n ↑ ∞, we have Tn ↑ T a.s.

We note that fn(t ∧ Tn, Xt∧Tn) is a Px-martingale, for large enough n. In
fact, we have

fn(t,Xt) =
∫
φn(y)f(t, y +Xt) dy

and if n is large enough, the support of φn is so small that y + x ∈ (a, b) for
all y ∈ Supp(φn). It follows from our assumption that f(t ∧ Tn, y +Xt∧Tn) is
a martingale for all y ∈ [αn, βn], hence so is fn(t ∧ Tn, Xt∧Tn).

Since fn is smooth with compact support, it is in the domain of the gen-
erator AX of X , and we have

∂fn
∂t

(t, x) +AXfn(t, x) = 0, t � 0, x ∈ (an, bn). (5)

Now set

Nnt = fn(t,Xt − St) +
∫ t

0

∂fn
∂x

(s, 0) dScs

+
∑

s�t

(
fn(s,∆Ss)− fn(s, 0)

)
1∆Ss>0. (6)

By Itô’s formula and (5), we obtain that Nnt∧τn
is a martingale under PR0=x,

where τn = inf{t : Rt /∈ (an, bn)}. In the sequel, we denote P ≡ PR0=x and
E ≡ ER0=x.

We now show that (Nnt∧τn
, t � 0)n�1 converges in H

2 (the space of square-
integrable martingales up to any fixed time), as n → ∞, to a martingale N .
To see this, let n, p � q and note that by Doob’s L2 inequality

E

[
sup
s�t∧τq

(Nns −Nps )2
]

� 4E
[
[Nn −Np]t∧τq

]
.

To simplify the notation, we set fn,p = fn − fp, and, if f : R+ × R → R is
some regular function, we denote ∆f(s) = f(s,Xs − Ss) − f(s,Xs− − Ss−).
We have:

[Nn −Np]t = [fn,p]t +A1(t) +A2(t),

where [fn,p]t means [fn,p( . , X. − S.)]t, and
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A1(t) =
∑

s�t

(
∆fn,p(s)

)(
fn,p(s,∆Ss)− fn,p(s, 0)

)
1∆Ss>0

A2(t) =
∑

s�t

(
fn,p(s,∆Ss)− fn,p(s, 0)

)21∆Ss>0.

Note that Xs = Ss if ∆Ss > 0 and apply the basic compensation formula to
get

A1(t) ∼
∫ t

0

ds
∫ ∞

Ss−Xs

ν(dz)[fn,p(s, 0)− fn,p(s,Xs − Ss)]

× [fn,p(s,Xs − Ss + z)− fn,p(s, 0)],

and

A2(t) ∼
∫ t

0

ds
∫ ∞

Ss−Xs

ν(dz)
(
fn,p(s,Xs − Ss + z)− fn,p(s, 0)

)2
,

where we write A ∼ B to mean that A−B is a local martingale. Now, using
Itô’s formula, we see that

d[fn,p]t = σ2

(
∂fn,p
∂x

(
t, (X −S)t−

))2

dt+ dA3(t) +dA4(t)+ dA5(t) +2 dA6(t)

where

A3(t) =
∑

s�t

(
∂fn,p
∂x

(
s, (X − S)s−

))2

(∆Xs)21|∆Xs|�1

A4(t) =
∑

s�t
1|∆Xs|�1

(
∆fn,p(s)−

(
∂fn,p
∂x

(s, (X − S)s−)
)

∆Xs

)2

A5(t) =
∑

s�t

(
∆fn,p(s)

)21|∆Xs|>1

A6(t) =
∑

s�t
1|∆Xs|�1

[
∂fn,p
∂x

(
s, (X − S)s−

)]

×
[
∆fn,p(s)−

(
∂fn,p
∂x

(
s, (X − S)s−

))
∆Xs

]

Applying Lemma 1 to each term, we replace Ai by its compensator and obtain
that E[Ai(t ∧ τq)] → 0 as n and p go to ∞ (i = 1, . . . , 6). So

(
Nnt∧τq

)
t�0

is a
Cauchy sequence in H

2 and therefore converges as n → ∞ to a process (q)N
which is a martingale. Let us set

Nt = f(t,Xt − St) +
∫ t

0

∂f

∂x
(s, 0) dScs +

∑

s�t
1∆Ss>0

(
f(s,∆Ss)− f(s, 0)

)
. (7)
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From (6) and since fn → f and ∂xfn → ∂xf uniformly on compacts, we have
clearly (q)Nt = Nt∧τq .

We now show that Nt∧τ − Nt∧τq → 0 in L2 as q ↑ ∞, which finishes
the proof of the proposition as it implies that (Nt∧τ )t�0 is a H

2 martingale.
Indeed, it follows from inspection of (7) that there are constants C1, C2 and
C3 such that:

E
[
(Nt∧τ −Nt∧τq)

2
]

� 3

{
C1 P [τq < τ ] + C2 E

[(
Sct∧τ − Sct∧τq

)21τq<τ

]

+ C3 E

[(
∑

t∧τq<s�t∧τ
1∆Ss>0

)2 ]}

Each of these three expectations goes to 0 as q → ∞: it is clear for the two
first ones; here are some details for the latter. Set

Γt =
∑

s�t
1∆Ss>0.

We have, since Γ is an increasing process, (Γt∧τ −Γt∧τq)2 � Γ 2
t∧τ −Γ 2

t∧τq
, and

Γ 2
t∧τ − Γ 2

t∧τq
= 2

∫ t∧τ

t∧τq

Γs− dΓs +
∑

t∧τq<s�t∧τ
1∆Ss>0

A basic compensation gives Γt = Mt+
∫ t
0
ν̄(Rs) ds, whereM is a local martin-

gale and ν̄(x) = ν(x,∞). In fact, (Mt∧τ )t�0 is a square integrable martingale,
since E

[
[M,M ]t∧τ

]
= E

[
Γt∧τ

]
and

E[Γt∧τ ] = E

[∫ t∧τ

0

ν̄(Rs) ds
]

� ν̄(a)t.

As a consequence, we obtain:
On the one hand,

E

[
∑

t∧τq<s�t∧τ
1∆Ss>0

]
= E

[∫ t∧τ

t∧τq

ν̄(Rs) ds
]

� ν̄(a)E[(t ∧ τ)− (t ∧ τq)]

and the foregoing goes to 0 as q ↑ ∞.
On the other hand,

E

[∫ t∧τ

t∧τq

Γs− dΓs

]
= E

[∫ t∧τ

t∧τq

Γsν̄(Rs) ds
]

� ν̄(a)E
[
Γt∧τ−

(
(t ∧ τ)− (t ∧ τq)

)]

� ν̄(a)E
[
Γ 2
t∧τ−

]1/2
E
[(

(t ∧ τ)− (t ∧ τq)
)2]1/2

by Cauchy–Schwarz inequality. The last term in the right-hand side goes to 0
as q ↑ ∞, and all we need to show is that E

[
Γ 2
t∧τ

]
<∞. However,
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E
[
Γ 2
t∧τ

]
� 2

{
E
[
M2
t∧τ

]
+ E

[(∫ t∧τ

0

ν̄(Rs) ds
)2
]}

� 2
{
E
[
Γt∧τ

]
+ E

[∫ t∧τ

0

ν̄(Rs) ds
]}

� 2
{
ν̄(a)t+ ν̄(a)2t2

}
.

Our claim follows readily. 	


Remark 2. For fixed a and b, the martingales we have just constructed are
uniformly integrable, since f is uniformly bounded on each [0, t]× [a, b]. If we
let a → −∞ and/or b → +∞, we get local martingales, and we should be
careful if we wish to apply the optional stopping theorem.

Example 1. In [13] (see [1] or [3] for a generalization), the authors introduced
a local martingale which has proved quite useful in a number of applications.
Specifically, if Y has bounded variation and is adapted, and if Zt = Xt + Yt,
the process (Kt, t � 0) defined by

Kt = eiλY0−eiλZt−Ψ(λ)
∫ t

0

eiαZs ds+iλ
∫ t

0

eiλZs dY cs +
∑

s�t
eiλZs

(
1−e−iλ∆Ys

)

is a local martingale. If Y = −S, this follows from Prop. 1. Indeed, consider
the function f(t, x) = eiλx+tΨ(λ), which generates the exponential martingale
f(t,Xt). By Prop. 1, the process

Mt = etΨ(λ)+iλ(Xt−St) − iλ
∫ t

0

esΨ(λ) dScs −Bt

is a local martingale, where

Bt =
∑

s�t

(
esΨ(λ) − esΨ(λ)+iλ∆Ss

)
1∆Ss>0.

K is then recovered as Kt =
∫ t
0

e−sΨ(λ) dMs.

If X is spectrally negative, the result of Prop. 1 simplifies since S is con-
tinuous.

Corollary 1. Suppose that X is spectrally negative. Let 0 < a < b and f :
R+ × R → R be in C1,1. Set Zt = f(t,Xt), and assume that Zt∧T−a ∧T+

b
is a

Px-martingale for all x ∈ (a, b). Then, if

Z̄t = f(t,Xt − St) +
∫ t

0

fx(s, 0) dSs,

Z̄t∧τ is a PR0=x-martingale, where τ = inf{t : Xt − St /∈ (a, b)}.



50 Laurent Nguyen-Ngoc and Marc Yor

3 Kennedy martingales

In this section, we describe an analogue, for Lévy processes, of the two-
parameter family of martingales introduced by Kennedy [14] for Brownian
motion. Here, both the reflected process R and the supremum process S come
into play independently.

3.1 Brownian motion with drift

Let us first recall the particular case of Brownian motion (with drift). The
martingale property of the next proposition, in the Brownian motion case,
was used in [5] to obtain a solution to Skorokhod’s embedding problem. As
we shall see in Section 4, this particular application cannot be extended to
Lévy processes.

Let hence B be a standard Brownian motion and µ ∈ R; set Xt = Bt +
µt and St = sups�tXs. We then have the following result, which follows
immediately from Itô formula, and the fact that dSt is carried by {t : Xt =
St}.
Proposition 2 ([5]). Let f : R+ × R+ × R+ → R be a smooth function. If

1
2
fxx − µfx + ft = 0

fx(t, 0, y) + fy(t, 0, y) = 0
(8)

then (f(t, St −Xt, St), t � 0) is a local martingale.

In relation to the exponential martingales, it is natural to look for functions
f that satisfy (8) in the form f(t, x, y) = h(x)e−αy−βt. If µ = 0, the associated
martingales as stated in Prop. 2 are due to Kennedy [14].

The function h must then satisfy 1
2h
′′ − µh′ − βh = 0, together with the

boundary condition h′(0) = αh(0). Hence, we get

h(x) = C eµx
(
(α− µ) sinh(δx) + δ cosh(δx)

)
(9)

for some constant C, where δ =
√
µ2 + 2β. As an application, these mar-

tingales allow to recover immediately a formula of H. M. Taylor [20]. In-
deed let T = inf{t : St − Xt = a}, then the local martingale h(St∧T −
Xt∧T )e−αSt∧T−β(t∧T) is bounded, so that

E
[
eαXT−βT ] = e−αa

h(0)
h(a)

=
e−(α+µ)aδ

δ cosh(aδ)− (α+ µ) sinh(aδ)
(10)

(see also [21]).
Later on, we shall see to what extent this situation can be generalized to

Lévy processes, and an example where no interesting such function h can be
found.

Remark 3. If µ = 0, by the well-known equivalence theorem of Paul Lévy,
S − B and S in the proposition above can be replaced respectively with |B|
and L, where L is the local time of B at 0.
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3.2 Kennedy martingales for Lévy processes

In this paragraph we assume that our Lévy process X is integrable, and we
denote µ = E[X1]. Under this condition, we have the following analogue to
Prop. 2:

Proposition 3. Let f(t, x, y) : R+ × R+ × R+ → R be a smooth function,
such that, for every t, x, y � 0:

ft(t, x, y)− µfx(t, x, y) +
σ2

2
fxx(t, x, y)

+
∫ x

−∞

(
f(t, x− z, y)− f(t, x, y) + zfx(t, x, y)

)
ν(dz)

+
∫ ∞

x

(
f(t, 0, y + z − x)− f(t, x, y) + zfx(t, x, y)

)
ν(dz) = 0

fx(t, 0, y) + fy(t, 0, y) = 0.

(11)

Then (f(t, St −Xt, St), t � 0) is a local martingale.

Proof. As in Prop. 2, this follows immediately from Itô’s formula, and the
“support property” that Xt− = Xt = St = St− on Supp(dSct ). 	


Remark 4. If f does not depend on y, this can also be directly deduced from
Prop. 1.

Just as in the Brownian case, we can look for f in the form f(t, x, y) =
h(x)e−αy−βt. The conditions of Prop. 3 then imply that h is a solution to the
integro-differential equation (x � 0):

−βh(x)− µh′(x) +
σ2

2
h′′(x) +

∫ x

−∞

(
h(x− z)− h(x) + zh′(x)

)
ν(dz)

+
∫ ∞

x

(
h(0)e−α(z−x) − h(x) + zh′(x)

)
ν(dz) = 0

with the boundary condition h′(0) = αh(0).

Example 2. Let us look at a simple example. Assume that X is the compen-
sated Poisson process Xt = Nt − t. In this case, the function h must satisfy

h′(x)−βh(x)+10�x�1

(
h(0)e−α(1−x)−h(x)

)
+1x>1

(
h(x−1)−h(x)

)
= 0. (12)

On [0, 1], we obtain

h(x) = C0 exp
(
(1 + β)x

)
+

h(0)
1 + β − α exp

(
−α(1− x)

)
, 0 � x � 1.

By putting x = 0 in the formula above, we get
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h(0) = C0 +
h(0)

1 + β − α e−α. (13)

On the other hand, the boundary condition h′(0) = αh(0) gives

C0(1 + β) +
αh(0)

1 + β − α e−α = αh(0).

From the last two formulas, we deduce that

h(0)(1 + β)e−α

1 + β − α − h(0)αe−α

1 + β − α = (1 + β)h(0)− αh(0).

If we rule out the trivial case h(0) = 0, we then obtain (1 + β − α)e−α =
(1 + β − α)2. Note also that if 1 + β − α = 0, then solving (12) on [0, 1]
together with h′(0) = αh(0) yields α = e−α. Hence we also rule out this case.
We thus obtain β = e−α + α − 1 = ψ(−α), where ψ is the Laplace exponent
of X , E

[
eλXt

]
= etψ(λ).

Plugging this into (13), we obtain h(x) = h(0)eαx, x � 1.

Let us now turn to the case x > 1. Then h must satisfy h′ − βh + h(x −
1)−h(x) = 0. Set ĥ(λ) =

∫∞
1

e−λxh(x) dx. The difference-differential equation
(12) yields

−e−λh(1) + λĥ(λ)− βĥ(λ) + e−λ
∫ 1

0

e−λxh(0)eαx dx+ e−λĥ(λ)− ĥ(λ) = 0

which can be rewritten, taking into account the previous results,

(λ− β + e−λ − 1)ĥ(λ)− e−λh(0)
(

eα − eα−λ − 1
α− λ

)
= 0

or, since β = ψ(−α),

(
ψ(−λ) − ψ(−α)

)
ĥ(λ) = eα−λ

h(0)
α− λ

(
ψ(−α)− ψ(λ)

)

This gives:

ĥ(λ) = h(0)
eα−λ

λ− α = h(0)
∫ ∞

1

e−λxeαx dx.

Hence, h(x) = h(0)eαx for all x � 0, and we have found again the classical
Wald martingale.

We now turn, until the end of this section, to the special case when X is
spectrally negative. From Prop. 3, we obtain:

Proposition 4. Let f(t, x, y) : R+ × R+ × R+ → R be a smooth function,
such that
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ft − µfx +
σ2

2
fxx +

∫ 0

−∞

(
f(t, x− z, y)− f(t, x, y) + zfx(t, x, y)

)
ν(dz) = 0

fx(t, 0, y) + fy(t, 0, y) = 0.
(14)

Then (f(t, St −Xt, St), t � 0) is a local martingale.

As a corollary, we obtain the analogue of Cor. 2.2.2′) in [5]:

Corollary 2. Suppose that µ = 0, so that X is a martingale. Let g be a
locally bounded Borel function, and set G(x) =

∫ x
0 g(y) dy. Then,

(
G(St)− (St −Xt)g(St), t � 0

)
(15)

is a local martingale.

Proof. If g is C1, one checks that f(t, x, y) := G(y)−xg(y) satisfies conditions
(14). The result for a general function g then follows from the monotone class
theorem. 	


The above corollary has interesting consequences, which will be explored
in Section 4.

Let us look again for functions f in Prop. 4 of the form f(t, x, y) =
h(x)e−αy−βt. In addition to the boundary condition h′(0) = αh(0), h must
satisfy: for all x � 0,

−βh(x)−µh′(x)+
σ2

2
h′′(x)+

∫ 0

−∞

(
h(x−z)−h(x)+zh′(x)

)
dν(z) = 0. (16)

Setting h̃(x) = −h(−x), this can be rewritten

βh̃(x) −AX h̃(x) = 0, x � 0.

Hence e−β(t∧T
+
0 )h̃(Xt∧T+

0
) must be a Px-martingale for all x < 0, where T+

0 =
inf{t : Xt > 0}. Equivalently, eβ(t∧T

−
0 )h

(
Xt∧T−0

)
must be a Px-martingale for

all x > 0, where T−0 = inf{t : Xt < 0}. In other words, the function eβth(x) is
time-space harmonic for X in R+×R+. If we ask moreover that h be positive,
then by a result of Küchler and Lauritzen [15]:

eβth(x) =
∫
π(dα) eαx−tψ(α)

where π is a finite positive measure (conversely, any function of the form above
is a time-space harmonic function for X).

Example 3 (Scale functions). In the case of a spectrally negative process X ,
the scale functions W (q) and Z(q) give rise to other natural examples of mar-
tingales. Indeed, as is well-known (see e.g. [4]), for any q � 0 and a < x < b,
the processes
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e−q(t∧T )W (q)(Xt∧T − a) and e−q(t∧T )Z(q)(Xt∧T − a) (17)

are Px-martingales, where T = inf{t : Xt /∈ [a, b]}. Therefore, any linear
combination is also a martingale; this will be used in Paragraph 4.2.

For the sake of completeness, we provide a simple derivation of the exis-
tence and martingale property of W (q). Set It = infs�tXs and assume first
that X drifts to +∞, so that its overall infimum I∞ is finite. Define the
function W by

W (x) = cP[I∞ � −x], x � 0

where c is an arbitrary positive constant and W (x) = 0 for x � 0. An appli-
cation of the strong Markov property at T+

y (y > 0) yields

P
[
IT+

y
� −x

]
=

W (x)
W (x+ y)

. (18)

On the other hand, it is proved independently in Section 4 (see (27)) that, if
θ is an independent exponential variable with parameter r > 0, then

E
[
eλIθ

]
=

r

Φ(r)
Φ(r) + λ
r − ψ(λ)

.

Letting r ↓ 0, we get

E
[
eλI∞

]
=

1
Φ′(0+)

λ

ψ(λ)
,

and choosing c = Φ′(0+), we obtain finally
∫ ∞

0

e−λxW (x) dx =
1

ψ(λ)
.

Moreover, it follows immediately from the definition of W and (18) that the
process (W (Xt∧τ ), t � 0) is a Px-martingale for all x > 0, where τ = inf{t :
Xt < 0} (see also [6, Lemma VII.11 p. 198]). The above discussion is easily
extended:

• to oscillating processes, by adding a small positive drift which we let tend
to 0;

• to processes which drift to −∞, by “conditioning them to drift to +∞” via
an Esscher transform.

For the details, we refer to [6].

Lastly, consider the probability P
Φ(q) defined by

P
Φ(q)|Ft = eΦ(q)Xt−qt P|Ft ,

and let WΦ(q) denote the scale function relative to P
Φ(q). Setting

W (q)(x) = eΦ(q)xWΦ(q)(x),
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we have ∫ ∞

0

e−λxW (q)(x) dx =
1

ψ(λ) − q , λ > Φ(q)

and for x > 0, since WΦ(q)(Xt∧τ ) is a P
Φ(q)
x -martingale, it follows that

e−q(t∧τ)W (q)(Xt∧τ ) is a Px-martingale. The case of a general interval follows
by translation.

Now if Z(q) is defined by

Z(q)(x) = 1 + q
∫ x

0

W (q)(y) dy = 1 + q
∫
W (q)(x− y)10<y<x dy

the martingale property for Z(q) is simply a consequence of the martingale
property we have just seen for W (q).

To end this discussion, we recall a few examples where the function W (q)

is known explicitly:

Lévy process X W (q) Z(q)

Brownian with drift µ

δ =
√

µ2 + 2q

2

δ
e−µx sinh(δx) e−µx

(
cosh(δx) +

µ

δ
sinh(δx)

)

Compound Poisson,
unit drift, negative
exponential jumps

k(q)eh(q)x

+
(
1 − k(q)

)
e

h(q)k(q)−1
k(q) x

1 +
qk(q)

h(q)

(
eh(q)x − 1

)

+
qk(q)(1 − k(q))

h(q)k(q) − 1

(
e

h(q)k(q)−1
k(q) x − 1

)

Stable, index α > 1
1

q

d

dx
{Eα(qxα)} Eα(qxα)

On the second line,Xt = t−
∑Nt

k=1 Uk where N is a Poisson process with inten-
sity λ and Uk are independent, also independent of N and have an exponential
distribution with parameter c; the functions h and k are defined by

h(q) =
1
2
(
λ+ q − c+

√
(λ + q − c)2 + 4qc

)
,

k(q) =
h(q) + c

(h(q) + c)2 − λc .

On the third line, due to [7], Eα is the Mittag-Leffler function of index α (see
[22] or [10]).

The functions e−qtW (q)(x) and e−qtZ(q)(x) provide us with examples of
time-space harmonic functions in R+× (a, b). Note that in the Brownian case,
the Kennedy martingale can be expressed in terms of W (q) and Z(q).

In the next example, we examine a special case when there exists an in-
teresting function h which satisfies (16).

Example 4. We retain the assumptions of the present paragraph, that is X is
spectrally negative and integrable.
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Furthermore, we make the following hypothesis on the Laplace exponent
of X . Let λ0 = inf

{
λ : E

[
eλX1

]
<∞

}
� 0, and assume that λ0 < 0. We also

assume that β∗ = limλ→λ0+ ψ(λ) > 0. Under these conditions, we can work
out an interesting special case of Prop. 4.

The Laplace exponent of X , ψ(λ) = ln E
[
eλX1

]
, is C∞ and strictly convex

on (λ0,∞). Then for each 0 < β < β∗, there are two distinct solutions to the
equation ψ(λ) = β; denote them for instance by γ− < 0 < γ+. The function
h(x) = Ae−γ−x +Be−γ+x (where A and B are constants) verifies

−βh(x)− µh′(x) +
σ2

2
h′′(x) +

∫ 0

−∞

(
h(x− z)− h(x) + zh′(x)

)
dν(z) = 0

and the boundary condition of (14): h′(0) = αh(0) implies −(Aγ− +Bγ+) =
α(A +B), that is B = −A α+γ−

α+γ+
. Hence h is given by

h(x) = C
(
(α+ γ+)e−γ−x − (α+ γ−)e−γ+x

)

for some constant C. It is not hard to check that h can be rewritten as

h(x) = e−ηx
(
(α + η) sinh(δx) + δ cosh(δx)

)
(19)

for a suitable choice of C, where

η = η(β) =
1
2

(γ+ + γ−), δ = δ(β) =
1
2

(γ+ − γ−).

It is quite remarkable that (19) is identical to (9), up to a change of parameters,
and it would be interesting to develop further this analogy.

4 Some applications

This last section is dedicated to some examples of application of the martin-
gales we have introduced in the previous sections: We examine two results
that have already been obtained by using excursion theory, and derive them
again by martingale arguments. We obtain more elementary, if less intuitive
proofs.

4.1 The Wiener–Hopf factorization

In this paragraph, we show how our martingales can be used to recover the
celebrated Wiener–Hopf factorization:

Theorem 1. Let θ be an exponential variable of parameter q, independent
of X. Then Sθ and Xθ − Sθ are independent, and hence:

E
[
eiuXθ

]
= E[eiu(Xθ−Sθ)

]
E
[
eiuSθ

]
. (20)
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The above theorem is equivalent to the existence, for every q > 0, of two
functions φ+

q and φ−q , such that:

1. φ+
q and φ−q are the characteristic functions of infinitely divisible laws;

2. φ+
q is analytic in {�(z) � 0} and φ−q is analytic in {�(z) � 0};

3. For every u ∈ R,
q

q + φ(u)
= φ+

q (u)φ−q (u). (21)

Standard arguments from complex analysis then entail that the functions φ+
q

and φ−q are unique.

Recall the basic fact that if σ is the inverse local time of R at 0 and if we
set H = X ◦ σ ≡ S ◦ σ, the process (σ,H) is a bivariate subordinator, called
the ladder process of X . This follows from the fact that σ is the inverse of an
additive functional and satisfies (S −X)σ(t) = 0 for all t. This subordinator
is killed at some rate c if S∞ < ∞. We denote by κ its Laplace exponent:
E
[
e−qσt−λHt

]
= e−tκ(q,λ).

Also, recall that the continuous part Sc of the supremum S is not trivial
if and only if it is a version of the local time at 0 for the reflected process
S − X . Indeed, it is clear first of all that the support of dSc is included in
{t : St = Xt}; we have already used this fact above. Next, let T be an a.s.
finite stopping time such that ST = XT a.s. Then, we have

ST+t = XT + 0 ∨ sup{XT+s −XT , s � t}

so that
(
RT+t, S

c
T+t − ScT

)
t�0

=
(
XT −XT+t + 0 ∨ sup{XT+s −XT , s � t},

0 ∨ sup{XT+s −XT , s � t} −
∑

s�t
∆ST+s

)

t�0

.

By the Lévy property of X , we see that (RT+t, S
c
T+t−ScT )t�0 is independent

of FT and has the same law as (Rt, Sct )t�0. Proposition IV.5 in [6] then entails
that Sc is a version of the local time of R at 0.

Hence, when Sc �≡ 0, we choose it as the local time of S −X at 0 and we
then have σ = (Sc)−1; if Sc ≡ 0, we take the same definition as in [9] for this
local time. Note that it is possible that 0 be regular for itself relative to R
even if Sc ≡ 0, so R can have a continuous Markov local time at 0 also in this
case.

The ladder exponent has the following Lévy–Khintchine representation:
for some b, c, k � 0,

κ(q, λ) = c+ bq + kλ+
∫

(0,∞)2

(
1− e−qt−λz

)
l(dt, dz).

This corresponds to the Lévy–Itô path decomposition
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σt = bt+
∑

s�t
∆σs, t < ζ

Ht = kt+
∑

s�t
∆Hs, t < ζ

where ζ = S∞ is the lifetime. Note that if Sc ≡ 0, then H = S ◦ σ is a pure
jump process and therefore k = 0. Otherwise, we have, for almost all ω

Ht(ω) = Sσt(ω)(ω) = Scσt(ω)(ω) + Sdσt(ω)(ω) = t+ Sdσt(ω)(ω)

and so k = 1. It is also known that k > 0 is equivalent to X creeping upwards
with positive probability ([6, Th. VI.19]).

The following identity, which will be useful in the sequel, is an immediate
consequence of the Lévy–Khintchine representation of κ:

κ(q, λ) = κ(q, 0) + kλ+
∫

(0,∞)2
e−qt

(
1− e−λz

)
l(dt, dz). (22)

In the remainder of this paragraph, we shall work under the following
assumptions:

– X does not drift to −∞, that is lim supt→∞Xt = +∞.
– The Lévy measure ν of X satisfies:

∫ 1

0
x ν(dx) <∞.

– θ denotes an exponential variable with parameter q > 0, independent of X .

The first assumption implies in particular that the ladder process has an
infinite lifetime, i.e. c = 0.

In order to prove the Wiener–Hopf factorization, we prepare a series of
lemmas; these results are essentially already known, but we prove them here
in the spirit of the present paper, using only elementary martingale arguments.

Lemma 2. The process
(
M

(u)
t , t � 0

)
, where

M
(u)
t = eiu(Xt−St) − e−iuS0 + Ψ(u)

∫ t

0

eiu(Xr−Sr) dr

+ iuSct −
∑

r�t
eiu(Xr−Sr)

(
1− eiu∆Sr

)
(23)

is a martingale.

Proof. We already know (see [13] or Example 1) that M (u) is a local martin-
gale, and we now show that sups�t |M

(u)
s | is integrable for any t. First let us

note that if Sc is not trivial, then Scθ has an exponential law since Sc is a local
time. Let us now turn to the jump term. By the basic compensation lemma,
the quantity

E

[
∑

r�t

∣∣1− eiu∆Sr
∣∣
]
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exists as soon as
∫ t

0

dr
∫ ∞

0

ν(dz) E
[
1Rr<z

∣∣1− eiu(z−Rr)
∣∣] <∞.

But since |1 − eiux| = iux + O(x2) as x → 0, this latter condition is fulfilled
thanks to our hypothesis on ν. The remaining terms are bounded. 	


The next lemma is proved in [12] by elementary methods essentially build-
ing on discrete time approximations. For the sake of completeness, we now
present a proof in the spirit of the present paper.

Lemma 3. The following equality holds for each u ∈ R:

E
[
eiuSθ

]
=

κ(q, 0)
κ(q,−iu)

. (24)

Proof. Using Itô’s formula and a basic compensation, it is easy to see that
the process (Σ(u)

t , t � 0) defined by

Σ
(u)
t = eiuSt + λ

∫ t

0

eiuSv dScv +
∫ t

0

{
eiuSv

∫ ∞

Rv

(
1− eiu(x−Rv)

)
ν(dx)

}
dv,

is a martingale, hence E
[
Σ

(u)
θ

]
= 1 (we use the same argument as in the proof

of the previous lemma as to the integrability of sups�t
∣∣Σ(u)
s

∣∣). Let us now
compute each term of E

[
Σ

(u)
θ

]
. First, we claim that

E

[∫ θ

0

eiuSv dScv

]
=

k

κ(q,−iu)
.

It is obvious if Sc ≡ 0, and if Sc �≡ 0, we have

E

[∫ θ

0

eiuSv dScv

]
= E

[∫ ∞

0

e−qv+iuSv dScv

]
= E

[∫ ∞

0

e−qσv+iuHv dv
]

=
1

κ(q,−iu)
.

Next, notice the a.s. equality between sets

{(v, Sv−,∆Sv) : v > 0, ∆Sv > 0} = {(σw, Hw−,∆Hw) : w > 0, ∆Hw > 0}.

Using the basic compensation lemma, it follows that
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E

[∫ θ

0

{
eiuSv

∫ ∞

Rv

(
1− eiu(x−Rv)

)
ν(dx)

}
dv

]

= E

[∫ ∞

0

{
e−qv+iuSv

∫ ∞

Rv

(
1− eiu(x−Rv)

)
ν(dx)

}
dv

]

= E

[∑

v>0

e−qv+iuSv−
(
1− eiu∆Sv

)
1∆Sv>0

]

= E

[∑

v>0

e−qσv+iuHv−
(
1− eiu∆Hv

)]

= E

[∫ ∞

0

e−qσv+iuHv dv
∫

(0,∞)2
e−qs

(
1− eiuh

)
l(ds, dh)

]

=
1

κ(q,−iu)

∫

(0,∞)2
e−qs

(
1− eiuh

)
l(ds, dh).

Putting pieces together, we obtain

E
[
eiuSθ

]
=

1
κ(q,−iu)

(
κ(q,−iu) + kiu−

∫

(0,∞)2
e−qs

(
1− eiuh

)
l(ds, dh)

)
.

Now, from the Lévy–Khintchine representation (22) of κ, we recognize that
the term in brackets in the above formula is nothing else but κ(q, 0). 	


Remark 5. Formula (24) shows that Sθ has the same law as Z̃θ̃ where Z̃ is
a subordinator with Laplace exponent φ(λ) = κ(q, λ) − κ(q, 0) and θ̃ is an
exponential variable with parameter κ(q, 0), independent of Z̃. More precisely,
(24) yields, for every λ � 0

E
[
e−λSθ

]
= Ẽ

[
e−λHθ̃

]

where P̃ is the Esscher transform

P̃|Gt = e−qσt+tκ(q,0)P|Gt

with Gt = Fσt . It would be interesting to know more about the relationships
(if any) between fluctuation theory and this Esscher transform.

The following result is a slightly different form of [19, Formula (13)], which
is proved using excursion theory. We provide here a martingale proof.

Lemma 4. For all u ∈ R,

E
[
eiuSθ

]
=

(
1− iu

κ(q, 0)
+ E

[∫ θ

0

dr
∫ ∞

Rr

(
1− eiu(x−Rr)

)
ν(dx)

])−1

. (25)
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Proof. Let us set, for q > 0 and u ∈ R:

A = E

[
∑

v>0

e−qσv
(
1− eiu∆Hv

)
]
.

By the basic compensation lemma, we have

A = E

[
∑

v>0

e−qσv−e−q∆σv
(
1− eiu∆Hv

)
]

= E

[∫ ∞

0

e−qσv dv
∫

(0,∞)2
e−qs

(
1− eiuh

)
l(ds, dh)

]

where l is the Lévy measure of the ladder process (σ,H). The foregoing formula
can be written as

A =
(∫ ∞

0

E
[
e−qσv

]
dv

)(∫

(0,∞)2
e−qs

(
1− eiuh

)
l(ds, dh)

)

=
1

κ(q, 0)

∫

(0,∞)2
e−qs

(
1− eiuh

)
l(ds, dh).

Now, observe that we have the a.s. equality between the sets

{(σs,∆Hs) : s > 0} = {(v,Xv − Sv−) : v > 0, Xv > Sv−};

this follows from the very definition of (σ,H). Hence, we have:

A = E

[
∑

v>0

e−qv
(
1− eiu(Xv−Sv−)

)
1Xv>Sv−

]

= E

[
∑

v>0

e−qv
(
1− eiu(∆Xv+Xv−−Sv−)

)
1∆Xv>Sv−−Xv

]

= E

[∫ ∞

0

e−qv dv
∫ ∞

Sv−Xv

(
1− eiu(x+Xv−Sv)

)
ν(dx)

]

as follows once more from Lemma 1. Then, it is not hard to see that

A =
1
q

E

[∫ ∞

Rθ

(
1− eiu(x−Rθ)

)
ν(dx)

]

= E

[∫ θ

0

dr
∫ ∞

Rr

(
1− eiu(x−Rr)

)
ν(dx)

]
.

By what we have just shown above, we obtain:

κ(q, λ) = κ(q, 0)− iu+
κ(q, 0)
q

∫ ∞

0

P[Rθ ∈ dy]
∫ ∞

y

(
1− eiu(x−y)) ν(dx). (26)

(25) now follows easily from combining (26) and (24). 	
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Proof of Theorem 1. By Lemma 2, we have E
[
M

(u)
θ

]
= 0. Let us compute the

expectation of each term on the right-hand side of (23). First, we have

E

[∫ θ

0

eiu(Xr−Sr) dr
]

=
∫ ∞

0

e−qr E
[
eiu(Xr−Sr)

]
dr =

1
q

E
[
eiu(Xθ−Sθ)

]
.

Next, we have

E[Scθ] =
k

κ(q, 0)
.

This is clear if Sc ≡ 0, while if Sc �≡ 0, an immediate change of variables gives

E[Scθ] = E

[∫ ∞

0

dScre
−qr

]
=

∫ ∞

0

E[e−qσt ] dt =
1

κ(q, 0)
.

Let us now turn to the last term of (23). Since the summand vanishes unless
∆Sr �= 0, which is equivalent to ∆Xr > Rr−, we have

E

[
∑

r�θ
eiu(Xr−Sr)

(
1− eiu∆Sr

)
]

= E

[
∑

r�θ
1∆Xr>Rr−

(
1− eiu(∆Xr−Rr−)

)
]

= E

[∫ θ

0

dr
∫ ∞

Rr

(
1− eiu(x−Rr)

)
ν(dx)

]

where we recall that ν is the Lévy measure ofX and the second equality follows
from the basic compensation lemma. Putting pieces together, we obtain:

E
[
eiu(Xθ−Sθ)

]
=

q

q + Ψ(u)

(
1− iu

κ(q, 0)
+ E

[∫ θ

0

dr
∫ ∞

Rr

(
1− eiu(x−Rr)

)
ν(dx)

])

= E
[
eiuXθ

](
1− iu

κ(q, 0)
+ E

[∫ θ

0

dr
∫ ∞

Rr

(
1− eiu(xRr)

)
ν(dx)

])

and we conclude thanks to (25). 	


Remark 6. In the spectrally negative case, the argument above is due to [16];
it is then very simple, since there is no sum of jumps in M (u) and Sθ ≡ Scθ
simply has an exponential distribution.

Let us consider the formula:

E
[
eiu(Xθ−Sθ)

]
=

q

q + Ψ(u)

(
1− iu

κ(q, 0)
+E

[∫ θ

0

dr
∫ ∞

Rr

(
1−eiu(x−Rr)

)
ν(dx)

])

in the case of a spectrally negative process X . Then, ν is supported by R−
and S = Sc is a version of the local time of R at 0; the inverse local time is
thus σ = S−1. A simple martingale argument shows that this subordinator
has Laplace exponent Φ (see [6]). Recall on the other hand that the Laplace
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exponent of σ is given by κ(q, 0). As a consequence, the above formula takes
the form

E
[
eiu(Xθ−Sθ)

]
=

q

q + Ψ(u)

(
1− iu

Φ(q)

)
=

q

Φ(q)
Φ(q) − iu
q + Ψ(u)

.

Now by the well-known duality lemma, Iθ has the same law as Xθ − Sθ and
the foregoing equality is valid with any λ such that �(λ) � 0 instead of iu, so
that we finally obtain (see also [6, Chap. VII Formula (3)]):

E
[
eλIθ

]
=

q

Φ(q)
Φ(q) + λ
q − ψ(λ)

, �(λ) � 0. (27)

4.2 The exit problem for the reflected process (spectrally negative
case)

In this paragraph, we assume that X is spectrally negative, and we are inter-
ested in the joint law of (τk, Rτk

) where τk = inf{t : Rt > k}. The knowledge
of this joint law, given by (29) below, has applications in finance ([2, 4, 18]),
and was originally obtained in [4] using excursion theory (see also [11] for a
different approach). We also assume for simplicity that the Lévy measure ofX
has no atom, so that W (q) is a C1 function, as shown in [11] (our results still
hold in the general case, provided we interpret W (q)′ as the right derivative
of W (q)).

Recall the scale functions W (q) and Z(q) give rise naturally to some mar-
tingales related to the two-sided exit problem for X . They can also be used
to construct martingales related to R. Before we proceed, let us introduce
the Esscher transform of P with parameter v, i.e. the probability measure
defined by

P
v|Ft = evXt−tψ(v)

P|Ft ,

and recall that under P
v, X is a spectrally negative Lévy process with Laplace

exponent ψv(λ) = ψ(v + λ) − ψ(v). The scale functions relative to P
v are

denoted W (q)
v and Z(q)

v .
We can now state:

Proposition 5. Fix 0 < x < k, and set

Mt = e−vRt−(q+ψ(v)t)×

×
(
Z(q)
v (k −Rt)−

vZ
(q)
v (k) + qW (q)

v (k)

vW
(q)
v (k) +W (q)

v

′
(k)

W (q)
v (k −Rt)

)
. (28)

Then (Mt∧τk
, t � 0) is a PR0=x-martingale.

Proof. Set T = inf{t : Xt /∈ (−k, 0)} and

Nt = e−qt
(
Z(q)
v (Xt + k) + αW (q)(Xt + k)

)
, α ∈ R.
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Then by Example 3, (Nt∧T , t � 0) is a P
v
−y-martingale for all y ∈ (0, k), so

that if
Ñt = evXt−(q+ψ(v))t

(
Z(q)
v (Xt + k) + αW (q)

v (Xt + k)
)
,

(
Ñt∧T , t � 0

)
is a P−y-martingale, for all y ∈ (0, k) . By Corollary 1, if we set

M̃t = e−vRt−(q+ψ(v))t
(
Z(q)
v (k −Rt) + αW (q)

v (k −Rt)
)

+
∫ t

0

e−(q+ψ(v))s
[
v
(
Z(q)
v (k) + αW (q)

v (k)
)

+ qW (q)
v (k) + αW (q)

v (k)
]
dSs

then
(
M̃t∧τk,ε

, t � 0
)

is a PR0=x-martingale, where ε ∈ (0, x) and τk,ε = inf{t :
Rt /∈ (ε, k)}. By choosing

α = − vZ
(q)
v (k) + qW (q)

v (k)

vW
(q)
v (k) +W (q)′

v (k)

we obtain that (Mt∧τk,ε
, t � 0) is a PR0=x-martingale. Now τk,ε ↑ τk as

ε → 0 so that Rτk,ε
→ Rτk

by quasi left continuity. It is then clear that
Mt∧τk,ε

→Mt∧τk
in L1 as ε→ 0. 	


From the preceding martingale property, we deduce the joint Laplace trans-
form of (τk, Rτk

):

Corollary 3. For all v � 0 and q � 0, we have:

ER0=x

[
e−vRτk

−(q+ψ(v))τk
]

= e−vx
(
Z(q)
v (k − x)− vZ

(q)
v (k) + qW (q)

v (k)

vW
(q)
v (k) +W (q)′

v (k)
W (q)
v (k − x)

)
. (29)

Formula (29) was derived in [4] by means of excursion theory.
To complete the description of the process at time τk, we give the following

trivariate law, which follows immediately from (29) after an Esscher transform:

Corollary 4. For u, v, q � 0, we have:

E
[
euXτk

−vRτk
−(q+ψ(u+v))τk

]

= Z
(q)
u+v(k)−

vZ
(q)
u+v(k) + qW (q)

u+v(k)

vW
(q)
u+v(k) +W (q)

u+v

′
(k)

W
(q)
u+v(k). (30)

Remark 7. It may also be of interest to study the first hitting time τ ′a = inf{t :
St−Xt = a}. Note that τ ′a � τa and that Sτ ′a = Sτa a.s.. Applying the Markov
property at time τa and using (30), one can then show that

E

[
e−αSτ′a−qτ

′
a

]
= eΦ(q)a W

(q)′(a)− Φ(q)W (q)(a)
W (q)′(a) + αW (q)(a)

.
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4.3 A partial extension

We now generalize the previous discussion to more exit problems related to
the reflected process. In this paragraph, we still assume that X is spectrally
negative, and furthermore that it is a martingale. Let Θ be a left-continuous,
decreasing function defined on R+, such that Θ(0+) = a � +∞ andΘ(+∞) =
0. As shown in [5], one can associate to Θ a centered probability measure m
by the formula:

m
(
[x,∞)

)
= exp

{
−
∫ x

−∞

dΞc(s)
Ξ(s)− s

}
×

∏

s<x

Ξ(s)− s
Ξ(s+)− s

where the function Ξ is defined by Θ(x) = x − Ξ−1(x). The function Ξ is
an increasing, left-continuous function such that Ξ(−∞) = 0 and Ξ(y) =
y ⇒ Ξ(x) = x for all x � y. Moreover, sup{x : Ξ(x) = 0} = −a and
inf{x : Ξ(x) = x} = inf{x : Θ(x) = 0}.

It is shown in [5] that Ξ is the Hardy–Littlewood transform of m. Con-
versely, to a probability measure m, one can associate its Hardy–Littlewood
transform

Ξm(x) =






1
m([x,∞))

∫ x

−∞
tm(dt) if m([x,∞)) > 0

x otherwise,

and a function Θm(x) = x−Ξ−1
m (x) that has the properties of the function Θ.

Our goal here is to study the stopping time T = inf{t : St−Xt � Θ(St)}.
We first prepare an intermediate result.

Lemma 5. Assume that X has bounded jumps. Then, we have

E[XT |ST = s] = s− W (Θ(s))
W ′(Θ(s))

. (31)

Proof. Set gT = sup{t < T : St = Xt}. The law of (Xt, gT < t < T )
conditional on FgT is the same as the law of (Xt, t < T−(s−Θ(s))), started
at s, conditioned to stay below s. That is, we have:

E[XT | FgT , ST = s
]

= lim
ε↓0

Es−ε
[
XT−(s−Θ(s))

∣∣ T−
(
s−Θ(s)

)
< T+(s)

]

= lim
ε↓0

E
[
s− ε+XT−(ε−Θ(s))

∣∣ T−
(
ε−Θ(s)) < T+(ε)

)]
.

On the one hand, we have from Example 3:

P
[
T−

(
ε−Θ(s)

)
< T+(ε)

]
= 1− W (Θ(s) − ε)

W (Θ(s))
.
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On the other hand, for a, b > 0, let τ = T−(−a) ∧ T+(b); since the jumps of
X are bounded, (Xt∧τ , t � 0) is a uniformly integrable martingale, so that
by the optional stopping theorem:

E[Xτ ] = 0.

The foregoing can be rewritten

E
[
Xτ1τ=T−(−a)

]
+ bP

[
τ = T+(b)

]
= 0.

We deduce that

E
[
XT−(ε−Θ(s))1T−(ε−Θ(s))<T+(ε)

]
= −ε W (Θ(s) − ε)

W (Θ(s))

and then

E[XT | FgT , ST = s] = lim
ε↓0

(
s− ε− ε W (Θ(s) − ε)

W (Θ(s))

(
1− W (Θ(s) − ε)

W (Θ(s))

)−1
)

= s− W (Θ(s))
W ′(Θ(s))

. 	


Next, we obtain the law of ST .

Proposition 6. The law of ST is given by

P[ST > x] = exp
(
−
∫ x

0

W ′(Θ(y))
W (Θ(y))

dy
)
. (32)

Proof. Let us first assume that the jumps of X are bounded. Plainly, for every
continuous function g with compact support, the local martingale (Mg

t , t � T )
(see (15)) given by

Mg
t = G(St)− (St −Xt)g(St)

where G(x) =
∫ x
0
g(y) dy, is uniformly integrable. Hence, for all such g

E[G(ST )] = E[(ST −XT )g(ST )].

Inserting the expression of E[XT |ST ] given in the preceding lemma, we get:

E[G(ST )] = E

[
g(ST )

W (Θ(ST ))
W ′(Θ(ST ))

]
.

We can solve this integral equation for the law of ST and this gives the an-
nounced result.

The general case follows by approximation. 	


Remark 8. Applying standard excursion techniques, it is possible to obtain
(a characterization of) the law of XT . However the expression thus obtained
seems to be quite complex, so that it would be difficult to exploit such a result.

Administrator
ferret
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The previous result enables us to show that the construction given in
[5] of a solution to Skorokhod’s embedding problem is specific to Brownian
motion. Indeed let us consider a centered probability measurem. We associate
to m its Hardy–Littlewood transform Ξm, as recalled at the beginning of this
paragraph. Going along the line of [5], it is natural to consider the following
stopping time as a candidate for the solution to Skorokhod’s problem:

T ′m = inf{t : St −Xt = Θm(St)},

where Θm(x) = x − Ξ−1
m (x) (x � 0). The following result shows that the

method of [5] generally fails except for Brownian motion.

Proposition 7. Assume that Θm(R+) = R+ and that for all continuous func-
tions g with compact support, the local martingale (Mg

t , t � T ′m) is uniformly
integrable. Then X is Brownian motion.

Proof. Under the assumption of the proposition, we have for all continuous
functions g with compact support:

E
[
G
(
ST ′m

)]
= E

[
g
(
ST ′m

)
Θm

(
ST ′m

)]
,

and as in the proof of Prop. 6, we deduce that the law of ST ′m is given by

P
[
ST ′m > x

]
= exp

(
−
∫ x

0

dy
Θm(y)

)
.

However if Tm = inf{t : St −Xt � Θm(St)}, we have (32):

P
[
STm > x

]
= exp

(
−
∫ x

0

W ′(Θm(y))
W (Θm(y))

dy
)
.

Now, we have plainly STm = ST ′m , and comparing the two formulas above we
obtain that

W (x) = xW ′(x)

for all x ∈ Θm(R+) = R+. This implies W (x) = x and hence, ψ(λ) = λ2, i.e.
X is Brownian motion (more precisely, Xt =

√
2Bt, where B is a standard

Brownian motion). 	


Remarks 9.

1. The condition Θm(R+) = R+ is fulfilled if and only if the support of m is
connected and is not bounded below.

2. A solution to Skorokhod’s problem, in a general framework which embeds
the case of Lévy processes, is developed in [8] using excursion theory; the
stopping time obtained has an explicit, but not so simple expression.

The following example shows that even if the support of m is bounded
below, the method of [5] is likely to work only for Brownian motion.
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Example 5. For a > 0, set

ma(dx) =
dx
a

1x>−a e−
1
a (x+a)

so that Θa(x) := Θma(x) = a for all x, and we have Tma = τa, T ′ma
= τ ′a.

Remark 7 shows that the law of Sτa = Sτ ′a is given by

P
[
Sτa > x

]
= exp

(
−x W

′(a)
W (a)

)
.

If the martingales (Mg
t , t � τ ′a) are uniformly integrable (where a > 0 and g

runs through continuous functions with compact support) we also have

P
[
Sτ ′a > x

]
= e−x/a.

We conclude again that W (x) = x for all x > 0, hence X is Brownian motion.
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Summary. Exponential functionals of the form
∫ t

0
e−ξs− dηs constructed from a

two dimensional Lévy process (ξ, η) are of interest and application in many areas.
In particular, the question of the convergence of the integral

∫∞
0

e−ξt− dηt arises in
recent investigations such as those of Barndorff–Nielsen and Shephard [3] in finan-
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∫∞
0

g(ξt−) dηt, when g(t) = e−t and ηt

is general, or g(·) is a nonincreasing function and dηt = dt, and some other related
results. The necessary and sufficient conditions for convergence are stated in terms
of the canonical characteristics of the Lévy process. Some applications in various
areas (compound Poisson processes, subordinated perpetuities, the Doléans-Dade
exponential) are also outlined.
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kinds of problem we consider, see Carmona, Petit and Yor [9] and their refer-
ences; some further examples and applications are given below. The authors of
[9] express great interest in exponential functionals of the form

∫ t
0

e−ξs− dηs,
where (ξ, η) is a two dimensional Lévy process. These are related to generalised
Ornstein–Uhlenbeck processes which have found application in mathematical
finance (option pricing [39], insurance and perpetuities [13], [33], risk theory
[32]) mathematical physics, and random dynamical systems. In particular, [9]
and [13] give results concerning the properties of the improper stochastic inte-
gral (“stochastic perpetuity”)

∫∞
0 e−ξt− dηt, in some special cases, under the

assumption that the integral converges. See, e.g., Theorem 3.1 of [9], where it
is shown that the distribution of this integral (when it exists and is a.s. finite,
and when ξ and η are independent) is the unique invariant measure of the
generalised Ornstein–Uhlenbeck process having the distribution of

Xt = e−ξt
(
x+

∫ t

0

eξs− dηs

)
, t � 0, x ∈ IR.

In this paper we give a complete solution to the question of convergence for
integrals of the type

∫∞
0

e−ξt− dηt, in the form of necessary and sufficient con-
ditions for convergence stated in terms of the canonical characteristics of the
Lévy process, rather than in terms of the difficult-to-access one-dimensional
distributions of the process. Combined with Theorem 3.1 of [9], this completes
the existence problem for the invariant measure of the generalised Ornstein–
Uhlenbeck process in a very explicit way, in the situation of [9]. We go on to
consider some related integrals and other applications.

To introduce and illustrate the methods and ideas to be used, we start
with a simpler, one-dimensional, setup. Our first theorem gives necessary and
sufficient conditions for convergence of the integral

∫∞
0 g(ξ+t ) dt, for a positive

non-increasing function g(·). (Throughout, x+ = x∨0 is the positive part of a
number x.) We assume ξt is a Lévy process with canonical triplet (γξ, σ2

ξ , Πξ)
(see below for the formal definitions and setting). Define, for x > 0,

Π
+

ξ (x) = Πξ
(
(x,∞)

)
and Π

−
ξ (x) = Πξ

(
(−∞,−x)

)
, (1.1)

for the tails of Π , and the real function

Aξ(x) = γξ +Π
+

ξ (1) +
∫ x

1

Π
+

ξ (y) dy, x > 0. (1.2)

Aξ(x) is a kind of truncated mean related to the positive Lévy measure of
ξ, which occurs when estimating the orders of magnitudes of certain renewal
functions, as in Erickson [15], p. 377. When ξ drifts to +∞ a.s., Aξ(x) is
positive for large enough x > 0, as we discuss below.

Theorem 1. Suppose limt→∞ ξt = +∞ a.s., so that Aξ(x) > 0 for all x
larger than some a > 0, and that g(·) is a finite positive non-constant non-
increasing function on [0,∞). Then the integral
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∫ ∞

0

g(ξ+t ) dt (1.3)

is finite, or infinite, a.s., according as the integral
∫

(a,∞)

(
x

Aξ(x)

)
|dg(x)| (1.4)

converges or diverges.

The precursor of Theorem 1 is a result of Erickson [16] for renewal pro-
cesses (increasing random walks), which we apply together with an asymp-
totic estimate for the rate of growth of the renewal measure of ξt in terms of
x/Aξ(x) (Bertoin [4], p. 74) to prove Theorem 1. Bertoin’s estimate in turn is
a generalisation of a corresponding estimate for random walks due to Erickson
[15]. These estimates can further be used to give easily stated necessary and
sufficient conditions for limt→∞ ξt = +∞ a.s; Doney and Maller [12] show
that this is equivalent to

∫ ∞

1

Π
+

ξ (y) dy = ∞ and J <∞, or 0 < E ξ1 � E |ξ1| <∞, (1.5)

where

J =
∫

(1,∞)

(
x

1 +
∫ x
1 Π

+

ξ (y) dy

)
|Π−ξ (dx)|. (1.6)

Analogous conditions characterise drift to minus infinity (limt→∞ ξt = −∞
a.s.) or {ξt} oscillates (a.s., lim supt→∞ ξt = +∞ and lim inft→∞ ξt = −∞).
See also Sato [37]. When limt→∞ ξt = +∞ a.s., the limit limx→∞Aξ(x) exists
and is positive; in fact, it is +∞ or no smaller than E ξ1 > 0 according as
the first or second condition in (1.5) holds. Bertoin [4], p. 100, also has a
version of Erickson’s [16] result, for subordinators. While a direct application
of these arguments (estimating the order of growth of the renewal function
when ξt → ∞ a.s.) does not seem to work in the general case, nevertheless,
we can prove Theorem 1 using the above results, and one of Pruitt [35].

The cases limt→∞ ξt = −∞ a.s. or {ξt} oscillates lead trivially to the
divergence of the integral in (1.3), because our requirement that g(0) > 0
implies that the range of the integral will contain arbitrarily large intervals of
t with g(ξ+t ) = g(0) > 0, in these cases. Thus we have a complete description
of the a.s. convergence of the integral in (1.3) in terms of the characteristics
(γξ, σ2

ξ , Πξ) of the Lévy process ξt. With these ideas in mind we can try to
broaden the class of integrals which can be treated by similar methods. In
particular, especially for the purposes of the applications already mentioned,
we wish to allow integration with respect to a further Lévy process, ηt, say,
which is not necessarily independent of ξt. We achieve complete generality in
this direction when g(t) = e−t (Theorem 2), and, to some extent, when g(t)
is a nonanticipating function that does not grow too fast (Theorem 3).
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Before stating these results we need to set out our framework in a little
more detail. We shall use a canonical setup (Ω,F ,P) for a bivariate Lévy
process W = (ξ, η). For Ω we take the space of càdlàg (right continuous with
left limits, also called ricowill) paths ω : [0,∞) �→ IR2, such that ω(0) =
(0, 0). Then W (t, ω) = ω(t) = (ξ(t, ω), η(t, ω)). We let F0

t be the natural
filtration generated by the random variables {Ws; 0 � s � t} and F0 the
σ-field generated by {Ws, 0 � s < ∞}. Also F is the completion of F0 and
{Ft} is the usual augmentation of {F0

t } making it a filtration satisfying the
“usual hypotheses”. The process W is an infinite lifetime Lévy process with
respect to the probability measure P. Its characteristic exponent, ψ(θ) :=
−(1/t) logE exp(i〈θ,Wt〉), will be written in the form:

ψ(θ) = −i〈γ̃, θ〉+ 1
2 〈θ,Σθ〉+

∫∫

|w|�1

(
1− ei〈w,θ〉 + i〈w, θ〉

)
Π{dw}

+
∫∫

|w|>1

(
1− ei〈w,θ〉)Π{dw}, for θ ∈ IR2. (1.7)

In (1.7), the 〈·, ·〉 denotes inner product in IR2, γ̃ = (γ̃1, γ̃2) is a nonstochastic
vector in IR2, and Σ = (σrs), r, s = 1, 2, is a nonstochastic 2× 2 non-negative
definite matrix. Finally, Π , the Lévy measure, is a measure on IR2 \ {0}. It is
uniquely determined by the process and satisfies

∫∫
min(|w|2 , 1)Π{dw} <∞.

See Bertoin [4], p. 3, Sato [37], Ch. 2.
Corresponding to (1.7) is the representation ofW as a sum of four mutually

independent processes:

Wt = (ξt, ηt) = (γξt, γηt) + (Bt, Ct) +
(
X

(1)
t , Y

(1)
t

)
+
(
X

(2)
t , Y

(2)
t

)
. (1.8)

Each of these four processes is itself a bivariate Lévy process, adapted to the
same filtration as {Wt}. In detail:

(i) {(γξt, γηt)}, where γξ and γη (not usually the same as γ̃1, γ̃2, see (1.11)
below) are (non-stochastic) constants, is the drift term.

(ii) {(Bt, Ct)} is a Brownian motion on IR2 with mean (0, 0) and covariance
matrix tΣ. We denote the individual variances by σ2

ξ t and σ2
ηt, respec-

tively.
(iii) {(X(1)

t , Y
(1)
t )} is a discontinuous process with jumps of magnitude not

ever exceeding the value 1. It may have infinitely many jumps in every
time interval. It has finite moments of all orders (indeed, each component
has a finite exponential moment; see the end of the proof of Protter [34],
Theorem 34, Ch. I, p. 24), and EX(1)

t = EY (1)
t ≡ 0.

(iv) {(X(2)
t , Y

(2)
t )} is a discontinuous jump process with jumps of magnitude

always exceeding the value 1. The sample functions of this process are
ordinary step functions; it is a bivariate compound Poisson process. The
component processes, too, are compound Poisson processes, not neces-
sarily independent of each other. Their jump measures need not be con-
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centrated on (−∞,−1]∪ [1,∞) but they do have finite total mass. These
processes may have infinite expectations.

We will denote the sum of the two pure jump Lévy processes as {(Xt, Yt)}.
Thus

∆Wt = (∆Xt, ∆Yt) = (Xt −Xt−, Yt − Yt−), t > 0,

denotes the jump process of W . If A is a Borel subset of IR2 \ {(0, 0)}, then
Π{A} equals the expected number of jumps of W of (vector) magnitude in A
occuring during any unit time interval, i.e.

Π{A} = E
∑

t<s�t+1

1{∆Ws ∈A}. (1.9)

(The expectation does not depend on t.)
The component Lévy processes ξt and ηt have canonical triplets given by

(γξ, σ2
ξ , Πξ) and (γη, σ2

η, Πη), where

Πξ{B} :=
∫

IR

Π{B, dy} and Πη{B} :=
∫

IR

Π{dx,B}, (1.10)

for B a Borel subset of IR \ {0}, and

γξ := γ̃1 +
∫

|x|�1

x

∫

|y|>
√

1−x2
Π{dx, dy}, (1.11)

and similarly for γη. In addition to the Π
+

ξ , Π
−
ξ introduced in (1.1), we will

write, for x > 0,
Πξ(x) = Π

+

ξ (x) +Π
−
ξ (x)

for the tailsum of Πξ. Similar notations are defined for Πη. Recall the defini-
tion (1.2) of Aξ(x). Note that the functions x �→ Aξ(x) and x �→ x/Aξ(x) do
not decrease, for large enough x, when (1.5) holds.

Our next theorem examines the convergence of
∫∞
0

e−ξt− dηt. For stochas-
tic integrals like this, or, more generally,

∫ B
A
g(ξs−) dηs, where g(·) is a measur-

able function, we will take the definition(s) as found in Protter [34]. Through-
out, we will assume that neither ξt nor ηt degenerate at 0.

Theorem 2. Suppose Aξ(x) > 0 for all x larger than some a > 0. If

lim
t→∞

ξt = +∞ a.s., and Iξ,η :=
∫

(ea,∞)

(
log y

Aξ(log y)

)
|Πη{dy}| <∞, (1.12)

then

P
(

lim
t→∞

∫ t

0

e−ξs− dηs exists and is finite
)

= 1. (1.13)

Conversely, if (1.12) fails, then (1.13) fails.
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In greater detail we have: if limt→∞ ξt = +∞ a.s. but Iξ,η =∞, then
∣∣∣∣
∫ t

0

e−ξs− dηs

∣∣∣∣
P→∞ as t→∞. (1.14)

If on the other hand ξt does not tend to +∞ a.s. as t tends to infinity, then
either (1.14) holds or there exists a constant k ∈ IR \ {0} such that

P
(∫ t

0

e−ξs− dηs = k(1− e−ξt) ∀ t > 0
)

= 1, (1.15)

and, a.s., the integral
∫ t
0

e−ξs− dηs again fails to converge as t→∞.

Some brief comments are in order.
As observed following (1.5), limt→∞ ξt = +∞ a.s. implies limx→∞Aξ(x)

exists and is not smaller than E ξ1 ∈ (0,∞], and thus the condition Aξ(x) > 0
for large enough x is automatically satisfied in the case of interest. In the
converse, this condition is not in fact needed if the denominator in Iξ,η in (1.12)
is replaced by, e.g., 1+

∫ log y

a
Π

+

ξ (y)dy. Further, if E |ξ1| <∞, the denominator
is actually irrelevant to the convergence of the integral, and Iξ,η then converges
if and only if

∫∞
1

log y |Πη{dy}| converges. This is thus a sufficient but not in
general necessary condition for convergence of

∫∞
0

e−ξt− dηt.

The converse in Theorem 2 can be clarified somewhat as follows. First,
(1.12) can fail in three ways: (i) ξt → ∞, a.s., but the integral Iξ,η diverges;
(ii) ξt → −∞ a.s.; (iii) {ξt} oscillates. In the first two cases the theorem
tells us, via (1.15) in the second case, that (1.14) holds. In the third case it
says only that (1.14) holds or (1.15) holds. These last two possibilities are
not mutually exclusive; in fact (1.15) implies (1.14) when (and only when)
ξt → −∞ in probability. (A non-trivial example for which (1.13) and (1.14)
both fail is in Case 2 below.)

The divergence of the integral can be further analysed as follows.

Proposition 1. Suppose {ξt} oscillates and (1.15) holds. Then:
(i) we have

0 � lim inf
t→∞

∣∣∣∣
∫ t

0

e−ξs− dηs

∣∣∣∣ < lim sup
t→∞

∣∣∣∣
∫ t

0

e−ξs− dηs

∣∣∣∣ = ∞ a.s.; (1.16)

(ii) if, in addition, Πη = 0, we have ξt = Bt and ηt = k(Bt−σ2
ξ t/2) for some

k �= 0, where σξ > 0, and (1.16) holds;
(iii) if, instead, Π �= 0, the support of Π must lie in a curve of the form

{
(x, y) : y + ke−x = k

}
, for some k ∈ IR. (1.17)
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The situations in (1.15) and (1.17) are kinds of degenerate cases, but they
can be important, and they do not preclude (1.14) in general. Suppose for
example that {ξt} oscillates, and the support of Π degenerates with positive
mass only at a point (x0, y0) with |x0| > 1, |y0| > 1. Then (1.17) holds with
k = y0/(1− e−x0). To simplify further, suppose the Brownian components are
absent and γη = 0. Then (ξt, ηt) = (γξt+ x0Nt, y0Nt), where Nt is a Poisson
process of rate λ, say, with jumps at times T1 < T2 < · · · . For {ξt} to oscillate
we must have γξ+x0λ = 0, so γξ �= 0. Now, with T0 = 0 and ∆Tj = Tj−Tj−1,

∫ t

0

e−ξs− dηs =
∫ t

0

e−γξs+γξNs−/λd(y0Ns)

= y0

Nt∑

i=1

exp

(
−γξ

i∑

j=1

∆Tj + γξ(i− 1)/λ

)

= y0e−γξ/λ
Nt∑

i=1

(
i∏

j=1

e−γξ(∆Tj−1/λ)

)
. (1.18)

This can be shown to satisfy (1.14) by virtue of the divergence part of The-
orem 2.1 of Goldie and Maller [19], which applies to discrete time perpetu-
ities. To see this, apply that result to the i.i.d. sequence with typical member
(Q1,M1) = (1, e−γξ(T1−1/λ)); the condition P(Q1 + M1c = c) = 1 in that
theorem does not hold for any c ∈ IR, despite the fact that (1.17) holds.
This example shows that the continuous and discrete time results can have
distinctly different features. (See also the example in Case 3 below.)

In view of (1.18), it is tempting at this point to suggest deriving Theorem
2 in general by a direct application of the discrete time perpetuity results in
[19] to a discretisation of the integral Zt :=

∫ t
0 e−ξs− dηs (the discrete skeleton

{Zn}n=1,2,..., for example), and then “filling in the gaps” between the discrete
points in some way. There are at least two difficulties with this approach.
In the first place, “filling in the gaps” to infer the a.s. convergence of Zt (or
divergence in probability of |Zt| to infinity) from that of the subsequence Zn
is not trivial. But more importantly, the discrete time perpetuity would be
constructed from components (Qi,Mi) distributed as

(
e−ξ1− ,

∫ 1

0 e−ξs− dηs
)
,

or similar, so direct application of the results of [19] would give uncheckable
conditions phrased in terms of the marginal distributions of these components,
which are quite inaccessible. We do in fact reduce the problem to that of [19]
eventually, but not by a direct discretisation. The approach adopted herein
seems to be the most efficient way to get conditions phrased in terms of the
characteristics of the Lévy process.

We now analyse some other special cases of interest.

Case 1. Suppose Πξ is degenerate at 0, i.e. Π has support in the y-axis. Then
ξt = γξt + Bt has no jump component – it is Brownian motion with drift. It
can diverge to∞ a.s. only if γξ > 0. By (1.2), Aξ(x) = γξ, so Theorem 2 gives:
γξ > 0 and

∫
(1,∞) log y |Πη{dy}| < ∞ implies

∫∞
0 e−γξt−Bt dηt exists and is
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finite a.s. In particular, Bt may be absent here (by taking σξ = 0), in which
case the a.s. existence of

∫∞
0 e−γξt dηt when γξ > 0 and

∫
(1,∞) log y |Πη{dy}| <

∞ follows.
The support of Π , contained in {(x, y) : x = 0}, is not of the form in

(1.17) for any k ∈ IR, as long as Πη is non-trivial. The converse part of
Theorem 2 together with Proposition 1 thus tells us that if γξ > 0 and∫
(1,∞)

log y |Πη{dy}| = ∞, or if γξ � 0 (thus, ξt does not tend to ∞ a.s.)

and Πη �= 0, then, as t → ∞,
∣∣∫ t

0 e−γξs−Bs dηs
∣∣ P→ ∞. In this example the

failure of (1.17) rules out (1.15) and so establishes (1.14).

Case 2. Suppose Πη is degenerate at 0. The forward direction of Theorem 2
then gives that limt→∞ ξt = +∞, a.s., implies the convergence of

∫ ∞

0

e−ξt dηt =
∫ ∞

0

e−ξt(γη dt+ dCt).

Since we may have γη = 0 or Ct absent here, we have the a.s. convergence of∫∞
0 e−ξt dt and

∫∞
0 e−ξt dCt, when ξt →∞ a.s. In particular,

∫∞
0 e−γξt−Bt dt

and
∫∞
0 e−γξt−Bt dCt converge a.s. when γξ > 0. This covers subordinated

perpetuities, constructed from Brownian motions, where it is often assumed
in addition (unnecessarily, for purposes of convergence) that Bt and Ct are
independent. The distribution of the first of these integrals,

∫∞
0 e−γξt−Bt dt,

when γξ > 0, is known quite explicitly; it is a multiple of the reciprocal of
a Gamma random variable [13]. The second integral,

∫∞
0

e−γξt−Bt dCt, has a
Pearson Type IV distribution when B and C are independent ([9], Prop. 3.2).

The converse part of Theorem 2 tells us in this case (Πη degenerate at 0)
that both

∫∞
0 e−γξt−Bt dt and

∫∞
0 e−γξt−Bt dCt diverge in case γξ � 0, as we

would expect. In this case (γξ � 0), we have, as t → ∞,
∣∣∫ t

0 e−γξs−Bs ds
∣∣ P→

∞, but not necessarily
∣∣∫ t

0 e−ξs− dCs
∣∣ P→ ∞; we could have the situation in

Proposition 1, with ξt = Bt and ηt = −σ2
ξ t/2 + Bt, and then (1.15) holds

with k = 1, but not (1.14). The support of Π for this case is the x–axis,
{(x, y) : y = 0}, which satisfies (1.17) for k = 0.

Case 3. A bivariate compound Poisson process is constituted from i.i.d. 2–
vectors (Qi,Mi) added together at the jump times of an independent Poisson
process of rate λ, say. Suppose P{Q1 = 0} < 1 and P{M1 = 0} = 0. Let Nt
be the number of jumps of the Poisson process in the time interval (0, t], with
N0 = 0. The process

Wt = (ξt, ηt) =
Nt∑

i=1

(− log |Mi|, Qi), t � 0,

(with W0 = 0) is a Lévy process with canonical triplet (0, 0, Π), where Π
is λ times a probability measure: Π(A) = λP{(− log |M1|, Q1) ∈ A} for
Borel A ⊆ IR2. So Πξ(dm) and Πη(dq) are proportional to (in fact, also λ
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times) the probability measures P{− log |M1| ∈ dm} and P{Q1 ∈ dq}. The
corresponding stochastic integral is

Zt =
∫ t

0

e−ξs− dηs =
Nt∑

i=1

(
i−1∏

j=1

|Mj|
)
Qi, t � 0, (1.19)

and is the value of the discrete time perpetuity

Z̃n :=
n∑

i=1

(
i−1∏

j=1

|Mj |
)
Qi, n = 1, 2, . . .

at the random time Nt. It follows from Theorem 2 that, if

ξt = − log

(
Nt∏

j=1

|Mj |
)
→∞ a.s. as t→∞, (1.20)

or, equivalently, if limn→∞
∏n
j=1 |Mj | = 0 a.s., and the expression EQ :=

E
(
log+ |Q1|/Aξ(log+ |Q1|)

)
is finite, where

Aξ(x) = λP{− log |M1| > 1}+ λ
∫ x

1

P{− log |M1| > y} dy,

then Zt → Z∞ a.s. as t → ∞ for an a.s. finite Z∞; while if P{Q1 + k|M1| =
k} < 1 for all k ∈ IR, so that (1.17) does not hold, and (1.20) fails, or else
(1.20) holds and EQ = ∞, then |Zt| P→ ∞ as t → ∞. This is an analogue
of the discrete time theorem of [19]. Our proof of Theorem 2 employs at one
stage a reduction to this case.

Comparing this example to the one following Proposition 1 highlights the
differences that the continuous time setting can introduce. The “interesting”
aspect of that example arises from the drift coefficient, γξ. The continuous time
analysis also opens the way to investigation of further expressions obtained
from integration by parts, etc.

The analogy with [19] is not complete in one respect; notice that we have
|Mj | rather than Mj in (1.19). Theorem 2 as it stands does not allow for a
signed integrand. However, we have the following.

Theorem 3. Let f = {ft} be a locally predictable square integrable func-
tional of the Lévy process W = (ξ, η) satisfying limt→∞ e−εtE f2

t = 0 and
limt→∞ e−εtft = 0 a.s. for each ε > 0. Then, under (1.12), the integral

∫ ∞

0

ft e−ξt− dηt (1.21)

exists and is finite a.s.
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Remarks. In the case of convergence – when the integralZ∞ :=
∫∞
0 e−ξt− dηt

exists finitely – we can ask for its properties. [9], [13], [39], [40], [41] and
others investigate this in particular when the integrator and/or integrand
are Brownian, giving detailed distributional information (or even an explicit
expression for the distribution). For more general Lévy integrators and/or
integrands, we would not expect to obtain such specific information, but the
tail behaviour, at least, of Z∞ can be investigated by the methods of Kesten
[26] and Goldie [18]. From their results we would conjecture a heavy tailed
(power law) behaviour of Z∞ under some assumptions. See also Grincevičius
[22, 23, 24]. In the discrete case, other kinds of properties (e.g., continuity of
the distribution of the limit) have been studied by Grincevičius [20], [22] and
Vervaat [38].

In the case of divergence – we can ask how quickly the integral Zt diverges,
in some sense, as t→∞. In the discrete case, Grincevičius [21] shows how to
norm Z so as to obtain a finite, nonzero limit. One can use his results and
discretisation to obtain some information on the magnitude of the stochastic
integral in the case of divergence, but further refined results along these lines
would require a deeper analysis. For another approach in discrete time, see
Babillot, Bougerol and Elie [1] and Brofferio [8].

2 Applications

1. Dominance of a Lévy process over its jumps
For any Lévy process ξt, an extension of Exercise 6(a) on page 100 of

Bertoin [4] shows that, for an increasing function f : [0,∞) �→ [1,∞), we
have

P{∆ξt > f(ξt−) i.o. as t→∞} = 0 (2.1)

iff ∫ ∞

0

Π
+

ξ (f(ξt)) dt <∞ a.s. (2.2)

Suppose in addition that ξt → ∞ a.s. as t → ∞. Applying Theorem 1 with
g(x) = Π

+

ξ (f(x)) shows that these are equivalent to

∫ ∞

1

(
x

Aξ(x)

) ∣∣dΠ+

ξ

(
f(x)

)∣∣ <∞, (2.3)

or to ∫ ∞

e

(
log x

Aξ(log x)

)
dΠξ

(
f(logx)

)
<∞. (2.4)

This is of the form in Theorem 2 if we define ηt by

ηt =
∑

0<s�t
ef
←(∆ξs)1{∆ξs>f(0)},
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where
f←(x) = sup{z : f(z) � x}, x � 1,

is a generalised inverse of f . Then ηt is a Lévy process with Πη(x) =
Πξ(f(log+ x)), and (2.4) shows that (2.3) holds iff

∫ ∞

e

(
log x

Aξ(log x)

)
Πη{dx} <∞. (2.5)

The process Wt = (ξt, ηt) is a bivariate Lévy process with marginal measures
Πξ, Πη. Assuming Πξ �= 0, Theorem 2 applies to show that (2.5) and hence
(2.1) holds if and only if

∫∞
0 e−ξt− dηt converges a.s.

When f grows at most algebraically, or, more generally, if f is nondecreas-
ing and lim supx→∞ f(λx)/f(x) <∞ for each λ > 1, then (2.1) is equivalent
to

lim sup
t→∞

(
∆ξt
f(ξt−)

)
� 0 a.s.,

and this is then equivalent to (2.5). In particular, when f(x) = x ∨ 1, then
(2.3) is equivalent to Aξ(∞) < ∞, thus to

∫∞
1
Π

+

ξ (x) dx < ∞, which is thus
equivalent to lim supt→∞(∆ξt/ξt−) � 0 a.s. Other results like this are easily
worked out.

2. Integrating the Doléans-Dade Exponential
The Doléans-Dade Exponential ([11]) of a Lévy process Lt which has

canonical triplet (γL, σ2
L, ΠL), is

E(L)t = eLt− 1
2 [L,L]t

∏

0<s�t
(1 + ∆Ls)e−∆Ls+

1
2 (∆Ls)

2
,

where
[L,L]t = σ2

Lt+
∑

0<s�t
(∆Ls)2

is the quadratic variation process. Suppose that ΠL(·) attributes no mass to
(−∞,−1]. Then we can write E(L)t = e−ξt , where

ξt = −Lt +
(
σ2
L

/
2
)
t−

∑

0<s�t

(
log(1 + ∆Ls)−∆Ls

)

is a Lévy process. It follows that ∆ξt = − log(1 + ∆Lt), so if Lt is coupled
with ηt in a bivariate Lévy process, whose Lévy measure is ΠL,η, then (ξ, η)
is a bivariate Lévy process with measure satisfying (for x > 0, y > 0)

Πξ,η{(x,∞)× (y,∞)} = E
∑

0<s�t
1{∆ξs>x,∆ηs>y}

= ΠL,η{(−∞, e−x − 1)× (y,∞)}. (2.6)
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Thus Π
+

ξ (x) = Π
−
L (1− e−x), and, similarly, Π

−
ξ (x) = Π

+

L(ex − 1), for x > 0.
The support of Πξ,η lies on the curve y + ke−x = k iff ∆ηt + ke−∆ξt = k,
iff ∆ηt + k∆Lt = 0, or, equivalently, the support of ΠL,η lies on the curve
y = −kx , which we assume not to be the case for any k ∈ IR. Corresponding
to (1.2), define

Aξ(x) = −γL + σ2
L/2 +Π

+

ξ (1) +
∫ x

1

Π
+

ξ (y) dy, x > 0.

Suppose also that ξt →∞ a.s. as t→∞. Then we have
∫ ∞

0

e−ξt− dηt =
∫ ∞

0

E(L)t− dηt

converges a.s. iff ∫ ∞

e

(
log x

Aξ(log x)

)
|Πη{dx}| <∞. (2.7)

The expressions in (1.5) and (1.6), which characterise limt→∞ ξt = ∞ a.s.,
and in (2.7) are easily written in terms of the Lévy measure of ΠL,η, using
(2.6).

3. Other applications and extensions
As mentioned, subordinated perpetuities occur in various applications,

especially in Finance (e.g., [3], [9], [40], [41]) and in time series modelling (e.g.,
Brockwell [6], [7]). Convergence of the integral in the latter case corresponds
to the existence of a stationary version of the series which is of importance
in modelling applications. In the former case, the distribution of the integral,
when it converges, is of interest. As remarked at the end of Section 1, in
the general Lévy process situation little is known in this direction. For an
application of the discrete time results to branching random walks, see Iksanov
[25] and his references.

For another kind of extension, representations of fractional Brownian mo-
tion, νt, say, in terms of integrals of certain kernel functions against ordinary
Brownian motions can be used to examine the convergence of integrals like∫∞
0 g(ξt) dνt. (These can be defined even though fractional Brownian motion

is not a semimartingale; see [14], [29], [31].) Theorem 3 may be of use here.
For many other applications of Theorem 2 in a variety of areas, see [2],

and also Klüppelberg et al. [28]. Theorem 3 has applications in the insurance
area (e.g., [30]).

3 Proofs

Proof of Theorem 1. Suppose first that ξt is a subordinator (so that
limt→∞ ξt = +∞ a.s.). Obviously E

∫∞
0
g(ξt) dt < ∞ implies that the in-

tegral
∫∞
0
g(ξt) dt is finite a.s. Conversely, assume

∫∞
0
g(ξt) dt is finite with

positive probability. Writing
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ξt = S�t� + (ξt − ξ�t�) = S�t�+1 − (ξ�t�+1 − ξt),

where �t� is the integer part of t and Sn =
∑n

1 (ξi − ξi−1) is a renewal
process, we have S�t� � ξt � S�t�+1, so we see that

∫∞
0
g(S�t�) dt and

hence
∑
n�1 g(Sn) are finite with positive probability. Applying Prop. 1 of

Erickson [16] gives E
∑
n�1 g(Sn) finite and thus E

∫∞
0
g(ξt) dt finite. Hence

P
(∫∞

0
g(ξt) dt < ∞

)
is 0 or 1 according as E

∫∞
0
g(ξt) dt is finite or infinite.

But

E
∫ ∞

0

g(ξt) dt =
∫ ∞

0

∫ ∞

0

g(y)P(ξt ∈ dy) dt =
∫ ∞

0

g(y)U(dy) (3.1)

where U(dy) =
∫∞
0 P(ξt ∈ dy) dt. From Bertoin [4], p. 74,

U(x) � x∫ x
1 Πξ(y) dy

� x

Aξ(x)
(as x→∞), (3.2)

where “�” means that the ratio of the two sides is bounded away from 0 and
∞ as x → ∞. So the integral in (1.4) converges if and only if the integral in
(3.1) does, as we see after integrating by parts (and using the monotonicity
properties of g(x) and U(x)). Thus Theorem 1 is true for subordinators.

Next, for a general ξ we assume limt→∞ ξt = +∞ a.s. Consider two cases.
If E |ξ1| < ∞ (and so µ := E ξ1 > 0) then ξt ∼ tµ a.s. as t → ∞ (that is,
limt→∞ ξt/t = µ a.s.). Let P

(∫∞
0
g(ξ+t ) dt < ∞

)
> 0, and t1 := sup{t : ξt >

2µt}. Then t1 <∞ a.s. and P
(∫∞
t1
g(2µt) dt <∞

)
> 0. Since

∫ t1
0
g(2µt) dt <

∞ a.s., we have
∫∞
0 g(2µt) dt <∞ and this is equivalent to (1.4) in this case

since limx→∞Aξ(x) = Aξ(∞) ∈ [µ,∞). A similar argument using t2 = sup{t :
ξt � µt/2}, shows that (1.4) finite implies (1.3) is finite with probability equal
to 1. So the result is true when E |ξ1| <∞.

Next assume E |ξ1| =∞. In a similar way to (1.8), we can write

ξt =
Nt∑

i=1

Ji +O(t)

where O(t)/t is bounded a.s. as t→∞, the Ji are i.i.d with

P(J1 ∈ dx) = Πξ(dx)1{x:|x|>1}/Πξ({x : |x| > 1}),

and Nt is a Poisson process of rate c := Πξ({x : |x| > 1}), independent of the
Ji. Then ξt →∞ a.s. implies (1.5), and thus, by a corresponding random walk
version (Kesten and Maller [27]), we have

∑n
1 Ji → ∞ a.s. as n → ∞. We

also have E |J1| = ∞, so by Pruitt ([35], Lemma 8.1),
∑n

1 J
−
i = o (

∑n
1 J

+
i )

a.s., and thus, almost surely,
∑n

1 Ji ∼
∑n

1 J
+
i as n → ∞, in the sense that

the ratio of the two sides tends to 1 a.s. as n → ∞. Thus, almost surely,∑Nt

1 Ji ∼
∑Nt

1 J+
i as t→∞. It follows that, when ξt →∞ a.s.,
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ξt ∼ Yt :=
Nt∑

1

J+
i , almost surely, as t→∞.

Now suppose P
(∫∞

0 g(ξ+t ) dt < ∞
)
> 0. Define t1 := sup{t : ξt > 2Yt},

so t1 < ∞ a.s. and P
(∫∞
t1
g(2Yt) dt < ∞

)
> 0. Consequently we have

P
(∫∞

0 g(2Yt) dt <∞
)
> 0. Apply the result for subordinators to Yt to get

∫ ∞

1

(
x

AY (x)

)
|dg(x)| <∞

where AY (x) = Π
+

Y (1)+
∫ x
1
Π

+

Y (y) dy (in an obvious notation). This is equiv-
alent to (1.4) in this case since

AY (x) �
∫ x

0

Π
+

Y (y) dy �
∫ x

1

Π
+

ξ (y) dy � Aξ(x).

A similar argument, using t2 = sup{t : ξt � Yt/2}, works in the other direc-
tion. 	


Proof of Theorem 2, Sufficiency. This and the other proofs make continual
use of the decomposition into “small” and “big” jumps, i.e., the last two
processes in (1.8). From (1.8) we can write

(ξt, ηt) =
(
γξt+Bt +X

(1)
t +X(2)

t , γηt+ Ct + Y
(1)
t + Y (2)

t

)
. (3.3)

This decomposition gives rise to a similar partitioning of the integral:
∫ t

0

e−ξs− dηs =
∫ t

0

e−ξs− dΓs +
∫ t

0

e−ξs− dY (2)
s , (3.4)

where, for convenience, we write

Γt = γηt+ Ct + Y
(1)
t , (3.5)

and we analyze each integral as t→∞. In this analysis we will show that the
first integral on the righthand side of (3.4) always converges as t →∞ when
limt→∞ ξt = ∞ a.s. The convergence of the integral in (1.12) becomes of equal
importance to the convergence of the second integral on the righthand side of
(3.4).

Following a common convention, a stochastic integral of the form
∫ B
A

means
∫
(A,B] and the distinction matters – sometimes we will write

∫ B
A+ to

emphasise this. Because the Lévy process η is a semimartingale and because
the integrand is of class L (adapted, left continuous with right limits), it fol-
lows from the theory in Chapter II of Protter [34] (see in particular Theorem 9
and its corollary in [34], page 48, the definitions on pages 49 and 51, and The-
orem 19, page 55) that these integrals are finite a.s., and are defined for all A
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and B, with 0 � A < B <∞, simultaneously and for all trajectories outside
of a null set (not depending on A and B). This implies that A and B can
be any finite positive random variables satisfying A � B, a.s. Moreover the
process t �→

∫ t
0 e−ξs− dηs is càdlàg and a semimartingale.

We shall need the following lemma.

Lemma 1. Suppose limt→∞ ξt = ∞ a.s. There exists a strictly positive µ,
which may be infinite, such that, almost surely,

µ = lim
t→∞

ξt
t

= γξ + lim
t→∞

X
(1)
t +X(2)

t

t
= γξ + lim

t→∞

X
(2)
t

t
. (3.6)

Proof. First, limt→∞(1/t)Bt = limt→∞(1/t)X(1)
t = 0, a.s., since both of these

processes have mean 0 and the strong law applies. Thus we can safely ignore
these components.

Next, if E |ξ1| <∞, then the strong law again applies to give us the desired
conclusion and in this case we can take

µ = E ξ1 = γξ + EX(2)
1 > 0. (3.7)

That µ > 0 is forced by the assumption that limt→∞ ξt = ∞ a.s., because {ξt}
oscillates or drifts to −∞ a.s. as t→∞ when µ � 0, see Bertoin [4], p. 183.

However, if E |ξ1| =∞, then the existence of the limit of ξt/t in (3.6) and
that it also equals +∞ when limt→∞ ξt = ∞ a.s. is somewhat more delicate.
Consult [12], [37], [5] and [15] for the proof. 	


The integral
∫∞
0 e−ξs− dΓs.

To deal with the first integral on the righthand side of (3.4), it suffices
to show that the integral over (L,∞) converges for some (random but finite)
L � 0. Fix c ∈ (0, µ), where µ is defined in (3.6). Then there exists L � 0
(which may be random) such that ξs− � sc for all s > L. (In fact we may
take L = sup{s > 0 : ξs− − cs � 0}, if the set of the sup is non-empty, and
L = 0 otherwise. This is a random variable because ξ is càdlàg, so separable.
Note that L is not a stopping time.) Clearly,

∫ ∞

L

e−ξs− |γη| ds � |γη|
∫ ∞

L

e−cs ds <∞,

so there is no harm in supposing that γη = 0. But on removing the term γηt
from Γt we find that the diminished process {Γt} becomes a square-integrable,
mean 0, martingale with quadratic variation kt for some positive constant k.

To continue, the random variable exp{−ξs−} may well have infinite expec-
tation. To get around this define λt := max{ct, ξt}, so that λs− � cs for all
s � 0, and λs− = ξs− for all s > L. Hence, with probability 1,

lim
t→∞

∫ L∨t

L

e−ξs− dΓs = lim
t→∞

∫ L∨t

L

e−λs− dΓs.
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On the other hand

E
(∫ t

0

e−λs− dΓs

)2

= k

∫ t

0

E{e−2λs−} ds � k

∫ ∞

0

e−2cs ds <∞. (3.8)

This establishes that the martingale t �→
∫ t
0 e−λs− dΓs has bounded (actually

converging) second moments. In this situation it must therefore converge with
probability 1 (and in mean) as t→ ∞. Consequently

∫∞
0 e−ξt−dΓt converges

with probability equal to 1 (though not necessarily in mean).

The integral
∫∞
0

e−ξt− dY (2)
t

We now show that the second integral on the righthand side of (3.4) con-
verges a.s. as t→∞, under the stated conditions, namely, assume that both
conditions of (1.12) hold. We can suppose in addition that Y (2) �= 0 a.s.,
for otherwise the result is trivial. Thus Πη(·) is not degenerate at 0, so Π(·)
also is not degenerate at 0, and consequently Π assigns positive mass to a
region of the form {w : |w| > r > 0}. Only the positivity of r is relevant
to our proof and there is no loss in generality in supposing that r = 1. Thus
α ≡ Π{(w : |w| > 1)} > 0. Similarly there is no loss in generality in supposing
that a = 1 in the integral of (1.12).

Let Nt be the number of jumps of W falling in {|w| > 1} during (0, t],
and let 0 = T0 < T1 < · · · be the times at which these occur. The increments
{Ti − Ti−1} are i.i.d. exponentially distributed of rate α. Define

Mj = e−[ξ(Tj+1−)−ξ(Tj−)],

and
Qi = Y (2)(Ti)− Y (2)(Ti−) = Y (2)(Ti)− Y (2)(Ti−1).

(Note that Y (2) is constant between successive Tj .) The integral may be re-
cast thus:

∫ t

0

e−ξs− dY (2)
s =

Nt∑

i=1

e−ξTi−∆Y (2)
Ti

=
Nt∑

i=1

(
i−1∏

j=1

Mj

)
Qi. (3.9)

The sequence of random 2-vectors {(Mi, Qi)} is i.i.d. with common dis-
tribution the same as that of (e−[ξ(T2−)−ξ(T1−)], Y

(2)
T1

), and is independent
of the sequence of jump times {Ti}. (The independence of (Mi, Qi) and
{(Mj, Qj)}j�i+2 is fairly obvious. That each (Mi, Qi) is independent of
(Mi+1, Qi+1) is also clear if one uses the first expression above for Qi:
Qi = Y (2)(Ti) − Y (2)(Ti−). Naturally, the total independence of the jump
times with the values of the jumps is also crucial.)

The process ξ∗ = {ξ(T1 + t) − ξ(T1); 0 � t < T2 − T1} has the same
law as that of ξ∗∗ = {ξ(t); 0 � t < T1} and they are independent of each
other. Also ξ(T2) − ξ(T2−) and ξ(T1) − ξ(T1−) have the same distribution
and are independent of each other and of the two processes ξ∗ and ξ∗∗. These
considerations lead to the following:
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Law{ξ(T2−)− ξ(T1−); P} = Law{ξ(T1); P}. (3.10)

We may now apply Theorem 2.1 of [19]. Note that P{M1 = 0} = 0, and also
P{Q1 = 0} < 1, as required to apply that theorem (if Q1 = Y

(2)
T1

= 0 a.s.

then Var(Y (2)
T1

) = 0, so Y (2)
1 = 0 a.s., which we assumed not to be the case).

Thus, suppose
∏n
i=1Mi → 0 a.s. as n→∞, and

IM,Q :=
∫

(1,∞)

(
log q

AM (log q)

)
P{|Q1| ∈ dq} <∞, (3.11)

where AM (x) =
∫ x
0 P{− logM1 > u} du, for x � 0. Then the random sequence

Z̃n :=
n∑

i=1

(
i−1∏

j=1

Mj

)
Qi, n = 1, 2, . . . (3.12)

converges a.s. to a finite limit, Z̃∞, say, as n → ∞. This implies that the
righthand side of (3.9) converges a.s. to Z̃∞ as t→∞, since Nt →∞ a.s. as
t→∞ (again recall Π{w : |w| > 1} > 0). Now Tn →∞ a.s., as n→ ∞, and
since limt→∞ ξt = ∞ a.s., it follows that

n∏

i=1

Mi = e−ξ(Tn−) −→ 0 a.s. as n→∞.

Thus for Z̃∞ ≡ Z∞ =
∫∞
0 e−ξt− dY (2)

t to exist a.s. it only remains to show that
the convergence of Iξ,η in (1.12) implies the convergence of IM,Q in (3.11),
when ξt →∞ a.s.

For this we need expressions for the distributions of the Mi and Qi. By
(1.7) the compound Poisson process

(
X

(2)
t , Y

(2)
t

)
=
Nt∑

i=1

(∆X(2)
Ti
, ∆Y (2)

Ti
)

has Lévy exponent ψ(2)(θ) satisfying

ψ(2)(θ) = −(1/t) logE ei〈θ,(X(2)
t ,Y

(2)
t )〉 =

∫∫

|w|>1

{
1− ei〈θ,w〉}Π{dw}, (3.13)

for θ ∈ IR2. So (∆X(2)
T1
,∆Y (2)

T1
) = (X(2)

T1
, Y

(2)
T1

) has joint distribution

P
{
X

(2)
T1
∈ dx, Y (2)

T1
∈ dy

}
= 1{x2+y2>1}Π{dx, dy}/α,

with α = Π({(x, y) : |(x, y)| > 1}) > 0. Thus

P{Q1 ∈ dq} = P
{
Y

(2)
T1

∈ dq
}

= 1{|q|�1}

∫

|x|>
√

1−q2
Π{dx, dq}/α+ 1{|q|>1}

∫

x∈IR

Π{dx, dq}/α. (3.14)
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If |q| > 1 this implies that

P{Q1 ∈ dq} = Πη(dq)/α. (3.15)

Next, by (3.10) we have

AM (x) =
∫ x

0

P{− logM1 > u} du =
∫ x

0

P{ξT1 > u} du,

and, under (1.12) we have (1.5). Suppose 0 < E ξ1 � E |ξ1| < ∞. Now
{ξ(Tn−)} is a sequence of partial sums of i.i.d. random variables each of
which has the same distribution as ξ(T1), by (3.10). By Wald’s Equation we
get that

E ξ(T1) = E ξ(1)ET1 = E ξ(1)/α.

The right hand side is finite and strictly positive. Hence

lim
x→∞

AM (x) =
∫ ∞

0

P{ξ(T1) > u} du = E ξ+(T1) � E ξ(T1) > 0.

As this limit is positive and finite, the denominator in IM,Q (see (3.11)) can
be ignored. The denominator in Iξ,η is (see (1.2))

γξ+Π
+

ξ (1)+
∫ log y

1

Π
+

ξ (u) du −→ γξ+
∫

(1,∞)

uΠξ{du}, as y →∞. (3.16)

Now
E ξ1 = γξ +

∫

|u|>1

uΠξ{du},

so the righthand side of (3.16) is not smaller than E ξ1, which is positive, as
we assumed, so the denominator in Iξ,η can be ignored also. Alternatively,
suppose the first condition in (1.5) holds. Now by a similar calculation to
(3.14), if u > 1,

P
{
X

(2)
T1
> u

}
=

∫

(u,∞)

Πξ{dx}/α = Π
+

ξ (u)/α, (3.17)

so we have E(X(2)
T1

)+ =∞. For x > 1

AM (x) =
∫ x

0

P{ξT1 > u} du =
∫ x

0

P
{
γξT1 +BT1 +X(1)

T1
+X(2)

T1
> u

}
du

�
∫ x

0

P
{
X

(2)
T1
> 2u

}
du−

∫ x

0

P
{
γξT1 +BT1 +X(1)

T1
� −u

}
du (3.18)

The last integral here has a finite limit as x → ∞, because the random
variable involved has a finite mean. The first integral tends to infinity because
E(X(2)

T1
)+ = ∞. Thus for some finite constant C > 0



88 K. Bruce Erickson and Ross A. Maller

AM (x) � C

∫ x

0

P
{
X

(2)
T1
> 2u

}
du

for all large x. However the latter integral is bounded below by one half of∫ x
1

P{X(2)
T1

> u} du (which also tends to ∞ because of the infinite expecta-
tion). Hence from (3.17),

AM (x) � (C/2α)
∫ x

1

Π
+

ξ (u) du. (3.19)

Together (3.15) and (3.19) show that Iξ,η <∞ implies IM,Q <∞.
To this point we have established: (1.12) implies

∫∞
0

e−ξt− dηt exists and
is finite a.s.

Proof of Theorem 2, the Converse. Let us first suppose (1.12) fails by
virtue of Iξ,η = ∞, but ξt →∞ a.s. as t→∞. Then by the sufficiency part of
the proof, the infinite integrals of e−ξt− with respect to dt, dCt and dY (1)

t are
all finite, a.s. Suppose |Z̃Nt |

P−→ ∞, where Z̃n is the random variable defined
in (3.12). Then (3.9) shows that the integral with respect to dY (2)

t diverges,
in fact ∣∣∣∣

∫ t

0

e−ξs− dY (2)
s

∣∣∣∣
P−→∞, as t→∞.

Thus (1.14) will be the case. Now |Z̃n| P−→ ∞ (n → ∞) implies |Z̃Nt |
P−→ ∞,

because for z > 0, ε > 0,

P
{∣∣Z̃Nt

∣∣ � z
}

�
∑

n>n0

P
{∣∣Z̃n

∣∣ � z
}
P{Nt = n}+ P{Nt � n0}

� ε+ P{Nt � n0} (3.20)

once n0 = n0(ε, z) is so large that P{|Z̃n| � z} � ε for n > n0, and Nt →∞
a.s. But |Z̃n| P−→ ∞ (n→∞) is implied by IM,Q = ∞, according to Lemma 5.5
of [19]. So for this part of the converse it suffices to show that Iξ,η = ∞ implies
IM,Q = ∞, when ξt → ∞ a.s. We showed (following (3.15) above) that this
is the case when E |ξ1| <∞, since the denominators in IM,Q and Iξ,η can be
ignored then.

Alternatively, suppose the first condition in (1.5) holds. We need a reverse
inequality to (3.19). From the second equality in (3.18) we get the inequality

AM (x) �
∫ x

0

P
{
X

(2)
T1
> u/2

}
du +

∫ x

0

P
{
γξT1 + BT1 +X(1)

T1
> u/2

}
du

� 2
∫ x/2

1

P
{
X

(2)
T1
> v

}
dv +K (3.21)

where
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K =
∫ 2

0

P
{
X

(2)
T1
> u/2

}
du+

∫ ∞

0

P
{
γξT1 +BT1 +X(1)

T1
> u/2

}
du <∞.

Again the integral on the right in (3.21) diverges as x → ∞ because
E(X(2)

T1
)+ = ∞. It follows that for some finite constant C′ > 0

AM (x) � 2C′
∫ x/2

1

P
{
X

(2)
T1
> v

}
dv � (2C′/α)

∫ x

1

Π
+

ξ (u) du

for large enough x. This inequality shows that Iξ,η = ∞ implies IM,Q = ∞.
To complete the proof of the converse we have to consider the case when

ξt does not tend to ∞ a.s. as t→∞, so assume this. Let

(Qt,M t) =
(∫ t

0+

e−ξs− dηs, e−ξt
)
. (3.22)

The first step is to show:

Lemma 2. There is a t > 0 such that for every constant k ∈ IR,

P{Qt + kM t = k} < 1, (3.23)

or else (1.15) holds.

Proof. Suppose, contrary to (3.23), that for each t > 0 there is indeed a
constant kt = k(t) ∈ IR such that

∫ t

0

e−ξs− dηs + kte−ξt = kt a.s.

Take t = t2 and t = t1 (0 < t1 < t2), in this formula and subtract to get

e−ξ(t1)
∫ t2

t1

e−[ξ(s−)−ξ(t1)] dηs = k(t2)
(
1− e−ξ(t2)

)
− k(t1)

(
1− e−ξ(t1)

)
,

or
∫ t2

t1

e−[ξ(s−)−ξ(t1)] dηs + k(t2)e−[ξ(t2)−ξ(t1)] = [k(t2)− k(t1)]eξ(t1) + k(t1).

Here, the lefthand side is independent of the righthand side, so both sides are
degenerate rvs and this implies that k(t2) = k(t1), i.e., kt = k is independent
of t. Thus ∫ t

0

e−ξs− dηs = k(1− e−ξt) a.s, (3.24)

which is (1.15), except that the null set may depend on t. But we can get
(3.24) to hold for a countable dense set H of t outside of a null set of paths,
as both sides of (3.24) are well defined càdlàg processes. Hence a passage to
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the limit t ↓ s, t ∈ H , shows that we may assume that (3.24) holds for all t
simultaneously outside of a single null set of paths. Finally, k = 0 in (3.24)
would imply ∆ηt = 0, hence Πη = 0, and γηt + Ct degenerate at 0, hence
γη = ση = 0. Thus η would be degenerate at 0, and we have excluded this
case. 	


Now (still assuming that ξt does not tend to ∞ a.s.) (3.23) implies (1.14),
as follows. Given (3.23), choose a value u such that

P{Qu + kMu = k} < 1 for all k ∈ IR. (3.25)

For this u define

Zun =
∫ nu

0+

e−ξs− dηs, n = 1, 2, . . .

Then

Zun+1 = Zun + e−ξnu

∫ (n+1)u

nu+

e−(ξs−−ξnu) dηs = Zun +ΠunQ
u
n+1, say, (3.26)

where

Πun = e−ξnu =
n∏

i=1

e−(ξiu−ξ(i−1)u) =
n∏

i=1

Mu
i , say.

Notice that

(Qui ,M
u
i ) =

(∫ iu

(i−1)u+

e−(ξs−−ξ(i−1)u) dηs, e−(ξiu−ξ(i−1)u)

)

are i.i.d., each with the distribution of (Qu,Mu) in (3.22), while, from (3.26),

Zun =
n∑

i=1

Πui−1Q
u
i , n = 1, 2, . . .

(with Πu0 = 1). Because of (3.25), Theorem 2.1 of [19] applies to give that
|Zun |

P→ ∞ as n → ∞ provided that Πun does not tend to 0 a.s. as n → ∞,
or, equivalently, that ξnu does not tend to ∞ a.s. as n → ∞. Suppose for
the moment this is the case and take any t > 0. Let nt = n(u, t) = �t/u�, so
ntu � t < (nt + 1)u. Let rt = r(u, t) = t− ntu, and write

Zt =
∫ t

0+

e−ξs− dηs =
∫ rt

0+

e−ξs− dηs + e−ξrt

∫ ntu+rt

rt+

e−(ξs−−ξrt ) dηs

= Qrt +M rtZnt(u, rt), say, (3.27)

where

Znt(u, rt) =
∫ ntu+rt

rt+

e−(ξs−−ξrt ) dηs
D=
∫ ntu

0+

e−ξs− dηs = Zunt
.
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Since |Zun |
P→ ∞ as n→ ∞ we have |Zunt

| P→ ∞ as nt → ∞, and because Qrt

and M rt in (3.27) are bounded away from∞ and 0, a.s., respectively, we have
|Zt| P→∞ as t→∞, as required.

It remains to show that if ξt does not tend to ∞ a.s., then ξnu does not
tend to ∞ a.s. as n → ∞. We need only prove this for u = 1. But then the
result is true by the following lemma.

Lemma 3. For a Lévy process ξt, ξn → ∞ a.s. as n → ∞ implies ξt → ∞
a.s. as t→∞.

Proof. This is proved in [17]. A different proof was provided by Chaumont [10].
We omit further details here. 	


Returning to the proof of the converse assertion of Theorem 2, we have
shown that if limt→∞ ξt = ∞ a.s. and Iξ,η = ∞, or if ξt does not tend to
∞ as t → ∞, then (1.14) or (1.15) holds and (1.13) fails. This concludes the
proof. 	


Proof of Proposition 1. Assume {ξt} oscillates and (1.15) holds.
(i) That (1.16) holds is immediate.
(ii) Assume in addition that Πη = 0. Then (1.15) gives

∫ t

0

e−ξs− (γη ds+dCs) = k(1−e−ξt), t � 0, for some k ∈ IR \ {0}. (3.28)

(3.28) then implies that ξt has no jump component, so ξt = γξt + Bt, and,
since {ξt} oscillates, γξ = 0 and σξ �= 0. Thus (3.28) reduces to

∫ t

0

e−Bs (γη ds+ dCs) = k(1− e−Bt), t � 0, for some k �= 0. (3.29)

Differentiate using Ito’s lemma to get

dCt = k dBt −
(
kσ2
ξ/2 + γη

)
dt,

which is only possible if γη = −kσ2
ξ/2 and Ct = kBt. We cannot have ση = 0

otherwise σξ = 0 and then γη = 0, and again ηt degenerates to 0. Thus ση > 0
and we conclude that ηt = k(Bt − σ2

ξ t/2) = k(ξt − σ2
ξ t/2) in this case.

(iii) Next assume that Π �= 0. From (1.15) we deduce that

e−ξt− ∆ηt = −k
(
e−ξt − e−ξt−

)
,

so ∆ηt = −k(e−∆ξt − 1) . From this and (1.9), one sees that the support of
Π must lie on the curve {(x, y) : y = −k(e−x − 1)}, as in (1.17). 	


Proof of Theorem 3. Let (1.12) hold and suppose f satisfies the given
conditions. Instead of (3.8) we can write
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E
(∫ ∞

0

fs e−λs− dΓs

)2

= k

∫ ∞

0

E
{
|fs|2 e−2λs

}
ds

� kβ

∫ ∞

0

e−2(c−ε)s ds,

for some β > 0, with c as in (3.8). The last integral is finite if ε is chosen smaller
than c. The process t �→

∫ t
0
fse−λs− dΓs is also a martingale (recall that the

process s �→ fs is assumed non-anticipating), and by the preceding calculation
has bounded second moments. Therefore it converges a.s. as t → ∞ (and in
mean). On the other hand

∫ L∨t
L fs exp(−ξs−) dΓs ≡

∫ L∨t
L fs exp(−λs−) dΓs,

so
∫∞
0 fs exp(−ξs−) dΓs also converges a.s.
It remains to consider

∫ ∞

0

fse−ξs− dY (2)
s .

If {Ti} is the increasing sequence of jump times of (X(2), Y (2)), and if

Qi = Y
(2)
Ti
− Y (2)

Ti− = Y
(2)
Ti
− Y (2)

Ti−1
, Mi−1 = e−{ξ(Ti−)−ξ(Ti−1−)}

for i � 1, then

∣∣∣∣
∫ ∞

0+

fse−ξs− dY (2)
s

∣∣∣∣ �
∞∑

i=1

(
i−1∏

j=0

Mj

)
|fTi | |Qi| .

By assumption, |fTi | � eεTi a.s for large enough i. Under (1.12), the righthand
side of (3.12) converges a.s., so by Lemma 5.2 of [19], ean(

∏n
i=1 |Mi|)|Qn| → 0

a.s. as n → ∞, for some a > 0. The Ti are Gamma(i, α) rvs, so if ε/α < a,
the series

∑
eεTi−ai converges a.s. and we can complete the proof. 	


Remark. Strictly speaking, in the proof of Theorem 2, we only proved ex-
istence of the integral

∫∞
0+ e−ξt− dηt as an improper integral, that is, as the

a.s. limit as t → +∞ of the processes
∫ t
0+

e−ξs− dηs. But the working in the
proof of Theorem 3, together with dominated convergence ([34], Theorem 32,
Ch. IV, p. 145) shows that the integral in fact exists in the sense of [34], that is,
as the ucp limit (uniformly on compacts in probability) of simple predictable
functions, in the terminology of Protter [34], Ch. II.
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4. Bertoin, J. (1996) Lévy Processes. Cambridge University Press.
5. Bertoin, J. (1997) Regularity of the half-line for Lévy processes. Bull. Sci. Math.
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23. Grincevičius, A. K. (1980) Products of random affine transformations. Lithua-
nian Math. J. 20, 279–282.



94 K. Bruce Erickson and Ross A. Maller
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Summary. We propose a simple parameter to describe the exact order of the
Poincaré constant (or the inverse of the spectral gap) for a log-concave probabil-
ity measure on the real line. This parameter is the square of the mean value of the
distance to the median. Bobkov recently derived a similar result in terms of the vari-
ance of the measure. His approach was based on the study of the Cheeger constant.
Our viewpoint is quite different and makes use of the Muckenhoupt functional and
of a variational computation in the set of convex functions.

1 Introduction

A log-concave measure µ(dx) on the real line is an absolutely continuous
measure with respect to the Lebesgue measure, with density exp(−Φ), where
Φ is a convex function. We assume that µ is a finite measure, or equivalently
that Φ goes to infinity as |x| → +∞, and we normalize µ to a probability.
As we shall see later, such a measure always satisfies a Poincaré inequality,
that is, there exists a constant C2 < ∞ such that, for any smooth function
with compact support f : R → R,

Varµ(f) =
∫
f2 dµ−

(∫
f dµ

)2

� C2

∫
f ′2 dµ.

When Φ is smooth enough, this well known inequality is strongly related to
the natural operator associated with µ which acts on a smooth function f by

Lf = f ′′ − Φ′f ′.

Clearly, L satisfies the fundamental integration by parts formula: for any
smooth compactly supported function f ,
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∀g,
∫

Lf g dµ = −
∫
f ′ g′ dµ.

Hence, this unbounded self-adjoint operator on L2(µ) is negative. Moreover,
the first non-zero eigenvalue λ1 of −L, the so called spectral gap, is given by
the inverse of the best constant C2 in (1). From now on, C2 will stand for
this best constant. As a consequence, the constant C2 determines the ergodic
behaviour of the semigroup generated by L. The latter is a Markovian ergodic
semigroup of operators (Pt)t�0 on L2(µ) and inequality (1) is equivalent to
the exponential rate convergence

‖Ptf − µ(f)‖22,µ � e−2 t/C2 Varµ(f),

where µ(f) =
∫
f dµ is the mean of f under the measure µ.

These well known results are valid in a much more general setting and can
be found in many earlier papers (see for instance [Bak94, Roy99, ABC+00]).
They emphasize the importance of the constant C2 and justify the following
question: how does this constant depend on the measure µ?

A complete answer, based on Muckenhoupt’s paper on Hardy inequali-
ties [Muc72], has been recently given for measures on a one-dimensional space.
This is due to Miclo for measures on Z ([Mic99a, Mic99b]) and to Bobkov

and Götze for general measures on the real line (see [BG99]). They get a
functional of the measure µ which describes the exact order of the constant
C2. Let us now briefly present this result in our framework.

Let Φ be a function on R (not necessarily convex) and

µ(dx) = Z−1 exp
(
−Φ(x)

)
dx (1)

the associated Boltzmann measure, supposed to be finite and normalized to
a probability. Let m be the (unique) median of µ. Define

B+ = sup
x�m

(∫ x

m

eΦ(t) dt
∫ +∞

x

e−Φ(t) dt
)

and

B− = sup
x�m

(∫ m

x

eΦ(t) dt
∫ x

−∞
e−Φ(t) dt

)
.

Then call B(Φ) def.= max(B+, B−) the Muckenhoupt functional. Now,
there exists a Poincaré inequality for µ if and only if B(Φ) is finite, and
then one has

1
2
B(Φ) � C2 � 4B(Φ).

See [ABC+00] for instance for more details. Notice that Bobkov and Götze

get a similar result with an appropriate functional to characterize the loga-
rithmic Sobolev constant of the measure µ.
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Now, suppose again that Φ is convex. It is not so easy to be convinced
that B(Φ) is finite, even if it is true. The aim of this paper is to find a simpler
and clearer functional of Φ which still describes the order of the Poincaré

constant of the measure µ. The following theorem answers this question.

Theorem 1.1. Let Φ be a convex function on R. Then the probability measure

µ(dx) = Z−1 exp
(
−Φ(x)

)
dx

satisfies a Poincaré inequality

Varµ(f) =
∫
f2 dµ−

(∫
f dµ

)2

� C2

∫
f ′2 dµ (2)

and there exists a universal constant D (not depending on Φ) such that, if
C2(Φ) stands for the best constant in (2), then

(∫
|x−m|µ(dx)

)2

� C2(Φ) � D

(∫
|x−m|µ(dx)

)2

.

In other words, up to universal constants, the Poincaré constant of a log-
concave measure is nothing but the square of the mean value of the distance
to the median.

Remark 1.2. We shall see that the constant D can be chosen equal to 16. This
precise value will not be derived from our computations but will appear as a
consequence of a closer analysis of the method described in [Bob99].

Remark 1.3. The first result which could indicate the importance of the dis-
tance function for the estimate of the Poincaré (or rather log-Sobolev)
constant was Wang’s theorem (see [Wan97]). Applied to log-concave mea-
sures on Euclidean spaces, it says that such a measure satisfies a log-Sobolev

inequality if and only if the square of the distance function is exponentially
integrable. The log-Sobolev constant obtained by Wang depends in a non
trivial manner on this exponential integral.

The following lemma is used in the proof of theorem 1.1 and is interesting
in itself. It says that a convex function cannot be much smaller than its value
at the median of the associated log-concave measure.

Lemma 1.4. Let Φ be a convex function on R which goes to infinity at infin-
ity, and let m be the median of the associated log-concave probability measure.
Then

Φ � Φ(m)− log 2.

As will be seen later, S. Bobkov proved that the best constant in the
Cheeger inequality satisfied by a one-dimensional log-concave probability
measure is eΦ(m)/2. Hence, the previous lemma says that the inverse of the
Cheeger constant is an upper bound of the density of such a measure.
Lemma 1.4 will be useful in section 2.6 (and will be proved there) to solve
explicitly the variational problem on a simple enough class of functions.
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After having obtained theorem 1.1, we discovered a paper of S. Bobkov

(see [Bob99] for details) which deals in particular with the same question. The
functional which Bobkov considers is the variance of the measure and he gets

Var(µ) � C2(Φ) � 12Var(µ),

where Var(µ) is defined by

Var(µ) =
∫
x2 µ(dx)−

(∫
xµ(dx)

)2

.

His approach is in some sense more complete than ours. Namely, he obtains
a similar control for the log-Sobolev constant of a log-concave measure on
the real line in terms of the Orlicz norm

‖x−Eµ(x)‖2Ψ
associated with the Young function Ψ(s) = exp(s2)−1. Moreover, he extends
his result to log-concave measures on the Euclidean space of dimension n: he
gets an upper control of the constant C2 in terms of ‖x‖22,µ but which doesn’t
remain of the good order in general.

Nevertheless, we think that our approach, based on totally different tools,
is worth being explained. Whereas Bobkov’s point of view makes use of a
control of the best constant in the Cheeger inequality, we perform a variation
computation in the set of convex functions, by means of the Muckenhoupt

functional. This method could potentially be adapted to provide extensions
to the non-convex setting (with a second derivative bounded from below) or
to study other functionals.

Moreover, one of the indirect but striking consequence of our study is
the universal comparison between two simple parameters for any log-concave
measure on the real line: the variance and the (square of the) mean value of
the distance to the median. Precisely, one has

(∫
|x−m|µ(dx)

)2

� Var(µ) � 16
(∫

|x−m|µ(dx)
)2

,

where m is the median of µ. A similar estimate can be obtained as well as
an application of Borell’s exponential inequality on tails of distributions of
norms under log-concave probability measures (see [Bor74]). More details are
given at the end of the paper.

Section 2 is devoted to the variational proof of theorem 1.1. Afterwards,
we turn in section 3 to a brief adaptation of Bobkov’s point of view to find
again our result by a totally different way. A short and formal argument due
to D. Bakry to get a Poincaré inequality is given in appendix 3.3. This
argument is essentially self-contained, readable at this stage and, although
slightly more theoretical than the rest of the paper, it might convince quickly
the reader that convex functions do satisfy a Poincaré inequality.
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2 Variational proof of the main result

From now on, the median m of the measure µ is also called the median of Φ.
Proving theorem 1.1 amounts to find a constant D such that, for any convex
function Φ with median m,

B(Φ) � D

(∫
|x−m|µ(dx)

)2

.

The other inequality is immediate indeed since, by the L1 variational char-
acterization of the median, the Cauchy–Schwarz inequality and the Lip-

schitz property of the identical function, one has
∫
|x−m|µ(dx) �

∫
|x−E(µ)|µ(dx) �

√
Var(µ) �

√
C2,

where E(µ) =
∫
xµ(dx) is the expectation (or the mean) of µ.

2.1 General strategy of the proof

One may easily reduce the number of parameters by using simple transforma-
tions on convex functions. First, it is enough to show that

B+(Φ) � D

(∫ ∞

m

|x−m|µ(dx)
)2

.

By homogeneity, one may assume that Φ(m) = 0. Now, by changing Φ into
Φ(· −m), one may suppose that m = 0 and the condition becomes, for any
convex function Φ with median 0 which vanishes at 0 and any x > 0,

∫ x

0

eΦ(t) dt
∫ ∞

x

e−Φ(t) dt �
(∫ ∞

0

t e−Φ(t) dt
)2 (∫ ∞

0

e−Φ(t) dt
)−2

,

where � stands for � up to a universal constant. Now, remark that changing
Φ into Φ(·/x) allows to consider x = 1. Hence, the problem is reduced to
minimize the functional

1
Z∞(Φ)Ec(Φ)

(
Mc(Φ) +M∞(Φ)
Zc(Φ) + Z∞(Φ)

)2

on the set of convex functions with median 0 which vanish at 0. Here, we put

Zc(Φ) =
∫ 1

0

e−Φ(t) dt, Mc(Φ) =
∫ 1

0

t e−Φ(t) dt, Ec(Φ) =
∫ 1

0

eΦ(t) dt,

Z∞(Φ) =
∫ ∞

1

e−Φ(t) dt, M∞(Φ) =
∫ ∞

1

t e−Φ(t) dt.

We split the integrals in order to dissociate the two components of Φ on the
compact [0, 1] and the infinite interval [1,∞) respectively.
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Definition 2.1. The functionals Z will be called the mass functionals, M the
mean functionals and Ec the inverse mass functional.

As we are only concerned with the restriction of Φ to the half line [0,∞),
it would be interesting to characterize the convex functions on this interval
which have a convex extension with median 0 on the whole line. This question
is settled by the following lemma.

Lemma 2.2. Let Φ be a convex function on R
+ which goes to infinity at +∞.

Then Φ is the restriction of a convex function on R which goes to infinity at
infinity as well and with median 0, if and only if,

Φ′(0) � −1
Zc(Φ) + Z∞(Φ)

. (3)

Proof of lemma 2.2. This is a simple argument. The case of interest is when
Φ′(0+) < 0. If Φ has a convex extension, say Φ, then Φ

′
(0−) � Φ′(0+) and

Φ(t) � L(t) for any t ∈ R, where L is the linear function vanishing at 0 and
with slope Φ(0−). Let Z− be the mass functional of a function on R

−. One has
Z−(Φ) = Zc(Φ)+Z∞(Φ) as the median is 0. And Z−(Φ) � Z−(L). It remains
to compute explicitly the latter. Conversely, the condition makes sure that
the linear function L with slope Φ′(0+) at 0 is a convenient extension. 	


As a consequence, define the class C of convex functions on R
+ going to

infinity at +∞, vanishing at 0 and such that

Φ′(0) � −1
Zc(Φ) + Z∞(Φ)

.

We now fix some denominations which will be used throughout the paper.

Definition 2.3. We shall consider continuous piecewise linear functions on
R

+. Among them, the k-piecewise linear functions are those with k linear
pieces. The k− 1 knots of such a function are the points where the derivative
is broken.

Let T be the class of 3-piecewise linear convex functions vanishing at 0
on a floating compact interval [0, β], for some β � 1. We furthermore require
these functions to have a knot at point 1 and the other inside the interval
[0, 1]. We consider the functions in T as functions defined on the entire half-
line by extending them by ∞ on (β,+∞). The proof of theorem 1.1 can be
split into the following two propositions.

Proposition 2.4 (Restriction to a simple class of convex functions).
Let

K(Φ) =
1

Z∞(Φ)Ec(Φ)

(
Mc(Φ) +M∞(Φ)
Zc(Φ) + Z∞(Φ)

)2
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be the functional of interest on the class C. Then, the 3-piecewise linear func-
tions in T ∩ C are almost extremals of K. Precisely,

min
Φ∈C

K(Φ) � 1
2

min
Φ∈T ∩C

K(Φ).

Proposition 2.5. The functional K(Φ) on the class T ∩ C introduced before
is bounded from below by a positive constant.

Remark 2.6. We shall sometimes call the functions of T ∩ C minimizing func-
tions of the variational problem even though they are not exactly so.

Let us sketch the strategy we chose to investigate this minimization prob-
lem. The complexity of the involved functional K can be weakened by fixing
some appropriate parameters. By this way, we may focus on a simpler func-
tional

KM (Φ) =

(
Mc(Φ) +M

)2

Ec(Φ)
,

M � 0, acting on convex functions defined on the compact interval [0, 1]. By
approximation in the uniform norm, attention may be restricted to piecewise
linear functions. A precise study of the functionals Mc and Ec then allows
to reduce gradually the number of linear pieces by an induction argument.
This leads to proposition 2.4. As for proposition 2.5, the proof is based on
classical minimization under constraints (on a domain of R

5) and asymptotic
expansions.

In what follows, we have tried to present these arguments in a short way in
order to emphasize the key points. Some routine proofs are left to the reader
who may refer to [Fou02] for complete details.

2.2 Simplifying the problem by fixing parameters

The restrictions to [0, 1] and [1,∞) of a function Φ in the class C will be called
respectively its finite (or compact) and infinite components. Let Cc and C∞
be the sets of all these possible components for different Φ ∈ C.

Independence conditionally to fixed parameters. The class C is not the product
of Cc and C∞ or, in other words, the two components of Φ are not independent.
But the point is that, conditionally to three well-chosen parameters, they are.
These parameters are the value x at 1, the slope b at 1+ and the mass Z∞ on
the infinite interval.

Here are some more details. Note that the necessary and sufficient con-
dition for x and b to correspond to a function in C, that is, x = Φ(1) and
b = Φ′(1+) for some Φ ∈ C, is

b � x > − log 2. (4)
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This lower bound appears by considering the limit function Lx linear with
slope x between 0 and 1 and infinite afterwards. Condition (3) for Lx is exactly
x > − log 2. Let us here emphasize that the previous notation Lx to describe
this linear function will be used throughout the paper.

Let C∞(x, b) be the set of all infinite components with the corresponding
parameters (satisfying (4)). Fix Z∞ ∈ Z∞(C∞(x, b)) and extend the previous
notation in a natural way to define C(x, b, Z∞), C∞(x, b, Z∞) and Cc(x, b, Z∞)
respectively. Then one has

C(x, b, Z∞) � Cc(x, b, Z∞)× C∞(x, b, Z∞).

Moreover, Cc(x, b, Z∞) is the set of convex functions ϕ on [0, 1] such that

(i) ϕ(0) = 0 and ϕ(1) = x,
(ii) ϕ′(1) � b and ϕ′(0) � −1/(Zc(ϕ) + Z∞).

Minimizing the mass functional on the infinite interval. On C∞(x, b, Z∞), the
mean functional M∞(·) is minimal when the mass Z∞ is as close to 1 as
possible, i.e., when the infinite component is the linear function

lx,b,Z∞ =
(
x+ b(· − 1)

)
1[1,α) +∞1[α,∞).

The threshold α is fixed so that the mass is Z∞. In short,

min
ψ∈C∞(x,b,Z∞)

M∞(ψ) = M∞(lx,b,Z∞) def.= M∞(x, b, Z∞).

Simplified minimization problem. The previous paragraph ensures that a min-
imizing function of the functional K on C introduced in proposition 2.4 is
necessarily linear on an interval [1, β] and infinite after β.

The next step of simplification consists in fixing the mass on the compact
interval [0, 1]. The minimization problem can thus be reduced to the following

Simplified problem. There exists a positive ε such that, for any real num-
bers x and b such that b � x > − log(2), any masses Z∞ ∈ Z∞(C∞(x, b))
and Zc ∈ Zc(Cc(x, b, Z∞)), and any function Φ ∈ Cc(x, b, Zc, Z∞),

ε Z∞ (Zc + Z∞)2 �
(
Mc(Φ) +M∞(x, b, Z∞)

)2

Ec(Φ)
. (5)

Here, Cc(x, b, Zc, Z∞) must be understood as the subset of functions in
Cc(x, b, Z∞) with fixed mass Zc.

Remark 2.7. It is shown in [Fou02] that Z∞(C∞(x, b)) = (0,Z∞(x, b)) and
Zc(Cc(x, b, Z∞)) = (Zc(Lx),Zc(x, b, Z∞)) for some explicit functions Zc and
Z∞.
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2.3 Approximation by piecewise linear functions

The previous simplified problem (5) leads to minimize a functional of the form

KM (Φ) def.=

(
Mc(Φ) +M

)2

Ec(Φ)
, M � 0, (6)

for Φ in Cc(x, b, Zc, Z∞).
The first step consists in approximating Φ by a sequence (Φn)n still in

Cc(x, b, Zc, Z∞) of piecewise linear functions which converges uniformly to Φ.
Such an approximation is obtained as follows. Given a partition σ of [0, 1], let
the functions

Φ(σ) � Φ � Φ(σ),

which are 1 or 2-piecewise linear between two points of the partition, be
defined as follows. Φ(σ) is the secant line of Φ between these two points, Φ(σ)
is the supremum of the two tangent lines of Φ at these points. These two
functions converge uniformly to Φ as the partition size goes to 0.

Now, zooming in between two consecutive points σi and σi+1 of the parti-
tion, the situation is described by figure 1. In the family of 2-piecewise linear

σi σi+1

Φ(σ)

Φ(σ)
Φ

Ψ

Fig. 1. Local approximation by piecewise linear functions

functions on [σi, σi+1] interpolating between Φ(σ) and Φ(σ), there is exactly
one function Ψ with the same mass as Φ on the considered interval. Globally,
one gets a piecewise linear Ψ in Cc(x, b, Zc, Z∞) such that

‖Ψ − Φ‖∞ � max
(∥∥Φ− Φ

∥∥
∞,

∥∥Φ− Φ
∥∥
∞

)
.

As the partition size goes to 0, one gets the expected sequence (Φn)n. As
KM (Φn) converges to KM (Φ) as n→ +∞, we may assume in the sequel that
the considered function Φ ∈ Cc(x, b, Zc, Z∞) is piecewise linear.

2.4 Precise study on 2-piecewise linear functions

As will be seen, we are not able in general to determine the exact minimizing
functions of the functional KM (Φ) introduced in (6). Nevertheless, up to the
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constant 1/2 of proposition 2.4, these are linear with two pieces. To prove this,
an induction argument will be used. The main step consists in establishing
that, on the set of piecewise linear convex functions with less than three
pieces, the extremal values of the functionals Mc and Ec are achieved by
some 2-piecewise linear functions.

We now enter the particularity of the Muckenhoupt functional by comput-
ing explicitly the involved functionals on linear functions.

Functionals on linear functions

Let Φ be the linear function on the interval [α, β] such that Φ(α) = u and
Φ(β) = v. One has

Z(Φ) = (β − α)S(−u,−v),
E(Φ) = (β − α)S(u, v),

M(Φ) =
(β − α)2

v − u
(
S(−u,−v)− e−v

)
+ α (β − α)S(−u,−v). (7)

The function S(u, v) is the slope of the secant line of the exponential function
between the two points u and v:

S(u, v) def.=
eu − ev

u− v .

Note that this function satisfies the following differential equation (which will
be helpful later)

∂1S(u, v) = ∂2S(v, u) =
1

u− v
(
eu − S(u, v)

)
. (8)

2-piecewise linear functions with fixed mass

We focus here on the set of convex functions on [0, 1] with fixed boundary
values and fixed mass functional

Cc(x, Zc) = {Φ : Φ(0) = 0, Φ(1) = x, Zc(Φ) = Zc}

and more particularly on its subset of 2-piecewise linear functions C2

c(x, Zc).
Note that, from remark 2.7, Zc � Zc(Lx) = S(0,−x).

A 2-piecewise linear function Φ on [0, 1] with fixed boundary values is
specified by two parameters: its knot α and the value u at this point α. Then,
the constraint

Zc(Φ) = αS(0,−u) + (1− α)S(−x,−u) = Zc

determines a curve. This curve is globally parametrized by
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α = α(u) =
Zc − S(−x,−u)

S(0,−u)− S(−x,−u) , (9)

for u in an interval U . Precisely, U = [u0, u1] if x > 0, [u1, u0] if x < 0, where u0

and u1 are given by Zc = S(0,−u1) = S(−x,−u0) or equivalently α(u0) = 0
and α(u1) = 1. This condition is nothing but the fixed mass condition for
the corresponding functions Φ0 and Φ1 to be introduced later in section 2.4
(see also figure 2). Remark that such a 2-piecewise linear function is either

0 1α(u)

u

u0

u1

x

Lx

Φ0

Φ1

Fig. 2. 2-piecewise linear functions with fixed mass

convex or concave. Nevertheless, the convexity is automatically given by the
necessary condition Zc � S(0,−x), which then entails that

αx � u. (10)

The derivative

α′(u) = −∂Zc
∂u

/
∂Zc
∂α

=
α∂2S(0,−u) + (1 − α) ∂2S(−x,−u)

S(0,−u)− S(−x,−u) (11)

is strictly of the same sign as x, since ∂2S � 0.

Mean functional

A geometric argument points out the extremals of the mean functional Mc(·)
on Cc(x, Zc). The identical function t ∈ R �→ t being increasing, if the mass
of Φ is fixed to Zc(Φ) = Zc,

Mc(Φ) =
∫ 1

0

t e−Φ(t) dt

is minimal as this mass is as close to 0 as possible, i.e., if Φ is as small as
possible near the point 0. Hence, the minimizing function Φ is the linear
function Φ0 with boundary values u0 at 0 and x at 1. This function may be
considered as a 2-piecewise linear function in C2

c(x, Zc) with infinite slope at 0
(even if Φ0(0) �= 0).
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Inverse mass functional

Thanks to the parametrization (9) of the set C2

c(x, Zc), one is led to study the
variations of the function

E(u) = α(u)S(0, u) +
(
1− α(u)

)
S(x, u). (12)

Proposition 2.8. The previous function E is decreasing.

Proof. Here is a way to compute the derivative of E, spliting it into different
terms whose sign is easily determined. By (12), (9) and (11), the derivative
of E may be expressed as

E′(u) = αA(u, x) + (1− α)B(u, x),

where we put

A(u, x) =
S(0, u)− S(x, u)

S(0,−u)− S(−x,−u) ∂2S(0,−u) + ∂2S(0, u)

and
B(u, x) =

S(0, u)− S(x, u)
S(0,−u)− S(−x,−u) ∂2S(−x,−u) + ∂2S(x, u).

An interesting symmetry property satisfied by these two functions makes the
choice of the previous notation clearer. That is

B(u, x) = exA(u− x,−x). (13)

To check it, come back to the definition of S, use the differential equation (8)
and perform a development (with a little bit patience). Now, note (after an-
other tedious computation) that A(u, x) can be rewritten as

A(u, x) =
2

u2 (u− x)
(
S(0,−u)− S(−x,−u)

) ψx(u).

The involved function ψx(u) is defined by

ψx(u) = x+ sinh(x) + sinh(u− x)− sinh(u) + (u− x) cosh(u)− u cosh(u− x)

and has the same sign as x. And, thanks to (13), we get

B(u, x) =
2 ex

(u− x)2 u
(
S(0, x− u)− S(x, x− u)

) ψ−x(u − x).

Well,
ψ−x(u− x) = −ψx(u)

and
e−x

(
S(0, x− u)− S(x, x − u)

)
= S(−x,−u)− S(0,−u).
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So that

E′(u) =
2ψx(u)

u2 (u− x)2
(
S(0,−u)− S(−x,−u)

) (u − αx).

But u � αx is exactly the convexity constraint (10). Finally, as ψx has the
same sign as x, the ratio

ψx(u)
S(0,−u)− S(−x,−u)

is always non negative. 	


Extremal functions

The minimizing function of the mean functional Mc was shown in section 2.4
to be the linear function Φ0 with boundary values u0 and x. Now, let Φ1 be
the symmetric linear function with boundary values 0 and u1 obtained at the
limit when α goes to 1 (see figure 2). Following the previous proposition, the
maximizing function of the inverse mass functional Ec on C2

c(x, Zc) is either
Φ0 (if x > 0) or Φ1 (if x < 0).

2.5 Induction and almost minimizing functions

0 1

x

Φ0

Φ1

Fig. 3. Extremal functions under constraints

Thanks to the preceding study of the mean and inverse mass functionals
on 2-piecewise linear functions, we will be able to find the extremal functions
of these functionals on the whole set Cc(x, b, Zc, Z∞). We have to replace the
functions Φ0 and Φ1 introduced before by functions Φ0 and Φ1 satisfying the
corresponding constraints. Those are the ones with mass Zc as close as possible
to 0 and 1 respectively (see figure 3).

Lemma 2.9. For any function Φ ∈ Cc(x, b, Zc, Z∞),

Mc
(
Φ0

)
� Mc(Φ) � Mc

(
Φ1

)
.
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Moreover,

Ec
(
Φ1

)
� Ec(Φ) � Ec

(
Φ0

)
, if x � 0,

Ec
(
Φ0

)
� Ec(Φ) � Ec

(
Φ1

)
, if − log(2) < x � 0.

Proof. As seen in section 2.3, one may assume Φ to be n-piecewise linear
for some n. Let I = [0, γ] be an interval on which Φ is 3-piecewise linear.

We now describe some (n − 1)-piecewise linear functions
←
Φn−1 and

→
Φn−1 in

Cc(x, b, Zc, Z∞) which coincide with Φ outside I. On I,
←
Φn−1 (resp.

→
Φn−1) is

the 2-piecewise linear function with the same mass Zc(Φ) as Φ constructed
by extension of the slope of Φ at its first (resp. second) knot α (resp. β).

We focus on the comparison of Φ and
←
Φn−1. They coincide outside [α, γ] and

α β γ 10

←
Φn−1

→
Φn−1

Fig. 4. Induction argument

their restrictions to this interval are 2-piecewise linear functions. One can then
make use of the results seen in subsection 2.4 and 2.4 to compare the values
of the mean and inverse mass functionals on these two functions. The same
thing occurs for Φ and

→
Φn−1 on [0, β]. On the one side,

Mc

(←
Φn−1

)
� Mc(Φ) � Mc

(→
Φn−1

)
. (14)

On the other side, according to the respective values of Φ at α, β and γ,

Ec

(←
Φn−1

)
� Ec(Φ) � Ec

(→
Φn−1

)
, (15)

or
Ec

(→
Φn−1

)
� Ec(Φ) � Ec

(←
Φn−1

)
. (16)

By induction, we end up with 2-piecewise linear functions
←
Φ2 and

→
Φ2 on [0, 1]

which satisfy inequalities (14) and (15) or (16). Now, for these 2-piecewise
linear functions, the expected comparisons of lemma 2.9 come from the results
proven in subsection 2.4. 	


Hence, the extremals of the mean and inverse mass functionals are com-
pletely determined. For the functionalKM needed in proposition 2.4, it is a bit
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more complicated. When x � 0, everything goes off well. Indeed, Mc achieves
its minimum as Ec achieves its maximum. So, Φ0 is the minimizing function
of KM (Φ) on Cc(x, b, Zc, Z∞). For − log(2) < x < 0, however, a closer look is
necessary. Thanks to lemma 2.9,

KM (Φ) �
Ec

(
Φ0

)

Ec
(
Φ1

) KM
(
Φ0

)
� Ec(Φ0)
Ec(Φ1)

KM
(
Φ0

)
.

The reader may check that Ec(Φ0)/Ec(Φ1) equals exG(ex Zc)/G(Zc), where
the function G(z) def.= S(0,−S−1(0, ·)(z)) is decreasing. Here, S−1(0, ·) stands
for the inverse function of S(0, ·). Hence, this ratio is bounded from below by
1/2 uniformly in the parameters − log(2) < x < 0 and Zc � 0. Finally, one
gets KM (Φ) � 1/2KM(Φ0) and the proof of proposition 2.4 is complete.

2.6 Minimization for almost extremals

A classical (but a bit strenuous) study shows that the functionalK is bounded
from below by a positive constant on T ∩ C as claimed in proposition 2.5. We
won’t give precise details to avoid lenghty (and non crucial) computations.
Nevertheless, we now point out some guidelines to make the task easier for
the interested reader.

A domain in R
5

A 3-piecewise linear function in T is described by five parameters: the knot
α inside (0, 1), the value u of the function at this point, the value x and the
slope r at point 1+ and the threshold β after which the function is infinite.
Furthermore, let p and q be the slopes at 0 and 1− (see figure 5).

0

x

u

p

q

r

α 1

β

Fig. 5. 3-piecewise linear functions

The convexity constraints are

p =
u

α
� x and q =

x− u
1− α � r. (17)
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For the function to belong to C (it must have a convex extension with median 0
as in lemma 2.2), an extra constraint must be satisfied:

pZ � −1. (18)

Here, Z stands for Zc+Z∞. We let the reader express the mass, inverse mass
and mean functionals (acting on functions in T ) as functions of the five chosen
parameters (use paragraph (2.4)). The set T ∩ C may hence be viewed as a
domain in R

5 determined by the constraints (17) and (18).

Bounded values on the compact interval

Lemma 1.4 presented in the introduction claims that the density of a log-
concave probability measure is bounded from above by twice its value at the
median. This property highly simplifies the functional K of interest when the
value x at 1 is less than a fixed constant A � 1. It will be made more precise
later. Meanwhile, we focus on the proof of the lemma.

Proof of lemma 1.4. Let Φ be a convex function on R going to infinity at
infinity. Recall we want to establish the estimate

Φ � Φ(m)− log(2),

where m is the median of Φ. One may assume that m = 0 and that Φ(0) =
0. Then the restriction of Φ on [0,∞) satisfies the extension condition of
lemma 2.2 and, for any t > 0, the convex function

l(s) =
Φ(t)
t
s1[0,t](s) + (+∞)1(t,+∞)(s)

is still in class C as l′(0) � Φ′(0) and Z(l) � Z(Φ). Consequently,

l′(0)Z(l) = 1− e−Φ(t) � −1 or Φ(t) � − log(2).

One gets the lower bound for the restriction of Φ on (−∞, 0] by symmetry. 	


As a consequence, when x � A, the functions Zc,Mc and Ec are of order 1.
And one is led to the simpler function

H(r, β) =
1√
Z∞

1 +M∞
1 + Z∞

,

where Z∞ and M∞ stand for ex Z∞ and exM∞ which do not depend on x
any more. The domain on which H(r, β) has to be minimized may be shown
to be

− log(2) � r and 1 � β � βmax(r)

where
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βmax(r) =
{
− log(2)/r for − log(2) � r < 0,

+∞ for r � 0.

The Euler–Lagrange equations for fixed mass Z∞ show that H(r, β) has
no extremum in the interior of the previous domain. And, on its boundary,
one gets

H(r, 1) = H(+∞, β) = lim
r→0−

H
(
r, βmax(r)

)
= lim
r→− log 2

H
(
r, βmax(r)

)
= +∞

while H(r,∞) ≈ (1 + r)/
√
r is positively bounded from below. Note that the

symbol f ≈ g stands for

∃B > 0 such that B−1 f � g � B f.

Large values and behaviour at the limit

The previous simplification is no longer valid when x goes to infinity. To
deal with these large values, the analysis is dependent upon the sign of the
derivative p at 0.

Negative derivative

This is the case where constraint (18) becomes effective. Define v = −u > 0
(to deal with positive quantities). We split the domain D given by (18) into
subdomain Dγ , 0 < γ � 1, defined by

pZ = v

[
S(−x, v)− S(0, v)− S(−x, v) + Z∞

α

]
= −γ. (19)

Note that pZ is maximal for α = 1, so that there exists an α satisfying (19)
if and only if

v
(
−Z∞ − F (−v)

)
� −γ.

It leads to the parametrization of Dγ

∀ 0 < v � vmax(Z∞), α = α(v, x) =
S(−x, v) + Z∞
S(−x, v) + zγ(v)

for some zγ(v) � Z∞ and vmax(Z∞) to be specified (see [Fou02]). Remarking
that Z∞ � e−x/x, the reader may check that

α ≈ 1
1 + λx

(20)

where the new parameter λ = zγ(v) − Z∞ � 0 is introduced. A further
asymptotic study shows that

Z ≈ Zc ≈
1 + λ

1 + λx
and Ec ≈

1 + λ ex

1 + λx
. (21)
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Here, we used Z∞ = o(1/x) = o(Zc).
Now, equation (7) leads to the following expression for the mean functional

Mc = α2 1 + (v − 1) ev

v2
+

(1− α)2

x+ v
(
S(v,−x)− e−x

)
+ α (1− α)S(v,−x).

As each term of this sum is positive, it suffices to find their orders separately.
One gets Mc ≈ α2 + (1− α)2/x2 + α (1− α)/x and so

Mc ≈
1 + λ2

1 + λ2 x2
. (22)

From (21) and (22), it follows that (Mc/Z)2 ≈ Mc. Using Z∞ � e−x/x once
more, one has

K =
1

Ec Z∞

(
Mc +M∞

Z

)2

� x ex
1 + λx
1 + λ ex

1 + λ2

1 + λ2 x2
� 1,

where the above bound is uniform in λ � 0 and x � A for some value of
the threshold A � 1. Recall that � stands for � up to a universal constant.
At the end of the day, note that the parameter γ was hidden up to now in
λ = zγ(v)−Z∞. Hence, the positive bound we got does not depend on γ and
is valid on the whole domain D.

Non negative derivative

In that case, 0 � u � αx and

S(0,−x) = Zc(Lx) � Zc � Zc(0) = 1. (23)

Hence Zc � 1/x so that Z∞ = o(Zc) and

K � x ex

Ec

(
Mc
Zc

)2

. (24)

Now, following paragraph 2.4, for a 2-piecewise linear function on [0, 1] with
value x at 1 and fixed mass Zc, one has α = α(u), where u lies in U = [u0, u1]
(as x � 0) with u0 = −S−1(−x, ·)(Zc) and u1 = −S−1(0, ·)(Zc). According
to (23), u0 � 0 � u1, so that 0 ∈ U . It was shown that, in case when
x � 0, Mc2/Ec is an increasing function of parameter u. Hence, it achieves
its minimum (when the slope p is non negative at 0) at u = 0. And we may
restrict ourselves to the case u = 0 in (24). For the remaining function I(α, x),
one gets

I(α, x) ≈ 1
αx e−x + (1− α)

(
α2 x2 + (1− α)2 + α (1− α)x

αx+ 1

)2

� 1,

uniformly in α ∈ (0, 1) and x � A. The proof of proposition 2.5 is complete.
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3 Bobkov’s argument via the Cheeger constant

In this section, we present another proof of theorem 1.1 thanks to a closer
analysis of Bobkov’s argument (see [Bob99]). This approach gives rise to an
exact estimate of the constant D, which may be chosen equal to 16. We start
with some generalities on the Cheeger inequality and then come to the proof
of the result.

3.1 Preliminaries on the Cheeger inequality

Let µ be a probability measure on the Euclidean space R
n. For any measurable

set A, the surface measure of A is

µs(∂A) = lim inf
ε→0

µ(Aε)− µ(A)
ε

,

where
Aε = {x ∈ R

n : |x− a| < ε, for some a ∈ A}
is called the ε-neighbourhood of A. The measure µ satisfies a Cheeger in-
equality if there exists a constant C1 > 0 such that, for any measurable set,

min
(
µ(A), µ(Ac)

)
� C1 µs(∂A). (25)

This inequality is nothing but a uniform control of the measure of any Borel

set such that µ(A) � 1/2 by its surface measure. It was introduced by
Cheeger to get an estimate of the spectral gap of the Laplace–Beltrami

operator on a Riemannian manifold (see [Che70]). As the Gaussian isoperi-
metric inequality, the Cheeger inequality has a functional equivalent version.
This functional Cheeger inequality says that, for any compactly supported
smooth function f on R

n with median m,
∫
|f −m| dµ � C1

∫
|∇f | dµ. (26)

The median m is precisely the median of the law of f under measure µ.
This formulation shows that the Cheeger inequality is a L1 or isoperimetric
version of the Poincaré inequality. This is the reason of the indices 1 and 2
of the constants.

Formally, we get the equivalence between (25) and (26) as follows. First,
if µ(A) � 1/2 then 0 is a median of 1A, so that (26) applied to such indicator
functions is exactly (25). Conversely, if g is smooth enough with median 0,
using the co-area formula on the manifold {g > 0}, one gets

∫

{g>0}
g dµ =

∫ +∞

0

µ
(
{g > t}

)
dt

� C1

∫ +∞

0

µs
(
{g = t}

)
dt = C1

∫

{g>0}
|∇g| dµ,

as µ({g > t}) � 1/2. Then, (26) follows by applying the previous inequality
to both f −m and m− f .
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Isoperimetric function for measures on the real line

Assume
µ(dx) = Z−1 exp

(
−Φ(x)

)
dx

is a Boltzmann probability measure on R whose phase function Φ is contin-
uous. Following S. Bobkov, note F (t) = µ((−∞, t]) the distribution function
of µ (which is continuously differentiable and strictly increasing) and define
the isoperimetric function of µ by

ιµ(p) = F ′ ◦ F−1(p), p ∈ [0, 1].

For the exponential measure ε(dx) = exp(−|x|) dx/2, the function ι(p) is the
function min(p, 1− p) appearing in the Cheeger inequality, whereas for the
Gaussian distribution it is the function U(p) of the Gaussian isoperimetric
inequality (see [Bob96b], [Led96], [Led99] or [Fou00]).

Why this terminology isoperimetric function? Trivially, if H is a half-line,
one has µs(∂H) = ιµ(µ(H)). Rigorously, the isoperimetric function of the
measure µ is

Iµ(p) = inf
µ(A)=p

µs(∂A).

By definition, Iµ is the greatest function I such that, for any Borel set A,

I
(
µ(A)

)
� µs(∂A). (27)

So, requiring ιµ to equal Iµ is exactly saying that inequality (27) for I = Iµ
has extremal sets with any fixed measure p and that these sets are half-lines.
According to [Bob96b] (see also [Bob96a]), it is the case when µ is the Gaussian
measure. It is known that the same thing occurs for the exponential measure.
Hence, the isoperimetric inequality of ε(dx) is exactly

min
(
ε(A), 1− ε(A)

)
� εs(∂A)

with half-lines as extremal sets (see [Tal91]). So the best constant in the
Cheeger inequality for ε(dx) is 1.

Another consequence is that the Cheeger inequality appears like a com-
parison with the typical model of the exponential measure. This situation is
very similar to the one of Gaussian measure with respect to the Bobkov

isoperimetric inequality. In [BL96], Bakry and Ledoux deduce from this
Gaussian isoperimetric inequality of constant C1 (of L1 type) the corre-
sponding L2 type inequality, i.e., logarithmic Sobolev inequality of constant
C2 = 2C2

1 . The constant 2 comes from the logarithmic Sobolev constant of
the Gaussian model. The same argument may be applied to the Cheeger and
Poincaré inequalities. Whereas this result is well known, we now sketch the
proof copied in this new context in order to emphasize the unity of methods
to compare inequalities of L1 and L2 types (in the case of diffusion operators).
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Cheeger and Poincaré inequalities

It is easy to be convinced that the Poincaré constant of the exponential
measure ε(dx) is C2(ε) = 4. Trivially, the Muckenhoupt functional takes
value 1 in this example. Hence, by (1), C2(ε) � 4. Applying the Poincaré

inequality to the monomials xk for odd k, one gets C2(ε) � 4 as k goes to infin-
ity. Remark that it shows optimality of the constant 4 in the Muckenhoupt

estimate.
The following argument roughly comes from [BL96]. In this paragraph,

µ is a probability measure on R
n. Let f be a fixed smooth function. We

may assume that the law of f has a positive density G′. Remark that, in the
case r � m, 0 is a median of g def.= 1(−∞,r] ◦ f . In the other case r � m,
1 is a median. Applying the functional Cheeger inequality to g, one gets the
differential inequality

min
(
G(r), 1 −G(r)

)
� C1θ(r)G′(r)

where G is the distribution function of the law of f under µ and

θ(r) = Eµ
(
|∇f | /f = r

)

is a version of the conditional expectation of |∇f | given f . Call Fε the distri-
bution function of ε(dx). In terms of the function k = G−1 ◦Fε which has the
same law under ε as f under µ, the previous inequality says exactly that

k′ � C1 θ ◦ k. (28)

The Poincaré inequality for ε applied to k, conjugate with (28), gives rise
to the Poincaré inequality

Varµ(f) � 4C2
1

∫
|∇f |2 dµ.

3.2 The one-dimensional Cheeger inequality

We have seen before that the Cheeger inequality may be considered as a
comparison with the typical model of the exponential measure. As this model
is also the typical model of log-concave measures, it is not surprising that these
measures satisfy a Cheeger inequality. As for the Poincaré inequality, to
determine the exact value of the best constantC1(µ) for a log-concave measure
is of great interest. This highly non trivial question is still open in dimension
more than 2. In dimension 1, the answer was given by Bobkov and Houdré

(see [BH97, Bob99]). We briefly present their results below.
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Cheeger constant for Boltzmann measures on R

Let
µ(dx) = Z−1 exp

(
−Φ(x)

)
dx

be a Boltzmann probability measure on R with Φ continuous, and F be its
distribution function. Then

Theorem 3.1 (Bobkov–Houdré, [BH97]). The Cheeger constant is
given by

C1
def.
= sup

A

min
(
µ(A), 1− µ(A)

)

µs(∂A)
= sup
x∈R

min
(
F (x), 1 − F (x)

)

F ′(x)
.

In other terms, one may consider only half-lines in the supremum.

Sketch of proof. Taking A = (−∞, x], one gets

C1 � Kµ
def.= sup

x∈R

min
(
F (x), 1 − F (x)

)

F ′(x)
.

Hence, one may assume that Kµ is finite. The function k = F−1 ◦ Fε has the
same law under ε as the identity function x �→ x under µ. Moreover, one easily
checks the Lipschitz bound

k′ � Kµ.

Now, if f is of median m under µ, g = f ◦ k has median m under ε and
g′ � Kµ f

′ ◦ k. Applying the Cheeger inequality with constant 1 for ε to the
function k, one gets
∫
|f −m| dµ =

∫
|g −m| dε �

∫
|g′| dε � Kµ

∫
|f ′ ◦ k| dε = Kµ

∫
|f ′| dµ.

Finally, C1 � Kµ. 	


Cheeger constant for log-concave measure on R

In the case Φ convex, theorem 3.1 may be stated with much more precision.
This is due to Bobkov’s characterization of Boltzmann and log-concave
measures in terms of their isoperimetric functions ι. In few words, there is
a one-to-one correspondence between the family of Boltzmann probability
measures µ (up to translations) and the family of positive continuous functions
ι on ]0, 1[ vanishing on the boundary. For a measure µ with median 0, it is
given by

ι = F ′ ◦ F−1

and
F−1(u) =

∫ u

1/2

dp
ι(p)

, u ∈ [0, 1]. (29)
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If we assume as previously that the function Φ we consider is finite (i.e., the
domain of µ is the whole line), then the function 1/ι has to be non integrable
at 0 and 1. The fundamental trick is that this correspondence maps the family
of log-concave measures into the family of concave isoperimetric functions ι.

Theorem 3.2 (Bobkov, [Bob99]). Let µ(dx) = Z−1 exp
(
−Φ(x)

)
dx be

a log-concave probability measure of median m on the real line. Then, the
Cheeger constant is

C1 =
1
2

exp
(
Φ(m)

)
.

In other words, the Cheeger inequality admits the two half-lines determined
by m as extremal sets of measure 1/2.

Sketch of proof. The key argument is the later characterization (in terms of
isoperimetric functions) of log-concave measures. Namely,

C1 = sup
x∈R

min
(
F (x), 1 − F (x)

)

F ′(x)
= sup
p∈(0,1)

min(p, 1− p)
ι(p)

.

As ι is concave and coincides with the secant 2-piecewise linear function

2 ι(1/2)min(p, 1− p)

at points 0, 1/2 and 1, the latter lies below ι everywhere. Consequently,

C1 �
(
2 ι(1/2)

)−1 = 1/2 exp
(
Φ(m)

)
. 	


A new look at lemma 1.4 shows that if µ is log-concave on the real line, then
its density is bounded from above by the inverse of its Cheeger constant.

3.3 An alternative proof of Theorem 1.1 via the Cheeger
inequality

In this section, we present a new proof of our main result via Bobkov’s argu-
ment. More precisely, Bobkov proved in [Bob99] that

C2
1 � 3Var(µ)

and then ended up with the estimate

C2 � 12Var(µ).

But we may use his method as well to get a similar bound in terms of the
functional we studied. The proof is even simpler.
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Theorem 3.3. Let µ(dx) = Z−1 exp
(
−Φ(x)

)
dx be a log-concave probability

measure of median m on the real line. Then

C1 � 2
∫
|x−m|µ(dx)

and consequently

C2 � 16
(∫

|x−m|µ(dx)
)2

.

Proof. We may assume m = 0. According to (29), one has
∫ +∞

−∞
|x|F ′(x) dx =

∫ 1

0

|F−1(u)| du =
∫ 1

0

∣∣∣∣
∫ u

1/2

dp
ι(p)

∣∣∣∣du.

Define ια(p) = ι(1/2)+α (p−1/2), the linear line with slope α which coincides
with ι at point 1/2. As ι is concave (and C1), it lies below its tangent line at
point 1/2. Let α = ι′(1/2). One gets ι � ια and

∫
|x|µ(dx) � H(α) where we

put

H(α) def.=
∫ 1

0

∣∣∣∣
∫ u

1/2

dp
ια(p)

∣∣∣∣du, α ∈
(
−2 ι(1/2), 2 ι(1/2)

)
.

Note that this interval contains α by the concavity of ι and that H(α) is well
defined on it.

As a function of α, 1/ια(p) is convex, and consequently H(α) is convex as
well. Moreover, thanks to a change of variable, notice that H(α) = H(−α),
so that H(α) � H(0). Remarking that ι0 ≡ ι(1/2), one gets

∫
|x|µ(dx) � 1

ι(1/2)

∫ 1

0

|u− 1/2| du � exp
(
Φ(m)

)/
4 = C1/2.

This is the claimed assertion. 	


As mentioned in the introduction, a direct consequence of this result is the
universal comparison

(∫
|x−m|µ(dx)

)2

� Var(µ) � 16
(∫

|x−m|µ(dx)
)2

(30)

between the variance and the (square of) the average distance to the median
for log-concave probability measures. The constant 16 is probably not optimal.
Moreover, as pointed out by the referee, the previous estimate could have been
obtained as a corollary of Borell’s exponential decay of tails of log-concave
probability measures (see [Bor74] lemma 3.1 for a general statement). We
briefly present a naive derivation of that result by this way. It gives rise to a
worse constant (even though it could certainly be refined).

As far as we are concerned, a direct consequence of Borell’s inequality
is the following. Let a and b be real numbers (b > 0). Define
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Gµ,a(b) = µ(|x− a| � b) and b(µ, a) = G−1
µ,a(3/4)

(3/4 is here chosen for simplicity). Then, for any log-concave probability mea-
sure µ,

∀t � 0, µ
(
|x− a| � t b(µ, a)

)
� 3(1−t)/2. (31)

Let E(µ) =
∫
xµ(dx) be the expectation of µ. Thanks to the above inequality

and formulae like
∫
|x−E(µ)|2 µ(dx) = 2

∫ +∞

0

tµ
(
|x−E(µ)| � t

)
dt

and ∫
|x−E(µ)|µ(dx) � b µ

(
|x−E(µ)| � b

)
,

one gets
∫
|x−E(µ)|2 µ(dx) ≈ b2

(
µ,E(µ)

)
≈
(∫

|x−E(µ)|µ(dx)
)2

.

It remains to replace the mean by the median in the latter; this follows from

|E(µ)−m| �
∫
|x−m|µ(dx)

and the triangle inequality.
Finally, one obtains inequality (30), with the constant 29

√
3/(log 3)2 in-

stead of 16.

Appendix: Simple criterion for the Poincaré inequality

The present argument due to D. Bakry is valid in the general setting
of Markov diffusion operators. However, as such a generality is not useful
at all in the rest of the paper and to make things simple, we shall limit
ourselves to the case of second order elliptic differential operators on manifolds
(refer to [Bak94], [Led00] or [ABC+00] for the description of abstract diffusion
operators).

Let M be an n-dimensional smooth connected manifold and consider a
second order elliptic differential operator L on it (in non divergence form). In
any local coordinates system, L acts on smooth functions by

Lf(x) =
n∑

i,j=1

gij(x)
∂2f

∂xi∂xj
(x) +

n∑

i=1

bi(x)
∂f

∂xi
(x),

where (gij(x)) is a symmetric definite positive matrix with smooth coefficients
with respect to x, that is a (co)metric. Note that bi(x) is smooth as well. Let
Γ be the square field operator associated to L by the formula
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Γ(f, h)(x) =
1
2
(
L(fh)− f Lh− hLf

)
=

∑

i,j

gij(x)
∂f

∂xi
(x)

∂h

∂xj
(x).

We write Γ(f) for Γ(f, f). It is nothing but the square of the length of the
gradient w.r.t. the Riemannian metric associated to the second-order part of L
(the inverse matrix (gij(x)) of (gij(x))). Thanks to the Laplace–Beltrami

operator given by this metric, L may be rewritten in a more concise way as
L = ∆+X, for some vector field X . The square field operator of such diffusion
operators satisfies the following derivation property

Γ
(
Ψ(f)

)
=
(
Ψ ′(f)

)2
Γ(f), (32)

for any smooth Ψ .
Equip M with a probability measure µΦ absolutely continuous w.r.t. the

Riemannian measure and with density Z−1
Φ exp(−Φ). The operator L is said

to be reversible w.r.t. the measure µΦ if, for any smooth functions f and h,
∫

Lf h dµΦ = −
∫

Γ(f, h) dµΦ.

It occurs provided X = −∇Φ and then

L = ∆− Γ(Φ, ·).

A Lipschitz continuous function u (w.r.t. the Riemannian distance) is called
a contraction if Γ(u) � 1. Note that, for non smooth functions, it occurs
almost everywhere thanks to Rademacher’s theorem. We are now able to
state the
Theorem A.13. Let L, Γ and µΦ as before. Suppose there exists a contraction
u such that, for some real numbers α > 0 and β, and some point x0 ∈M ,

(Lu+ α) dµΦ � β δx0 (33)

as measures. Then the measure µΦ satisfies the following Poincaré inequal-
ity: for any compactly supported smooth function f on M ,

VarµΦ(f) � 4
α2

∫
Γ(f) dµΦ. PI

(
4
/
α2

)

Remark A.2. To make the following formal computations more rigorous, we
should construct a suitable approximation of the contraction u by smooth
functions. We limit ourselves to this formal level to emphasize the key points
of the proof.

Remark A.3. Considering two finite (signed) measures µ and ν on M , µ � ν
means here that, for any smooth bounded non negative function f ,
3 I give D. Bakry my sincere thanks for allowing me to write this argument here.
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∫
f dµ �

∫
f dν.

Note that, in the following proof, this inequality is only required for non
negative smooth bounded functions whose derivatives go to 0 at infinity.

Proof. As dµΦ � α−1 (δx0 − Lu dµΦ), one has
∫ (
f − f(x0)

)2 dµΦ � −α−1

∫ (
f − f(x0)

)2
Lu dµΦ

� α−1

∫
Γ
((
f − f(x0)

)2
, u
)

dµΦ.

Thanks to the diffusion property (32), the latter may be rewritten as

2α−1

∫ (
f − f(x0)

)
Γ(f, u) dµΦ.

By the Cauchy–Schwarz inequality for the bilinear form Γ,

Γ(f, u) �
√

Γ(f)

since u is a contraction. Another use of Cauchy–Schwarz inequality now
in L2(µΦ) leads to

∫ (
f − f(x0)

)2 dµΦ � 2α−1

(∫ (
f − f(x0)

)2 dµΦ

)1/2 (∫
Γ(f) dµΦ

)1/2
.

Finally,

VarµΦ(f) �
∫ (
f − f(x0)

)2
dµΦ � 4

α2

∫
Γ(f) dµΦ.

This is the desired claim. 	


We now focus on Boltzmann measures µΦ on R as introduced in (1).
Assume that Φ is smooth except possibly at some point x0 ∈ R where it has
right and left derivatives. Suppose furthermore that its derivative is positively
bounded from below (in absolute value) or more precisely that, for any x ∈
R\{x0},

Φ′(x) sign(x− x0) � α, (34)

for some α > 0. Let u(x) def.= |x− x0| be the distance function from x0. Then,
evaluating Lu dµΦ on test functions f via the integration by parts formula

∫
f Lu dµΦ =

∫
Lf u dµΦ,

one gets
Lu dµΦ = 2Z−1

Φ e−Φ(x0) δx0 − Φ′ sign(· − x0) dµΦ.
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The appropriate test functions are bounded, smooth and with derivatives
vanishing at infinity. One must also assume a very weak additional assumption
on Φ for the boundary terms to vanish. That is, |Φ′(x)| e−Φ(x) = o(1/|x|) as |x|
goes to ∞. Under this condition and by (34), u satisfies (33) and PI

(
4
/
α2

)

holds.
Now, if Φ is convex, one may always perturb Φ by a bounded function and

use the above argument for the remaining function. Namely, considering two
real numbers s and t such that Φ′(s) < 0 and Φ′(t) > 0, replace Φ on (s, t)
by the maximum of its tangent lines at s and t (Φ is left unchanged outside
this interval). The modified function satisfies (34) for appropriate α and x0.
The Poincaré inequality hence obtained for the measure associated to the
perturbed function leads to a Poincaré inequality for µΦ. This is a direct
consequence of the following stability property under bounded perturbation
(see [ABC+00] for instance for a proof).

Theorem A.4 (Bounded perturbation for the Poincaré inequality).
Let µΦ be as before. Consider a bounded measurable function V on M and
assume that the probability µΦ+V with density Z−1

Φ+V exp(−(Φ + V )) w.r.t.
the Riemannian measure satisfies a Poincaré inequality PI (C2). Then µΦ
satisfies the Poincaré inequality PI (e2 osc(V ) C2), where osc(V ) = supV −
inf V .
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Berlin, 1996, p. 165–294.

[Led99] , “Concentration of measure and logarithmic Sobolev inequalities”,
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Résumé. Dans cet article, on prouve un résultat de type Choquet–Deny sur les
hypergroupes commutatifs : les seules fonctions harmoniques continues bornées des
marches aléatoires irréductibles sont les fonctions constantes. On en déduit la de-
scription de la frontière de Martin par une méthode de relativisation.

Introduction

La description du cône des fonctions harmoniques des marches aléatoires
sur un groupe a fait l’objet de nombreuses études. On renvoie le lecteur
aux travaux de Choquet et Deny [4], Furstenberg [9], Conze et Guivarc’h
[5], Derriennic [6] et Raugi [22] qui ont respectivement étudié le cas des
groupes abéliens, semi-simples, nilpotents, libre et résolubles connexes. Cho-
quet et Deny ont par exemple montré que sur un groupe abélien, les fonctions
harmoniques d’une marche aléatoire adaptée s’écrivent comme une moyenne
d’exponentielles et que les seules fonctions harmoniques bornées sont les con-
stantes.

Notre propos ici est d’étendre ce type de résultat aux marches aléatoires
sur des hypergroupes commutatifs. De telles châınes de Markov ont montré
leur intérêt, par exemple dans la modélisation de marches réfléchies sur N

d et
R
d
+, et ont de nombreuses applications [10].

Rappelons que sur un hypergroupe commutatif (X, ∗), dont (Ty, y ∈ X)
désignent les opérateurs de translation, une marche aléatoire de loi µ est une
châıne de Markov homogène de noyau de transition P (x, dy) = δx ∗ µ(dy).
Les fonctions harmoniques associées sont alors les fonctions positives vérifiant
h(x) =

∫
X Tyh(x)µ

−(dy) pour tout x dans X .
Après une première partie composée de rappels et notations, nous énonçons

et démontrons dans la deuxième section une propriété de type Choquet–Deny.
Plus précisément, nous prouvons que les seules fonctions harmoniques con-

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 124–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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tinues bornées d’une marche aléatoire irréductible sur un hypergroupe com-
mutatif sont les fonctions constantes. Pour ce faire, nous adaptons à notre
contexte une méthode de Raugi [21].

Dans la troisième et dernière partie, nous caractérisons les génératrices
extrémales du cône des fonctions harmoniques et appliquons le théorème de
représentation intégrale de Choquet [3]. Notre résultat est le suivant. Soit
(X, ∗) un hypergroupe commutatif et involutif. On dit qu’une fonction χ est
multiplicative si Tyχ(x) = χ(x)χ(y) pour tout x, y ∈ X . Pour une marche
aléatoire de loi µ sur (X, ∗) on note

Sµ =
{
χ multiplicatives et positives sur X telles que

∫

X

χ(x)µ(dx) = 1
}
.

Alors, toute fonction µ-harmonique h admet une unique représentation
intégrale

h( . ) =
∫

Sµ

χ( . ) ν(dχ),

où ν est une mesure borélienne positive sur Sµ. La preuve repose sur une
méthode de relativisation et sur le résultat de la Section 2.

1 Hypergroupes et marches aléatoires

1.1 Généralités sur les hypergroupes

Soit X un espace topologique localement compact séparé. On notera par
M(X) l’espace des mesures de Radon bornées sur X et par M1(X) le sous-
ensemble de M(X) constitué des mesures de probabilités. Pour µ ∈ M(X),
supp(µ) désignera le support de µ et pour x ∈ X , δx sera la masse de Dirac
au point x. On notera également par Cc(X) l’espace des fonctions continues
à support compact sur X .

Définition 1. On dit que (X, ∗) est un hypergroupe si ∗ est une opération
bilinéaire et associative sur M(X) vérifiant les conditions suivantes [1]:

(i) δx ∗ δy appartient à M1(X) et est à support compact pour tous x, y
dans X.

(ii) L’application X × X → M1(X), (x, y) �→ δx ∗ δy est continue pour la
topologie vague.

(iii) L’application (x, y) �→ supp(δx ∗ δy) de X ×X dans l’espace des parties
compactes de X muni de la topologie de Michael, est continue.

(iv) Il existe un élément e dans X, appelé unité, tel que δx ∗ δe = δe ∗ δx = δx
pour tout x dans X.

(v) Il existe un homéomorphisme involutif de X, x �→ x−, tel que e apparti-
enne à supp(δx ∗ δy) si et seulement si y = x− ; et dont le prolongement
naturel à M(X) vérifie (δx ∗ δy)− = δy− ∗ δx− .
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À noter que les groupes sont exactement les hypergroupes pour lesquels
δx ∗ δy est une masse de Dirac quels que soient x et y dans X .

Le produit de convolution de deux mesures µ, ν ∈ M(X) est alors la
mesure µ ∗ ν donnée par :

〈µ ∗ ν, f〉 =
∫

X

∫

X

〈δx ∗ δy, f〉µ(dx) ν(dy) (f ∈ Cc(X)).

Pour deux parties A et B de X , on notera par A ∗B l’ensemble :

A ∗B =
⋃

x∈A, y∈B
supp(δx ∗ δy).

Pour y ∈ X et pour µ ∈M(X), on définit les opérateurs de translation Ty et
Tµ sur Cc(X) par les formules :

Tyf(x) = 〈δx ∗ δy− , f〉 (x ∈ X),

Tµf(x) = 〈δx ∗ µ−, f〉 =
∫

X

Tyf(x)µ(dy) (y ∈ X).

Hypothèse. Dans la suite, on ne considérera que des hypergroupes commu-
tatifs, c’est-à-dire des hypergroupes pour lesquels l’opération ∗ est commuta-
tive.

De tels hypergroupes possèdent une mesure de Haar, unique à une con-
stante multiplicative près, c’est-à-dire une mesure de Radon positive m qui
vérifie :

〈m,Tyf〉 = 〈m, f〉 (f ∈ Cc(X), y ∈ X).

Il faut noter que supp(m) = X .
On peut également définir le produit de convolution de deux fonctions f ,

g ∈ Cc(X) comme étant la fonction f ∗ g donnée par :

f ∗ g(x) =
∫

X

f(y)Tyg(x)m(dy) (x ∈ X).

Il convient de remarquer que f ∗ g est la densité par rapport à m de la mesure
µ ∗ ν où µ = fm et ν = gm.

Enfin, pour clore ces rappels, introduisons la notion de fonction multiplica-
tive.

Définition 2. Soit χ une fonction continue sur X. On dit que χ est multi-
plicative si χ(e) = 1 et si pour tout x, y ∈ X

Tyχ(x) = χ(x)χ(y).
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1.2 Marches aléatoires sur les hypergroupes

Soit (X, ∗) un hypergroupe. Nous dirons qu’une châıne de Markov ho-
mogène sur X est une marche aléatoire, si son noyau de transition P commute
avec les translations de (X, ∗), c’est-à-dire si pour tout x ∈ X , PTx = TxP .
On peut montrer (cf. [11]) qu’une telle condition implique que P soit de
la forme Tµ− , pour une mesure de probabilité µ sur X que l’on appelle loi
de la marche aléatoire. Les transitions de la marche sont alors données par
P (x,A) = δx ∗ µ(A), pour x dans X et A borélien de X .

Comme dans le cas des groupes, voir [23] à ce sujet, on introduit les notions
de marche adaptée ou irréductible. Pour µ une mesure de probabilité sur X ,
on notera dans la suite par Xµ (resp. Yµ) la plus petite partie fermée H de X
contenant supp(µ) telle que H ∗H ⊂ H et H− = H (resp. H ∗H ⊂ H).

Définition 3. Une marche aléatoire de loi µ sera dite adaptée si Xµ = X et
irréductible si Yµ = X.

On peut donner (cf. [11]) une description précise de Xµ et Yµ :

Proposition 1. Soit µ ∈M1(X). On a :

Xµ =
⋃

p+q�1

supp(µ∗p ∗ (µ−)∗q)

Yµ =
⋃

p�1

supp(µ∗p),

où l’on a posé par convention µ∗ 0 = δe.

2 La propriété de Choquet–Deny

Nous allons ici prouver une propriété de type Choquet–Deny (cf [4]), à
savoir que les seules fonctions harmoniques continues bornées d’une marche
aléatoire irréductible sont les fonctions constantes. Pour ce faire, nous adap-
tons au cas des hypergroupes une méthode élémentaire et élégante due à Al-
bert Raugi [21]. Voir aussi à ce sujet, sous une présentation différente, l’article
de Derriennic [7].

Théorème 1. Soit µ ∈ M1(X). Une fonction borélienne bornée h vérifie
Tµ−h = h si et seulement si, pour tout k � 1 et pour (µ−)∗k presque tout
y ∈ X, Tyh = h.

Preuve. Soit h une fonction borélienne bornée vérifiant Tµ−h = h.
On définit une suite de fonctions (Hn)n∈N comme suit :
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H0(x) =
∫

X

(
Tyh(x) − h(x)

)2
µ−(dy), x ∈ X (1)

Hn = T nµ−H0, n � 1. (2)

On obtient facilement la relation

H0(x) =
∫

X

(
Tyh(x))

)2
µ−(dy)− h2(x).

De plus, d’après l’inégalité de Jensen, on a pour tout x, y dans X :
(
Tyh(x)

)2 = 〈δx ∗ δy− , h〉2 � 〈δx ∗ δy− , h2〉 = Ty(h2)(x).

Ainsi, on a H0 � Tµ−(h2)− h2. On en déduit que pour tout entier n

n∑

k=0

Hk � T n+1
µ− (h2)− h2 � ‖h‖2∞.

La fonction h étant bornée, ceci prouve que la série de fonctions de terme
général positif Hk est convergente.

D’autre part, pour tout x appartenant à X , on a :

Tµ−H0(x) =
∫

X

TyH0(x)µ−(dy)

=
∫

X

∫

X

H0(z) δx ∗ δy−(dz)µ−(dy)

=
∫

X

∫

X

∫

X

(
Tωh(z)− h(z)

)2
µ−(dω) δx ∗ δy−(dz)µ−(dy)

=
∫

X

∫

X

∫

X

(
Tωh(z)− h(z)

)2
δx ∗ δy−(dz)µ−(dy)µ−(dω)

�
∫

X

∫

X

(∫

X

(
Tωh(z)− h(z)

)
δx ∗ δy−(dz)

)2
µ−(dy)µ−(dω)

�
∫

X

∫

X

(
TyTωh(x)− Tyh(x)

)2
µ−(dy)µ−(dω)

�
∫

X

(∫

X

(
TyTωh(x) − Tyh(x)

)
µ−(dy)

)2

µ−(dω)

�
∫

X

(
Tωh(x)− h(x)

)2
µ−(dω)

� H0(x).

Pour démontrer cette suite d’inégalités, on a successivement utilisé le théorème
de Fubini, l’inégalité de Jensen et le caractère harmonique de la fonction h.
On en déduit que la suite de fonctions (Hn)n∈N est croissante.

Les fonctions Hn, n ∈ N, sont donc nécessairement nulles. En particulier,
la nullité de H0 implique que pour tout x ∈ X et pour µ− presque tout y ∈ X ,
Tyh(x) = h(x).
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On montre de même que pour tout k � 1, pour tout x ∈ X et pour (µ−)∗k

presque tout y ∈ X , on a Tyh(x) = h(x). 	


Corollaire 1 (Propriété de Choquet–Deny). Soit µ ∈ M1(X) telle que
Yµ = X. Alors, les solutions continues bornées de l’équation Tµ−h = h sont
les fonctions constantes.

Preuve. On démontre ce résultat en utilisant le théorème précédent, l’hypo-
thèse d’irréductibilité et le fait que supp(µ−) =

(
supp(µ)

)−. 	


Remarque 1. Sur les groupes abéliens, cette propriété est vraie pour une loi
seulement supposée adaptée. Avec cette hypothèse, la question reste ouverte
pour les hypergroupes.

Signalons cependant que Gebuhrer l’a résolue dans [12] pour certains hy-
pergroupes à croissance polynomiale.

3 Frontière de Martin des marches aléatoires

Hypothèses. Dans cette partie, on ne considérera que des hypergroupes in-
volutifs, c’est-à-dire des hypergroupes pour lesquels l’involution décrite par (v)
dans la Définition 1 est l’identité. De tels hypergroupes sont nécessairement
commutatifs. De plus, les marches aléatoires seront supposées irréductibles
sur (X, ∗), et leurs lois seront à support compact et à densité continue par
rapport à la mesure de Haar de X .

Définition 4. On notera par Cµ l’ensemble des fonctions harmoniques con-
tinues positives relatives à la marche aléatoire de loi µ, c’est-à-dire l’ensemble
des fonctions continues positives h sur X vérifiant Tµh = h. On notera par Bµ
le sous-ensemble de Cµ constitué des fonctions h vérifiant l’équation h(e) = 1.

Commençons par donner quelques propriétés de Cµ.

3.1 Propriétés du cône des fonctions harmoniques

Lemme 1. Soit h ∈ Cµ. Si h n’est pas la fonction nulle, alors h ne s’annule
pas sur H.

Preuve. Il s’agit d’une application directe de l’hypothèse d’irréductibilité. 	


Proposition 2. L’ensemble Cµ est un cône convexe réticulé pour son ordre
propre, dont Bµ est une base compacte pour la topologie de la convergence
uniforme sur les compacts.
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Preuve. Le cône Cµ est réticulé pour son ordre propre, puisque si h et h′

sont deux fonctions appartenant à Cµ, la formule suivante définit la borne
supérieure dans Cµ de h et h′ (voir [18]) :

h ∨ h′ = lim
n→∞

↑ Tµ∗n
(
max(h, h′)

)
.

Soir r la densité de µ par rapport à m. Par hypothèse, r est continue et à
support compact.

On montre facilement par récurrence que pour n � 1, ‖r∗n‖∞ � ‖r‖∞.
Cette inégalité prouve que la série de fonctions

∑
n�1 2−nr∗n converge nor-

malement sur X , et que sa somme S est continue. De plus, S est strictement
positive sur X . En effet, puisque Yµ = X et que µ∗n = r∗nm, pour tout
x ∈ X , il existe n � 1 tel que r∗ n(x) > 0.

Montrons maintenant que pour h ∈ Cµ et x, y ∈ X , on a

|h(x)− h(y)| � h(e)ε(x, y), (3)

où

ε(x, y) = sup
z∈X

|Txr(z)− Tyr(z)|
S(z)

.

On a en effet

h(x)− h(y) = Tµh(x)− Tµh(y)

=
∫

X

Txh(z)r(z)m(dz)−
∫

X

Tyh(z)r(z)m(dz)

=
∫

X

h(z)Txr(z)m(dz)−
∫

X

h(z)Tyr(z)m(dz)

=
∫

X

h(z)
Txr(z)− Tyr(z)

S(z)
S(z)m(dz).

Ainsi,

|h(x)− h(y)| �
(∫

X

h(z)S(z)m(dz)
)
ε(x, y).

Enfin,
∫

X

h(z)S(z)m(dz) =
∑

n�1

2−n
∫

X

h(z)r∗nm(dz)

=
∑

n�1

2−nTµ∗nh(e)

=
∑

n�1

2−nh(e) = h(e).

L’inégalité (3) et le théorème d’Ascoli permettent de prouver que les restric-
tions des éléments de Bµ à tout compact deX forment une famille relativement
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compacte pour la topologie de la convergence uniforme. L’espace X étant lo-
calement compact, on en déduit que Bµ est relativement compacte pour la
topologie de la convergence uniforme sur les compacts. On conclut en remar-
quant que Bµ est fermé dans Cµ. 	


Il est facile de voir que Cµ contient les fonctions constantes et les fonc-
tions multiplicatives positives χ de X vérifiant

∫
X
χ(x)µ(dx) = 1. Avant

d’expliciter les points extrémaux de Bµ, on va étudier la marche aléatoire
relativisée par une telle fonction.

3.2 Marche aléatoire relativisée

Soit χ une fonction multiplicative positive de (X, ∗) vérifiant
∫
X χ(x)µ(dx)

= 1. Elle est donc harmonique pour la marche aléatoire de loi µ.
Commençons par rappeler un résultat de Voit [24] :

Proposition 3. Pour x, y ∈ X, on pose

δx ◦ δy(dz) =
1

χ(x)χ(y)
χ(z) δx ∗ δy(dz).

Alors, (X, ◦) est un hypergroupe involutif d’élément unité e. La convolée de
deux mesures µ, ν ∈M(X) est donnée par

µ ◦ ν(dz) = χ(z)
(
µ

χ
∗ ν
χ

)
(dz).

D’autre part, étant donné un noyau markovien P , à toute fonction P -
harmonique positive h on peut associer un nouveau noyau markovien P h en
posant

P h(x, dy) =
1
h(x)

P (x, dy)h(y).

On dit que P h est le noyau relativisé de P par la fonction harmonique h [23].
La proposition suivante montre que si P est le noyau de la marche aléatoire

de loi µ sur (X, ∗), alors Pχ est aussi le noyau d’une marche aléatoire mais
sur (X, ◦).
Proposition 4. Soit µχ la mesure de probabilité sur X définie par µχ(dy) =
χ(y)µ(dy). Alors, Pχ est le noyau de la marche aléatoire sur (X, ◦) de loi
µχ.

Preuve. Il s’agit d’une simple vérification. On a pour tout x dans X :

δx ◦ µχ(dt) =
χ(t)
χ(x)

∫

X

δx ∗ δy(dt)
χ(y)

µχ(dy)

=
χ(t)
χ(x)

∫

X

δx ∗ δy(dt)µ(dy)

=
χ(t)
χ(x)

δx ∗ µ(dt)

= Pχ(x, dt). 	
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3.3 Points extrémaux du cône des fonctions harmoniques et
formule de représentation intégrale

Théorème 2. Les points extrémaux du convexe Bµ sont les fonctions multi-
plicatives positives χ sur X vérifiant

∫

X

χ(x)µ(dx) = 1.

Preuve. Soit χ un point extrémal du convexe Bµ. La fonction χ est har-
monique donc

χ( . ) =
∫

X

Tyχ( . )µ(dy),

et, puisque d’après le Lemme 1 χ ne s’annule pas, on a

χ( . ) =
∫

X

Tyχ( . )
χ(y)

χ(y)µ(dy). (4)

L’hypergroupe étant commutatif, pour tout y ∈ X , Tyχ( . ) est une fonction
harmonique et ainsi Tyχ( . )/χ(y) ∈ Bµ. De plus,

∫
X
χ(y)µ(dy) = Tµχ(e) =

χ(e) = 1, donc l’équation (4) implique, puisque χ est extrémal, que pour
tout y ∈ X , Tyχ( . )/χ(y) = χ. Ce résultat de convexité assez intuitif est par
exemple démontré dans [2, Chap. IV, §7, Proposition 3]. La fonction χ est
donc de la forme annoncée.

Réciproquement, considérons une fonction multiplicative positive χ telle
que

∫
X
χ(x)µ(dx) = 1. On a déjà remarqué qu’une telle condition implique

que χ ∈ Bµ. Posons P (x, dy) = δx ∗ µ(dy) et utilisons les notations de la
Section 3.2. Il est facile de voir qu’une fonction h est harmonique pour P si et
seulement si hχ est harmonique pour Pχ. Ainsi, χ sera harmonique extrémale
pour P si et seulement si la fonction constante égale à 1 est harmonique
extrémale pour Pχ. Cette dernière assertion résulte de la Proposition 4 et du
Corollaire 1, dont les hypothèses sont bien vérifiées : la loi µχ est irréductible
puisque (µχ)◦n = χµ∗n et χ > 0. Ainsi, le résultat est démontré. 	


Notons

Sµ =
{
χ multiplicatives et positives sur X telles que

∫

X

χ(x)µ(dx) = 1
}
.

Une simple application du théorème de Choquet [3], nous donne alors la for-
mule de représentation intégrale suivante :

Corollaire 2. Il y a une correspondance biunivoque entre le cône des fonc-
tions harmoniques Cµ et l’ensemble des mesures boréliennes, positives, bornées
sur Sµ. Cette correspondance est donnée par la formule :

h( . ) =
∫

Sµ

χ( . ) ν(dχ).
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En théorie, une telle formule s’obtient également en étudiant le comporte-
ment asymptotique des noyaux de Green

G(x, dy) =
δx ∗

∑
n�0 µ

∗n(dy)
∑
n�0 µ

∗n(dy)
.

Le lecteur intéressé consultera à ce sujet la théorie de Martin [17] adaptée au
cadre des châınes de Markov [8, 16, 15]. En pratique, cette dernière méthode
est délicate et très technique, voir par exemple [19] pour son application au
cas des marches aléatoires sur Z

d. Ici, Sµ s’identifie à la partie extrémale
de la frontière de Martin. La détermination explicite de Sµ pour certains
hypergroupes d-dimensionnels a été effectuée par l’auteur dans [13] et [14].

Une autre possibilité pour obtenir la formule de représentation intégrale
du Corollaire 2, est d’adapter la méthode employée par Raugi dans [20]. Basée
sur des résultats classiques de la théorie des martingales, elle évite l’usage du
théorème de Choquet.
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12. Gebuhrer M. O. Algèbres de Banach commutatives de mesures de Radon
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Summary. Let X be a Markov process with semigroup (Pt) and m an excessive

measure of X. With m we associate the spectral radius λ
(p)
r (m) of (Pt) on Lp(m) (1 �

p � ∞) and the exit parameter λCe (m) defined for an m-nest C =(Cn) in terms of
the corresponding first exit times (τn). We discuss the impact of these parameters
as well as their connection with other parameters of interest for the process.
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1 Introduction

When X is a transient Markov process it is sometimes possible to associate
with it a new process X̃ endowed with a conservative measure m̃. Limit the-
orems obtained for X̃ relative to m̃ provide information on the long term
behaviour of the initial process X . The process X̃ and the measure m̃ are
obtained by means of a γ-subinvariant function and a γ-subinvariant mea-
sure (to be precisely defined in the sequel), whence the interest in the classes
of γ-subinvariant functions and γ-subinvariant measures and the parameters
associated with them.

In case of Harris irreducible processes this is a well established theory,
sometimes called λ-theory (see [Ber97], [NN86], [TT79]). Related results for
processes that are not necessarily irreducible are given in [Glo88] and [Str82].

The present paper is concerned with this kind of problems and they are
considered in the context of the theory of excessive measures ([DMM92] and
[Get90]). Unless otherwise mentioned the process X is assumed to be Borel
right with state space (E, E), semigroup (Pt), resolvent (U q) and lifetime ζ.
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For any γ � 0 we consider:

Mγ(X) := {η : σ-finite measure on (E, E) such that eγtηPt � η, ∀ t � 0},
Fγ(X) := {f ∈ E∗ : f � 0 on E such that eγtPtf � f , ∀ t � 0}.

An element of Mγ(X) (resp. Fγ(X)) is called a γ-subinvariant mesure
(resp. a γ-subinvariant function). They are called γ-invariant measures (resp.
γ-invariant functions) when all the corresponding inequalities become equali-
ties. Standard candidates as members of Fγ(X) are

Φγf(x) :=
∫ ∞

0

eγtPtf(x) dt, f ∈ E∗, f � 0,

and as members of Mγ(X) the measures µΦγ provided they are σ-finite.
The following global parameters are of interest and were considered in

various contexts ([Glo88], [NN86], [Str82], [TT79]):

λπ := sup{γ � 0 : Mγ(X) �= {0}};
λϕ := sup{γ � 0 : ∃ f ∈ Fγ(X), f > 0 on E, f not identically ∞}.

When γ = 0 instead of Mγ(X) we write as usual Exc(X) and consider its
well known important subclasses:

Pur(X) := {m ∈ Exc(X) : mPt(h)→ 0 when t→∞, ∀h > 0, m(h) <∞};
Inv(X) := {m ∈ Exc(X) : mPt = m, ∀ t � 0};

Con(X) := {m ∈ Exc(X) : m(Uh <∞) = 0, ∀h > 0, m(h) <∞};
Dis(X) := {m ∈ Exc(X) : m(Uh = ∞) = 0, ∀h > 0, m(h) <∞}.

Whenever m ∈ Exc(X), each Pt, t > 0, and each qU q, q > 0, may be
thought as a contraction from Lp(m) to Lp(m) for 1 � p � ∞; also, the
semigroup (Pt) is strongly continuous on Lp(m), 1 � p � ∞ (these facts
are discussed in a more general setting in [Get99]). As usual let λ(p)

r (m), the
spectral radius of (Pt) on Lp(m), 1 � p � ∞, be defined as

λ(p)
r (m) := lim

t→∞

{
−t−1 ln ‖Pt‖Lp(m)

}
.

The second section is devoted to the impact of λ(p)
r (m), 1 � p � ∞, as

decay parameters. First the connection of λ(2)
r (m) with λπis discussed. Then

under certain restrictions on the process (imposed by the application of a very
powerful result of Takeda [Tak00]) one gets that λ(p)

r (m) are independent of
p and one identifies this common value with the decay parameter associated
with X as irreducible process. The remaining part of section 2 is concerned
exclusively with properties of λ(1)

r (m) having in view especially the connec-
tion with λπ , λϕ. An expression of λ(1)

r (m) in terms of the Kuznetsov measure
Qm associated with m is given. This allows to distinguish those measures m
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for which λ(1)
r (m) > 0 among the purely excessive ones. Finally, the under-

lying construction in the classical context of quasi-stationary distributions
for irreducible processes is retrieved in the general case emphasizing the role
of λ(1)

r (m).
Section 3 introduces the exit parameter associated with an m-nest, when

m is a dissipative measure. These are similar to some parameters considered
in [Str82] in a more specific context.

Notation. As is standard, we denote by Ee the σ-algebra generated by ex-
cessive functions and for any B ∈ Ee, TB := inf{t > 0 : Xt ∈ B}, τB := TE\B,
PBf(x) := P x{f(XTB); TB <∞}.

2 Spectral radius as decay parameter

We start by revealing the special role played by the spectral radius in case
of some irreducible processes. Recall that the process X is said to be µ-
irreducible, with µ a σ-finite measure, if:

µ-(I) µ(B) > 0 =⇒ ∀x ∈ E, U1(x,B) > 0.

The following theorem introduces the decay parameter associated with the
irreducible process X .

Theorem 1 ([TT79]). For any Markov process X satisfying µ-(I) there exist
a µ-polar set Γ , an increasing sequence of sets (Bn) ⊆ Ee with E =

⋃
n Bn

and a parameter λ ∈ [0,∞[ such that:

(i) For any γ < λ we have Φγ(x,Bn) <∞, ∀x /∈ Γ , n ∈ N.
(ii) For any γ > λ we have Φγ(x,B) ≡ ∞, ∀B ∈ E, µ(B) > 0.
(iii) The process is either λ-transient, i.e. (i) holds for γ = λ, or it is λ-

recurrent, i.e. (ii) holds for γ = λ.
(iv) λ = λπ = λϕ.

We recall also that the whole theory of irreducible processes is based on
the existence of a remarkable class of sets, namely:

L(µ) := {B ∈ Ee : µ(B) > 0 for which there exists a measure νB �= 0
such that U1(x, . ) � νB( . ), ∀x ∈ B}.

The impact of L(µ) comes from the fact that whenever B is in L(µ) and
Φγ(x,B) = ∞ for some x ∈ E, one has Φγ(x,A) = ∞ for any A ∈ E such
that µ(A) > 0.

The next result is concerned with the connection between λ(2)
r (m) and λπ .
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Proposition 1. (i) For any excessive measure m we have λ(2)
r (m) � λπ.

(ii) Suppose that the state space is locally compact with countable base and that
X is a Feller process, m-symmetric with respect to the Radon measure m.
Suppose further that m-(I) holds and that the support of m has non-empty
interior. Then λ(2)

r (m) = λ.

Proof. (i) We shall actually show that given h ∈ E such that 0 < h � 1 and
m(h) <∞, the parameter

λ(m;h) := lim inf
t→∞

{
−t−1 ln

(h, Pth)m
‖h‖L(2)(m)

}

satisfies λ(m;h) � λπ. This will be enough to prove (i) since λ(2)
r (m) �

λ(m;h). To this end consider γ < λ(m;h), γ′ ∈ ]γ, λ(m;h)[ and let tγ′ be
such that (h, Pth)m � e−γ

′t‖h‖L(2)(m), ∀ t � tγ′ . Then the measure νγ(g) :=
(γ′ − γ)

∫∞
tγ′

etγm(hPtg) dt, g ∈ E , g � 0, is in Mγ .

(ii) By (i) and m-(I) we have λ(2)
r (m) � λπ = λ. We will next prove that

for any γ > λ
(2)
r (m) there exists a compact K such that m(K) > 0 and

Φγ1K ≡ ∞. According to Proposition 6.3.8 (ii) in [MT96], whose hypotheses
are the ones in (ii) but for them-symmetry, any compactK such thatm(K) >
0 is in L(m). This will be enough to ensure that γ � λ and thus λ � λ

(2)
r (m).

Let (Ez)z∈R be the resolution of the generator of {Pt; t > 0} on L2(m) and
let γ′ ∈ ]λ(2)

r (m), γ[. There exists a function ϕ, continuous and with compact
support such that E−γ′ϕ �= E−λ(2)

r (m)
ϕ. Then ϕ may be written as ϕ =

∫ −λ(2)
r (m)

−γ′ dEzϕ and

(
|ϕ|, Pt|ϕ|

)
m

�
(
ϕ, Ptϕ

)
m

=
∫ −λ(2)

r (m)

−γ′
ezt d(ϕ,Ezϕ) � e−γ

′t
(
ϕ,E−λ(2)

r (m)
ϕ
)

m
.

Whence (|ϕ|, Φγ |ϕ|)m = ∞, which in turn implies (1Kϕ , Φ
γ1Kϕ)m = ∞, Kϕ

being the compact support of ϕ.
By m-(I) we have only two possibilities: either Φγ1Kϕ is finite up to an

m-polar set, or Φγ1Kϕ ≡ ∞. Assuming the first possibility we get an M > 0
such that m(Φγ1Kϕ � M) > 0 and therefore there exists a compact K such
that K ⊆ {Φγ1Kϕ � M}. This implies m(1KΦγ1Kϕ) � Mm(K) < ∞. On
the other hand from Kϕ ∈ L(m) and from the classical formula Φγ1K =∑∞
n=1(1 + γ)n−1U1(n)1K we have Φγ1K � νKϕ(K)(1 + γ)Φγ1Kϕ . Using this

and m-symmetry we get

(1K , Φγ1Kϕ)
m

= (1Kϕ , Φ
γ1K)

m
� νKϕ(K)(1 + γ)(1Kϕ , Φ

γ1Kϕ)
m

=∞.

The obtained contradiction rules out the possibility that Φγ1Kϕ is finite up to
an m-polar set and thus Φγ1Kϕ ≡ ∞, the property which was to be proved. 	
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We now briefly discuss two other forms of irreducibility that will be in-
volved in the sequel. We begin with

(I) for any finely open, non-empty set Γ we have PΓ 1(x) > 0, ∀x ∈ E.

Condition (I) amounts to the property that all states communicate in the
sense of [ADR66]. Immediate consequences of it are : the fact that all excessive
measures are equivalent and the property that any ξ ∈ Exc(X) satisfies ξ-(I).

The next condition of irreducibility is the one imposed in [Tak00]. Let m
be a σ-finite measure on (E, E) and I(m) := {A ∈ E : 1APtf = Pt1Af a.e.-m
for any bounded f ∈ L2(m)}. The condition is the following:

m-(I)′ for any A ∈ I(m) we have either m(A) = 0 or m(E\A) = 0.

In what follows we consider conditions under which it is possible to relate the
three forms of irreducibility.

Lemma 1. Let m belong to Exc(X).

(i) If m is Radon and m-(I) holds, then m-(I)′ also holds.
(ii) If the process is m-symmetric, if m is a reference measure and if m-(I)′

holds, then (I) also holds.

Proof. To get (i) let A ∈ I(m) be such that m(A) > 0. For any compact
K ⊆ E\A we have m(1AU11K) = 0, implying by m-(I) that m(K) = 0,
whence m(E\A) = 0.

For (ii) let us note that by m-symmetry any absorbing set A is in I(m)
and then apply this to the set A = {U11Γ = 0} with Γ finely open, non-
empty. Taking into account that m is a reference measure, the possibility that
m(E\A) = 0 is ruled out and from m(A) = 0 we get PΓ 1(x) > 0, ∀x ∈ E. 	


We now turn to the very special case, indicated in the introduction, when
the p-independence of λ(p)

r (m), 1 � p � ∞, occurs.

Theorem 2. Assume that the state space (E, E) is a locally compact metric
space with countable base and that X is an m-symmetric Markov process, with
m a Radon measure. Assume also that the following conditions are satisfied:

(i) m-(I)′ holds.
(ii) For each t > 0 and x ∈ E, Pt(x, . )$ m.
(iii) For any t > 0, Ptf ∈ C0(E) whenever f ∈ C0(E), where C0(E) denotes

the space of all continuous functions vanishing at infinity.
(iv) U11 ∈ C0(E).

Then λ
(p)
r (m), 1 � p � ∞, is independent of p ∈ [1,∞] and the com-

mon value λr(m) coincides with the decay parameter λ associated with X as
irreducible process.
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Proof. The imposed conditions are precisely those in Theorem 2.3 in [Tak00]
which provides the p-independence of λ(p)

r (m), 1 � p � ∞.
The process is subject to (I) by Lemma 1 (ii) and the equality λr(m) = λ

follows from Proposition 1 (ii), since under the present assumptions the sup-
port of m is E. 	


Remarks. 1. The conditions in Theorem 2 are met by the process (X, τD)
equal to the d-dimensional Brownian motion killed at τD, where D is a regular
domain satisfying m(D) <∞. In this remarkable particular case we actually
have a much stronger property, namely the corresponding transition operator
PDt , t > 0, is a compact operator and has the same eigenvalues {exp(−λk); k =
1, 2, . . . } with 0 < λ1 � λ2 � · · · <∞, in all appropriate spaces L(p)(mD), 1 �
p < ∞, and C0(D) ([CZ95], Theorem 2.7). The decay parameter λ coincides
in this case with λ1.

2. In [Sat85], Sato studies the impact of λ∞r as decay parameter assuming
(iii), a condition weaker than (v) in Theorem 2 and the following condition of
irreducibility: for any open set G ∈ E one has PG1(x) > 0, ∀x ∈ E. Symmetry
and absolute continuity are not assumed.

3. In [Str82], Stroock proposed for a Radon measure m

λσ(m) := sup
ϕ∈Cc(E)
ϕ�0

{
lim sup
t→∞

{
t−1 ln (ϕ, Ptϕ)m

}}

as decay parameter and shows that—under his conditions and m-symmetry—
it coincides with the right end point of the spectrum of the generator on
L2(m) (actually −λ(2)

r (m) in that case). Here Cc(E) denotes the space of all
real valued continuous functions on E with compact support.

In what follows we turn to specific properties of λ(1)
r (m),m ∈ Exc(X).

Let Qm and Y be the Kuznetsov measure and process associated with m.
Let also α be the birthtime of Y andH(m) := {h ∈ E : h � 0, 0 < m(h) <∞}.

Proposition 2. For any m ∈ Exc(X) we have

λ(1)
r (m) = sup

{
γ � 0 : lim

t→∞
eγtQm

(
h(Y0); α < −t

)
= 0, ∀h ∈ H(m)

}
.

If λ(1)
r (m) > 0, then m ∈ Pur(X).

Proof. First we note that by the Markov property of Y under Qm and the
stationarity of Qm we have for any f ∈ E , f � 0

m(Ptf) = Qm
(
PY0

(
f(Xt)

)
; α < 0

)
= Qm

(
f(Yt); α < 0

)

= Qm
(
f(Y0); α < −t

)
.

Recall now the following well known property of the spectral radius: for
any a < λ

(1)
r (m) there exists Ma � 1 such that eat‖Pt‖L1(m) � Ma. Then
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put λ̃(m) := sup{γ � 0 : limt→∞ eγtmPt(h) = 0, ∀h ∈ H(m)}. To show
that λ(1)

r (m) � λ̃(m), let γ < λ
(1)
r (m) and γ′ ∈

]
γ, λ

(1)
r (m)

[
; then there

exists Mγ′ � 1 such that eγ
′tmPt(h) � Mγ′m(h), ∀h ∈ H(m), and thus

eγtmPt(h) → 0 as t → ∞, ∀h ∈ H(m). The converse inequality follows
observing that for any γ < λ̃(m), the family of bounded operators Tt := eγtPt,
t � 0, is such that supt ‖Ttf‖ <∞, ∀ f ∈ L1(m). By the uniform boundedness
principle we have supt ‖Tt‖ <∞, implying γ � λ

(1)
r (m).

Finally from the obtained formula we get Qm(α = −∞) = 0 when
λ

(1)
r (m) > 0, which is well known to be equivalent to m ∈ Pur(X). 	


We give now further results on λ
(1)
r (m), m ∈ Exc(X), that will be of

interest in connection with λπ , λϕ.

Proposition 3. (i) If m ∈ Mγ(X), then γ � λ
(1)
r (m). If m is γ-invariant

then λ(1)
r (m) = γ.

(ii) For any γ < λ
(1)
r (m) there exist νγ ∈ Mγ(X) and fγ ∈ Fγ(X), fγ > 0,

such that νγ(fγ) <∞.
(iii) For any t > 0, e−λ

(1)
r (m)t is in the spectrum of Pt on L1(m).

Proof. Property (i) is checked by direct verification.
For (ii) let γ < λ

(1)
r (m), γ′ ∈

]
γ, λ

(1)
r (m)

[
and h ∈ E , h > 0, m(h) < ∞.

Let also Mγ′ � 1 be such that eγtm(Ptf) � Mγ′m(f), ∀ t > 0, ∀ f ∈ E ,
0 < m(f) <∞. We then set:

νγ := mΦγ and fγ := Φγh

and these are the required elements in Mγ(X), respectively Fγ(X) because
we can successively check that m(fγ) � Mγ′(γ′ − γ)−1m(h) and νγ(fγ) �
[Mγ′(γ′ − γ)−1]2m(h).

Property (iii) is a consequence of a very powerful result (Theorem 7.7 in
[Dav81]) applied to the positive (in the sense that it applies non-negative
functions from L1(m) into functions of the same kind) operator Pt, t > 0.
(Unfortunately this does not ensure that any of the corresponding eigenfunc-
tions is non-negative). 	


Corollary 1. (i) λπ = supm∈Exc(X)

{
λ

(1)
r (m)

}
= supm∈Pur(X)

{
λ

(1)
r (m)

}
.

(ii) λπ = λϕ = λπ,ϕ where

λπ,ϕ := sup{γ � 0 : ∃ f ∈ Fγ(X), f > 0 on E
and ν ∈Mγ(X) such that ν(f) <∞}.

To further emphasize the role played by λ(1)
r (m) we end up this section

with the construction of the process X̃ and the measure m̃ alluded to in
the introduction. This amounts to considering m ∈ Mγ(X) and h ∈ Fγ(X)
such that m(E\Eh) = 0, where Eh := {0 < h < ∞}. With h we associate



142 Mioara Buiculescu

h̃ := ↑limt↓0 eγtPth so that h̃ ∈ Fγ , h̃ � h,
{
h̃ < h

}
is a set of zero potential

and h̃ is an excessive function.
The supermartingale multiplicative functional

Mt := eγt
[
h̃(X0)

]−1

h̃(Xt)1{0<h̃(X0)<∞}1{t<T{h=0}}

defines a subprocess X̃ with state space Ẽ :=
{
0 < h̃ <∞

}
and semigroup

P̃tf(x) := eγt
[
h̃(x)

]−1

Pt

(
h̃f

)
(x), x ∈ Ẽ, f ∈ E|Ẽ, f � 0.

The process X̃ is in turn a right Markov process ([Sha88], § 62) and m̃ := h̃m

belongs to Exc
(
X̃
)
; m̃ ∈ Inv

(
X̃
)

when m is γ-invariant.
A necessary and sufficient condition for m̃ to be in Con

(
X̃
)

(which is
a precondition for developing an ergodic theory with respect to m̃) is the
following: for any f ∈ E , f > 0 such that m(f1Ẽ) <∞ we have m(Φγf1Ẽ <
∞) = 0. Note that when this condition is fulfilled we necessarily have γ �
λ

(1)
r (m); since m was taken from Mγ(X) we must have in fact in this case
λ

(1)
r (m) = γ.

3 Exit parameters

Theorem 1 suggests that λπ is (at least in the irreducible case) related to the
amount of time spent by the process in small sets. The parameter λπ may
be also characterized in terms of escape from such sets and we are going to
provide conditions for this. An alternative set of conditions are imposed in
[Str82] in order to obtain Radon instead of σ-finite measures.

Recall from [FG96] that an m-nest associated with m ∈ Dis(X) is de-
fined as an increasing sequence of finely open sets C =(Cn) ⊆ Ee such that
Pm(limn τn <∞) = 0, where τn := τCn .

For each n ∈ N let (Pt,n), (U qn) denote the semigroup and resolvent asso-
ciated with the killed process (X, τn) and

Φγn :=
∫ ∞

0

eγtPt,n dt =
∞∑

p=1

(1 + γ)p−1U1(p)
n f.

The m-nest (Cn) of interest for our problem will be assumed to have the
following additional property:

(∗) there exists D ∈ Ee, D ⊆ C1, such that U(x,B) > 0, ∀x ∈ E
and U1

1 (x, . ) � ν( . ), ∀x ∈ D, where ν(Γ ) := mD(Γ )[m(D)]−1.

With the m-nest C having property (∗) we associate

λCe (m) := sup{γ � 0 : P ν(eγτn) <∞, ∀n ∈ N}.
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Proposition 4. Let C be an m-nest satisfying condition (∗). Then λCe (m) �
λπ.

Proof. Let γ < λCe (m). In order to construct a measure in Mγ(X) we start by
considering the measures νn := ν Φγn, n ∈ N. For each n ∈ N, νn ∈Mγ(X, τn)
and it is finite because νn(P ·(eγ

′τn)) < ∞ for γ′ ∈
]
γ, λCe (m)

[
as is easily

checked. Also, for each n ∈ N, νn(D) > 0, P νn(lim τn < ζ) = 0 and, due to
condition (∗), νn � (1 + γ)νn(D)ν.

Next let µn := [νn(D)]−1νn, n ∈ N. For each n ∈ N the measure µn is in
turn finite and such that µn ∈ Mγ(X, τn), µn(D) = 1, µn � (1 + γ)ν and
Pµn(lim τn < ζ) = 0.

Let further ηn := infp�n µp, n ∈ N, define an increasing sequence of mea-
sures such that ηn ∈Mγ(X, τn), ∀n ∈ N. For each n � 1, one has ηn(D) � 1,
ηn � (1 + γ) and

ηn(U11D) = lim
k→∞

P ηn

(∫ ∞

0

e−u1D(Xu) du
)

� lim
k→∞

ηk
(
U1
k (D)

)
� lim
k→∞

ηk(D) � 1.

Finally, let η := ↑limn→∞ ηn. Obviously η � (1 + γ)ν and it is σ-finite
because η(U11D) � 1 and U11D(x) > 0, ∀x ∈ E. It remains to show that
η ∈Mγ(X); this follows from the fact that for any n ∈ N

eγtηn(Ptf) = eγt lim
k→∞

P ηn
(
f(Xt); t < τk

)
� lim
k→∞

ηn(f) = η(f)

for each f ∈ E , f � 0. 	


It is perhaps worth mentioning that while there exist a number of m-
nests associated with m ∈ Dis(X) (see [FG96] in his respect), condition (∗) is
quite restrictive. Among other things the very existence of a set D with the
properties involved in (∗) entails the ν-irreducibility of the process X .
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presented at the Séminaire de Probabilités de Rouen.
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Summary. On some vector spaces of adapted stochastic processes, we define in-
creasing families of positive bilinear forms, which generalize the usual square brackets
[X, Y ] and angle brackets 〈X, Y 〉. We study the corresponding Hardy spaces espe-
cially for p = 1 or 2, and extend to this abstract framework results of Fefferman
type from martingale theory.

1 Introduction

The role of the square bracket in martingale theory cannot be overestimated.
The starting point of our study was Fefferman’s theorem establishing the du-
ality between H1 and BMO by a positive bilinear form naturally associated
to the square bracket. But there also exist other similar forms acting on dif-
ferent spaces leading to similar results (roughly speaking, of Fefferman type);
see Pratelli [3], Stein [4] and Yor [5].

Our purpose is to unify all these results of Fefferman type in a common
framework. In particular, our main result, Theorem 3.6, simultaneously ex-
tends (essentially) Fefferman’s theorem and the similar results from [4] and [5];
the relationship with Pratelli’s result is slightly different (and simpler).

2 Description of the framework; preliminaries

Throughout this paper (Ω,F ,Ft, P ) is a complete probability space endowed
with a filtration Ft satisfying the usual conditions: it is right continuous and
F0 contains all negligible sets of F . We put F0− = F0.

On the vector space of all real valued, adapted processes on R+ × Ω we
consider the equivalence relation: X ∼ Y iff X and Y are indistinguishable,

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 145–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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that is, iff the set {ω ∈ Ω : ∃ t � 0 such that Xt(ω) �= Yt(ω)} is negligible. We
denote by A the vector space (with induced operations) of equivalence classes
with respect to this relation. When no confusion is possible, we identify a
process with its equivalence class.

In the sequel we consider a vector subspace S of A, and a symmetric
bilinear mapping [ . , . ] from S ×S to A, satisfying the following property: for
any X ∈ S, the process [X,X ] is positive, increasing and right continuous.
We say that [ . , . ] is a positive bilinear mapping. By polarization, it follows
that for any X,Y ∈ S, the process [X,Y ] is adapted, right continuous with
finite variation on each trajectory.

Example 1. For any local martingales X , Y we consider their square bracket,
that is, the unique adapted right continuous process with finite variation,
denoted by [X,Y ], such that:

1) XY − [X,Y ] is a local martingale;
2) ∆[X,Y ]t = (∆Xt)(∆Yt) for any t > 0;
3) [X,Y ]0 = X0Y0.
It is known that the square bracket extends to semimartingales as a posi-

tive bilinear mapping still possessing 2) and 3) (see [1, VII, 44]).

Example 2. For any locally square integrable local martingales X and Y we
consider their angle bracket 〈X,Y 〉, the unique predictable right continuous
process with finite variation such that XY −〈X,Y 〉 is a local martingale null
at 0. It is in fact the predictable compensator of the square bracket [X,Y ]
(see [1, VII, 39]).

Example 3. We denote by Λ0 the space of thin (“minces” in French) optional
processes X such that the increasing process

AXt =
∑

0�s�t
X2
s

is finite for finite t. We call {X,X}t this process and we define {X,Y } for any
X and Y in Λ0 by polarization: {X,Y }t =

∑

0�s�t
XsYs (see [5]).

Example 4. Given a discrete filtration Fn, we consider the space of sequences
of (finite) random variables (Xn)n�0 such that Xn is Fn-measurable for any
n ∈ N . For any such sequences X and Y we define the sequence of random
variables (see [4])

{X,Y }n =
n∑

m=0

XmYm.

Of course this situation may be “imbedded” in the above by considering
the filtration Ft = Fn for n � t < n+ 1.
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The following simple fact (suggested by the end of the proof of [1, VII, 53])
is fundamental for the sequel. We write shortly [X,Y ]ts = [X,Y ]t− [X,Y ]s for
s < t, even for s = 0−, which means [X,Y ]t.

Proposition 2.1. For any fixed stopping times S, T such that S � T , and
X, Y ∈ S, we have

(2.1)
∣∣[X,Y ]TS

∣∣ �
(
[X,X ]TS

)1
2
(
[Y, Y ]TS

)1
2 a.s.

Proof. For any fixed r ∈ R, we have

(2.2) 0 � [X+rY,X+rY ]TS = [X,X ]TS + 2r[X,Y ]TS + r2[Y, Y ]TS a.s.

The exceptional set on which this inequality does not hold for some rational
r is then negligible and hence (2.2) holds on the complement of this set for
any r ∈ R, by continuity; this obviously implies (2.1). 	


The proof of the next extension to our framework of the classical inequality
of H. Kunita and S. Watanabe is now an easy adaptation of the proof given
in [1, VII, 53].

Theorem 2.2. Let X, Y ∈ S and H, K be measurable processes (not neces-
sarily adapted). We have then

(2.3)
∫ ∞

0

|Hs||Ks|
∣∣d[X,Y ]s

∣∣ �
(∫ ∞

0

H2
s d[X,X ]s

)1
2
(∫ ∞

0

K2
s d[Y, Y ]s

)1
2

a.s.

Proof. We obviously may reduce to the case where H , K are bounded and
supported on some interval [0, N ]. Also, we may replace the left side of (2.3)
by ∣∣∣∣

∫ ∞

0

HsKs d[X,Y ]s

∣∣∣∣.

Now, using twice the monotone class theorem, we are reduced to the case
where

H = H0I{0} +H1I]0,s1] + · · ·+HmI]sm−1,sm]

K = K0I{0} +K1I]0,t1] + · · ·+KnI]tn−1,tn]

with the Hi and Kj measurable and bounded. We obviously may assume then
that m = n, si = ti for i = 1, . . . , n. Putting s0 = 0 and using (2.1), we now
get by addition
∣∣∣∣
∫ ∞

0

HsKs d[X,Y ]s

∣∣∣∣ �
∣∣H0K0 [X,Y ]0

∣∣ +
n∑

i=1

∣∣HiKi [X,Y ]si

si−1

∣∣

� |H0|
(
[X,X ]0

)1
2 |K0|

(
[Y, Y ]0

)1
2 +

n∑

i=1

(
H2
i [X,X ]si

si−1

)1
2
(
K2
i [Y, Y ]si

si−1

)1
2 a.s.

and (2.3) follows by the Schwarz inequality. 	
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We are now able to extend the Fefferman inequality to our setting; the
proof is the same as in [1, VII, 86], which is itself an adaptation of the proof
given by C. Herz in discrete time.

Theorem 2.3. Let X, Y ∈ S and H, K be optional processes. Let c ∈ [0,∞]
be such that

(2.4) E

[∫

[T,∞]

K2
s d[Y, Y ]s

∣∣∣∣ FT
]

� c2 a.s.

for all stopping times T . Then we have

(2.5) E

[∫

[0,∞]

|Hs||Ks|
∣∣d[X,Y ]s

∣∣
]

� c
√

2 E

[(∫

[0,∞]

H2
s d[X,X ]s

)1
2
]
.

Proof. We may of course suppose c < ∞, and H , K � 0. We consider the
(positive) increasing processes

αt =
∫

[0,t]

H2
s d[X,X ]s and βt =

∫

[0,t]

K2
s d[Y, Y ]s,

to which we associate the positive optional processes U and V defined by the
relations

U2
s =






H2
s√

αs +√αs−
for αs > 0,

0 for αs = 0;
V 2
s = K2

s

√
αs .

The processes U and V have the following three properties:

(2.6) HsKs �
√

2UsVs

almost surely with respect to the measure
∣∣d[X,Y ]s(ω)

∣∣ for almost all ω ∈ Ω,

(2.7) E

[∫

[0,∞]

U2
s d[X,X ]s

]
= E

[√
α∞

]
,

(2.8) E

[∫

[0,∞]

V 2
s d[Y, Y ]s

]
� c2 E

[√
α∞

]
.

Indeed, one first checks that (2.6) holds almost surely with respect to the
measure d[X,X ]s(ω) for each ω (an elementary measure-theoretic exercise
on the line). One then uses Theorem 2.2 (taking for H the indicator of the
optional set {HK >

√
2UV } and K = I[0,n]×Ω, and letting n tend to infinity)

to justify relation (2.6). Relation (2.7) follows from the stronger relation
∫

[0,t]

U2
s d[X,X ]s =

√
αt ∀ t � 0,
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which stems from the choice of U and from [1, VI, 91 c)]. As to (2.8), we have

(2.9)
E

[∫
V 2
s d[Y, Y ]s

]
= E

[∫
K2
s

√
αs d[Y, Y ]s

]

= E

[∫ √
αs dβs

]
= E

[∫
(β∞−βs−) d

√
αs

]

from the integration by parts formula [1, VI, 90].
Since αs, and hence

√
αs too, is optional, we may replace the process

(β∞−βs−)s by its optional projection, which we know is dominated by c2

by hypothesis. Finally, using (2.6), (2.3) (applied to U and V ), the Hölder
inequality, (2.7) and (2.8), we have

E

[∫
HsKs

∣∣d[X,Y ]s
∣∣
]

�
√

2 E

[∫
UsVs

∣∣d[X,Y ]s
∣∣
]

�
√

2
(

E

[∫
U2
s d[X,X ]s

])1
2
(

E

[∫
V 2
s d[Y, Y ]s

])1
2

�
√

2 c E[
√
α∞]

and the proof is over. 	


Remark 2.4. Suppose in addition that the processes [X,X ] and H are pre-
dictable and condition (2.4) is replaced by the weaker condition

(2.4′) E

[∫

[T,∞]

K2
s d[Y, Y ]s

∣∣∣∣ FT−
]

� c2 a.s.

for all predictable stopping times T . Then the same conclusion (2.5) holds.
The proof is the same, except that one passes from (2.9) to (2.8) by consid-

ering the predictable projection of the process (β∞−βs−), the measure d(
√
αs)

now being predictable.
For example, (2.4’) is implied by the condition

K2
0 [Y, Y ]0 + E

[∫

(T,∞]

K2
s d[Y, Y ]s

∣∣∣∣ FT
]

� c2 a.s.

for all stopping times T . Conversely (2.4’) implies that:
a) K2

0 [Y, Y ]0 � c2;
b) E

[∫
(T,∞]K

2
s d[Y, Y ]s

∣∣ FT
]

� c2 a.s. for all stopping times T . (Approx-
imate T by the predictable stopping time T + 1/n.)

3 The main result

First, remark that (2.1) leads immediately to the Minkowski-type inequality:
for all X , Y ∈ S and s < t, one has
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(3.1)
(
[X+Y,X+Y ]ts

)1
2 �

(
[X,X ]ts

)1
2 +

(
[Y, Y ]ts

)1
2 ;

by taking s = 0−, t = ∞, this enables us to consider for any 1 � p � ∞ the
seminorms on S:

‖X‖Hp =
(
E
[
([X,X ]∞)

p
2
])1

p =
∥∥[X,X ]

1
2
∞
∥∥
Lp

and to define Hp = {X ∈ S : ‖X‖Hp <∞} as subspaces of S.
Throughout the rest of the paper, we assume that the following implication

holds for all X ∈ S:

(S) [X,X ]∞ ≡ 0 =⇒ X ≡ 0

(that is, all above seminorms are in fact norms on the corresponding spaces),
and in addition H2 is complete with respect to ‖ . ‖H2 (that is, H2 is a Hilbert
space). On the vector space H2 we also consider the restriction of the norm
‖ . ‖H1 , and we denote it by (H2, ‖ . ‖H1). Finally, we consider on S the norm
‖ . ‖BMO so defined: ‖X‖BMO is the smallest (possibly infinite) constant c � 0
such that, for all stopping times T , one has E

[
[X,X ]∞−[X,X ]T−

∣∣ FT
]

� c2.
Homogeneity of ‖ . ‖BMO is obvious. In order to check its subadditivity, we
note the inequality
(3.2)∣∣[X,Y ]∞ − [X,Y ]T−

∣∣ �
(
[X,X ]∞ − [X,X ]T−

)1
2
(
[Y, Y ]∞ − [Y, Y ]T−

)1
2 a.s.

which can be proved exactly as (2.1), or deduced from it. Let now X,Y ∈ S
and c1, c2 ∈ [0,∞] be such that

E
[
[X,X ]∞−[X,X ]T−

∣∣ FT
]

� c21 a.s.

E
[
[Y, Y ]∞−[Y, Y ]T−

∣∣ FT
]

� c22 a.s.

for some fixed stopping time T . We have

E
[
[X+Y,X+Y ]∞ − [X+Y,X+Y ]T−

∣∣ FT
]

� c21 + c22 + 2 E
[
[X,Y ]∞−[X,Y ]T−

∣∣ FT
]

� c21 + c22 + 2 E
[(

[X,X ]∞−[X,X ]T−
)1
2
(
[Y, Y ]∞−[Y, Y ]T−

)1
2
∣∣ FT

]
a.s.

For any A ∈ FT the Hölder inequality gives
∫

A

(
[X,X ]∞−[X,X ]T−

)1
2
(
[Y, Y ]∞−[Y, Y ]T−

)1
2 dP

�
(∫

A

(
[X,X ]∞−[X,X ]T−

)
dP

)1
2
(∫

A

(
[Y, Y ]∞−[Y, Y ]T−

)
dP

)1
2

� c1c2 P[A]

and we conclude that
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E
[
[X+Y,X+Y ]∞−[X+Y,X+Y ]T−)

∣∣ FT
]

� (c1 + c2)2 a.s.

We can now define BMO = {X ∈ S : ‖X‖BMO <∞} as a subspace of S;
taking T = 0 in its definition we see that BMO ⊂ H2.

Using the above language, we remark that th. 2.3 (with H ≡ K ≡ 1)
implies that the mapping

BMO % Y �→ E
[
[ . , Y ]∞

]
∈ (H2, ‖ . ‖H1)

∗

is a linear continuous injection with norm �
√

2 ; in fact we have more, namely,
E
[
[ . , Y ]∞

]
defines an element of (H1)∗ with norm at most

√
2 ‖Y ‖BMO). The

aim of this section is to show that this mapping admits a continuous inverse
(as a consequence BMO is a Banach space). To this end we impose some
additional conditions on S and [ . , . ], following the intuitive idea that the r.v.
[X,X ]t represents the accumulation up to time t of the information about
some property which depends quadratically upon the behaviour of X on [0, t].

A1. For all X ∈ S and for all t ∈ [0,∞) and H ∈ Ft, the following
implication holds: X = 0 on ([0, t] × Ω) ∪ ([t,∞) × H) ⇒ [X,X ] = 0 on
([0, t]×Ω)∪ ([t,∞)×H). (This expresses the fact that [X,X ] marks nothing
as long as X remains identically null, and still continues to mark nothing from
the last moment when X is identically null, on some subset of Ω on which X
continues to be null up to ∞.)

A1′. For all X ∈ S, t ∈ [0,∞), and H ∈ Ft, if X = 0 on [0, t] × Ω, the
process IHX belongs to S.

A2. For all X ∈ S and t ∈ [0,∞), there exists some X̃ ∈ S such that
X̃ = X on [0, t]×Ω and

[
X̃, X̃

]
∞ = [X,X ]t. (Note that

[
X̃, X̃

]
= [X,X ] on

[0, t] × Ω, from A1 and prop. 2.1. Roughly speaking, we can modify X from
any moment such that the property marked by [ . , . ] is stopped.)

Definition 3.1. Given a fixed stopping time T , an element X ∈ H2 is
called a T -atom if [X,X ]∞ = ∆[X,X ]T . (We put [X,X ]∞ = [X,X ]∞− =
lim
t→∞

[X,X ]t, so that ∆[X,X ]T = 0 on the set {T = ∞}, which may be big.)

Proposition 3.2. Let X be a T -atom and let Y ∈ S be arbitrary. Then
the process [X,Y ] verifies [X,Y ]t = ∆[X,Y ]T I{T�t}; it is null on [0, T ) and
pathwise constant on [T,∞).

Proof. For Y = X this follows directly from above definition. For arbitrary Y ,
use prop. 2.1 and conclude by the optional section theorem. 	


Definition 3.3. The positive bilinear mapping [ . , . ] is said to have square
linear jumps if for all stopping times T there exists a linear application ΨT :
H2 → L2 such that

(3.5) ∆[X,X ]T =
(
ΨT (X)

)2 a.s.

for any X ∈ H2.
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By polarization and linearity of ΨT we then have ∆[X,Y ]T = ΨT (X)ΨT (Y )
a.s. for all X,Y ∈ H2. Note also that ΨT (X) = 0 a.s. on {T = ∞}, so that
ΨT may be considered as taking values in L2({T <∞}).

Fix now a family T of stopping times such that for any stopping time T ,
the graph of T is contained in a countable union of graphs of stopping times
belonging to T .

Denote by AT the set of T -atoms, which is a linear subspace of H2 by
prop. 3.2.

Definition 3.4. We say that the set of atoms is T -full if for any T ∈ T we
have ΨT (H2) = ΨT (AT ) as identical subspaces of L2.

A3. The set of atoms is T -full. One can see that AT is closed in H2

(complete), and hence ΨT (H2) is closed in L2 for any T ∈ T by isometry.

Proposition 3.5. Suppose that [ . , . ] has square linear jumps, and A3 holds.
Then for any U ∈ L2 and T ∈ T , there exists a unique atom X ∈ AT that
satisfies for all Y ∈ H2 the following relations:

(3.6) E
[
[X,Y ]∞

]
= E

[
∆[X,Y ]T

]
= E[ΨT (X)ΨT (Y )] = E[UΨT (Y )] .

Proof. Denote by U ′ the orthogonal projection of U onto the closed space
ΨT (H2), and pick X ∈ AT such that U ′ = ΨT (X). The first equality follows
from prop. 3.2, the other ones are obvious now; uniqueness ofX is also clear. 	


In the sequel we refer to the correspondence U �→ X as the atomic map
for fixed T ∈ T , and we denote this map by aT .

Theorem 3.6. a) Suppose that A1 and A2 hold, and let ϕ ∈ (H2, ‖ . ‖H1 )
∗.

Then there exists a unique Y ∈ H2 such that ϕ( . ) = E
[
[ . , Y ]∞

]
. Moreover

(3.7) E
[
[Y, Y ]∞−[Y, Y ]T

∣∣ FT
]

� ‖ϕ‖2

for all stopping times T .
b) If in addition [ . , . ] has square linear jumps, if A3 holds too and if

the family of atomic maps (aT )T∈T is uniformly bounded in norms from
(L2, ‖ . ‖L1) to (H2, ‖ . ‖H1 ) by some M > 0, then Y ∈ BMO and moreover

‖Y ‖BMO � (M2+1)
1
2 ‖ϕ‖.

Proof. a) Remark first that T may be replaced by t (a constant stopping time)
in (3.7); this follows from the right continuity of [ . , . ] and from a classical
approximation of T by a decreasing sequence of discrete stopping times.

Since the norm ‖ . ‖H1 is obviously dominated by ‖ . ‖H2 , the existence and
uniqueness of Y ∈ H2 representing ϕ as desired is assured by the Riesz rep-
resentation theorem. To prove (3.7), fix t ∈ [0,∞) and H ∈ Ft, and consider
the element X of S defined by X = IH

(
Y − Ỹ

)
(use A2 and A1′). Let us show

that
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(3.8) [X,Y ]∞ = [X,X ]∞ =
(
[Y, Y ]∞−[Y, Y ]t

)
IH .

We have for any s � t the relations

(3.9) [X,Y ]s =
[
IH

(
Y−Ỹ

)
, Y

]
s

=
[
IH

(
Y−Ỹ

)
, Y−Ỹ

]
s
+
[
IH

(
Y−Ỹ

)
, Ỹ

]
s
.

But since
[
Ỹ , Ỹ

]
s

=
[
Ỹ , Ỹ

]
t

(by A2), it follows from prop. 2.1 that

(3.10)
[
IH

(
Y−Ỹ

)
, Ỹ

]
s

=
[
IH

(
Y−Ỹ ), Ỹ

]
t
= 0 a.s.,

because IH(Y−Ỹ ) is null on [0, t] × Ω, hence
[
IH

(
Y−Ỹ

)
, IH

(
Y−Ỹ

)]
is null

on [0, t]×Ω by A1, and one more application of prop. 2.1 suffices.
Putting Z = Y − Ỹ , to show that [X,Y ]s = [X,X ]s (and s will then go

to infinity), it now suffices to check that

(3.11) [IHZ,Z]s = [IHZ, IHZ]s = IH [Z,Z]s a.s.

The first equality is equivalent to [IHZ, IHcZ]s = 0, which is a consequence
of prop. 2.1, by using A1.

Since obviously [IHZ,Z]+ [IHcZ,Z] = [Z,Z], it suffices for the second one
to see that

[IHZ,Z]s = 0 a.s. on Hc

[IHcZ,Z]s = 0 a.s. on H ,

one more application of prop 2.1, by using A1.
To show now the second half of (3.8), take s � t. We have from (3.11)

[X,X ]s = [IHZ, IHZ]s = IH [Z,Z]s a.s.

and therefore we may suppose that H = Ω, X = Z. We have finally

[X,X ]s = [Y−Ỹ , Y−Ỹ ]s = [Y, Y ]s − 2[Y, Ỹ ]s + [Ỹ , Ỹ ]s,

and the desired relation follows from (3.10) by letting s tend to infinity.
We can now write

(3.12)
E
[
[X,Y ]∞

]
= ϕ(X) � ‖ϕ‖E

[
[X,X ]

1
2
∞
]

= ‖ϕ‖E
[
IH

(
[Y, Y ]∞−[Y, Y ]t

)1
2
]
.

On the other hand it follows from the Hölder inequality that

(3.13) E
[
IH

(
[Y, Y ]∞−[Y, Y ]t

)1
2
]

� P[H ]
1
2
(
E
[
IH

(
[Y, Y ]∞−[Y, Y ]t

)])1
2 .

From (3.8), (3.12) and (3.13) we conclude that

E
[
IH

(
[Y, Y ]∞−[Y, Y ]t

)]
� ‖ϕ‖P[H ]

1
2
(
E
[
IH([Y, Y ]∞−[Y, Y ]t

)])1
2

and this implies (3.7) since H is an arbitrary element of Ft.
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b) For any any T ∈ T and U ∈ L2, putting X = aT (U) and using
prop. 3.5, we have

(3.14) E[UΨT (Y )] = E
[
[X,Y ]∞

]
� ‖ϕ‖ ‖aT (U)‖H1 � M‖ϕ‖ ‖U‖L1 .

As L2 is a dense subspace of L1 it follows:

(3.15)
∥∥(∆[Y, Y ]T )

1
2
∥∥
L∞ = ‖ΨT (Y )‖L∞ � M ‖ϕ‖.

Since the graph of any stopping time is contained in a countable union of
graphs of stopping times from T , (3.15) holds in fact for all stopping times T .

Finally, summing (3.7) and the square of (3.15) we get

E
[
[Y, Y ]∞−[Y, Y ]T−

∣∣ FT
]

� (M2 + 1) ‖ϕ‖2 a.s.;

as T is arbitrary, the desired conclusion follows:

‖Y ‖BMO � (M2 + 1)
1
2 ‖ϕ‖. 	


Remark 3.7. The uniform boundedness of the family of atomic maps from
(L2, ‖ . ‖L1) to (H2, ‖ . ‖H1 ) may seem strange and strong. However, it is also
necessary for the validity of b) (supposing that all other conditions hold).
Indeed, suppose that for some constant C > 0, every ϕ ∈ (H2, ‖ . ‖H1 )∗ is
represented by a (unique) Y ∈ BMO such that ‖Y ‖BMO � C‖ϕ‖. Then, by
a well known consequence of the Hahn–Banach theorem and by (3.6), for any
T ∈ T and for any U ∈ L2, puting X = aT (U), one has

‖X‖H1 � sup
‖Y ‖BMO�C

∣∣E
[
[X,Y ]∞

]∣∣ = C sup
‖Y ‖BMO�1

∣∣E
[
[X,Y ]∞

]∣∣

= C sup
‖Y ‖BMO�1

∣∣E[UΨT (Y )]
∣∣ � C sup

∆[Y,Y ]T �1

∣∣E[UΨT (Y )]
∣∣ � C ‖U‖L1 ,

since |ΨT (Y )| = (∆[Y, Y ]T )
1
2 and obviously ∆[Y, Y ]T � ‖Y ‖2BMO. a.s.

Remark 3.8. For X ∈ H2 and fixed t � 0, consider the element X̃ ∈ S given
by A2. Looking at relation (3.10) (with X instead of Y , and H = Ω), X̃
appears as the orthogonal projection of X onto the orthogonal complement
(in H2) of the linear space F = {X ∈ H2 : X = 0 on [0, t]×Ω}. It suffices to
check that F is closed in H2; this follows from the fact that X belongs to F
if and only if X is in H2 and [X,X ]t = 0 (consequence of A1 and A2). Indeed,
if Xn ∈ F , X ∈ H2 and Xn → X in H2, then taking T = t and S = 0− in
(2.1), one has

E
[
[X,X ]t

]
= E

[
[X−Xn, X−Xn]t

]
� E

[
[X−Xn, X−Xn]∞

]
−→ 0.
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4 Applications

We now illustrate the theory of section 3 by applying it to the four examples
listed in section 2.

Example 1 (square bracket). The implication [X,X ]∞ ≡ 0 ⇒ X ≡ 0 is well
known; see for example [1, VII, 52]. In fact we need this, and the axioms Ai,
for X ∈ H2 only. To check Ai, recall three basic properties of [ . , . ]:

a) [XT , Y ] = [X,Y ]T a.s. for any stopping time T , where XTt = XT∧t.
b) Let T be an (arbitrary) fixed stopping time, and let X be a local

martingale. Then the process

X ′s = (XT+s−XT ) (s ∈ [0,∞))

is a local martingale with respect to the filtration F ′s = FT+s, and we have
[X ′, X ′]s = [X,X ]T+s− [X,X ]T for any s � 0. (We may consider as well XT−
(resp. [X,X ]T−) instead of XT (resp. [X,X ]T ).

c) If X is a local martingale and H ∈ F0, then IHX is a local martingale,
and [IHX, IHX ] = IH [X,X ].

These three properties easily imply A1 and A2 (take X̃ = Xt). Axiom A1′,
which is also an extension of the first part of c), is satisfied because of the
definition of local martingales.

We now pass to the second set of conditions, dealing with the jumps of
[ . , . ]. Of course we take ΨT (X) = ∆XT in definition 3.3. Further, we take
T = {T : T is predictable or totally inaccessible}; it is well known that the
graph of any stopping time can be covered by a countable union of graphs of
predictable s.t. and the graph of a totally inaccessible s.t. (see [1, IV, 81]).
We then have ΨT (H2) = ΨT (AT ) = L2(FT | {T <∞}) for T totally inacces-
sible and ΨT (H2) = ΨT (AT ) = {U −E[U | FT−] : U ∈ L2(FT | {T <∞})} =
{U ∈ L2(FT | {T <∞}) : E[U | FT−] = 0} for T predictable. To justify these
pleasant relations, we invoque (with slight modifications) the discussion from
the proof of [1, VII, 74] (due to Lépingle): for an arbitrary stopping time T
and U ∈ L2(FT ), consider the process At = UI{T�t}; it has finite variation.
This A is obviously integrable, and if Ã denotes its dual predictable projection
(compensator), considerX = A−Ã, which is a T -atom such that ∆XT = U on
{T <∞} (hence ∆[X,X ]T = U2 on {T <∞}) if T is totally inaccessible and
∆XT = U − E[U | FT−] on {T < ∞} (hence ∆[X,X ]T = (U − E[U | FT−])2

on {T <∞}) if T is predictable.
Therefore A3 holds (∆XT = E[X∞ | FT ]−E[X∞ | FT−] if T is predictable,

generally XT ∈ L2(FT ) if T is arbitrary), and moreover one can see that
the family of atomic maps (aT )T∈T is uniformly bounded in norm from
(L2, ‖ . ‖L1) to (H2, ‖ . ‖H1) by the constant M = 2. Summing up, we see
that the hypotheses of th. 3.6. a) and b) hold, so that our result extends Fef-
ferman’s theorem ([1, VII, 88]) up to the assumption that H2 is dense in H1,
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which makes it possible to identify (H1)∗ with (H2, ‖ . ‖H1 )
∗. Looking at the

proof of this fact in [1, VII, 85], we see that it has nothing in common with
Fefferman’s inequality; this explains why we consider here (H2, ‖ . ‖H1) in-
stead of H1, and we prefer not to assume that H2 be dense in H1 and that
(H2, ‖ . ‖H1)

∗ be equal to (H1)∗.

Example 2 (angle bracket). Remark first that in this case H2 is dense in H1

by definition of S (to make possible the definition of the angle bracket 〈 . , . 〉).
In this case, following Pratelli [3], one defines ‖X‖BMO2 as the smallest

(possibly infinite) constant c such that

E
[
〈X,X〉∞−〈X,X〉T

∣∣ FT
]

� c2 for all stopping times T ,

so that we are interested only in the statement of th. 3.6. a), whereas b) is
uninteresting because of remark 2.4.

The validity of A1, A1′, A2 are again consequences of properties a), b)
and c), which hold for the angle bracket too (of course we must take care to
consider only locally square integrable martingales, for which 〈 . , . 〉 exists).

To complete the description of the dual of H1 (suggested by remark 2.4)
in this example, remark the following simple fact: if ϕ ∈ (H2, ‖ . ‖H1)

∗ and
Y ∈ H2 are such that ϕ( . ) = E

[
〈 . , Y 〉∞

]
, then it follows (in addition to

(3.7)) that ‖Y0‖L∞ � ‖ϕ‖. Indeed, if X0 denotes the constant process equal
to the r.v. X0 ∈ L2(F0), we may write

E[X0Y0] = E[X0Y∞] = E
[
〈X0, Y 〉∞

]
� ‖ϕ‖ ‖X0‖H1 = ‖ϕ‖ ‖X0‖L1 ,

and since L2(F0) is dense in L1(F0), the desired relation follows. Summing
up, we see that the dual of H1 may in this case be identified with the linear
space

{
X ∈ S : ‖X‖BMO2 < ∞, ‖X0‖L∞ < ∞

}
endowed with the norm

‖X‖ = ‖X‖BMO2
+ ‖X0‖L∞ .

Example 3. The matter is considerably simpler in this case. The validity of
A1 and A1′ are obvious, and to A2 we take brutally X̃ = X · I[0,t]×Ω. The
significance of the notion of T -atom has a strong intuitive support here. Natu-
rally, we take ΨT (X) = XT ·I{T<∞} and T is the family of all stopping times;
ΨT (H2) = ΨT (AT ) = L2(FT | {T <∞}) for any T , and the atomic maps are
isometries from (L2(FT | {T <∞}), ‖ . ‖Lp) to (H2, ‖ . ‖Hp) for all 1 � p � ∞.

Example 4. It is quite similar to above; the discrete processes carry over to
“mince” processes null outside the set Z+ × Ω, and { . , . } extends in the
obvious way to whole R+. Here we take ΨT (X) = XT · I{T∈Z+} and we have
ΨT (H2) = ΨT (AT ) = L2(FT | {T ∈ Z+}) for any stopping time T .

Remark. Axioms A1 and A1′ express some local properties of S and [ . , . ]. As
to A1′, it refers only to S, whereas A1 suggests that the trajectory [X,X ](ω)
depends only on the trajectory X(ω).
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For example, in the case of the square bracket, recall that for all X ∈ H2,
putting tni = i · 2−nt, one has

[X,X ]t = lim
n

2n−1∑

i=0

(
Xtni+1

−Xtni
)2

strongly in L1 (see [2]), which implies a property stronger than A1.
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for the Predictable Process

in the Doob–Meyer Decomposition Theorem
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Summary. We construct the Doob–Meyer decomposition of a submartingale as
a pointwise superior limit of decompositions of discrete submartingales suitably
built upon discretizations of the original process. This gives, in particular, a direct
proof of predictability of the increasing process in the Doob–Meyer decomposition.

1 The Doob–Meyer Theorem

The Doob–Meyer decomposition theorem opened the way towards the the-
ory of stochastic integration with respect to square integrable martingales
and—consequently—semimartingales, as described in the seminal paper [7].
According to Kallenberg [4], this theorem is “the cornerstone of the modern
probability theory”. It is therefore not surprising that many proofs of it are
known. To the author’s knowledge, all the proofs heavily depend on a result
due to Doléans-Dade [3], which identifies predictable increasing processes with
“natural” increasing processes, as defined by Meyer [6].

In the present paper we develop ideas of another classical paper by K. Mu-
rali Rao [8] and construct a sequence of decompositions for which the superior
limit is pointwise (in (t, ω)) equal to the desired one, and thus we obtain pre-
dictability in the easiest possible way.

Let (Ω,F , {Ft}t∈[0,T ], P ) be a stochastic basis, satisfying the “usual” con-
ditions, i.e. the filtration {Ft} is right-continuous and F0 contains all P -null
sets of FT . Let (D) denote the class of measurable processes {Xt}t∈[0,T ] such
that the family {Xτ} is uniformly integrable, where τ runs over all stopping
times with respect to {Ft}t∈[0,T ]. One of the variants of the Doob–Meyer
theorem can be formulated as follows.
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would like to thank people of Mathematics in Rouen for their hospitality.
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Theorem 1. Any submartingale of class (D) admits a unique decomposition
Xt = Mt +At, where {Mt} is a uniformly integrable martingale and {At} is
a predictable increasing process, with AT integrable.

In discrete time this theorem is trivial: if {Xk}k=0,1,...,k0 is a submartingale
with respect to {Fk}k=0,1,...,k0 , we can set A0 = 0 and

Ak =
k∑

j=1

E
(
Xj −Xj−1

∣∣ Fj−1

)
, k = 1, 2, . . . , k0.

The appealing idea of Murali Rao [8] consists in approximating At by increas-
ing processes defined by discretizations of Xt.

Let θn = {0 = tn0 < tn1 < tn2 < . . . < tnkn
= T }, n = 1, 2, . . ., be an

increasing sequence of partitions of [0, T ], with

max
1�k�kn

tnk − tnk−1 −→ 0, as n→∞.

By “discretizations” {Xnt }t∈θn of {Xt}t∈[0,T ] we mean the processes defined
by

Xnt = Xtnk if tnk � t < tnk+1, X
n
T = XT .

The process Xn is a submartingale with respect to the discrete filtration
{Ft}t∈θn and by the above discrete scheme we obtain a sequence of right
continuous representations

Xnt = Mn
t +Ant ,

where

Ant = 0 if 0 � t < tn1 ,

Ant =
k∑

j=1

E
(
Xtnj −Xtnj−1

∣∣ Ftnj−1

)
if tnk � t < tnk+1, k = 1, 2, . . . , kn − 1,

AnT =
kn∑

j=1

E
(
Xtnj −Xtnj−1

∣∣ Ftnj−1

)
.

Since Ant is Ftn
k−1

-measurable for tnk � t < tnk+1, the processes An are pre-
dictable in the very intuitive manner.

The following facts can be extracted from [8].

Theorem 2. If {At} is continuous (equivalently: {Xt} is “quasi-left contin-
uous”, or “regular” in the former terminology), then for t ∈

⋃∞
n=1 θn

Ant −→ At in L1.

In the general case

Ant −→ At weakly in L1, t ∈
∞⋃

n=1

θn.
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The latter statement cannot be improved: by a counterexample due to
Dellacherie and Doléans-Dade [2], there exists an increasing integrable process
{Xt} and a sequence θn of partitions of [0, 1] such that the An1 ’s fail to converge
in L1 to A1.

By a slight modification of the approximating sequence we can obtain
convergence in the strong sense.

Theorem 3. There exists a subsequence {nj} such that for t ∈
⋃∞
n=1 θn and

as J → +∞
1
J

( J∑

j=1

A
nj

t

)
−→ At, a.s. and in L1. (1)

Remark 1.

1. In fact, in any subsequence we can find a further “good” subsequence
with the property described in Theorem 3. In view of Komlós’ Theorem 4
below, it is natural to say that the sequence {An} is K-convergent to A.

2. We do not know whether the whole sequence converges in the Cesàro
sense.

2 Proof of Theorem 3

In order to avoid repetitions of well-known computations, we choose the text-
book [4] as a fixed reference and will refer to particular results therein.

The preparating steps are standard and are given on pages 413-4 in [4].

1. IfX is a submartingale of class (D), then the family of all random variables
of the form {Anτn

}, where τn is a stopping time taking values in θn, is
uniformly integrable. In particular,

sup
n
EAnT < +∞.

2. We can extract a subsequence {nk} such that Ank

T → α weakly in L1. We
define

Mt = E(XT − α | Ft), At = Xt −Mt.

Then we have also

Ank(t) −→ At weakly in L1, t ∈
∞⋃

n=1

θn.

In the main step of proof we use the famous theorem of Komlós [5] (see
also [1] for the contemporary presentation related to exchangeability).
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Theorem 4. If ξ1, ξ2, . . . is a sequence of random variables for which

sup
n
E|ξn| < +∞,

then there exists a subsequence {nj} and an integrable random variable ξ∞
such that for every subsequence {njk} of {nj} we have with probability one,
as K → +∞,

ξnj1
+ ξnj2

+ · · ·+ ξnjK

K
−→ ξ∞.

By this theorem we can find a subsequence {nkj} ⊂ {nk} and a random
variable αT such that

1
J

( J∑

j=1

A
nkj

T

)
−→ αT , a.s.

Since Ank

T → α = AT weakly in L1, the Cesàro means of any subsequence also
converge weakly to the same limit and we have αT = AT . Since the family
{AnT } is uniformly integrable, the above convergence holds in L1 as well.

Now let us take any t0 ∈
⋃∞
n=1 θn, t0 �= T . As before, one can find another

subsequence {nkji
} ⊂ {nkj} such that

1
I

( I∑

i=1

A
nkji
t0

)
−→ At0 , a.s. and in L1.

By the exceptional “subsequence property” given in the Komlós theorem we
can still claim that

1
I

( I∑

i=1

A
nkji

T

)
−→ AT , a.s. and in L1.

Repeating these steps for each t0 ∈
⋃∞
n=1 θn and then applying the diagonal

procedure we find a subsequence fulfilling the requirements of Theorem 3.
It remains to identify the limit with the unique predictable increasing

process given by the Doob–Meyer decomposition. This can be done using
Rao’s result, but given almost sure convergence everything can be done with
bare hands:

3 Predictability—direct!

We shall provide a direct proof of predictability of the process A appearing as
the limit in Theorem 3. For notational convenience we assume that (1) holds
for the whole sequence An. We introduce two auxiliary sequences of stochastic
processes given by the following formula.
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Ãn0 = 0,

Ãnt =
k∑

j=1

E
(
Xtnj −Xtnj−1

∣∣ Ftnj−1

)
if tnk−1 < t � tnk , k = 1, 2, . . . , kn,

B̃nt =
1
n

n∑

j=1

Ãjt .

The processes Ãn are adapted to the filtration {Ft}t∈[0,T ] and their tra-
jectories are left continuous, hence they are predictable by the very definition
of the predictable σ-field. The same holds for the B̃n.

It is sufficient to show that there exists a set E of probability zero such
that for every ω /∈ E and every t ∈ [0, T ]

lim sup
n→∞

B̃nt (ω) = At(ω). (2)

We have for t0 ∈
⋃∞
n=1 θn and n large enough

Ãnt0(ω) = Ant0(ω),

hence outside of a set E′ of probability zero

B̃nt0(ω)→ At0(ω).

Since
⋃∞
n=1 θn is dense in [0, T ], it follows that for ω /∈ E′, in every point of

continuity of A(·)(ω) we have

B̃nt (ω) −→ At(ω).

Moreover, since A is right continuous we have always

lim sup
n→∞

B̃nt (ω) � At(ω).

We conclude that (2) can be violated only in points of discontinuity of A.
We claim it suffices to prove that for each stopping time τ

lim
n→∞

EÃnτ −→ EAτ . (3)

To see this let us observe that if (3) holds then

E lim sup
n→∞

B̃nτ � EAτ = lim
n→∞

EB̃nτ � E lim sup
n→∞

B̃nτ ,

where Fatou’s lemma can be applied in the last inequality because

B̃nτ � BnT −→ AT in L1.

In particular, for every stopping time τ , we have almost surely,
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Aτ = lim sup
n→∞

B̃nτ .

Now it is well known (and easy to prove in the case of increasing processes)
that there exists a sequence {τq} of stopping times which exhaust all jumps
of A, i.e. P (∆Aτ > 0) > 0 implies P (τ = τq) > 0 for some q. For each q we
have

Aτq = lim sup
n→∞

B̃nτq
, a.s.

Enlarging E′ by a countable family of P -null sets (one for each τq), we obtain
a set E of P -measure zero (belonging to F0 due to the “usual” condition)
outside of which (2) holds.

In order to prove (3) let us observe that we can write

Ãnτ =
kn∑

k=1

Antnk I(t
n
k−1 < τ � tnk ).

Since τ is a stopping time, the event {tnk−1 < τ � tnk} belongs to Ftn
k
. If we

define

ρn(τ) = 0 if τ = 0, ρn(τ) = tnk if tnk−1 < τ � tnk ,

then ρn(τ) is a stopping time with respect to the discrete filtration {Ft}t∈θn ,
ρn(τ) � τ , ρn(τ) ↘ τ and

Ãnτ = Anρn(τ).

By the properties of the (discrete) Doob–Meyer decomposition

EAnρn(τ) = EXnρn(τ) = EXρn(τ) ↘ EXτ = EAτ .

We have proved that A is predictable. The proof of its uniqueness is stan-
dard (see e.g. Lemma 22.11 and Proposition 15.2 in [4]) and does not involve
advanced tools.
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1 Introduction

In classical analysis there are two approaches to defining the integral∫∞
0 h(s) ds, where h is a Borel function. In the first approach, the improper

integral
∫∞
0
h(s) ds is defined as

∫ ∞

0

h(s) ds := lim
t→∞

∫ t

0

h(s) ds,

where
∫ t
0
h(s) ds is the “usual” Lebesgue integral over [0, t]. In the second

approach, the integral up to infinity
∫∞
0
h(s) ds is defined as the Lebesgue

integral over [0,∞). Obviously, the classes

L =
{
h : ∀t � 0,

∫ t

0

|h(s)| ds <∞
}
, (1)

Limp =
{
h ∈ L : ∃ lim

t→∞

∫ t

0

h(s) ds
}
, (2)

L[0,∞) =
{
h :

∫ ∞

0

|h(s)| ds <∞
}

(3)

satisfy the following strict inclusions: L[0,∞) ⊂ Limp ⊂ L.
This paper has two main goals. The first goal is to give the corresponding

definitions of the improper stochastic integral
∫∞
0 Hs dXs and of the stochastic

integral up to infinity
∫∞
0 Hs dXs, where H = Ht(ω) is a predictable process

and X = Xt(ω), t � 0, ω ∈ Ω is a semimartingale. The second goal is to derive
a criterion for the existence of the stochastic integral up to infinity

∫∞
0
Hs dXs

given in “predictable” terms (see Theorem 4.5). For more information on
“predictability”, see the monograph [10] by J. Jacod and A.N. Shiryaev. The
second edition of this monograph contains a predictable criterion for the exis-
tence of stochastic integrals

∫ t
0 Hs dXs, t � 0 (see [10; Ch. III, Theorem 6.30]).

In this paper, we also derive a predictable criterion for the existence of these
integrals (see Theorem 3.2). Our method differs slightly from the one in [10].
As a result, we get a simpler criterion.

The notion of a stochastic integral up to infinity is closely connected with
the notion of a semimartingale up to infinity. These processes as well as mar-
tingales up to infinity, etc. are considered in Section 2. C. Stricker [20] also
considered ”semimartingales jusqu’à l’infini”. He used another definition, but
it is equivalent to our definition. The notions of a process with finite variation
up to infinity and local martingale up to infinity introduced in Section 2 are
closely connected with the notion of γ-localization that is also introduced in
Section 2.

In Section 3, we recall the definition of a stochastic integral (that is some-
times called the vector stochastic integral) and give the predictable criterion
for integrability.
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Section 4 contains several equivalent definitions of the stochastic integral
up to infinity, the definition of the improper stochastic integral as well as
the predictable criterion for integrability up to infinity. This criterion is then
applied to stable Lévy processes.

In Section 5, we show how the stochastic integrals up to infinity can be used
in mathematical finance (to be more precise, in the Fundamental Theorems
of Asset Pricing).

Throughout the paper, a filtered probability space
(
Ω,F , (Ft)t�0,P

)
is

supposed to be fixed. The filtration (Ft) is assumed to be right-continuous.

2 Semimartingales up to Infinity

1. Notations and definitions. In this section, we consider only one-
dimensional processes. The extension to the multidimensional case is straight-
forward.

We will use the notations Aloc, V , M, Mloc, Sp, and S for the classes
of processes with locally integrable variation, processes with finite variation,
martingales, local martingales, special semimartingales, and semimartingales,
respectively.

Definition 2.1. We will call a process Z = (Zt)t�0 a process with locally inte-
grable variation up to infinity (resp: process with finite variation up to infinity,
martingale up to infinity, local martingale up to infinity, special semimartin-
gale up to infinity, semimartingale up to infinity) if there exists a process
Z = (Zt)t∈[0,1] such that

Zt = Z t
1−t
, t < 1

and Z is a process with locally integrable variation (resp: process with finite
variation, martingale, local martingale, special semimartingale, semimartin-
gale) with respect to the filtration

F t =

{
F t

1−t
, t < 1,

F , t = 1.
(4)

We will use the notations Aloc, [0,∞), V[0,∞), M[0,∞), Mloc, [0,∞), Sp, [0,∞),
S[0,∞) for these classes of processes.

Note that Aloc, [0,∞) ⊂ Aloc, V[0,∞) ⊂ V , M[0,∞) ⊂ M, Mloc, [0,∞) ⊂
Mloc, Sp, [0,∞) ⊂ Sp, S[0,∞) ⊂ S, and all the inclusions are strict.

2. Basic properties. In stochastic analysis there exist two types of “localiza-
tion” procedures: localization (see [10; Ch. I, §1d]) and σ-localization (see [10;
Ch. III, §6e]). Let us introduce one more type.
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Definition 2.2. Let C be a class of random processes. The γ-localized class
Cγ consists of the processesX , for which there exists an increasing sequence of
stopping times (τn) such that {τn = ∞} ↑ Ω a.s. and, for each n, the stopped
process Xτn

t := Xt∧τn belongs to C.

Lemma 2.3. We have Aloc, [0,∞) = Aγ , where A is the class of processes
with integrable variation.

The proof is straightforward.

Lemma 2.4. The class M[0,∞) coincides with the class of uniformly inte-
grable martingales.

Proof. This statement follows from the fact that the class of uniformly in-
tegrable martingales coincides with the class of the Lévy martingales, i.e.
processes Z of the form Zt = E(Z∞ | Ft), t � 0. 	


Lemma 2.5. The following conditions are equivalent:
(i) Z ∈ Mloc, [0,∞);
(ii) Z ∈ (M[0,∞))γ ;
(iii) Z ∈ Mloc and [Z]1/2 ∈ Aγ ([Z] denotes the quadratic variation of Z).

Proof. (i)⇒(iii) This implication follows from the fact that, for a local mar-
tingale M , [M ]1/2 ∈ Aloc (see [10; Ch. I, Corollary 4.55]).
(iii)⇒(ii) This implication follows from the Davis inequality (see [16; Ch. I,
§9, Theorem 6]).
(ii)⇒(i) This implication is obvious. 	


The following statement characterizes the semimartingales as the “L0-
integrators”. Recall that a collection of random variables (ξλ)λ∈Λ is bounded
in probability if for any ε > 0, there exists M > 0 such that P(|ξλ| > M) < ε
for any λ ∈ Λ. Recall that a stopping time is called simple if it takes only a
finite number of values, all of which are finite.

Proposition 2.6. Let Z be a càdlàg (Ft)-adapted process. Then Z ∈ S if
and only if for any t � 0, the collection
{∫ t

0

Hs dZs : H has the form
n∑

i=1

hiI]]Si,Ti]], where S1 � T1 � · · · � Sn � Tn

are simple (Ft)-stopping times and hi ∈ [−1, 1]
}

is bounded in probability. (Note that
∫ t
0
Hs dZs here is actually a finite sum.)

For the proof, see [2; Theorem 7.6].

The next statement characterizes the semimartingales up to infinity as
the “L0-integrators up to infinity”. Recall that the space Hp consists of semi-
martingales Z, for which there exists a decomposition Z = A+M with A ∈ V ,
M ∈Mloc, and E(VarA)p∞ + E[M ]p/2∞ <∞.
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Lemma 2.7. The following conditions are equivalent:
(i) Z ∈ S[0,∞);
(ii) there exists a decomposition Z = A+M with A ∈ V[0,∞), M ∈ Mloc, [0,∞);
(iii) there exists an increasing sequence of stopping times (τn) such that {τn =
∞} ↑ Ω a.s. and, for each n, the process Zτn−

t := ZtI(t < τn)+Zτn−I(t � τn)
belongs to H1;
(iv) Z is a càdlàg (Ft)-adapted process, and the collection

{∫ ∞

0

Hs dZs : H has the form
n∑

i=1

hiI]]Si,Ti]], where S1 � T1 � · · · � Sn � Tn

are simple (Ft)-stopping times and hi ∈ [−1, 1]
}

(5)

is bounded in probability. (Note that
∫∞
0
Hs dZs here is actually a finite sum.)

Proof. (i)⇒(ii) This implication is obvious.
(ii)⇒(iii) It is sufficient to consider the stopping times τn = inf{t � 0 :
VarAt � n or [M ]t � n}, where Z = A + M is a decomposition of Z with
A ∈ V[0,∞), M ∈Mloc, [0,∞).
(iii)⇒(iv) Fix ε > 0. There exists n such that P(τn = ∞) > 1 − ε. Let
Zτn− = A+M be a semimartingale decomposition of Zτn− with E(VarA)∞+
E[M ]1/2∞ <∞. For any process H of the form described in (5), we have

∫ ∞

0

Hs dZτn−
s =

∫ ∞

0

Hs dAs +
∫ ∞

0

Hs dMs.

Since |H | � 1, we have E|
∫∞
0
Hs dAs| � E(VarA)∞. It follows from the Davis

inequality (see [16; Ch. I, §9, Theorem 6]) that there exists a constant C such
that, for any process H of the form described in (5), E|

∫∞
0 Hs dMs| � C.

Combining this with the inequalities

P

(∫ ∞

0

Hs dZs =
∫ ∞

0

Hs dZτn−
s

)
� P(τn =∞) > 1− ε,

we get (iv).
(iv)⇒(i) For any bounded stopping time S, there exists a sequence of simple
stopping times (Sk) such that Sk ↓ S. Hence, the collection

{∫ ∞

0

Hs dZs : H has the form
n∑

i=1

hiI]]Si,Ti]], where S1 � T1 � · · · � Sn � Tn

are bounded (Ft)-stopping times and hi ∈ [−1, 1]
}

is bounded in probability.
For a < b ∈ Q, n ∈ N, we consider the stopping times
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S1 = inf{t � 0 : Zt < a} ∧ n, T1 = inf{t � S1 : Zt > b} ∧ n, . . .
Sn = inf{t � Tn−1 : Zt < a} ∧ n, Tn = inf{t � Sn : Zt > b} ∧ n.

Take Hn =
∑n
i=1 I]]Si,Ti]]. Then on the set A := {Z upcrosses [a, b] infinitely

often} we have ∫ ∞

0

Hns dZs
a.s.−−−−→
n→∞

∞.

Hence, P(A) = 0. As a and b have been chosen arbitrarily, we deduce that
there exists a limit Z∞ := (a.s.) limt→∞ Zt.

Let us set

Zt =

{
Z t

1−t
, t < 1,

Z∞, t = 1.

Using the continuity of Z at t = 1, one easily verifies that the collection
{∫ 1

0

HsdZs : H has the form
n∑

i=1

hiI]]Si,Ti]], where S1 � T1 � · · · � Sn � Tn

are simple (F t)-stopping times and hi ∈ [−1, 1]
}

is bounded in probability (here (F t) is the filtration given by (4)). By Propo-
sition 2.6, Z is an (F t)-semimartingale. This means that Z ∈ S[0,∞). 	

Remark. The description of S[0,∞) provided by (iii) is C. Stricker’s definition
of “semimartingales jusqu’à l’infini” (see [20]).

3 Stochastic Integrals

1. Notations and definitions. By Adloc, Vd, Md, Md
loc, Sdp , Sd we denote

the corresponding spaces of d-dimensional processes.
Let A ∈ Vd. There exist optional processes ai and an increasing càdlàg

(Ft)-adapted process F such that

Ai = Ai0 +
∫ ·

0

ais dFs. (6)

Consider the space

Lvar(A) =
{
H = (H1, . . . , Hd) : H is predictable and,

for any t � 0,
∫ t

0

|Hs · as| dFs <∞ a.s.
}
,

where Hs ·as :=
∑d
i=1H

i
sa
i
s. Note that Lvar(A) does not depend on the choice

of ai and F that satisfy (6). For H ∈ Lvar(A), we set
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∫ ·

0

Hs dAs :=
∫ ·

0

Hs · as dFs.

This is a process with finite variation.
LetM ∈Md

loc. There exist optional processes πij and an increasing càdlàg
(Ft)-adapted process F such that

[M i,M j] =
∫ ·

0

πijs dFs. (7)

Consider the space

L1
loc(M) =

{
H = (H1, . . . , Hd) : H is predictable

and
(∫ ·

0

Hs · πs ·Hs dFs

)1/2
∈ Aloc

}
,

where Hs · πs · Hs :=
∑d
i,j=1H

i
sπ
ij
s H

j
s . Note that L1

loc(M) does not depend
on the choice of πij and F that satisfy (7). For H ∈ L1

loc(M), one can define
the stochastic integral

∫ ·
0 Hs dMs by the approximation procedure (see [19;

Section 3]). This process is a local martingale.

Definition 3.1. Let X ∈ Sd. A process H is X-integrable if there exists
a decomposition X = A + M with A ∈ Vd, M ∈ Md

loc such that H ∈
Lvar(A) ∩ L1

loc(M). In this case
∫ ·

0

Hs dXs :=
∫ ·

0

Hs dAs +
∫ ·

0

Hs dMs.

The space of X-integrable processes is denoted by L(X).

For the proof of the correctness of this definition and for the basic prop-
erties of stochastic integrals, see [19].

2. Predictable criterion for the integrability. Let X ∈ Sd and (B,C, ν)
be the characteristics of X with respect to the truncation function xI(|x| � 1)
(for the definition, see [10; Ch. II, §2a]). There exist predictable processes bi,
cij , a transition kernel K from (Ω × R+,P) (here P denotes the predictable
σ-field) to (Rd,B(Rd)), and an increasing predictable càdlàg process F such
that

Bi =
∫ ·

0

bis dFs, Cij =
∫ ·

0

cijs dFs, ν(ω, dt, dx) = K(ω, t, dx) dFt(ω) (8)

(see [10; Ch. II, Proposition 2.9]).
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Theorem 3.2. Let H be a d-dimensional predictable process. Set

ϕt(H) =
∣∣∣∣Ht·bt+

∫

R

Ht·x
(
I(|x| > 1, |Ht·x| � 1)−I(|x| � 1, |Ht·x| > 1)

)
Kt(dx)

∣∣∣∣
+Ht · ct ·Ht +

∫

R

1 ∧ (Ht · x)2Kt(dx), t � 0. (9)

Then H ∈ L(X) if and only if

∀t � 0,
∫ t

0

ϕs(H) dFs <∞ a.s. (10)

The following two statements will be used in the proof.

Proposition 3.3. Let X ∈ Sdp and X = X0 + A + M be the canonical
decomposition of X. Let H ∈ L(X). Then

∫ ·
0
Hs dXs ∈ Sp if and only if

H ∈ Lvar(A) ∩ L1
loc(M). In this case

∫ ·

0

Hs dXs =
∫ ·

0

Hs dAs +
∫ ·

0

Hs dMs

is the canonical decomposition of
∫ ·
0 Hs dXs.

For the proof, see [9; Proposition 2].

Lemma 3.4. Let µ be the jump measure of X and W = W (ω, t, x) be a
nonnegative bounded P × B(R)-measurable function. Then (W ∗ µ)∞ < ∞
a.s. if and only if (W ∗ ν)∞ <∞ a.s.

This statement is a direct consequence of the definition of the compensator
(see [10; Ch. II, §1a]).

Remark. It follows from Lemma 3.4 that

∀t � 0,
∫ t

0

∫

R

|Hs · x|I(|x| > 1, |Hs · x| � 1)Ks(dx) dFs <∞ a.s. (11)

Hence, the process ϕ(H) in (10) can be replaced by a simpler process

ψt(H) =
∣∣∣∣Ht · bt −

∫

R

Ht · x I(|x| � 1, |Ht · x| > 1)Kt(dx)
∣∣∣∣

+Ht · ct ·Ht +
∫

R

1 ∧ (Ht · x)2Kt(dx), t � 0.

We formulate Theorem 3.2 with the process ϕ(H) and not with ψ(H) in
order to achieve symmetry with the predictable criterion for integrability up
to infinity (Theorem 4.5), where one can use only ϕ(H).

Proof of Theorem 3.2. The “only if” part. Let Y =
∫ ·
0 Hs dXs. Consider the

set D = {(ω, t) : |∆Xt(ω)| > 1 or |Ht(ω) · ∆Xt(ω)| > 1}. Then D is a.s.
discrete, and therefore, the processes
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X̂ i =
∫ ·

0

ID dX is, X̃ i = X i − X̂ i,

Ŷ =
∫ ·

0

ID dYs, Ỹ = Y − Ŷ

are well defined. Obviously, H ∈ Lvar(X̂) ⊆ L(X̂). It follows from the
equality ∆Y = H · ∆X that

∫ ·
0
Hs dX̂s = Ŷ . By linearity, H ∈ L(X̃) and∫ ·

0
Hs dX̃s = Ỹ .
Let µ denote the jump measure of X and Xc be the continuous martingale

part of X . We have

X = X0 + xI(|x| > 1) ∗ µ+B + xI(|x| � 1) ∗ (µ− ν) +Xc

(see [10; Ch. II, Theorem 2.34]). Then

X̃ = X0 − xI(|x| � 1, |H · x| > 1) ∗ µ+B + xI(|x| � 1) ∗ (µ− ν) +Xc

= X0 + Ã+ M̃, (12)

where

Ã = B − xI(|x| � 1, |H · x| > 1) ∗ ν, (13)

M̃ = xI(|x| � 1, |H · x| � 1) ∗ (µ− ν) +Xc. (14)

The process Ã is predictable, and therefore, the decomposition X̃ = X0 + Ã+
M̃ is the canonical decomposition of X̃. By Proposition 3.3, H ∈ Lvar(Ã) ∩
L1

loc(M̃).
The inclusion H ∈ Lvar(Ã) means that

∀t � 0,
∫ t

0

∣∣∣Hs · bs −
∫

R

Hs · x I(|x| � 1, |Hs · x| > 1)Ks(dx)
∣∣∣ dFs <∞ a.s.

(15)
Note that the continuous martingale part of M̃ is Xc. Consequently,

[M̃ i, M̃ j] =
∑

s�·
∆M̃ i

s∆M̃
j
s +

∫ ·

0

cijs dFs (16)

(see [10; Ch. I, Theorem 4.52]). Now, the inclusion H ∈ L1
loc(M̃) implies that

∀t � 0,
∫ t

0

Hs · cs ·Hs dFs <∞ a.s. (17)

We have

∀t � 0,
∑

s�t
(Hs ·∆Xs)2 =

∑

s�t
∆Y 2

s <∞ a.s.,
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and using Lemma 3.4, we obtain

∀t � 0,
∫ t

0

∫

R

1 ∧ (Hs · x)2Ks(dx) dFs <∞ a.s. (18)

Inequalities (11), (15), (17), and (18) taken together yield (10).
The “if” part. Combining condition (10) with Lemma 3.4, we get

∀t � 0,
∑

s�t
(Hs ·∆Xs)2 <∞ a.s. (19)

Hence, the set D introduced above is a.s. discrete. The processes X̂ and X̃
are well defined, and equalities (12)–(14) hold true.

Condition (10), combined with (11), implies (15), which means that
H ∈ Lvar(Ã).

It follows from (19) that

∀t � 0,
∑

s�t
(Hs ·∆X̃s)2 <∞ a.s.

The inclusion H ∈ Lvar(Ã) implies that

∀t � 0,
∑

s�t
|Hs ·∆Ãs| <∞ a.s.

Taking into account the equality ∆M̃ = ∆X̃ −∆Ã, we get

∀t � 0,
∑

s�t
(Hs ·∆M̃s)2 <∞ a.s.

Moreover, H · ∆Ã = p(H · ∆X̃) (see [10; Ch. I, §2d]), which implies that
|H ·∆Ã| � 1, and hence, |H ·∆M̃ | � 2. Consequently,

(∑

s�·
(Hs ·∆M̃s)2

)1/2
∈ Aloc.

This, combined with (16) and (17) (that is a consequence of (10)), yields the
inclusion H ∈ L1

loc(M̃).
As a result, H ∈ L(X̃). Since obviously H ∈ Lvar(X̂) ⊆ L(X̂), we get

H ∈ L(X). 	


Corollary 3.5. Let X be a one-dimensional continuous semimartingale with
canonical decomposition X = X0 + A + M . Then a predictable process H
belongs to L(X) if and only if

∀t � 0,
∫ t

0

|Hs|d(VarA)s +
∫ t

0

H2
sd〈M〉s <∞ a.s.
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3. Application to Lévy processes. Let X be a one-dimensional (Ft)-Lévy
process, i.e. X is an (Ft)-adapted Lévy process and, for any s � t, the in-
crement Xt − Xs is independent of Fs. The notation X ∼ (b, c, ν)h means
that

E eiλXt = exp
{
t

[
iλb − λ

2

2
c+

∫

R

(
eiλx − 1− iλh(x)

)
ν(dx)

]}
.

For more information on Lévy processes, see [18].
The following corollary of Theorem 3.2 completes the results of O. Kallen-

berg [12], [13], J. Kallsen and A.N. Shiryaev [15], J. Rosinski and W. Woy-
czynski [17].

Corollary 3.6. Let X be an α-stable (Ft)-Lévy process with the Lévy mea-
sure

ν(dx) =
(
m1I(x < 0)
|x|α+1

+
m2I(x > 0)
|x|α+1

)
dx.

Let H be a predictable process.
(i) Let α ∈ (0, 1) and X ∼ (b, 0, ν)0. Then H ∈ L(X) if and only if

∀t � 0, |b|
∫ t

0

|Hs| ds+ (m1 +m2)
∫ t

0

|Hs|α ds <∞ a.s.

(ii) Let α = 1 and X ∼ (b, 0, ν)h, where h(x) = xI(|x| � 1). Then
H ∈ L(X) if and only if

∀t � 0, (|b|+m1 +m2)
∫ t

0

|Hs| ds+ |m1 −m2|
∫ t

0

|Hs| ln |Hs| ds <∞ a.s.

(iii) Let α ∈ (1, 2) and X ∼ (b, 0, ν)x. Then H ∈ L(X) if and only if

∀t � 0, |b|
∫ t

0

|Hs| ds+ (m1 +m2)
∫ t

0

|Hs|α ds <∞ a.s.

(iv) Let α = 2 and X ∼ (b, c, 0). Then H ∈ L(X) if and only if

∀t � 0, |b|
∫ t

0

|Hs| ds+ c
∫ t

0

H2
s ds <∞ a.s.

Proof. The case α = 2 is obvious. Let us consider the case α ∈ (0, 2). The
semimartingale characteristics (B′, C′, ν′) of X with respect to the truncation
function xI(|x| � 1) are given by

B′t = b′t, C′t = 0, ν′(ω, dt, dx) = ν(dx) dt.

The value b′ is specified below. We have
∫

R

1 ∧ (Hx)2 ν(dx) =
2(m1 +m2)
α(2 − α)

|H |α, H ∈ R.
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In case (i), we have

b′ = b+
∫

R

xI(|x| � 1) ν(dx)

and

Hb′ +
∫

R

Hx
(
I(|x| > 1, |Hx| � 1)− I(|x| � 1, |Hx| > 1)

)
ν(dx)

= Hb+ sgnH
m2 −m1

1− α |H |α, H ∈ R.

In case (ii), we have b′ = b and

Hb′ +
∫

R

Hx
(
I(|x| > 1, |Hx| � 1)− I(|x| � 1, |Hx| > 1)

)
ν(dx)

= Hb+ (m1 −m2)H ln |H |, H ∈ R.

In case (iii), we have

b′ = b−
∫

R

xI(|x| > 1) ν(dx)

and

Hb′ +
∫

R

Hx
(
I(|x| > 1, |Hx| � 1)− I(|x| � 1, |Hx| > 1)

)
ν(dx)

= Hb+ sgnH
m2 −m1

1− α |H |α, H ∈ R.

The result now follows from Theorem 3.2. 	

Corollary 3.7. Let X be a nondegenerate strictly α-stable (Ft)-Lévy process.
Then a predictable process H belongs to L(X) if and only if

∀t � 0,
∫ t

0

|Hs|α ds <∞ a.s.

Corollary 3.8. Let X be an (Ft)-Lévy process, whose diffusion component
is not equal to zero. Then a predictable process H belongs to L(X) if and only
if

∀t � 0,
∫ t

0

H2
s ds <∞ a.s.

Proof. This statement follows from Theorem 3.2 and the estimates
∣∣∣∣
∫

R

Hx
(
I(|x| > 1, |Hx| � 1)− I(|x| � 1, |Hx| > 1)

)
ν(dx)

∣∣∣∣

�
∫

R

I(|x| > 1) ν(dx) +H2

∫

R

1 ∧ x2 ν(dx), H ∈ R,

∫

R

1 ∧ (Hx)2 ν(dx) � (1 ∨H2)
∫

R

1 ∧ x2 ν(dx), H ∈ R.
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4 Stochastic Integrals up to Infinity
and Improper Stochastic Integrals

1. Various definitions. Let A ∈ Vd and ai, F satisfy (6). Consider the space

Lvar, [0,∞)(A) =
{
H = (H1, . . . , Hd) : H is predictable

and
∫ ∞

0

|Hs · as| dFs <∞ a.s.
}
.

For H ∈ Lvar, [0,∞)(A), we set
∫ ∞

0

Hs dAs :=
∫ ∞

0

Hs · as dFs.

Let M ∈Md
loc and πij , F satisfy (7). Consider the space

L1
loc, [0,∞)(M) =

{
H = (H1, . . . , Hd) : H is predictable

and
(∫ ·

0

Hs · πs ·Hs dFs

)1/2
∈ Aloc, [0,∞)

}
.

For H ∈ L1
loc, [0,∞)(M), one can define

∫∞
0 Hs dMs by the approximation

procedure similarly to the definition of
∫ t
0 Hs dMs.

Definition 4.1. Let X ∈ Sd. We will say that a process H is X-integrable up
to infinity if there exists a decomposition X = A+M with A ∈ Vd,M ∈ Md

loc

such that H ∈ Lvar, [0,∞)(A) ∩ L1
loc, [0,∞)(M). In this case

∫ ∞

0

Hs dXs :=
∫ ∞

0

Hs dAs +
∫ ∞

0

Hs dMs.

The space ofX-integrable up to infinity processes will be denoted by L[0,∞)(X).

Remark. The above definition of
∫∞
0 Hs dXs is correct, i.e. it does not depend

on the choice of the decomposition X = A +M . Indeed, it follows from the
definition of

∫∞
0 Hs dAs and

∫∞
0 Hs dMs that

∫ ∞

0

Hs dXs = (a.s.) lim
t→∞

∫ t

0

Hs dXs. (20)

Theorem 4.2. Let X ∈ Sd. Then H ∈ L[0,∞)(X) if and only if H ∈ L(X)
and

∫ ·
0 Hs dXs ∈ S[0,∞).
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Proof. The “only if” part. The inclusion H ∈ Lvar, [0,∞)(A) implies that
H ∈ Lvar(A) and

∫ ·
0
Hs dAs ∈ V[0,∞) ⊂ S[0,∞). The inclusionH ∈ L1

loc, [0,∞)(M)
implies that H ∈ L1

loc(M),
∫ ·
0
Hs dMs ∈ Mloc, and

[∫ ·

0

Hs dMs

]1/2

=
(∫ ·

0

Hs · πs ·Hs dFs

)1/2
∈ Aloc, [0,∞)

(the equality here follows from [19; Lemma 4.18]). In view of Lemma 2.5,∫ ·
0 Hs dMs ∈ Mloc, [0,∞) ⊂ S[0,∞). As a result, H ∈ L(X) and

∫ ·
0 Hs dXs ∈

S[0,∞).
The “if” part. Proposition 2.6 and Lemma 2.7 combined together show

that one can find deterministic functions K1, . . . ,Kd such that, for each i,
Ki > 0, Ki ∈ L(X i) and Y i :=

∫ ·
0
(Kis)

−1 dX is ∈ S[0,∞). It follows from the
associativity property of stochastic integrals (see [19; Theorem 4.7]) that the
process J = (K1H1, . . . ,KdHd) belongs to L(Y ) and, for the process Z =∫ ·
0 Js dYs, we have Z =

∫ ·
0 Hs dXs ∈ S[0,∞). Set

Y t =

{
Y t

1−t
, t < 1,

Y∞, t = 1,
Zt =

{
Z t

1−t
, t < 1,

Z∞, t = 1,
J t =

{
J t

1−t
, t < 1,

0, t = 1.

Let us prove that J ∈ L(Y ). It will suffice to verify (see [19; Lemma 4.13])
that, for any sequences an < bn with an → ∞ and any sequence (G

n
) of

one-dimensional (F t)-predictable processes with |Gn| � 1 (here (F t) is the
filtration given by (4)), we have

∫ 1−1/n

0

G
n

s JsI(an < |Js| � bn)dY s
P−−−−→

n→∞
0. (21)

We can write
∫ 1−1/n

0

G
n

s JsI(an < |Js| � bn)dY s =
∫ n−1

0

GnsJsI(an < |Js| � bn) dYs

=
∫ n−1

0

Gns I(an < |Js| � bn) dZs =
∫ 1−1/n

0

G
n

s I(an < |Js| � bn)dZs,

where Gnt = G
n

t/1+t. Using the dominated convergence theorem for stochastic
integrals (see [10; Ch. I, Theorem 4.40]), we get (21).

Thus, J ∈ L(Y ), which means that there exists a decomposition Y =
B + N with B ∈ Vd(F t), N ∈ Md

loc(F t) such that J ∈ Lvar(B) ∩ L1
loc(N).

Then J ∈ Lvar, [0,∞)(B) ∩ L1
loc, [0,∞)(M), where Bt = Bt/1+t, Nt = N t/1+t.

Consequently, H ∈ Lvar, [0,∞)(A) ∩ L1
loc, [0,∞)(M), where

Ai =
∫ ·

0

Kis dBis, M i =
∫ ·

0

Kis dN is.
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Since X = X0 +A+M , the proof is completed. 	

Let us compare the notion of a stochastic integral up to infinity introduced

above with the notion of an improper stochastic integral introduced below.

Definition 4.3. Let X ∈ Sd. We will say that a process H is improperly
X-integrable if H ∈ L(X) and there exists a limit

(a.s.) lim
t→∞

∫ t

0

Hs dXs.

This limit is called the improper stochastic integral
∫∞
0
Hs dXs. The space of

improperly X-integrable processes will be denoted by Limp(X).

By the definition, Limp(X) ⊆ L(X). It follows from Theorem 4.2 and
equality (20) that L[0,∞)(X) ⊆ Limp(X) and the two definitions of

∫∞
0 Hs dXs

coincide for H ∈ L[0,∞)(X). The following example shows that these two in-
clusions are strict.

Example 4.4. Let Xt = t and Ht = h(t) be a measurable deterministic
function. Then

H ∈ L(X) ⇐⇒ h ∈ L,
H ∈ Limp(X) ⇐⇒ h ∈ Limp,

H ∈ L[0,∞)(X) ⇐⇒ h ∈ L[0,∞),

where the classes L, Limp, and L[0,∞) are defined in (1)–(3).

Proof. The first two statements follow from Theorem 3.2. The third statement
is a consequence of Theorem 4.5. 	


2. Predictable criterion for integrability up to infinity. The following
statement provides a description of L[0,∞)(X) that is “dual” to the description
of L(X) provided by Theorem 3.2. We use the notation from Subsection 3.2.

Theorem 4.5. Let H be a d-dimensional predictable process. Then H∈L[0,∞)(X)
if and only if ∫ ∞

0

ϕs(H) dFs <∞ a.s., (22)

where ϕ(H) is given by (9).

Proposition 4.6. Let H ∈ L(X). Then the characteristics (B̃, C̃, ν̃) of∫ ·
0 Hs dXs with respect to the truncation function xI(|x| � 1) are given by

B̃ =
∫ ·

0

(
Hs · bs +

∫

R

Hs · x
(
I(|x| > 1, |Hs · x| � 1)

− I(|x| � 1, |Hs · x| > 1)
)
Ks(dx)

)
dFs,

(23)



180 Alexander Cherny and Albert Shiryaev

C̃ =
∫ ·

0

Hs · cs ·Hs dFs, (24)

ν̃(ω, dt, dx) = K̃(ω, t, dx) dFt(ω), (25)

where K̃(ω, t, dx) is the image of K(ω, t, dx) under the map R
d % x �→ Ht(ω)·

x ∈ R and b, c, K, F satisfy (8).

For the proof, see [15; Lemma 3].

Proof of Theorem 4.5. The “only if” part. The process Y =
∫ ·
0HsdXs is a

semimartingale up to infinity. Hence, the process

Ỹ = Y −
∑

s�·
∆YsI(|∆Ys| > 1) (26)

is also a semimartingale up to infinity. Since Ỹ has bounded jumps, it belongs
to Sp, [0,∞), and therefore, its canonical decomposition Ỹ = B̃ + Ñ satisfies
B̃ ∈ V[0,∞), Ñ ∈Mloc, [0,∞).

The process B̃ is given by (23). The inclusion B̃ ∈ V[0,∞) means that
∫ ∞

0

∣∣∣Hs · bs +
∫

R

Hs · x
(
I(|x| > 1, |Hs · x| � 1)

− I(|x| � 1, |Hs · x| > 1)
)
Ks(dx)

∣∣∣ dFs <∞ a.s.
(27)

The inclusion Ñ ∈ Mloc, [0,∞) implies that [Ñ ]∞ < ∞ a.s. Therefore,
〈Ñ c〉 < ∞ a.s. (see [10; Ch. I, Theorem 4.52]). In view of (24), this means
that ∫ ∞

0

Hs · cs ·Hs dFs <∞ a.s. (28)

We have ∑

s�0

(Hs ·∆Xs)2 =
∑

s�0

∆Y 2
s <∞ a.s.,

and using Lemma 3.4, we obtain
∫ ∞

0

∫

R

1 ∧ (Hs · x)2Ks(dx) dFs <∞ a.s. (29)

Inequalities (27)–(29) taken together yield (22).
The ”if” part. It follows from Theorem 3.2 that H ∈ L(X). Set Y =∫ ·

0 Hs dXs and define Ỹ by (26). The process B̃ in the canonical decomposition
Ỹ = B̃ + Ñ is given by (23).

Condition (22) implies (27), which means that B̃ ∈ V[0,∞).
Combining condition (22) with Lemma 3.4, we get
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∑

s�0

∆Ỹ 2
s =

∑

s�0

(Hs ·∆Xs)2I(|Hs ·∆Xs| � 1) <∞ a.s.

The inclusion B̃ ∈ V[0,∞) implies that

∑

s�0

|∆B̃s| <∞ a.s.

Taking into account the equality ∆Ñ = ∆Ỹ −∆B̃, we get
∑

s�0

∆Ñ2
s <∞ a.s.

Since |∆Ñ | � 2 (see [10; Ch. I, Lemma 4.24]), we have

(∑

s�·
∆Ñ2

s

)1/2
∈ Aloc, [0,∞).

In view of (24),

〈Ñ c〉∞ =
∫ ∞

0

Hs · cs ·Hs dFs <∞ a.s.

Thus, [Ñ ]1/2 ∈ Aloc, [0,∞). By Lemma 2.5, Ñ ∈Mloc, [0,∞).
As a result, Ỹ ∈S[0,∞). Moreover, condition (22), together with Lemma 3.4,

implies that
∑

s�0

I(|∆Ys| > 1) =
∑

s�0

I(|Hs ·∆Xs| > 1) <∞ a.s.

Hence, Y ∈ S[0,∞). By Theorem 4.2, H ∈ L[0,∞)(X). 	


Corollary 4.7. Let X be a one-dimensional continuous semimartingale with
canonical decomposition X = X0 + A + M . Then a predictable process H
belongs to L[0,∞)(X) if and only if

∫ ∞

0

|Hs|d(VarA)s +
∫ ∞

0

H2
sd〈M〉s <∞ a.s.

3. The application to Lévy processes. The following statement is “dual”
to Corollary 3.6.

Corollary 4.8. Let X be an α-stable (Ft)-Lévy process with the Lévy mea-
sure

ν(dx) =
(
m1I(x < 0)
|x|α+1

+
m2I(x > 0)
|x|α+1

)
dx.
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Let H be a predictable process.
(i) Let α ∈ (0, 1) and X ∼ (b, 0, ν)0. Then H ∈ L[0,∞)(X) if and only if

|b|
∫ ∞

0

|Hs| ds+ (m1 +m2)
∫ ∞

0

|Hs|α ds <∞ a.s.

(ii) Let α = 1 and X ∼ (b, 0, ν)h, where h(x) = xI(|x| � 1). Then
H ∈ L[0,∞)(X) if and only if

(|b|+m1 +m2)
∫ ∞

0

|Hs| ds+ |m1 −m2|
∫ ∞

0

|Hs| ln |Hs| ds <∞ a.s.

(iii) Let α ∈ (1, 2) and X ∼ (b, 0, ν)x. Then H ∈ L[0,∞)(X) if and only if

|b|
∫ ∞

0

|Hs| ds+ (m1 +m2)
∫ ∞

0

|Hs|α ds <∞ a.s.

(iv) Let α = 2 and X ∼ (b, c, 0). Then H ∈ L[0,∞)(X) if and only if

|b|
∫ ∞

0

|Hs| ds+ c
∫ ∞

0

H2
s ds <∞ a.s.

The proof is similar to the proof of Corollary 3.6.

Corollary 4.9. Let X be a nondegenerate strictly α-stable (Ft)-Lévy process.
Then a predictable process H belongs to L[0,∞)(X) if and only if

∫ ∞

0

|Hs|α ds <∞ a.s.

5 Application to Mathematical Finance

1. Fundamental Theorems of Asset Pricing. Let
(
Ω,F , (Ft)t�0,P; (Xt)t�0

)

be a model of a financial market. Here X is a multidimensional (Ft)-
semimartingale. From the financial point of view, X is the discounted price
process of several assets. Recall that a strategy is a pair (x,H), where x ∈ R

and H ∈ L(X). The discounted capital of this strategy is x+
∫ ·
0
Hs dXs.

The following notion was introduced by F. Delbaen and W. Schacher-
mayer [4]. We formulate it using the notion of an improper stochastic integral
introduced above (see Definition 4.3).

Definition 5.1. A sequence of strategies (xn, Hn) realizes free lunch with
vanishing risk if
(i) for each n, xn = 0;
(ii) for each n, there exists an ∈ R such that

∫ ·
0
Hns dXs � an a.s.;

(iii) for each n, Hn ∈ Limp(X);
(iv) for each n,

∫∞
0 Hns dXs � − 1

n a.s.;
(v) there exists δ > 0 such that, for each n, P

(∫∞
0 Hns dXs > δ

)
> δ.

A model satisfies the no free lunch with vanishing risk condition if such a
sequence of strategies does not exist. Notation: (NFLVR) .
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Recall that a one-dimensional process X is called a σ-martingale if there
exists a sequence of predictable sets (Dn) such that Dn ⊆ Dn+1,

⋃
nDn =

Ω × R+ and, for any n, the process
∫ ·
0
IDn dXs is a uniformly integrable

martingale. For more information on σ-martingales, see [3], [6], [7], [10; Ch. III,
§6e], [14], [19]. A multidimensional process X is called a σ-martingale if each
its component is a σ-martingale. The space of d-dimensional σ-martingales is
denoted by Md

σ.

Proposition 5.2. (First Fundamental Theorem of Asset Pricing).
A model satisfies the (NFLVR) condition if and only if there exists an equiv-
alent σ-martingale measure, i.e. a measure Q ∼ P such that X ∈Md

σ(Ft,Q).

This theorem was proved by F. Delbaen and W. Schachermayer [5] (com-
pare with Yu.M. Kabanov [11]).

Definition 5.3. A model is complete if for any bounded F -measurable func-
tion f , there exists a strategy (x,H) such that
(i) there exist constants a, b such that a �

∫ ·
0
Hs dXs � b a.s.;

(ii) H ∈ Limp(X);
(iii) f = x+

∫∞
0
Hs dXs a.s.

Proposition 5.4. (Second Fundamental Theorem of Asset Pricing).
Suppose that a model satisfies the (NFLVR) condition. Then it satisfies the
completeness condition if and only if the equivalent σ-martingale measure is
unique.

This statement follows from [5; Theorem 5.14]. It can also be derived from [1]
or [8; Théorème 11.2]. An explicit proof of the Second Fundamental Theorem
of Asset Pricing in this form can be found in [19].

2. Stochastic integrals up to infinity in the Fundamental Theorems
of Asset Pricing. If condition (iii) of Definition 5.1 and condition (ii) of
Definition 5.3 are replaced by the conditions
(iii)’ for each n, Hn ∈ L[0,∞)(X),
(ii)’ H ∈ L[0,∞)(X),
respectively, then new versions of the (NFLVR) and of the completeness are
obtained. We assert that the First and the Second Fundamental Theorems of
Asset Pricing remain valid with these new versions of the (NFLVR) and of
the completeness.

Theorem 5.5. A model satisfies the (NFLVR) condition with the stochastic
integrals up to infinity if and only if there exists an equivalent σ-martingale
measure.

Theorem 5.6. Suppose that a model satisfies the (NFLVR) condition with
the stochastic integrals up to infinity. Then it satisfies the completeness con-
dition with the stochastic integrals up to infinity if and only if the equivalent
σ-martingale measure is unique.
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Proof of Theorems 5.5, 5.6. It follows from Proposition 2.6 and Lemma 2.7
that there exist deterministic functions K1, . . . ,Kd such that, for each i,
Ki > 0, Ki ∈ L(X i) and Y i :=

∫ ·
0
(Kis)

−1 dX is ∈ S[0,∞). Set

Y t =

{
Y t

1−t
, t < 1,

Y∞, t � 1,
F t =

{
F t

1−t
, t < 1,

F , t � 1.

Then each of the following conditions
(NFLVR) with the stochastic integrals up to infinity;
existence of an equivalent σ-martingale measure;
completeness with the stochastic integrals up to infinity;
uniqueness of an equivalent σ-martingale measure

holds or does not hold for the following models simultaneously
(
Ω,F , (Ft)t�0,P; (Xt)t�0

)
,

(
Ω,F , (Ft)t�0,P; (Yt)t�0

)
,

(
Ω,F , (F t)t�0,P; (Y t)t�0

)
.

For the last of these models, the (NFLVR) and the completeness with the
stochastic integrals up to infinity are obviously equivalent to the (NFLVR)
and the completeness with the improper stochastic integrals. Now, the desired
result follows from Propositions 5.2, 5.4. 	


Remarks. (i) Theorem 5.5 shows that the existence of an equivalent σ-
martingale measure can be guaranteed by the condition weaker than (NFLVR).

(ii) The (NFLVR) condition and the completeness condition with the
stochastic integrals up to infinity are more convenient than the original ones
since we have a predictable description for integrability up to infinity, while
there seems to be no such description for improper integrability.
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Mathematics, 714 (1979), p. 1–539.
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17. J. Rosinski, W. Woyczynski. On Itô stochastic integration with respect to p-
stable motion: inner clock, integrability of sample paths, double and multiple
integrals.// The Annals of Probability, 14 (1986), No. 1, p. 271–286.
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Summary. We discuss conditions of absence of arbitrage in the classical sense (the
“true” NA property) for the model given by a family of continuous value processes.
In particular, we obtain a criterion for the NA property in a market model with
countably many securities with continuous price processes. This result generalizes
the well-known criteria due to Levental–Skorohod and Delbaen–Schachermayer.

1 Introduction

In the paper [7] Levental and Skorohod proved a criterion for the absence
of arbitrage in a model of frictionless financial market with diffusion price
processes. In the publication [2] Delbaen and Schachermayer suggested a nec-
essary condition for the absence of arbitrage in a more general model where
the price process is a continuous Rd-valued semimartingale S: if the prop-
erty NA holds then there is a probability measure Q $ P such that S is a
local martingale with respect to Q. We analyze their proof and show that
the arguments allow to conclude that there exists Q with an extra property:
Q|F0 ∼ P |F0. Now let σ runs the set of all stopping times. Since the NA
property of S implies the NA property for each process I]σ,∞] ·S, this implies
the existence of local martingale measures σQ$ P for the processes I]σ,∞] ·S
such that σQ|Fσ ∼ P |Fσ. It turns out that this property is a necessary and
sufficient condition for NA, cf. with [9].

In this note we establish a necessary condition for the absence of arbi-
trage in the framework where the model is given by a set of value processes
and the price process even is not specified and the concept of the absolutely
continuous martingale measure is replaced by that of absolutely continuous
separating measure (ACSM). For the model with a continuous price process
S the latter is a local martingale measure. We use intensively ideas of Del-
baen and Schachermayer. In particular, we deduce the existence of ACSM
from a suitable criterion for the NFLVR property. In contrast to [2], we use
the fundamental theorem from [5] (a ramification of the corresponding result

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 186–194, 2005.
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from [1]) and make explicit the notion of supermartingale density as a su-
permartingale Y � 0 such that Y X + Y is supermartingale for every value
process X � −1. The suggested approach allows us to avoid vector integrals
and work exclusively with scalar processes and standard facts of stochastic
calculus.

As usual, the difficult part is “NA ⇒ . . . ”. For this we use Theorem 4
involving “technical” hypotheses. One of them, H, requires the existence of a
supermartingale density Y and a process X̄ � −1 coinciding locally, up to the
explosion time, with value processes and exploding on the set where Y hits
zero. For the model generated by a scalar continuous semimartingale S the
absence of immediate arbitrage (a property which is weaker than NA) implies
H (with X̄ = Y −1− 1). This can be easily verified following the same lines as
in [2] (for the reader’s convenience we provide a proof of Theorem 5 which is
version of Theorem 3.7 from [2]).

The passage to the multidimensional case reveals an advantage to formu-
late the conditions of Theorem 4 in terms of value processes. If the latter are
generated by a finite or countable family of scalar continuous semimartingales
{Si} with orthogonal martingale components, then a required supermartin-
gale density can be assembled from the semimartingale densities constructed
individually for each Si. An orthogonalization procedure reduces the general
case to the considered above. In this way we obtain a NA criterion for the
model spanned by countably many securities. This result seems to be of inter-
est for bond market models where the prices of zero coupon bonds are driven
by countably many Wiener processes.

Notice that in our definition the set of value processes corresponding to the
family {Si} is the closed linear space generated by the integrals with respect
to each Si. That is why we are not concerned by the particular structure of
this space, i.e., by the question whether this is the space of vector integrals.
The positive answer to this question is well-known for stock markets but for
bond markets (with a continuum of securities) a suitable integration theory
is still not available.

2 Preliminaries and general results

In our setting a stochastic basis (Ω,F ,F, P ) satisfying the usual conditions
as well as a finite time horizon T are fixed. For the notational convenience we
extend the filtration and all processes stationary after the date T .

To work comfortably within the standard framework of stochastic calculus
under a measure P̃ $ P we shall consider the “customized” stochastic basis
(Ω, F̃ , F̃, P ) where F̃ which is a P̃ -completion of F and the filtration F̃ is
formed by the σ-algebras F̃t generated by Ft and the P̃ -null sets. For any
ξ ∈ F̃t there is ξ′ ∈ Ft different from ξ only on a P̃ -null set. With this
remark the right-continuity of the new filtration is obvious. The processes
ξI[t,∞[ and ξ′I[t,∞[ coincide P̃ -a.s. The monotone class argument implies that
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for any F̃-predictable process H there exists a F-predictable process H ′ which
is P̃ -indistinguishable from H , see details in [4].

We denote by S = S(P ) the linear space of scalar semimartingales starting
from zero equipped with the Émery topology, generated, e.g., by the quasi-
norm D(X) = supH E|H · XT | ∧ 1 where sup is taken over all predictable
processes H with |H | � 1.

Let X ⊆ S be a convex set of bounded from below semimartingales stable
under the concatenation in the following sense: for any X1, X2 ∈ X and any
bounded predictable processes H1, H2 with H1H2 = 0, the sum of stochastic
integralsH1 ·X1+H2 ·X2, if bounded from below, belongs to X . Obviously, X
is a cone. For any X ∈ X and any stopping time τ the process Xτ = I[0,τ ] ·X
belongs to X .

In the context of financial modeling the elements of X are interpreted as
value processes; those for which 0 � XT �= 0 are called arbitrage opportunities.
Let X a := {X ∈ X : X � −a}. We introduce the sets of attainable “gains”
or “results” R := {XT : X ∈ X} and Ra := {XT : X ∈ X a} and define
also C := (R − L0

+) ∩ L∞, the set of claims hedgeable from the zero initial
endowment.

The NA property of X means that R ∩ L0
+ = {0} (or C ∩ L∞+ = {0}).

A stronger property, NFLVR (no free lunch with vanishing risk), means that
C̄ ∩L∞+ = {0} where C̄ is the norm closure of C in L∞. There is the following
simple assertion relating them (Lemma 2.2 in [5] which proof is the same as
of the corresponding result in [1]).

Lemma 1. NFLVR holds iff NA holds and R1 is bounded in L0.

Remark 1. Note that R0 is a cone in R1. If R1 is bounded in L0, then nec-
essarily R0 = {0} and for any arbitrage opportunity X ′ there are t < T and
ε > 0 such that the set Γ := {X ′t � −ε} is non-null. In this case the process
X := IΓ×]t,∞[ ·X ′ is an arbitrage opportunity with

{XT > 0} = {XT � ε} = Γ ∈ Ft.

We say that X admits an equivalent separating measure (briefly: the ESM
property holds) if there exists P̃ ∼ P such that ẼXT � 0 for all X ∈ X .

Now we recall also one of the central (and difficult) results of the theory in
the abstract formulation of [5], Th. 1.1 and 1.2 (cf. with that of the original
paper [1] where the value processes are stochastic integrals).

Theorem 2. Suppose that X 1 is closed in S. Then NFLVR holds iff ESM
holds.

We say that a supermartingale Y � 0 with EY0 = 1 is a supermartingale
density if Y (X + 1) is a supermartingale for each X ∈ X 1.

The following statement indicates that criteria for the NA property can
be obtained from those for the NFLVR.
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Lemma 3. Let Y be a supermartingale density such that YT > 0 P̃ -a.s. where
P̃ $ P . Then the set R1 is bounded in L0(P̃ ).

Proof. Let X ∈ X 1. Since EY (X + 1) � 1, the set

YTR
1 := {YTXT : X ∈ X 1}

is bounded in L1(P ), hence, it is bounded in L0(P ). The absolute continuous
change of measure as well as the multiplication by a finite random variable
preserve the boundedness in probability. Thus, the set R1 = Y −1

T (YTR1) is
bounded in L0(P̃ ). 	


We need the following condition.

H. There exist a supermartingale density Y and a càdlàg process X̄ with
values in [−1,∞], having ∞ as an absorbing state, and such that X̄θn ∈ X 1

for every stopping time θn := inf{t : X̄t � n} and {X̄T <∞} ⊆ {YT > 0} a.s.

Theorem 4. Suppose that X 1 is closed in S and the hypothesis H is satisfied.
If NA holds then there exists an ACSM Q such that Q|F0 ∼ P |F0.

Proof. Clearly, c := P (X̄T <∞) > 0 (otherwise X̄θ1 violates NA) and we can
define the martingale Zt := c−1E(I{X̄T<∞}|Ft) and the probability measure
P̃ := ZTP , the trace of P on {X̄T <∞}.

The NA property implies that I{Z>0} � I{X̄<∞}, i.e. Z does not hit zero
before the explosion of X̄ . Indeed, in the opposite case

BNt :=
{
sup
s�t

X̄s � N, Zt = 0
}

is not a null-set for some t < T and N < ∞. Since zero is the absorbing
point for Z, BNt ⊆ {ZT = 0} = {X̄T =∞} (a.s.). The process IBN

t ×]0,∞[ · X̄ ,
bounded from below by −N − 1, is nontrivial only on BNt where it explodes.
This violates the NA.

In particular, Zθn > 0, i.e. P̃ |Fθn ∼ P |Fθn . Since P̃ (X̄T < ∞) = 1, the
assumed existence of a supermartingale density ensures the boundedness of
R1 in L0(P̃ ).

Let X̃ 1 be the closure of X 1 in S(P̃ ) and let X̃ := cone X̃ 1. Recall that the
elements of S(P̃ ), a space over the stochastic basis (Ω, F̃ , F̃, P̃ ), are, in fact,
not processes but classes of equivalence. Notice that for any X̃ ∈ X̃ 1 there is
a process X such that Xθn ∈ X 1 and X̃θn = Xθn P̃ -a.s. for every n.

One can verify that X̃ is stable under concatenation.
From the definition of the Emery topology it follows that the set R̃1 formed

by the terminal values of processes from X̃ 1 is a part of the closure of R1 in
L0(P̃ ) and, hence, R̃1 is bounded in this space.

If the set X̃ does not satisfy NA under P̃ , we can find, according to Re-
mark 1, a process X = IΓ×]t,T ] ·X ∈ X̃ 1 such that the set Γ ∈ F̃t, P̃ (Γ ) > 0,
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and {XT � ε} = Γ P̃ -a.s. Choosing appropriate representatives we may as-
sume without loss of generality that Γ ∈ Ft and Xθn ∈ X 1 for every n. On
the stochastic interval [0, θ| the process X̄ε := H · X̄ with

H := (ε/2)(2 + X̄t)−1IΓ×]t,T [

is well-defined. On [0, θ| the process X + X̄ε � −1 − ε/2; at θ it explodes to
infinity in a continuous way on the set Γ ∩ {θ � T } and has a finite positive
limit bigger than ε/2 on the set Γ ∩{θ > T }. Since P (Γ ) > 0, an appropriate
stopping yields a process in X which is an arbitrage opportunity. The obtained
contradiction shows that X̃ under P̃ satisfies NA and, by virtue of Lemma 1,
also the property NFLVR.

The result follows because by Theorem 2 there exists a measure Q ∼ P̃
separating K̃ and L0

+(P̃ ). 	


3 Semimartingales with the structure property

By definition, the structure property of X ∈ S means that X = M + h · 〈M〉
where M ∈M2

loc and h is a predictable process such that |h| · 〈M〉T <∞.
The next result is a version of Theorem 3.7 from [2] and its proof is given

for the reader’s convenience.

Theorem 5. Let X be a continuous semimartingale with the structure prop-
erty. Then there exists an integrand H such that H ·X � 0 and

{H ·Xt > 0 ∀t ∈ ]0, T ]} = {h2 · 〈M〉0+ = ∞}.

Proof. Without loss of generality we may assume that Γ := {h2 ·〈M〉0+ =∞}
is of full measure (replacing, if necessary, P by its trace on Γ ). With this
assumption the main ingredient of the proof is the following assertion:

Lemma 6. Suppose that h2 · 〈M〉0+ = ∞ a.s. Then for any ε > 0, η ∈ ]0, 1]
there exist δ > 0 arbitrarily close to zero and a bounded integrand H = HI]δ,ε]
such that

(i) H ·X � −1;
(ii) |Hh| · 〈M〉T +H2 · 〈M〉T < 3;
(iii) P (H ·XT � 1) � η.

Proof. Let R = 32/η. Since h2 · 〈M〉0+ = ∞, for sufficiently small δ

P (h2I]δ,ε]I{|h|�1/δ} · 〈M〉T � R) � 1− η/2.

Let
τ := inf{t � 0 : h2I]δ,ε]I{|h|�1/δ} · 〈M〉t � R} ∧ ε.
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For the integrand H̃ := 2R−1hI]δ,τ ]I{|h|�1/δ} we have that |H̃h| · 〈M〉T � 2
with P (|H̃h| · 〈M〉T < 2) � η/2. Also,

H̃2 · 〈M〉T � 4R−1 < 1

and, by the Chebyshev and Doob inequalities,

P
(
sup
s�T

|H̃ ·Ms| � 1
)

� 4E(H̃ ·MT )2 = 4EH̃2 · 〈M〉T � 16R−1 � η/2.

Thus, P (τ1 � T ) � η/2 for the stopping time τ1 := inf{t � 0 : H̃ ·Mt � −1}.
The integrand H := H̃I[0,τ1] obviously meets the requirements (i) and (ii). At
last, because of the inclusion {H ·XT � 1, τ1 > T } ⊆ {|Hh| · 〈M〉T < 2}, we
obtain that

P (H ·XT � 1) = P (H ·XT � 1, τ1 � T )+P (H ·XT � 1, τ1 > T ) � η/2+η/2

and (iii) holds. 	


Using this lemma, we construct, starting, e.g., with ε0 = T , a sequence of
positive numbers εn ↓ 0 and a sequence of integrands Hn = HnI]εn+1,εn] such
that the conditions (i) – (iii) hold with ηn = 2−n. The properties (i) and (ii)
ensure that the process G :=

∑
n 3−nHn is integrable and G · X is bounded

from below. By the Borel–Cantelli lemma for every ω outside a null set there
is n0(ω) such that Hk ·Xεk

(ω) > 1 for all k > n0(ω). For t ∈ ]εn+1, εn] and
any n > n0(ω) we have

G·Xt(ω) =
∑

k>n

3−kHk ·Xεk
(ω)+3−nHn ·Xt(ω) �

∑

k>n

3−k−3−n =
1
2
3−n > 0.

Thus, σ := inf{t > 0 : G ·Xt = 0} > 0 a.s. It follows that for the integrand
H :=

∑
2−nI[0,σ∧n−1]G the process H ·X is strictly positive on ]0, T ]. 	


4 Models based on a continuous price process

Let S be a continuous Rd-valued semimartingale, L(S) be the set of pre-
dictable processes integrable with respect to S, and A be the set of integrands
H for which the process H · S is bounded from below.

We consider the model where X = X (S) := {H · S : H ∈ A}. Mémin’s
theorem [8] says that {H · S, H ∈ L(S)} is a closed subspace of S. It follows
immediately that X 1 is also closed.

First, we look at the case d = 1. Replacing, if necessary, the generating
process by a suitable integral, we may assume without loss of generality that S
is a bounded continuous semimartingale starting from zero (hence, an element
of X ) and even that in its canonical decomposition S = M+A the martingale
M and total variation of the predictable process A are both bounded.

Recall the following simple fact:
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Lemma 7. Suppose that R0 = {0}. Then S = M +A with A = h · 〈M〉.

Proof. If the claim fails, we can find, using the Lebesgue decomposition, a
predictable process H = H2 for which H · 〈M〉 = 0 and H · VarAT �= 0. Let
the process G be defined as the sign of the (predictable) process dA/d Var A.
Since (GH) · S = H · VarA, we obtain a contradiction with the assumption
that R0 = {0}. 	


The assumption R0 = {0} (no immediate arbitrage in the terminology
of [2]) implies, by Theorem 5, that h2·〈M〉0+ is finite as well as h2I]σ,∞[·〈M〉σ+
whatever is the stopping time σ (by the same theorem applied to the process
S.+σ − Sσ adapted to the shifted filtration (Ft+σ)). Put

τ := inf{t � 0 : h2 · 〈M〉t = ∞},
τn := inf{t � 0 : h2 · 〈M〉t � n}.

It follows that h2 · 〈M〉τ− = ∞ (a.s.) on the set {τ � T } (i.e. no jump to
infinity). This allows us to define the process

Y := e−h·M−(1/2)h2·〈M〉I[0,τ [.

It follows from the law of large numbers for continuous local martingales
(see Remark 2 below) that {Yτ− = 0} = {h2 · 〈M〉τ = ∞} a.s., i.e. Y hits
zero not by a jump. For every stopping time τn the stochastic exponential
Y τn = E(−h ·M τn) is a positive martingale and, hence, by the Fatou lemma,
Y τ = Y is a supermartingale. By the Ito formula

Y τn(H · Sτn) = Y τn · (H ·M τn) + (H · Sτn) · Y τn

Thus, for any X ∈ X 1 the process Y τn(Xτn + 1) is a local martingale and,
again by the Fatou lemma, Y τ (Xτ + 1) = Y (X + 1) is a supermartingale.

At last, put X̄ = Y −1 − 1. Then {YT = 0} = {X̄T = ∞} and by the Ito
formula

X̄θn = I[0,θn]Y
−1h · S.

Summarizing, we come to the following:

Proposition 8. Suppose that R0 = {0}. Then the condition H holds.

Remark 2. If N ∈Mc
loc and c > 0, then

{
lim
t→∞

(Nt − c〈N〉t)→ −∞
}

= {〈N〉∞ = ∞} a.s.,

see, e.g., [6], Lemma 6.5.6. The needed extension to the case where N τn ∈Mc

and τn → τ can be proved in the same way.
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Remark 3. Though we established the above proposition only for the case
d = 1, the extension of the arguments to the vector case when the com-
ponents Si = M i + Ai are such that 〈M i,M j〉 = 0, i �= j, is obvious:
consider Y = E(−

∑
i h
i · M i). But without loss of generality we may al-

ways assume that S satisfies this property. It is sufficient to notice that
X (S) = X (S̃) for some continuous semimartingale S̃ with orthogonal mar-
tingale components. This semimartingale can be constructed recursively.
Namely, suppose that the orthogonality holds up to the index n − 1. Let
Mn =

∑
i�n−1H

i ·M i + M̃n be the Kunita–Watanabe decomposition. One
can take S̃n = M̃n+An−

∑
i�n−1H

i ·Ai. Of course, to ensure the existence
of Hi · Ai it may be necessary to replace first Sn by G · Sn with a suitable
integrand G taking values in ]0, 1]. This orthogonalization procedure works
well also for a countable family {Si}i∈N. Moreover, we can find bounded S̃i

such that
∑
i S̃
i converges in S to a bounded semimartingale S̃.

Theorem 9. Suppose that X = X (S) where S is a continuous Rd-valued
semimartingale. Then the NA property holds iff for any stopping time σ there
exists a probability measure σQ$ P with σQ|Fσ ∼ P |Fσ such that the process
I]σ,∞] · S ∈Mc

loc(
σQ).

Proof. Necessity follows from Theorem 4 and Proposition 8 applied to the
process S.+σ − Sσ adapted to the shifted filtration (Ft+σ). As usual, the
sufficiency is almost obvious. Indeed, if the claim fails, there exists a bounded
process X ∈ X 1 such that for the stopping time σ := inf{t > 0 : Xt �= 0} we
have P (σ < T ) > 0. But then σX := I]σ,∞] ·X is in Mc(σQ) or, equivalently,
σXZ is a martingale with respect to P . It starts from zero and hence is
zero. The density process Z of σQ with respect to P is equal to one at σ
and, being right-continuous, remains strictly positive on a certain stochastic
interval on which σX should be zero. This contradicts to the assumption that
P (σ < T ) > 0. 	


Remark 4. Let B be a Brownian motion, σ := inf{t � 0 : Bt = −1}, and Zt =
1 + Bt∧σ. Take St = Bt − Bt∧σ +

√
(t− σ)+. Then StZt = 0 and, therefore,

S ∈ Mc
loc(P̃ ) where P̃ := ZTP . Nevertheless, according to Theorem 5 there

is an immediate arbitrage at σ.

In virtue of Remark 3 we obtain in the same way the following

Theorem 10. Suppose that X consists of all processes bounded from below
and belonging to the closed linear subspace of S generated by X (Si), i ∈ N,
where Si are continuous semimartingales. Then the NA property holds iff
for any stopping time σ there exists a probability measure σQ $ P with the
restriction σQ|Fσ ∼ P |Fσ such that I]σ,∞] · Si ∈Mc

loc(
σQ) for every i ∈ N.
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Information-equivalence:
On Filtrations Created by Independent

Increments

Hans Bühler

Technische Universität zu Berlin
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Summary. This article investigates filtrations created by the increments-processes
of processes with independent increments: Suppose two processes create the same
filtrations, when will the processes of their increments also create the same filtra-
tions?

Our main result is that the processes of increments of two extremal continuous
martingales with independent increments create the same filtrations if and only if
either process admits a deterministic representation with respect to the other.

1 Introduction

Let (Ω,A,P) be a probability space, X = (Xt)0�t�T a continuous process
with horizon T ∈ (0,∞] and F(X) := (Ft(X))t�T with Ft(X) := σ(Xs�t) the
filtration created by X (we will assume that all σ-algebras are complete and
that all filtrations are right-continuous). Note that we will use abbreviations
similar to Xa�t�b := (Xt)t∈[a,b] or σ(Xt�a − Xa) := σ(Xt − Xa; t � a)
throughout the article (a and b are fixed numbers). For convenience, we will
also assume that all processes in this article start at zero, i.e., X0 ≡ 0.

We denote by Xa = (Xat )t�T the increment-process of X at a, i.e.,

Xat := Xt∨a −Xa = Xt −Xt∧a.

Clearly, if X is a martingale, Xa is a martingale as well, adapted to both
F(X) and F(Xa).

Now, given two processes X and X̃ which create the same filtration, we
may ask how the increments of these processes are related to each other.

For example, assume that two standard Brownian motions B and B̃ create
the same filtration. If we take r ∈ (0, T ), since both Br and B̃r are independent
from Fr := Fr(B) = Fr(B̃), both σ(Br) ∩ Fr and σ(B̃r) ∩ Fr are trivial.

But, under which circumstances are σ(Br) and σ(B̃r) equal?
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Consider the following definition:

Definition 1 (Information-similarity and -equivalence). We call two
processes X = (Xt)t�T and X̃ = (X̃t)t�T

1. information-similar, if X0 and X̃0 create the same filtration, i.e.
F(X0) = F(X̃0), and

2. information-equivalent, if all their processes of increments are infor-
mation similar, i.e. F(Xa) = F(X̃a) holds for all a ∈ [0, T ].

Additionally, for I ⊂ [0, T ], we call X and X̃

3. information-semiequivalent (on I), if their processes of increments
are information-similar for each a ∈ I ∪ {0}, i.e., F(Xa) = F(X̃a).

In the sequel, wherever suitable, we will abbreviate information-similarity
by i-similarity and so forth. Moreover, we will sometimes write ii for “inde-
pendent increments”.

Let us now illustrate the preceding definition by the following example of
two Brownian motions, which are i-similar but not i-equivalent:
Assume that B is a standard Brownian motion, choose an r ∈ (0, T ) and set

B̃t :=
∫ t

0

hs dBs with ht := 1t�r + 1t>r · sgn−(Br) (1)

where we define sgn−(x) := 1x>0 − 1x�0.
It can be shown easily that B̃ is a Brownian motion and that B and B̃

create the same filtration. However, their increments at r do not:
Assume that σ(Br) = σ(B̃r) and set s− := sgn−(Br). By construction,

we have B̃rt = s− · Brt for all t > r, i.e., we can identify s− by using the
information of two random variables measurable with respect to σ(Br). But
s− is non-trivial and independent of σ(Br). Since this is impossible, neither
σ(Br) ⊆ σ(B̃r) nor σ(Br) ⊇ σ(B̃r).

Remark 1. In [2], Frank B. Knight calls two continuous processes X and
X̃ past-and-future equivalent if σ(Xs�t) = σ(X̃s�t) and σ(Xs�t) = σ(X̃s�t)
for all t ∈ [0, T ].

Assume X is Markov and that X̃t ∈ σ(Xs�t) ∩ σ(Xs�t). Then there are
measurable functions g and f such that X̃t = gt(Xs�t) = E[ft(Xs�t) |Xs�t] =
E[ft(Xs�t) |Xt] =: x̃t(Xt). Hence, two Markov-processes X and Y are past-
and-future equivalent, if and only if we have a.s. X̃t = x̃t(Xt) resp. Xt =
xt(X̃t) for two suitable sequences of measurable functions x and x̃ (compare
lemma 1 in [2], [5], p. 113 and, for further related topics, section 17.3).

Clearly, past-and-future-equivalence and information-equivalence are dif-
ferent concepts; in this article, we study the latter and focus on processes with
independent increments.



Information-equivalence 197

2 Equivalent Characterizations

Our first result shows that in case of processes with independent increments,
information-equivalence is closely related to the properties of the time-reversed
processes:

For a continuous ii-process M = (Mt)t�T with a finite time-horizon T ,
its reverse process M ′t := MT −MT−t is also a continuous ii-process (note
that the term reverse process is used differently in [2]). Then, given another
ii-process N = (Nt)t�T , we observe the following characterization:

Lemma 1. Two continuous ii-processes M and N are i-equivalent if and only
if both M and N and their time-reversed processes M ′ and N ′ are i-similar.

Proof. We first note that M and N are i-equivalent iff for all fixed a < b the
relation

σ(Mb −Ma�t�b) = σ(Nb −Na�t�b) (2)

holds. Therefore, ifM andN are i-equivalent,M ′ andN ′ are trivially i-similar.
Conversely, let us assume that M and N as well as their reverse processes

are i-similar. We will show that (2) holds:
First, we choose a and b with a < b � T and let N := σ(Na�t�b − Na).

Then, since M and N are i-similar, we have

N ⊂ σ(Na�t�b −Na; Nu�a) = σ(Ma�t�b −Ma; Mu�a).

On the other hand, because also M ′ and N ′ are i-similar,

N ⊂ σ(Na�t�T −Na) = σ(M ′t�T−a) = σ(Mb�u�T −Mb; Ma�t�b −Ma).

Since σ(Mt�a), σ(Ma�t�b −Ma) and σ(Mb�t�T −Mb) are independent this
yields that N ⊂ σ(Ma�t�b −Ma).

If we apply the same idea to σ(Ma�t�b −Ma), we find that M and N are
indeed i-equivalent by (2). 	


Lemma 1 gives us a simple tool to check whether, say, two Brownian
motions are i-equivalent. Indeed, remember our example of two Brownian
motions defined in (1). There, for any u ∈ (r, T ), we find

σ(B′t�T−u) = σ(BT −Bu�t�T )

�= σ
(
s− · (BT −Bu�t�T )

)

= σ
(
B̃T − B̃u�t�T

)
= σ

(
B̃′t�T−u

)
,

in correspondence with lemma 1.

Up to this point, M or N were general processes, not martingales. But
now we want to link i-equivalence to the predictable representation property
(PRP) of extremal martingales. What implication has information-equivalence
for the representation of N by M?
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Let F be a filtration,M a square-integrable martingale to F which starts at
zero and define L2(M,F) as the space of F-predictable PM -square-integrable
integrands (PM := P⊗d〈M〉, compare [3], p. 137). Then, M is said to have
the F-PRP (or M is F-extremal), iff for any other L2(F)-martingale N , there
exists a unique integrand H ∈ L2(M,F) such that

Nt = N0 +
∫ t

0

Hs dMs (3)

(if we omit F, we always refer to the filtration created by the process itself).

Remark 2. H is PM -a.e. not zero, if and only if N has the F-PRP. In that case,
we have Mt = M0 +

∫ t
0
H−1
s dNs with H−1

s := (1/Hs) · 1Hs �=0.

Proof. W.l.g. assume T < ∞. If H is PM -a.e. not zero and if dX = ξ dM ,
holds for a martingale X , then we have dX = ξ̄ dN for ξ̄ := (1/H) · 1H �=0 · ξ.

Conversely, if N is F(M)-extremal, consider the square-integrable F(M)-
martingale Xt :=

∫ t
0 1Hs=0 dMs. Then, there exists a unique K such that

Xt =
∫ t
0Ks dNs =

∫ t
0 KsHs dMs. Consequently, we find 〈X,X〉 =

∫
1Hs=0 ·

KsHs d〈M〉 ≡ 0, i.e., XT is zero and we get PM [H = 0] = E[X2
T ] = 0. 	


Remark 3. A continuous L2-martingale M with independent increments has
a deterministic bracket. In particular, M is Gaussian.

Recall that the bracket of a continuous martingale with independent in-
crements is deterministic, thus it is a time-changed Brownian motion and
therefore Gaussian.

From now on, assume that M and N are two continuous centered F(M)-
extremal L2-martingales and that M has independent increments (we do not
assert that N has independent increments nor that N creates the same filtra-
tion as M).

Then, our main theorem states:

Theorem 1. M and N are information-equivalent if and only if H is a.e.
deterministic, i.e. there is a version of H such that

PM [H �= H∗] = 0 for H∗t := E[Ht] (4)

(we set H∗t to zero if E[Ht ] does not exist).

Theorem 1 shows that for such processes the term “information-equival-
ence” is quite reasonable: Being i-equivalent implies that we can construct one
process from the other by applying a deterministic, i.e. foreseeable rule.

Note that this result once again yields that the Brownian motionsB andB′

as defined in (1) are not information-equivalent. An example for a Brownian
motion, which is not even information-similar (but still extremal) is Tanaka’s
example,

∫ t
0
sgn−(Bs) dBs (see [3], page 240).
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Before we prove our theorem, we need some lemmata.
The first one is a trivial characterization of information-similarity, but

nevertheless a convenient reference:

Lemma 2. The processes M and N are information-similar if and only if H
is also predictable with respect to the filtration F(N) created by N .

Proof. If H is F(N)-predictable, so is H−1. Therefore Mt =
∫ t
0
H−1
s dNs has

to be F(N)-adapted. The reverse assertion is also trivial. 	


Since M is Gaussian, its increments are also Gaussian and therefore ex-
tremal on their own filtration (proposition 4.11 in [3], p. 213):

Lemma 3. The process Ma is extremal on F(Ma) for all a ∈ [0, T ].

For our second process N we find:

Lemma 4. The process Na is adapted to F(Ma), iff it is F(Ma)-extremal.

Proof. First, assume that Na is adapted to F(Ma). Since Na is an F(Ma)-
martingale, we find an F(Ma)-predictable h such that dNa = h dMa. The
PM -uniqueness of H ∈ L2(M,F(M)) given dN = H dM yields that h is a
version of H |(a,T ]. Because N is extremal, it is a.s. not zero and we can write
dMa = h−1 dNa.

Reversely, if Na has the F(Ma)-PRP, we find dMa = h̄dNa for some
h̄ ∈ L2(Na,F(Ma)). The PN -uniqueness of dM = H−1 dN yields with the
usual arguments that dNa = h̄−1 dMa. 	


Note that we found that if Na is F(Ma)-extremal, we have dNa =
h̄−1 dMa for h̄ ∈ L2(Na,F(Ma)). Hence, independence of Ma and Fa(M)
shows that the increment Na is independent of Fa(N).

Summing up the previous results yields the following technical lemma
which we will use in the proof of theorem 1:

Lemma 5. The processes M and N are information-semiequivalent on I =
{t1, . . . , tn} for with 0 < t1 < · · · < tn < T if and only if H has an F(N)-
predictable version which can be written as

Ht =
n∑

k=0

Hkt · 1t∈(tk,tk+1] (5)

with t0 := 0 and tn+1 := T and where Hk is predictable w.r.t. F(M tk).

Let us point out that this representation means that for t ∈ (tk, tk+1],
the value Ht depends solely on the “information” provided by the increment
N tk i.e. M tk up to t. We could consider the points tk as “resets” where the
information carried by H until tk is thrown away.
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Proof. Assume first that M tk and N tk create the same filtrations for all k =
0, . . . , n − 1. Then, H is F(N)-predictable by lemma 2, and N tk is adapted
to F(M tk), on which M tk is extremal by lemma 3. The uniqueness of H
w.r.t. to M therefore yields that H has a version such that H |(tk,T ] =: Hk ∈
L2(M tk ,F(M tk)).

Conversely, if Htk is predictable w.r.t. F(M tk), N tk is adapted to F(M tk)
and therefore extremal by lemma 4 for all k. 	


Given lemma 2 and 5, we can eventually turn to our proof of our main
theorem 1. In principle, we would like to use lemma 5 and to take some kind
of a limit from a finite number t1, . . . , tn of points towards the entire interval
[0, T ]. In practise, this is what can be done via the properties of the stochastic
integral since it can be defined as a limit of “simple” processes:

Proof of theorem 1. Trivially, if the deterministic process H∗ = (H∗t )t�T with
H∗t := E[Ht] is a version of H , once again lemma 2 yields that F(Ma) is equal
to F(Na) for every a ∈ [0, T ].

Now assume conversely, that M and N are i-equivalent.
Let E0 be the space of “simple integrands” vanishing at zero, i.e., of all

processes ξt =
∑n
k=−1 fk ·1t∈(tk,tk+1] where each fk is an Ftk(M)-measurable,

bounded random variable and with a finite sequence 0 = t0 < t1 < · · · <
tn+1 = T

Now, H∗ is an L2(M)-version of H iff for any ξ ∈ E0, the scalar product
of ξ and H is equal to the product of ξ and H∗.

For this purpose, let us fix a ξt =
∑
k fk · 1t∈(tk,tk+1] ∈ E0.

Then, because of the i-equivalence of M and N , M and N are i-semiequi-
valent on I = {t1, . . . , tn}, and lemma 5 asserts that there is a version of H
which can be written as

Hξt :=
n∑

k=0

Hkt · 1t∈(tk,tk+1],

where each Hk is F(M tk)-predictable and therefore in particular independent
of Ftk(M). This yields

(H, ξ)L2(M) =
(
Hξ, ξ

)
L2(M)

= E

[
n∑

k=0

∫ tk+1

tk

Hkt · fk d〈M〉t

]

= E

[
n∑

k=0

fk · E
[∫ tk+1

tk

Hkt d〈M tk〉t
∣∣∣∣ Ftk(M)

]]

= E

[
n∑

k=0

fk · E
[∫ tk+1

tk

Hkt d〈M tk〉t
]]
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= E

[
n∑

k=0

fk · EPM

[
Hk|[tk,tk+1]

]
]

= E

[
n∑

k=0

fk · EPM

[
H |[tk,tk+1]

]
]

(∗)
= E

[
n∑

k=0

fk ·
∫ tk+1

tk

H∗t d〈M〉t

]
=

(
H∗, ξ

)
L2(M)

,

where we have (∗) because M has a deterministic quadratic variation. 	


At this stage, we want to stress the fact that i-equivalence of N and M
already implies that N has independent increments: As shown in lemma 4,
each Na is extremal on F(Ma).

Lemma 6. An extremal martingale X has independent increments if and only
if each increment is extremal on its own filtration.

Proof. IfXa is extremal, chooseA ∈ FT (Xa) and define the F(Xa)-martingale
Aat := P[A |Xas�t]. We find a process Ha ∈ L2(Xa,F(Xa)) such that dAa =
Ha dXa. Since X is a martingale on F(Y ), the extension At := Aat∨a is also a
martingale on F(X), and we have P[A] = Aaa = E[AT | Fa(X)] = P[A | Fa(X)],
ie independence of Xa and Fa(X).

Reversely, if Y a is a F(Xa)-martingale, apply the same extension as above
and see, for t > a, that E[Y at | Fa(X)] = Y aa , i.e., that Y is a F(X)-martingale.
Hence we can write dY a = Ha dXa and independence implies that Ha ∈
L2(Xa,F(Xa)). 	


First of all, this lemma and its consequence that an i-equivalent N has ob-
viously a deterministic quadratic variation, too, yields that d〈N〉 = H2 d〈M〉
is deterministic. Hence, the only source of randomness in H can only step
from the sign of H .

A second observation is that the initial restriction to processes with in-
dependent increments does not seem too unnatural – at least regarding the
property that their increments are extremal.

Note that only lemma 1 required that T is finite. In all other cases, we
have proved all our claims also for an infinite time horizon. Hence, we can
apply our result to a setting introduced by Tsirelson:

2.1 Noises

In [4], Boris Tsirelson used the description of “noise”, to investigate the
possibilities to linearize Brownian motions on Polish groups. We briefly repeat
his notion, simplified for our setting, to add some comments which are results
of the preceding sections.
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Definition 2 (Noise). A noise is defined as a family G = (Gst )s�t;s,t∈R of
σ-fields and a group θ = (θt)t of operators on the probability space such that

1. θr sends Gst onto Gs+rt+r for all s � t and r ∈ R,
2. Grs and Gst are independent for all r � s � t and
3. Grs and Gst generate Grt for all r � s � t.

“Noise” as defined above is the property of a filtration. However, we want
to link it to adapted and generating processes:

Definition 3 (Representation of a noise). A representation of a noise is
a family Z = (Zst )s�t of random variables with values in a Polish group1

(G,+) verifying

1. θr sends Zst to Zs+rt+r for s � t and r ∈ R (i.e., Zst ◦ θr = Zs+rt+r ),
2. Z is adapted to G, i.e. Zst is measurable w.r.t. Gst for s � t,
3. Zrs + Zst = Zrt for all r � s � t and
4. for any δ > 0, P[|Zst | � δ] → 1 for t ↓ s.2

We call such a representation continuous, if

5. for any δ > 0, P[|Zst | > δ]/(t− s)→ 0 for t ↓ s
and we call it faithful if

6. G0
t = σ(Z0

r ; 0 � r � t) for t � 0.

The canonical example a continuous faithful representation of a noise is
given by the standard Wiener space Ω = C[R], F = B[R] with the Wiener
measure P and the shift-operator θt(ω)(u) := ω(t+ u) for ω ∈ Ω.

Then, the coordinate processXt(ω) := ω(t) is a standard Brownian motion
and obviously generates a noise with a continuous and faithful representation
by virtue of our former convention Xst := Xt∨s −Xs and Gst := Ft(Xs).

In fact, each R-valued continuous faithful representation Z is in itself a
sequence of continuous stationary increment processes with independent in-
crements, i.e., a scaled Brownian motion with drift (eg. [5], page 115): Indeed,
setting

Yt := Z0
t 1t�0 − Zt01t<0

we obtain a Brownian motion Y such that

Y st = Yt − Ys =






−Zt0 + Zs0 = Zst for s < t � 0,
Z0
t + Zs0 = Zst for s � 0 < t,
Z0
t − Z0

s = Zst for 0 < s < t.

Note that this construction also shows how to construct noises on Ω.
1 On a general Polish group (i.e., a topological group with a Polish metric, cf [4])

we define a Brownian motion as a continuous centered process with independent
stationary increments; on R, this coincides with the group of scaled Brownian
motions.

2 In a general Polish space (which has a metric d), we define |x| := d(x, 0) where
the symbol 0 denotes unity.
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Remark 4. Condition 6 in definition 3 is not symmetric since it does not yield
a restriction on the way the fields (Gt0)t<0 are generated. In order to obtain a
similar “downward” condition, we shall consider the additional requirement

7. Gt0 = σ(Zr0 ; t � r � 0) for t < 0,

which rests on the former observation that Z0 := (Zt0)t;t�0 is also a Brownian
motion.

Given this extension, assume there is a continuous process N = (Nt)t∈R

such that Ft(N0) = G0
t for t � 0 and σ(N r0 ; t � r � 0) = Gt0 for t < 0. Then,

Lemma 7. The process N establishes a continuous faithful representation via
Z̃st := Nst if and only if N0 is information-equivalent to Z0 and N0 to Z0.

Proof. The requirements to provide a continuous faithful representation for
(G, θ) are obviously all met, except that Nst is supposed to be Gst -measurable.
This means that N is adapted to G in both directions (s resp. t).

For the case s � 0 fixed, this is by lemma 4 equivalent to N0 and Z0 being
information-equivalent.

For the case t < 0 fixed, this is by the same reasoning equivalent to N0

and Z0 (as processes (N r0 )r;r�0) being information-equivalent.
Since Gst = Gs0 ∨ G0

t for s < 0 � t, and Nst = Ns0 + N0
t this finishes the

proof. 	


Note that another possible modification of condition 6 in definition 3 is
to request Gst = σ(Zsr ; s � r � t) =: Fst (Z) for all s � t. This gives rise to an
extension of the term “information-equivalence” to processes with two time
variables:

Definition 4. Two processes X = (Xst )s�t and Y = (Y st )s�t are called
information-equivalent iff they create the same filtrations, i.e., σ(Xsr;s�r�t) =
σ(Y sr;s�r�t) for all s � t.

Now, observe that Gst = Fst (Z) for all s � t is already implied when
restricted to the cases where either s = 0 or t = 0 (as considered above), since
Gst = Gs0 ∨ G0

t and Zst = Zs0 + Z0
t by definition and Fst (Z) = σ(Zr0 + Z0

u; s �
r � 0 � u � t).

In other words, extending 6 by condition 7 already implies

Lemma 8. Each continuous faithful representation N of (G, θ) is informa-
tion-equivalent to Z.
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Summary. The paper considers (a) Representations of measure preserving trans-
formations (“rotations”) on Wiener space, and (b) The stochastic calculus of varia-
tions induced by parameterized rotations {Tθw, 0 � θ � ε}: “Directional derivatives”
(dF (Tθw)/dθ)θ=0, “vector fields” or “tangent processes” (dTθw/dθ)θ=0 and flows of
rotations.

1 Introduction

Let (W,H, µ) be an abstract Wiener space (AWS): W = {w} is a separable
Banach space, H (the Cameron–Martin space) is a separable Hilbert space
densely and continuously embedded in W , W ∗ ↪→ H∗ = H ↪→ W and for
every e in W ∗, w∗(e, w)w is N(0, |e|2H). By the Cameron–Martin theorem,
for any h ∈ H , the measure induced by w + h is equivalent to the measure
µ, therefore if F (w) is a r.v. on the Wiener space, so is F (w + h). This
fact enabled the development of the stochastic calculus of variations, i.e. the
Malliavin calculus which very roughly is based on the directional derivative of
F in the h direction: (dF (w+εh)/dε)ε=0. Now, let T be a measure preserving
transformation onW (in short, a ‘Rotation’), i.e. w∗(e, Tw)w is alsoN(0, |e|2H).
Then if F (w) is a r.v. so is F (Tw) and if Tθw 0 � θ � ε is a smooth collection of
rotations one can consider objects like (dF (Tθw)/dθ)θ=0. The purpose of this
paper is to survey previous work and to present new results on the following:

(i) Measure preserving transformations (rotations),
(ii) The Malliavin calculus of rotations.

The study of stochastic analysis over Riemannian manifolds showed that
the Cameron–Martin space is not sufficient to represent the tangent space and

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 205–225, 2005.
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as discussed in [4, 6, 5, 2, 12, 1], more general vector fields are needed. The
setup of these papers was based on the model of

∫ ·
0

d∑

j=1

σij(s, w) dwj(s), i, j � d (1)

for “vector fields”, where w is the d-dimensional (d � 2) Wiener process with
σ being non-anticipative and skew symmetric which induce a measure pre-
serving transformation. This paper considers the abstract Wiener space setup
presented in [8], it is restricted to flat space. A particular class of anticipa-
tive tangent processes was recently considered in [3]. A class of rotations on
Wiener space introduced in [10] are different from the rotations considered
here.

Section 2 summarizes results, mainly from the Malliavin Calculus, which
are needed later. Rotations T are considered in section 3, where Tw =∑
ηi(w)ei, ηi(w) are i.i.d. N(0, 1) random variables, and ei, i = 1, 2, . . . is

a complete orthonormal base in H . Rotations are introduced in Section 3.
Theorem 2 ([16, 18]) presents rotations by showing that sequences of i.i.d.
N(0, 1) random variables can be constructed as the divergence of R(w)ei
where R(w) belongs to a certain class of operators. An outline of the proof
is included. This is followed by new results, Proposition 6 and Theorem 3
showing that under some smoothness assumptions every sequence of i.i.d.
N(0, 1) random variables on the Wiener space can be represented by the con-
struction of Theorem 2. Section 4 deals with directional derivations of the
type (dF (Tθw)/dθ)θ=0. A “tangent operator” is introduced and its relation
to the directional derivative is indicated. Section 5 deals with “tangent pro-
cess” which are Banach valued random variables, play the role of tangent
vectors and induce the directional derivatives. The first part of section 6 gives
a positive answer (due to Tsirelson and Glasner) to a problem raised in [8]
whether the group of invertible rotations on the Wiener space are connected.
The second part deals with flows of rotations, i.e. the flow induced by

dTtw
dt

= m(Ttw, t)

where m(w, t) are the tangent processes introduced in section 5. The case
where m(w, t) is of the type of equation of (1) was considered in [1]. A more
detailed proof of the result of [8] is given. The appendix deals with the follow-
ing problem: In view of the results of section 3 and other results, the question
arose whether the condition that ∇u(w) is quasinilpotent implies the exis-
tence of a filtration such that u is adapted. A counter example, following [14]
is presented in the appendix.
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2 Preliminaries

Notation

For each e ∈ H and induced by an element of W ∗, δ(e) denotes the N(0, |e|2H)
r.v. W∗(e, w)W . For all e ∈ H , δ(e) denotes the L2 limit of W∗(en, w)W as
en → e in H .

We will not distinguish between embeddings and inclusions. For example,
e ∈W ∗ will also be considered as an element of H or W ; the distinction being
clear from context.

For F (w) = f(δe1, . . . , δen) and f smooth, ∇F is defined as ∇F =
∑

f ′i(δe1, . . . , δen) · ei. Let X be a separable Hilbert space and u an X valued
functional. Dp,k(X ), p > 1, k ∈ N will denote the Sobolev space of X valued
functionals in Lp(µ,X ) whose k-th order derivative ∇ku is in Lp(µ,X ⊗H⊗k).
Dp,k(R) will be denoted Dp,k. D(X ) =

⋂
p>1

⋂
k∈N Dp,k(X ). Recall that

∇ : Dp,k(X ) → Dp,k−1(X ⊗H)

and for δ, the adjoint of ∇ under the Wiener measure

δ : Dp,k(X ⊗H)→ Dp,k−1(X )

are continuous linear operators for any p > 1, k ∈ N. The operator δ is the
divergence or the Skorohod integral and:

(a) If u ∈ D2,1(H), then

E
[
(δu)2

]
= E

[
|u|2H

]
+ E

[
trace(∇u)2

]
.

(b) If F ∈ D2,1, u ∈ D2,1(H) and if Fu ∈ D2,1(H), then

δ(Fu) = Fδu− (∇F, u)H . (2)

A. Exact and divergence free H-valued r.v’s

Let u ∈ D2,1(H) then (a) u is said to be “exact” if u ∈ ∇F (w) for some D2,1

functional F (w). (b) u is said to be divergence free if δu = 0.
Set

Ue = U exact = {u ∈ D2,1(H) : u = ∇F}
Ud.f. = Udiverg. free = {u ∈ D2,1(H) : δu = 0}
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If u ∈ Ue, v ∈ Ud.f. then E(u, v)H = E(∇f, v)H = E(fδv) = 0. Hence Ue

and Ud.f. are orthogonal subspace of D2,1(H) and D2,1(H) = Ue ⊕ Ud.f..
Let LF be the Ornstein–Uhlenbeck operator: LF = δ∇F , assume that

EF = 0 then L−1 is a bounded operator and LL−1F = F . Hence, for any
F ∈ D2,1, EF = 0, F (w) = δ(∇L−1F ) and F possesses the representation
F (w) = δu, u = ∇L−1F , where u ∈ D2,1(H). Note that this representation is
different from the Ito-type representation of Wiener functionals.

Returning to Ue and Ud.f., for F (w) = δu, u ∈ D2,1(H), δ(u−∇L−1δu) = 0
then ∇L−1δu and u − ∇L−1δu are the projections of u on Ue and Ud.f.

respectively.
We prepare, for later reference, the following lemma.

Lemma 1. Let u ∈ D2,1(H), let {ei, i = 1, 2, . . .} be a CONB on H further
assume that u =

∑
δ(vi)ei, vi ∈ D2,1(H). If (vi, ej)H + (vj , ei)H = 0, i, j =

1, 2, . . . , then δu = 0. In particular the above result holds for vi = A(w)ei,
where A+AT = 0.

Proof. For smooth F , integrating by parts we have

E(F · δu) = E
∑

i

∇eiFδvi

= E
∑

i

∇eiF · δ
(∑

j

(vi, ej)ej

)

= E
∑

i,j

∇2
ei,ej

F · (vi, ej).

and δu = 0 follows since ∇2
ei,ej

F is symmetric in i and j and F is arbitrary.
	


B. Constructing a filtration on the AWS

Let (W,H, µ) be an A.W.S., we introduce a time structure i.e. a filtration
and causality on it as follows: Let the projections {πθ, 0 � θ � 1} be a real
continuous and strictly increasing resolution of the identity on H . Set

Fθ = σ{δπθh, h ∈ H}. (3)

Propositions 1–3 are from [17].

Proposition 1. F (w) ∈ D2,1 is Fθ measurable iff ∇F = πθ∇F a.s. (intu-
itively: if F (w) = f(δh1, . . . , δhn) with hi = πθhi)

Definition 1. An H-valued r.v. u will be said to be F·-adapted if for every
θ ∈ [0, 1] and h ∈ H, (u, πθh) is Fθ measurable.
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Proposition 2. u ∈ D2,1(H) is F· adapted iff

πθ∇uπθ = πθ∇u

for all θ ∈ [0, 1].

Definition 2. Let G(w) be a measurable r.v. taking values in the class of
bounded transformations on H. Then G is said to be weakly adapted if for
all h ∈ H, Gh is adapted, G will be said to be adapted (or causal) if Gu is
adapted for all adapted u.

Proposition 3. If G(w) satisfies Gu ∈ D2,0(H) whenever u ∈ D2,0(H) and
G is weakly adapted then G is adapted iff πθGπθ = πθG.

Another version of the last result is:

Proposition 4. Under the assumptions of the previous proposition, a weakly
adapted G is adapted iff for all h ∈ H

πθh = 0 =⇒ πθGh = 0. (4)

Proof. Let u be of the form

u =
n∑

1

ϕi(πθi+1 − πθi)hi (5)

where θi+1 > θi and the ϕi are D2,0 r.v.’s. Then

Gu =
n∑

i=1

ϕiG(πθi+1 − πθi)hi (6)

hi ∈ H . Now, assume that u is adapted hence the ϕi are Fθi measurable.
Since G is weakly measurable then (4) implies that ϕiGπθi+1(I−πθi)hi is also
adapted hence Gu is adapted and G is adapted since u of the form (5) are
dense in D2(H).

Conversely, again u is assumed to be adapted, and since Gu is adapted,
ϕiG(πθi+1 − πθi)hi is adapted. Hence, since ϕi are Fθi measurable, we must
have

πθG(πθi+1 − πθi)hi = 0

and (4) follows. 	


Given a D2,0 functional F (w) on (W,H, µ) and a filtration πθ (continuous
strictly increasing) then there exists a unique adapted u ∈ D2(H) such that
u ∈ Dom δ, and F (w) = δu, and E(δu)2 = E(|u|2H). ([19], in the classical setup
this representation follows directly from the multiple Wiener integral). Hence,
given F (w) = δue then ue can be lifted uniquely to ũ such that δũ = δue and
ũ is adapted to a given filtration.
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C. Quasinilpotent operators

An H-S operator on H is said to be quasinilpotent (q.n.p.) if any one of the
following is satisfied (cf. [20] or [18]):

(a) traceAn = 0 ∀n � 2.
(b) |An| 1n −→ 0, | . | is the operator norm.
(c) The spectrum of A is {0} only.
(d) (1 − αA)−1 =

∑∞
n=0 α

nAn ∀α.
(e) det2(I + αA) = 1 ∀α, where det2(I +A) =

∏
i(1− λi)e−λi .

Proposition 5 ([17]). If u is adapted, u ∈ D2,1(H) then ∇u is q.n.p.

Outline of proof. Let θi+1 > θi, set

ui = qi(πθi+1 − πθi)hi = qih̃i.

Then,

trace∇ui∇uj = trace
(
∇qi ⊗ h̃i

)(
∇qj ⊗ h̃j

)

=
(
∇qi, h̃j

)
H

(
∇qj , h̃i

)
H
.

For i = j, (∇qi, h̃j)H = 0, if i > j then (∇qi, h̃i)H = 0. Similarly for i < j.

The following question arises regarding the converse of the last result:
Given u such that∇u is q.n.p., does this imply the existence of a filtration such
that u is adapted to it? The answer to this question, as shown in appendix A,
is negative.

D. The Ito–Nisio theorem

Theorem 1. Let (Xi) be a symmetric sequence of random variables (i.e.
(±X1,±X2, . . . ,±Xn) has the same law as (X1, . . . , Xn) for any n) with val-
ues in a separable Banach space B. Denote by µn the distribution of the partial
sum Sn =

∑n
i=1Xi. The following are equivalent:

(i) the sequence (Sn) converges almost surely in the Banach norm;
(ii) (Sn) converges in probability;
(iii) (µn) converges weakly;
(iv) there exists a B-valued r.v. γ such that (Sn, f) −→

P
(γ, f) for all f in B′;

(v) there exists a probability measure µ in P(B) sucht that µn◦f−1 → µ◦f−1

weakly for every f in B′.

Cf. [11] for (i), (ii), (iii) and (v); (iv) follows from (i) and implies (v).
Let (W,H, µ) be AWS, then for any complete orthonormal basis (CONB),

{ei} and any i.i.d. N(0, 1) random variables ηi then
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yn =
n∑

i=1

ηiei

converges a.s. in the Banach norm (in particular |w −
∑n
i=1 δeiei|W

a.s.−→ 0).
Hence denoting y = lim yn, then y = Tw is a measure preserving transforma-
tion and ηi = W (Tw, ei)W∗ .

3 Rotations on Wiener space

Let ηi = i.i.d. N(0, 1) r.v.’s and {en} a CONB induced by W ∗ then by the
Ito–Nisio theorem

Tw =
∑

ηiei (7)

is a measure preserving transformation on W , we will refer to it as a rotation.

Theorem 2 ([16, 18]). Let w �→ R(w) be a strongly measurable random
variable on W with values in the space of bounded linear operators on H.
Assume that R is almost surely an isometry on H, i.e. |R(w)h|H = |h|H a.s.
for all h ∈ H). Further assume that for some p > 1 and for all h ∈ H,
Rh ∈ Dp,2(H), and ∇Rh ∈ Dp,1(H ⊗H) is a quasi-nilpotent operator on H.
If moreover, either
(a) (I + i∇Rh)−1 · Rh is in Lq(µ,H), q > 1, for any h ∈ H (here q may
depend on h ∈ H) or,
(b) Rh ∈ D(H) for a dense set in H.

Then
E
[
exp iδ(Rh)

]
= exp

(
−1

2
|h|2H

)
.

Namely, if (en, n ∈ N) is a complete, orthonormal basis in H then (δ(Ren), n ∈
N) are independent N(0, 1)-random variables and consequently

∑
i δ(Rei)ei

defines a measure preserving transformation of W .

The map R satisfying the conditions for this theorem with p = 2 and under
(a) with q = 2 will be said to satisfy the rotation conditions.

Outline of proof. Let u : B → H be “an H-C1 map” and T = w + u, assume
that T is a.s. invertible then [18].

E
(
F (Tw) · |Λ(w)|

)
= EF (w)

where
Λ(w) = det2(IH +∇u) exp

(
−δu− 1

2
|u|2H

)
.

In particular, F (w) = 1, u = ∇Rh, then since det2(IH+∇u) = 1 and |Rh|2H =
|h|2H , hence

E exp
(
−δ(Rh)− 1

2
|h|2H

)
= 1
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or
E exp

(
−δ(Rh)

)
= exp

(1
2
|h|2H

)

consequently δ(Rei), i = 1, 2, . . . are i.i.d.,N(0, 1) and
∑
δ(Rei)ei is a rotation

by the Ito–Nisio theorem.

The conditions on R in the rotation theorem are obviously not necessary
since if for all i, ui ∈ Ud.f. and defining ρ : H → H by

ρei = ui, i = 1, 2, . . .

then δρh = 0 and if R induces a rotation so does R + ρ. We have, however,
the following two results, which yield a converse to the rotation theorem.

Proposition 6. Let R(w) be an a.s. bounded operator on H. Assume that
R(w) is weakly adapted with respect to a filtration induced by a continuous

increasing π·. Further assume for all h ∈ H, R(w)h is in the domain of
δ and the probability law of δ(Rh) is N(0, |h|2H) then:

1. If h1, h2 ∈ H and (h1, h2)H = 0 then δ(Rh1) and δ(Rh2) are independent.
2. R(w) is a.s. an isometry on H.
3.

∑
i δ(Rei)ei is a rotation and if ei, i = 1, 2, . . . and hi, i = 1, 2, . . . are

CONB’s on H then, a.s.
∑

i

δ(Rhi)hi =
∑

i

δ(Rei)ei.

Proof.

1. E
(
exp iα δ(Rh1) exp iβ δ(Rh2)

)
= E exp iδ

(
R(αh1 + βh2)

)

= exp
(
−α

2

2
|h1|2H −

β2

2
|h2|2H

)

= E exp
(
iα δRh1

)
E exp

(
iβ δ(Rh2)

)
.

2. By part 1, yθ = δ(Rπθh) is a Gaussian process of independent increments.
Hence it is Gaussian martingale and its quadratic variation satisfies

〈y, y〉θ = Ey2
θ .

and by our assumption Ey2
θ = |πθh|2H . But

〈y, y〉θ = (Rπθh,Rπθh)H

and RTR = I follows.
3. Follows from the Ito–Nisio theorem. 	
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Theorem 3. Let Tw =
∑
ηiei be a rotation. Let F· be a filtration induced by

a continuous increasing resolution of the identity. Then there exists a unique
F· weakly adapted R(w) : H → H which is an isometry and

Tw =
∑

i

δ(Rei)ei.

If, moreover, ηi ∈ D2,2 then ∇Rh is q.n.p.

Proof. By our assumptions, every ηi can be uniquely represented as ηi = δui
where the ui are adapted, in the domain of δ, and ui ∈ D2(H). Define R by

R(w)ei = ui

then R(w) is weakly adapted, and satisfies the assumptions of the previous
result. Hence R is an isometry and Tw =

∑
δ(Rei)ei. If moreover the ηi ∈ D2,2

then ∇Rh ∈ D2,1(H) and is q.n.p. since it is adapted. 	


Remark 1. For a given rotation Tw =
∑
δ(Rei)ei, R(w) is “highly non

unique”; instead of representing ηi as the divergence of adapted processes,
we can define ηi = δvi with vi ∈ Ue to yield a unique Re(w) such that Reh
is exact for all h ∈ H and Tw =

∑
δ(Reei)ei. In other words, given any R

satisfying the assumptions of the theorem we can construct an Re such that
δ(Reh) = δ(Rh) and Reh ∈ Ue for all h ∈ H . Thus Re will not necessarily
be an isometry. Also, we can “lift” Re to another R̃ which is weakly adapted
with respect to another filtration.

4 Tangent operators

Let Ttw =
∑
i δ(Rtei)ei where Rt, t ∈ [0, δ] is unitary, satisfies the rotation

condition, and let (ei, i = 1, 2, . . . ) be a CONB on H induced by W ∗. Assume
that (Rt+ε − Rt)/ε converges a.s. in the operator norm to Bt(w) as ε → 0,
then (RTt+ε −RTt )/ε converges to BTt and 0 = d(RT

t Rt)
dt = d(RtR

T
t )

dt . Hence

BTt Rt +R
T
t Bt = 0 and BtR

T
t +RtBTt = 0. (8)

Setting R0 = I and A = (dRt/dt) at t = 0 yields

A+AT = 0. (9)

Let f(x1, . . . , xn) be a smooth function on Rn. Set F (w) = f(δe1, . . . , δen).
Since W (Ttw, ei)W∗ = δ(Rtei) and δei ◦ Ttw = W (Ttw, ei)W∗ , hence with
A = (dRt/dt)t=0:
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dF (Ttw)
dt

∣∣∣∣
t=0

=
∑

i

(
f ′i
(
δ(Rte1), . . . , δ(Rten)

)
δ

(
dRt
dt
ei

))

t=0

=
∑

i

f ′i(δe1, . . . , δen)δ(Aei)

=
∑

i

δ
(
f ′i( . )Aei

)
−
∑

ij

f ′′ij( . )(ej , Aei)

The second term vanished since f ′′ij is symmetric and A is skew symmetric.
Hence

dF (Ttw)
dt

∣∣∣∣
t=0

= δ(A∇F ) (10)

Motivated by (10) we define

Definition 3 ([8]). Let w → Q(w) be a weakly measurable mapping taking
values in the space of bounded operators on H. Assume that for all F ∈ D2,1,
Q∇F ∈ D2,1(H). For every Q satisfying these conditions and u ∈ D2,1(H) we
define

LQ,uF = δ(Q∇F ) +∇uF
and denote it as the Tangent Operator induced by (Q, u). Also LQ,0F =: LQF .

The following summarizes some properties of the tangent operator (cf. [8] for
proofs).

1) LQ,u is closeable in H (i.e. if Fn → 0 in H a.s. and LFn exist, then
LFn → 0).

2) The adjoint of LQ,u satisfies L∗Q,uF = LQF + δ(Fu).
3) If Q = A where AT +A = 0, then

LAF1F2 = F1LAF2 + F2LAF1

namely, LA is a derivation (i.e. behaves as a first order operator).
4) Let g : R→ R be twice differentiable, set g′(x) = dg(x)

dx . Assume that both
F (w) and g(F (w)) are in D2,1 and both A∇F and A∇g(F ) are in D2,1(H).
Then, for A+AT = 0 we have

LAg(F ) = δ
(
g′(F )A∇F

)

= g′(F )LAF + g′′(F )(∇F,A∇F )
= g′(F )LAF.

5) Cf. [8] for results for LA(δu) and [LA,LB].

Let R be unitary and satisfy the rotation condition. Let Rt,k(w) denote
R(w+ t ·k), t ∈ [0, 1], k ∈ H . Then Rt,k is also a.s. unitary and ∇Rt,kh is also
a.s. quasinilpotent. Assume that Rt,k satisfies condition a or b of the rotation
theorem then Rt,k also induces a rotation, let Tt,k denote this rotation. Setting
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XRk F (w) =
dF (Tt,kw)

dt

∣∣∣∣
t=0

= LṘk
F

where

Ṙk =
dRt,k

dt

∣∣∣∣
t=0

.

As shown in [16] and [18]

∇(F ◦ T ) = R(∇F ◦ T ) +XRF (11)

i.e.
∇h(F ◦ T ) =

(
R(∇F ◦ T ), h

)
H

+XRh F

and when u : W → H is a cylindrical map

(δu) ◦ T = δ
(
R(u ◦ T )

)
+
∑

i

(
XR(u, ei), Rei

)

= δ
(
R(u ◦ T )

)
+ trace(R−1XRu). (12)

If g(x), x ∈ R is smooth then

0 =
d
dt
Eg

(
F (Tt,kw)

)

hence

0 = E
{
g′
(
F
(
Tt,k(w)

))
·XRt,kF

}
.

5 Tangent processes

Let Rt satisfy the rotation condition, set LRtw = Ttw =
∑
i δ(Rtei)ei. In

order to represent the “directional derivative” LAF as the action of a “tangent
vector” on F , the “vector field” (dTtw/dt)t=0 is needed. Formally, for A =(

dRt

dt

)
t=0

,
dTtw
dt

∣∣∣∣
t=0

=
∑

i

δ(Aei)ei

which motivates the following definition:

Definition 4. Let Q(w) be a weakly measurable H operator valued transfor-
mation on H. Assume that Q(w)h ∈ D2,1(H) for all h ∈ H. Let ei, i =
1, 2, . . . be a CONB induced by elements of W ∗, if

∑
i δ(Qei)ei converges

weakly in the Banach space as n → ∞; namely, if there exists a W -valued
random variable Y such that

∑
i δ(Qei)(ei, α̃)H converges in probability (α̃

is the image of α in H under the canonical injection from W ∗ to H) to
W 〈Y, α〉W∗ for all α ∈ W ∗. The limit Y will be denoted by Y = LQw and
will be called the tangent process induced by Q and {ei}).
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Remark 2. The definition given here is somewhat different from that in [8] as
Y may depend on {ei}.

Remark 3. It is often necessary to consider the case where the series
∑
δ(Qei)ei

satisfy a stronger convergence condition; several cases assuring a.s. conver-
gence are

a. The case where the δ(Qei) satisfy the conditions of the extended Ito–Nisio
theorem.

b. The case where Q is a bounded non random operator ([9, Theorem 1.14]).
c. Let ϕ ∈ D2,1 and Q∗∇ϕ ∈ D2,0(H), then LϕQw exists in the sense of a.s.

convergence in W if and only if ϕLQw exists in the corresponding sense
and then

LϕQw = ϕLQw −QT∇ϕ.

The proof of c. follows directly from

N∑

i=1

δ(ϕQei)ei =
N∑

i=1

ϕδ(Qiei)ei −
N∑

i=1

(
QT∇ϕ, ei

)
· ei.

The relation between the tangent process LQw and the tangent operator
is reflected in the following lemma.

Lemma 2. Assume that Q satisfies the requirements of Definition 4 and∑
δ(Qei)ei converges a.s. Further assume that u ∈ D2,1(H), Qu ∈ D2,1(H)

and u is the image in H of u
˜
(w) which is W ∗ valued and ∇uQ is of trace

class on H. Set (trace)eK = limn→∞
∑n

1 (ei,Kei)H . Then
(a) (trace)e(∇uQ) exists and

W

(
LQw, u

˜
(w)

)
W∗ = δ(Qu) + (trace)e(∇uq) (13)

(b) If we also assume that u = ∇F and Q is skew-symmetric then

W (LQw,∇F
˜

)W∗ = LQF (14)

(and then LQw acts as a vector field on F with LQF being the directional
derivative along the tangent process).

Proof. Setting (u, ei) = vi and un =
∑n

1 viei, where {ei} is a CONB induced
by W ∗.

W

(
Lθw, u

˜
(w)

)
W∗ =

n∑

i

δ(Qei)vi

=
n∑

i

δ(Qviei) +
n∑

i

(∇vi, Qei)

= LQun +
n∑

i

n∑

j

∇ejvi(ej , Qei)
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The left hand side is a continuous functional on W ∗ and the last equation
converges on both sides to (13) which proves (a). (b) follows since ∇ejui =
∇2
ei,ej

F is symmetric. 	


Note that by Lemma 1, if LQw exist in D2,1(H), and if Q+QT = 0 then:

δ(LQw) = 0.

The tangent processes that were considered in [1]–[5] were of the form of
the right hand side of (1) in the introduction with {σij} skew symmetric and
nonanticipative. The relation to the LQw formulation will now be pointed
out. Consider the case of the d-dimensional Brownian motion, h =

∫ ·
0
h′s ds,

h′ ∈ L2([0, 1],Rd), then we have

Proposition 7.
(A) Let q denote the matrix {qij(θ, u), i � i, j � d, θ, u ∈ [0, 1]} and set

(Qh)i =
n∑

j=0

∫ ·
0

∫ 1

0

qij(θ, u)h′j(u) du dθ, i = 1, . . . , d.

Assume that the qi,j(θ, u) are Fθ adapted for all u ∈ [0, 1] and E|Qh|2H �
K · |h|2H.
Then LQw exists and as a W -valued r.v.

LQw =
∫ ·

0

(∫ 1

0

q(θ, u) du
)

dwθ (15)

(B) If b = {bi,j(s), 1 � i, j � d, s ∈ [0, 1]} where bi,j(s) are Fs adapted and

E
∑

i,j

b2i,j(s) <∞.

Setting

(Bh)i =
∫ ·

0

bij(s)h′j(s) ds

then

LBw =
∫ ·

0

b(s) dws. (16)

Proof. Let (ei, i � 1) be an orthonormal basis of H . Then

Qei =
∫ ·

0

(∫ 1

0

q(τ, u)ėi(u) du
)

dτ,

We have
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n∑

i=1

δ(Qei)〈ei, α〉 =
n∑

i=1

∫ 1

0

(∫ 1

0

q(τ, u)ėi(u) du
)

dwτ
∫ 1

0

ėi(s)α̇(s) ds

=
∫ 1

0

∫ 1

0

q(τ, u)
( n∑

i=1

∫ 1

0

ėi(s)α̇(s) dsėi(u)
)

du dwτ

=
∫ 1

0

∫ 1

0

q(τ, u)βn(u) du dwτ , (17)

where

βn(u) =
n∑

i=1

∫ 1

0

ėi(s)α̇(s) ds ėi(u).

It is clear that βn converges to α̇ in L2[0, 1]. Since A is of Hilbert–Schmidt,
we see that ∫ 1

0

q(τ, u)βn(u) du

converges to
∫ 1

0
a(τ, u)α̇(u) du in L2[0, 1]. Consequently, (17)) converges to

∫ 1

0

∫ 1

0

q(τ, u)α̇(u) du dwτ

in L2 hence in probability and (17) follows.
In order to prove (16) we have to show that (15) holds for the case where

q(θ, u) = b(θ)δ(θ − u)

where δ is the Dirac delta function. Setting

δε(u) =
1
ε

for u ∈ [0, ε]

= 0 otherwise

then, (16) follows since by (15)

LQnw =
∫ ·

0

1
ε

(∫ θ

θ−ε
b(u) du

)
dwθ

and

E

∫ 1

0

(
b− 1

ε

∫ θ

θ−ε
b(u) du

)2
dθ −→

ε→0
0.

	


6 Groups of rotations

A. Theorem 4 ([15], [7]). Let T be an invertible measure preserving trans-
formation on the Wiener space, then there exists a family Tθ, θ ∈ [0, 1] of
measure preserving transformations such that T0w = w, T1 = T and for ev-
ery θ ∈ [0, 1], E

∣∣Tηw − Tθw
∣∣
W
→ 0 as η → θ.
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The proof was first shown to us by Tsirelson [15], the proof given here is
a shorter proof due to Glasner [7].

Proof. Since the Wiener measure on C[0, 1] and the Lebesgue measure on
[0, 1] are isomorphic, it suffices to prove the result for the Lebesgue measure.
Set Ta(X) = aT (X/a) in (0, a) and Ta(X) = X in (a, 1) which is measure
preserving, T1 = T and T0 is the identity. Now,

E
∣∣Ta(X)− Ta+ε(X)

∣∣ � E

{∣∣∣∣aT
(
X

a

)
− (a+ ε)T

(
X

a+ ε

)∣∣∣∣ · 1X�a

}
+ a

� E

{∣∣∣∣aT
(
X

a

)
− aT

(
X

a+ ε

)∣∣∣∣ · 1X�a

}
+ 2ε.

Applying Lusin’s theorem to approximate T (X) by a continuous τθ(X), yields

∣∣E
(
Ta(X)− Ta+ε(X)

)∣∣ � a

∣∣∣∣E
(
τθ

(
X

a

)
− τθ

(
X

a = ε

))∣∣∣∣ + 2θ + 2ε

and continuity in ε follows by dominated convergence since θ is arbitrary. 	


B. Flows

We want to show that for At+ATt = 0 and additional conditions the equation

dTtw
dt

=
(
LAt(w)w

)
◦ Ttw, T0w = w (18)

defines a flow of rotations. The case whereW is the d-dimension Wiener space
and A is adapted:

(
LAw

)
i
=

∫ ·
0

d∑

j

aij(s, w) dwj(s), i = 1, 2, . . . , d

was considered by Cipriano and Cruzeiro [1]. The general result presented in
the next theorem is from [8] and is followed by a more detailed proof.

Theorem 5 ([8]). Assume that for all t � 0, A = At(w) : is a skew sym-
metric strongly measurable mapping and for any h ∈ H, Ath ∈ Dp,1(H), for
some p > 1 and a.a. t ∈ [0, T ] where T > 0 is fixed. Further assume that:

1. The series

Bt =
∞∑

i=1

δ(Atei)ei

converges in Lp(dµ × dt,W ) (as a W -valued random variable), where
(ei, i � 1) is a fixed orthonormal basis of H.
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2. Let pn denote the orthogonal projection onto the span of {e1, . . . , en} and
Vn denote the sigma-algebra generated by {δe1, . . . , δen}. Assume that the
sequence of vector fields (Bn, n � 1) defined by

Bnt =
n∑

i=1

δE[pnAtei |Vn]ei (19)

or, as will be shown later to be the same as

Bnt =
n∑

i=1

E[δ(pnAtei) |Vn]ei (20)

converges to B in Lp(dµ× dt,W ).
3. Assume that for a given ε > 0, we have

∫ T

0

E
{
exp ε|||∇Bt|||

}
dt = Γ0,T <∞, (21)

the norm above is defined as

|||∇Bt||| = sup
{ ∣∣∇h(W 〈Bt, α〉W∗)

∣∣ : h ∈ B1, α ∈W �
1

}

where B1 = {h ∈ H : |h|W = 1} and W �
1 is the unit ball of W �. Further

assume that (21) also holds for Bt replaced by Bnt (this holds, e.g., when
{ei} is a Schauder basis of W ).

Then the equation

φs,t(w) = w +
∫ t

s

Br(φs,r) dr, s < t, (22)

defines a flow of measure preserving diffeomorphisms of W whose almost sure
inverse is denoted by (ψs,t, 0 � s � t � T ) and satisfies

µ{w : φs,t ◦ ψs,t(w) = ψs,t ◦ φs,t(w) = w} = 1.

Moreover the inverse flow is the unique solution of the equation

ψs,t(w) = w −
∫ t

s

Br(ψr,t) dr (23)

and φs,t (hence ψs,t) leaves the Wiener measure invariant, i.e. φ�s,tµ = µ for
any s < t ∈ [0, T ].

Proof. We start with showing the equality (19) and (20). Set αm = pmApm
and amij = (ej , αmei), then for i, j � m
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E{δ(pmAei) |Vm} = E{δ(αmei) |Vm}

=
m∑

j=1

E{δ(amij ej) |Vm}

=
m∑

j=1

δejE{ai,j |Vm} −
∑

j

E{∇ejaij |Vm}

=
m∑

j=1

δejE{aij |Vm} −
∑

j

∇ejE{aij |Vm}

=
m∑

j=1

δ
(
E{aij |Vm} · ej

)

= δE(αmei |Vm)

and (20) follows. Also, since At is skew symmetric, so are the matrices amij
and E(amij |Vm) hence by Lemma 1, δBmt = 0. Consequently, (cf., e.g., [18,
Theorem 5.3.1]) the claimed results of Theorem 4 hold for Bt replaced by
Bmt . Therefore, denoting by φns,t, s � t ∈ [0, T ], the flow associated to the
cylindrical vector field Bn and by ψns,t, s � t ∈ [0, T ], its inverse, then in
particular we have

dφn�s,tµ
dµ

= exp
∫ t

s

(δBnr ) ◦ (ψnr,t) dr = 1

and

dψn�s,tµ
dµ

= exp−
∫ t

s

(δBnr ) ◦ (φns,r) dr = 1. 	


Let e1, e2, . . . be a fixed CONB of H induced by elements of W ∗. Let M
denote the following class of cylindrical operator Q on H . Let qij = (ej , Qei)
then, for some m

(a) qi,j = 0 for i > m or j > m
(b) qi,j = −qji
(c) qij = fij(δe1, . . . , δem) and fij possesses bounded first derivatives.

Set Br(w) =
∑m

1 δ(Qr(w)ei)ei, Qr ∈ M . The following version of [18,
Theorem 5.2.1] is needed to complete the proof of the theorem.

Proposition 8. Let Qar , Qbr ∈M , r ∈ [0, T ] and assume that for some ε > 0

E

∫ T

0

(
exp ε|||∇Bar |||+ exp ε|||∇Bbr |||

)
dr � Γ0,T <∞. (24)

Let ϕas,t, ϕ
b
s,t denote the flows induced by Qa and Qb. Then for s < t, (t− s)

sufficiently small
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E sup
u∈[s,t]

∣∣ϕas,u − ϕbs,u
∣∣
W

� E

(∫ t

s

∣∣Bar −Bbr
∣∣p
W

dr
)1/p

Γ
1
q

s,t

(
1

t− s

)1/q

where Γs,t is defined as Γ0,T (equation (21)) with 0, T replaced by s, t, and
(t− s)q � ε.

Proof of the proposition. Set Dr = Bar − Bbr and let ϕλs,t, λ ∈ [0, 1] be the
solution to

ϕλs,t(w) = w +
∫ t

s

(
λBar + (1 − λ)Bbr

)
◦ ϕλs,r dr.

Then ϕλs,t is also a rotation. Set Zλs,t =
dϕλ

s,t

dλ , then

ϕas,t − ϕbs,t =
∫ 1

0

Zλs,t dλ

and

Zλs,t =
∫ t

s

Dr ◦ ϕλs,r dλ+
∫ t

s

[
(∇(Bbr + λDr)

]
◦ ϕλs,rZλs,r dr.

By Gronwall’s lemma

∣∣Zλs,t
∣∣
W

�
(∫ t

s

∣∣Dr ◦ ϕλs,r
∣∣
W

dr
)

exp
∫ t

s

|||∇Bbr + λ∇Dr||| ◦ ϕλs,r dr.

Therefore, since ϕλ is measure preserving:

E sup
r∈[s,t]

∣∣ϕas,r − ϕbs,r
∣∣
W

� E

∫ 1

0

∣∣Zλs
∣∣
W

dλ

� E

{∫ 1

0

(∫ t

s

∣∣Dr(w)
∣∣
W

dr
)

exp
∫ t

s

|||∇Bbr + λ∇Dr||| dr dλ
}

� E

{∫ t

s

∣∣Dr
∣∣
W

dr exp
∫ t

s

(
|||∇Bbr |||+ |||∇Bar |||

)
dr
}

�
(
E

∫ t

s

∣∣Dr
∣∣p
W

dr
)1/p(

E exp q
∫ t

s

(
|||∇Bar |||+ |||∇Bar |||

)
dr
)1/q

�
(
E

∫ t

s

∣∣Dr
∣∣p
W

dr
)1/p(

E
1

t− s

∫ t

s

exp q(t− s)
(
|||∇Bar |||+ |||Bbr |||

)
dr
)1/q

which proves the proposition. 	


Returning to the proof of the theorem, setting

Qar = E(pmArpm |Vm)
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and similarly, with m replaced by n, for Qbr yields

E sup
u∈[s,t]

∣∣ϕms,u − ϕns,u
∣∣
W

�
(
Γs,t

1
t− s

)1/q
E

(∫ t

s

∣∣Bmr −Bnr
∣∣p
W

dr
)1/p

. (25)

This result implies the convergence of (φns,u, u ∈ [s, t]) in L1(µ,W ) uni-
formly with respect to u for the intervals [s, t] and the limit (φs,u, u ∈ [s, t]) is
the unique solution of the equation (23)). Equation (25)) implies the unique-
ness of the equation since if (φ′s,u) is another solution, then its finite dimen-
sional approximations must coincide with (φns,u). Now, using Lemmas 5.3.1,
5.3.2 and 5.3.5 of [18], it can be shown that the constructions of (φs,u) on the
different small intervals can be patched together to give the entire flow. For
the inverse flow the same reasoning applies also. 	


Appendix

As discussed in section 2, a necessary condition for u ∈ D2,1(H) to be adapted
to a given filtration is that∇u be a.s. quasinilpotent. Now, given a u ∈ D2,1(H)
such that ∇u is quasinilpotent, the question arises whether this assumes the
existence of a filtration for which u is adapted. The answer is negative as seen
from the following example:

Let

u(w) =
∞∑

i=1

2−iαδ(ei+1)ei

where ei is a CONB in H . Hence, for h ∈ H

(∇u)h =
∞∑

i=1

2−iα(ei+1, h)ei

(∇u)rh =
∞∑

i=1

βi,r(ei+r, h)ei

where βi,r = 2−iα. βi+1,r−1 = 2−αr(2i+r−1)/2. Therefore ∇u is quasinilpotent
and by lemma 4.1 of Ringrose [14], for any h ∈ H , it holds that for r large
enough

∣∣((∇u)rh, e1
)
H

∣∣ > 1
2

∣∣(∇u)rh
∣∣
H
. (A.1)

Lemma A. Let E· be a continuous strictly monotone resolution of the iden-
tity. Given δ > 0 and some e in H with |e|H = 1, then there exists an N
such that for all h for which (I − E1− 1

N
)h = h, we have |(h, e)H | � δ|h|H .

Proof. Given e ∈ H and δ > 0, then for any given h and N large enough
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∣∣∣
(
h,
(
1− E1− 1

N

)
e
)

H

∣∣∣ � |h|H ·
∣∣∣
(
1− E1− 1

N

)
e
∣∣∣
H

� |h|H · δ .

Hence
∣∣∣
((

1− E1− 1
N

)
h, e

)

H

∣∣∣ =
∣∣∣
(
h,
(
1− E1− 1

N

)
e
)∣∣∣
H

� |h|H · δ .

If h satisfies (1 − E1− 1
N

)h = h then

|(he)H | � δ · |h|H . 	


Assume now that u is adapted to F· induced by E·, then

Eλ · ∇u = Eλ · ∇u · Eλ .

Hence
(∇u)(1 − Eλ) = (1 − Eλ) ∇u(1− Eλ) .

Consequently if h satisfies h = (1− Eλ)h then it also holds that

(∇u)rh = (1− Eλ)(∇u)rh .

Hence for λ = 1− 1
N and δ = 1

3

∣∣(∇u)rh, e1)H
∣∣ � 1

3

∣∣(∇u)rh
∣∣
H

which contradicts (A.1). Consequently u cannot be adapted to any continuous
filtration.
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Summary. We discuss the Lp multiplier theorem for a semigroup acting on vector
valued functions. A typical example is the Hodge–Kodaira operator on a Rieman-
nian manifold. We give a probabilistic proof. Our main tools are the semigroup
domination and the Littlewood–Paley inequality.

1 Introduction

We discuss the Lp multiplier theorem. In L2 setting, it is well known that
ϕ(−L) is bounded if and only if ϕ is bounded where L is a non-positive self-
adjoint operator. In Lp setting, the criterion above is no more true in general.

E. M. Stein [9] gave a sufficient condition when L is a generator of a
symmetric Markov process. It reads as follows: define a function ϕ on [0,∞) by

ϕ(λ) = λ

∫ ∞

0

e−2tλm(t) dt. (1.1)

Here we assume thatm is a bounded function. A typical example is ϕ(λ) = λiα

(α ∈ R). Then Stein proved that ϕ(−L) is a bounded operator in Lp for
1 < p < ∞. He also proved that the operator norm of ϕ(−L) depends only
on p and the bound of m.

In the meanwhile we consider the Hodge–Kodaira operator on a compact
Riemannian manifold M . It is of the form L = −(dd∗ + d∗d) where d is
the exterior differentiation. A typical feature is that L acts on vector valued
functions, to be precise, differential forms on M . In this case, we can get the
following theorem:
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Theorem 1.1. For sufficiently large κ, ϕ(κ−L) is a bounded operator in Lp.
Further the operator norm is estimated in terms of m and p only.

To show this theorem, we use the following facts.

1. The semigroup domination.
2. The Littlewood–Paley inequality.

As for the first, we can show that
∣∣et(L−κ)θ

∣∣ � etL|θ|. (1.2)

Here L is the Laplace–Beltrami operator onM and the inequality holds point-
wisely. This inequality can be shown by means of Ouhabaz criterion ([3]). To
use the criterion, the following inequality is essential.

L|θ|2 − 2(Lθ, θ) + κ|θ|2 � 0.

As for the second, we need the Littlewood–Paley function. This is somehow
different from the usual one. We may call it the Littlewood–Paley function of
parabolic type. It is defined as follows:

Pθ(x) =
{∫ ∞

0

|∇Ttθ(x)|2 dt
}1/2

.

Here Tt denotes the semigroup et(L−κ). We can show the following inequality:
there exists a positive constant C independent of θ such that

‖Pθ‖p � C‖θ‖p

where ‖ . ‖p stands for the Lp-norm. This inequality is called the Littlewood–
Paley inequality.

Combining these two inequality we can show that
∣∣(ϕ(κ− L)θ, η

)∣∣ � C1‖Pθ‖p ‖Pη‖q � C2‖θ‖p ‖η‖q.

Here q is the conjugate exponent of p. Now the desired result follows easily.
The organization of the paper is as follows. We discuss this problem in the

general framework of a symmetric diffusion process. We give this formulation
in §2. We introduce the square field operator not only in the scalar valued case
but also in the vector valued case. We give conditions to ensure the semigroup
domination which plays an important role in the paper. In §3, we discuss
the Littlewood–Paley inequality. We use the Littlewood–Paley function of
parabolic type. After these preparartions, we give a proof of the multiplier
theorem. In §4, we give an example—obtained in Proposition 4.3—of the
Hodge–Kodaira operator. The crucial issue is the intertwining property of
these operators.
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2 Symmetric Markov processes and the semigroup
domination

In the introduction, we stated the theorem for the Hodge–Kodaira operator
but it can be discussed under more general setting. We give it in the framework
of symmetric Markov diffusion process.

Let (M,µ) be a measure space and suppose that we are given a conservative
diffusion process (Xt, Px) on M . Here Px denotes a measure on C([0,∞) →
M) that stands for the law of the diffusion process starting at x ∈ M . We
assume that (Xt) is symmetric with respect to µ and hence the semigroup
{Tt} defined by

Ttf(x) = Ex[f(Xt)], (2.1)

is a strongly continuous symmetric semigroup in L2(m). Here Ex stands for
the expectation with respect to Px. We denote the associated Dirichlet form
by E and the generator by L. We assume further that there exists a continuous
bilinear map Γ : Dom(E)×Dom(E)→ L1(m) such that

2
∫

M

Γ (f, g)h dµ = E(fg, h)− E(f, gh)− E(g, fh),

for f , g, h ∈ Dom(E) ∩ L∞. (2.2)

Γ is called the square field operator (“opérateur carré du champ” in French
literature) and we impose on Γ the following derivation property:

Γ (fg, h) = fΓ (g, h) + gΓ (f, h), for f , g, h ∈ Dom(E) ∩ L∞. (2.3)

We are dealing with a semigroup acting on vector valued functions (to be
precise, sections of a vector bundle) and so we are given another semigroup
{Tt}. The semigroup acts on L2-sections of a vector bundle E. Here E is
equipped with a metric ( . , . )E and L2-sections are measurable sections θ with

‖θ‖22 =
∫

M

|θ(x)|2E µ(dx) <∞.

The norm | . |E is defined by |θ|E =
√

(θ, θ)E . We denote the set of all L2-
sections by L2Γ (E). The typical example of E is a exterior bundle of T ∗M
over a Riemannian manifoldM and in this case L2Γ (E) is the set of all square
integrable differential forms. L denotes the generator of {Tt} and E denotes
the associated bilinear form. We assume that L is decomposed as

L = L̂− κ−R. (2.4)

Here R is a symmetric section of Hom(E;E) and κ is a positive constant.
Later κ will be taken to be large enough. L̂ is self-adjoint and non-negative
definite. It generates a contraction semigroup which we denote by {T̂t}. L̂
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and L satisfy the following relation: there exists a square field operator
Γ̂ : Dom(Ê)×Dom(Ê)→ L1(µ) such that

2
∫

M

Γ̂ (θ, η)h dµ = Ê
(
(θ, η)E , h

)
− Ê(θ, hη)− Ê(hθ, η),

for θ, η ∈ Dom(Ê) ∩ L∞, h ∈ Dom(E) ∩ L∞. (2.5)

We assume that Γ̂ enjoys the positivity Γ̂ (θ, θ) � 0 and

2hΓ(θ, η) = −Γ
(
h, (θ, η)E

)
+ Γ(θ, hη) + Γ(hθ, η) (2.6)

for θ, η ∈ Dom(Ê) ∩ L∞, h ∈ Dom(E) ∩ L∞. These properties lead to the
semigroup domination (see e.g., [5]):

∣∣T̂tθ
∣∣
E

� Tt|θ|E . (2.7)

Since R is bounded, we may assume that κ+R is non-negative definite at any
point of M by taking κ large enough. We assume further that there exists a
positive constant δ > 0 such that

κ(θ, θ)E + (Rθ, θ)E � δ(θ, θ)E . (2.8)

Then the semigroup domination for {Tt} also holds as follows:

|Ttθ|E � e−δtTt|θ|E . (2.9)

We give a correspondence to the Hodge–Kodaira operator when M is a
Riemannian manifold. L = ∆ (i.e., the Laplace–Beltrami operator), E =∧q
T ∗M (the exterior product of the cotangent bundle) and L2Γ (E) is the

set of all square integrable q-forms. L̂ = −∇∗∇ is the covariant Laplacian
(Bochner Laplacian), L = −(dd∗+ d∗d)−κ = L̂−κ−R(q). The explicit form
of R(q) is given by the Weitzenböck formula and can be written in terms of the
curvature tensor. We do not give the explicit form because we do not need it.
We only need the boundedness of R(q). Γ̂ is given by

Γ̂ (θ, η) =
1
2
{∆(θ, η)E + (∇∗∇θ, η)E + (θ,∇∗∇η)E} = (∇θ,∇η)E⊗T∗M .

The positivity of Γ̂ clearly holds and (2.6) follows from the derivation property
of ∇.

We now return to the general framework. We assume that Γ̂ is expressed as

Γ̂ (θ, η) = (Dθ,Dη) (2.10)

for some operatorD. For instance, the covariant Laplacian satisfies this condi-
tion. In this case,D is the covariant derivation∇. Later we need this condition
when the exponent p is greater than 2.
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D is an operator from L2Γ (E) to L2Γ (Ẽ), Ẽ being another vector bundle
over M . The domain of D is not necessarily the whole space L2Γ (E) but we
do assume that D is a closed operator. Our last assumption is the following
intertwining property: there exists a self-adjoint operator Λ satisfying

DL = ΛD +K (2.11)

where K is a bounded section of Hom(E;E′). For Λ, we assume the same
conditions as L. In particular, we need the semigroup domination for St = etΛ:

|Stξ|Ẽ � e−δtTt|ξ|Ẽ , ξ ∈ L2Γ (Ẽ). (2.12)

Due to the boundedness of K, this is possible by taking κ large enough.
Moreover the intertwining property (2.11) implies

DTtθ = StDθ +
∫ t

0

St−sKTsθ ds, ∀θ ∈ Dom(D), (2.13)

(see [8]).

3 Littlewood–Paley inequality

We introduce the Littlewood–Paley function of parabolic type. They are given
as follows:

Pθ(x) =
{∫ ∞

0

Γ̂ (Ttθ,Ttθ)(x) dt
}1/2

, (3.1)

Hθ(x) =
{∫ ∞

0

TtΓ̂ (Ttθ,Ttθ)(x) dt
}1/2

. (3.2)

We fix a time N and set

u(x, t) = TN−tθ(x), 0 � t � N.

Then we have

(∂t + L)|u(x, t)|2E
= (∂t + L)(TN−tθ,TN−tθ)

= −2(LTN−tθ,TN−tθ) + 2(L̂TN−tθ,TN−tθ) + 2Γ̂ (TN−tθ,TN−tθ)

= −2
(
(L̂− κ−R)TN−tθ,TN−tθ

)

+ 2(L̂TN−tθ,TN−tθ) + 2Γ̂ (TN−tθ,TN−tθ)

= 2
(
(κ+R)TN−tθ,TN−tθ

)
+ 2Γ̂ (TN−tθ,TN−tθ)

For notational simplicity, we use the following convention. We write
‖Aθ‖p � ‖θ‖p if there exists a constant C such that ‖Aθ‖p � C‖θ‖p. C is
independent of θ but may depend on p and A. We use this convention without
mention. Now we have the following.
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Proposition 3.1. For 1 < p � 2, it holds that

‖Pθ‖p � ‖θ‖p. (3.3)

Proof. Define a martingale (Mt) by

Mt = |u(Xt, t)|2E − |u(X0, 0)|2E −
∫ t

0

(∂s + L)|u(Xs, s)|2E ds

= |u(Xt, t)|2E − |u(X0, 0)|2E

− 2
∫ t

0

{(
(κ+R)TN−sθ(Xs),TN−sθ(Xs)

)

+ Γ̂
(
TN−sθ(Xs),TN−sθ(Xs)

)}
ds.

Then the quadratic variation of (Mt) is written as

〈M,M〉t = 2
∫ t

0

Γ
(
|u( . , s)|2E , |u( . , s)|2E

)
(Xs) ds

= 8
∫ t

0

|u(Xs, s)|2EΓ
(
|u( . , s)|E , |u( . , s)|E

)
(Xs) ds.

In particular, Zt = |u(Xt, t)|2E is a non-negative submartingale:

Zt = |u(X0, 0)|2E +Mt +Bt (3.4)

where an increasing process Bt is given by

Bt = 2
∫ t

0

{(
(κ+R)TN−sθ(Xs),TN−sθ(Xs)

)

+ Γ̂
(
TN−sθ(Xs),TN−sθ(Xs)

)}
ds. (3.5)

Take any ε > 0 and apply the Itô formula to (|u|2E + ε)p/2, we have

d
(
|u|2E + ε

)p/2
=
p

2
(
|u|2E + ε

)p/2−1
d
(
|u|2E + ε

)

+
1
2
p

2

(p
2
− 1

)(
|u|2E + ε

)p/2−2 d〈M,M〉t

=
p

2
(
|u|2E + ε

)p/2−1 dMt

+
[p
2
(
|u|2E + ε

)p/2−12
{(

(κ+R)u, u
)

+ Γ̂ (u, u)
}

+ p(p− 2)
(
|u|2E + ε

)p/2−2|u|2EΓ (|u|E, |u|E)
]
dt.

Here, in the above identity, u(Xt, t) is simply denoted by u. Therefore

(
|u(Xt, t)|2E + ε

)p/2 =
(
|u(X0, 0)|2E + ε

)p/2 +
∫ t

0

p

2
(
|u|2E + ε

)p/2−1 dMs +At.
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Here At is defined by

At =
∫ t

0

[
p
(
|u|2E + ε

)p/2−1{((κ+R)u, u
)

+ Γ̂ (u, u)
}

+ p(p− 2)
(
|u|2E + ε

)p/2−2|u|2EΓ (|u|E , |u|E)
]
dt.

(At) is an increasing process. To see this, recalling the inequality

Γ (|u|E, |u|E) � Γ̂ (u, u),

we have

dAt � p
(
|u|2E + ε

)p/2−1{((κ+R)u, u
)
+ Γ̂ (u, u)

}

+ p(p− 2)
(
|u|2E + ε

)p/2−2|u|2Γ̂ (u, u)

�
(
p+ p(p− 2)

)(
|u|2E + ε

)p/2−1
Γ̂ (u, u)

+ p
(
|u|2E + ε

)p/2−1((κ+R)u, u
)

� p(p− 1)
(
|u|2E + ε

)p/2−1
Γ̂ (u, u)

which implies that At is increasing. By taking expectation of (|u(XN , N)|2E +
ε)p/2, we obtain

p(p− 1)E
[∫ N

0

(
|u|2 + ε

)p/2−1
Γ̂ (u, u) dt

]
� E

[(
|u(XN , N)|2E + ε

)p/2]

� E
[(
|θ(XN )|2E + ε

)p/2]

�
∥∥∥
(
|θ|2E + ε

)1/2∥∥∥
p

p
.

We proceed to the estimation of the left hand side. By the semigroup
domination

|TN−tθ(x)| � TN−t|θ|(x) � sup
s�0

Ts|θ|(x) =: θ∗(x)

The maximal ergodic theorem implies ‖θ∗‖p � ‖θ‖p. Now, noting p/2−1 � 0,

E

[∫ N

0

(
|u|2 + ε

)p/2−1
Γ̂ (u, u) dt

]
=

∥∥∥∥
∫ N

0

(
|u|2 + ε

)p/2−1
Γ̂ (TN−tθ,TN−tθ) dt

∥∥∥∥
1

�
∥∥∥∥
(
(θ∗)2 + ε

)p/2−1
∫ N

0

Γ̂ (Ttθ,Ttθ) dt
∥∥∥∥

1

.

Letting N →∞,
∥∥∥
(
|θ|2 + ε

)1/2∥∥∥
p

p
�

∥∥∥∥
(
(θ∗)2 + ε

)p/2−1
∫ ∞

0

Γ̂ (Ttθ,Ttθ) dt
∥∥∥∥

1
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�
∥∥∥
(
(θ∗)2 + ε

)p/2−1Pθ2
∥∥∥

1
=
∥∥∥
(
(θ∗)2 + ε

)(p−2)/4Pθ
∥∥∥

2

2
.

Therefore

‖Pθ‖p =
∥∥∥
(
(θ∗)2 + ε

)(2−p)/4((θ∗)2 + ε
)(p−2)/4Pθ

∥∥∥
p

�
∥∥∥
(
(θ∗)2 + ε

)(2−p)/4∥∥∥
2p/(2−p)

∥∥∥
(
(θ∗)2 + ε

)(p−2)/4Pθ
∥∥∥

2(
since

1
p

=
2− p
2p

+
1
2

)

�
∥∥∥
(
(θ∗)2 + ε

)1/2∥∥∥
(2−p)/2

p

∥∥∥
(
|θ|2 + ε

)1/2∥∥∥
p/2

p
.

Finally, letting ε→ 0, we obtain

‖Pθ‖p � ‖θ∗‖(2−p)/2p ‖|θ|‖p/2p � ‖θ‖(2−p)/2p ‖θ‖p/2p = ‖θ‖p.

The proof is complete. 	


Next we show the case p � 2. First we need the following easy lemma.

Lemma 3.1. Let j be a non-negative fonction on M × [0, N ]. Then it holds
that

Eµ

[∫ N

0

j(Xt, t) dt
∣∣∣∣ XN = x

]
=

∫ N

0

Tt
(
j( . , N − t)

)
(x) dt. (3.6)

Here Eµ stands for the integration with respect to Pµ =
∫
M Px µ(dx).

Proof. It is enough to show that

Eµ

[{∫ N

0

j(Xt, t) dt
}
f(XN )

]
=

∫

E

{∫ N

0

TN−tj(x, t) dt
}
f(x)µ(dx) (3.7)

for any non-negative function f . To see this,

Eµ

[{∫ N

0

j(Xt, t) dt
}
f(XN )

]
=

∫ N

0

Eµ[j(Xt, t)f(XN )] dt

=
∫ N

0

Eµ[j(Xt, t)Eµ[f(XN )|Ft]] dt

=
∫ N

0

Eµ[j(Xt, t)TN−tf(Xt)] dt

(by the Markov property)

=
∫ N

0

dt
∫

M

j(x, t)TN−tf(x)µ(dx)
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=
∫ N

0

dt
∫

M

TN−t
(
j( . , t)

)
(x)f(x)µ(dx)

(by symmetry)

=
∫

M

{∫ N

0

TN−t
(
j( . , t)

)
(x) dt

}
f(x)µ(dx)

which shows (3.7). 	


Proposition 3.2. For p � 2, we have

‖Hθ‖p � ‖θ‖p. (3.8)

Proof. We consider a submartingale Zt = |u(Xt, t)|2. As was seen in (3.4), Zt
is decomposed as

Zt = |u(X0, 0)|2E +Mt +Bt.

Then the following inequality is well-known (see, [2]): for q � 1,

E[BqN ] � E[ZqN ]. (3.9)

Using Lemma 3.1, we have

∫

M

µ(dx)
{∫ N

0

TtΓ̂ (Ttθ,Ttθ)(x) dt
}p/2

=
∫

M

µ(dx)Eµ

[∫ N

0

Γ̂ (TN−tθ,TN−tθ)(Xt) dt
∣∣∣∣ XN = x

]p/2

�
∫

M

µ(dx)Eµ

[{∫ N

0

Γ̂ (TN−tθ,TN−tθ)(Xt) dt
}p/2 ∣∣∣∣ XN = x

]

(by the Jensen inequality)

= Eµ

[{∫ N

0

Γ̂ (TN−tθ,TN−tθ)(Xt) dt
}p/2]

� Eµ

[{∫ N

0

{(
(κ+R)TN−tθ(Xs),TN−tθ(Xs)

)

+ Γ̂
(
TN−tθ(Xs),TN−tθ(Xs)

)}
dt
}p/2]

� E
[
B
p/2
N

]
(thanks to (3.5))

� E
[
Z
p/2
N

]
(thanks to (3.9))

= E
[
|θ(XN )|p

]

= ‖θ‖pp.

Now Hθ can be estimated as follows:
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‖Hθ‖pp =
∥∥∥∥

{∫ ∞

0

TtΓ̂ (Ttθ,Ttθ)(x) dt
}p/2∥∥∥∥

1

= lim
N→∞

∫

M

µ(dx)
{∫ N

0

TtΓ̂ (Ttθ,Ttθ)(x) dt
}p/2

� ‖θ‖pp.

This completes the proof. 	


Let us proceed to the estimation of Pθ.

Proposition 3.3. For p � 2, we have

Pθ(x) �
√

2Hθ(x) +
‖K‖∞
4δ3/2

θ∗(x) (3.10)

Proof. We have

Pθ(x) =
{∫ ∞

0

Γ̂ (Ttθ,Ttθ)(x) dt
}1/2

=
{∫ ∞

0

|DTtθ(x)|2Ẽ dt
}1/2

(thanks to (2.10))

=
{

2
∫ ∞

0

|DT2tθ(x)|2Ẽ dt
}1/2

=
{

2
∫ ∞

0

|TtDTtθ(x)|2Ẽ dt
}1/2

=
{

2
∫ ∞

0

∣∣∣∣StDTtθ(x) +
∫ t

0

St−sKTsTtθ(x) ds
∣∣∣∣
2

Ẽ

dt
}1/2

(by (2.13))

�
√

2
{∫ ∞

0

|StDTtθ(x)|2Ẽ dt
}1/2

+
√

2
{∫ ∞

0

{∫ t

0

|St−sKTs+tθ(x)|Ẽ ds
}2

dt
}1/2

�
√

2
{∫ ∞

0

Tt|DTtθ(x)|2Ẽ dt
}1/2

+
√

2
{∫ ∞

0

{∫ t

0

e−δ(t−s)Tt−s|KTs+tθ(x)|Ẽ ds
}2}1/2

(by (2.8))

=
√

2Hθ(x)

+
√

2
{∫ ∞

0

{∫ t

0

‖K‖∞e−δ(t−s)Tt−se−δ(s+t)Ts+t|θ|E(x) ds
}2

dt
}1/2

=
√

2Hθ(x) +
√

2
{∫ ∞

0

‖K‖2∞e−4δt
(
T2t|θ|E(x)

)2
t2 dt

}1/2



236 Ichiro Shigekawa

=
√

2Hθ(x) +
√

2 ‖K‖∞θ∗(x)
{∫ ∞

0

t2e−4δt dt
}1/2

=
√

2Hθ(x) +
1

4δ3/2
‖K‖∞θ∗(x)

which is the desired result. 	


Combining these two propositions and the maximal ergodic inequality, we
easily obtain the following.

Proposition 3.4. For p � 2, we have

‖Pθ‖p � ‖θ‖p. (3.11)

Before proving the theorem, we give an expression of ϕ(−L). Recall that

ϕ(λ) = λ

∫ ∞

0

e−2tλm(t) dt.

There exists the following correspondence:

−L ←→ λ
etL ←→ e−tλ.

Therefore ϕ(−L) is expressed as

ϕ(−L) = −L
∫ ∞

0

T2tm(t) dt.

Proof of Theorem 1.1. Using the expression above, we have

(
ϕ(−L)θ, η

)
=
(
−L

∫ ∞

0

T2tm(t) dt θ, η
)

=
∫ ∞

0

∫

M

(−LT2tθ, η)E µ(dx)m(t) dt

=
∫ ∞

0

m(t) dt
∫

M

{(−L̂Ttθ,Ttη)E +
(
(κ+R)Ttθ,Ttη

)
E
}µ(dx)

=
∫ ∞

0

m(t) dt
∫

M

Γ̂ (Ttθ,Ttη)E

+
∫ ∞

0

m(t) dt
(
(κ+R)Ttθ,Ttη

)
E
µ(dx).

We estimate two terms on the right hand side respectively.
For the first term,

∣∣∣∣
∫ ∞

0

m(t) dt
∫

M

Γ̂ (Ttθ,Ttη)µ(dx)
∣∣∣∣
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� ‖m‖∞
∫ ∞

0

dt
∫

M

Γ̂ (Ttθ,Ttθ)1/2Γ̂ (Ttη,Ttη)1/2 µ(dx)

(thanks to the Schwarz inequality for Γ̂ )

� ‖m‖∞
∫

M

{∫ ∞

0

Γ̂ (Ttθ,Ttθ) dt
}1/2{∫ ∞

0

Γ̂ (Ttη,Ttη) dt
}1/2

µ(dx)

= ‖m‖∞
∫

M

Pθ(x)Pη(x)µ(dx)

� ‖m‖∞ ‖Pθ‖p ‖Pη‖q
� ‖m‖∞ ‖θ‖p ‖η‖q.

For the second term,
∣∣∣∣
∫ ∞

0

m(t) dt
(
(κ+R)Ttθ,Ttη

)
E
µ(dx)

∣∣∣∣

� ‖m‖∞
∫ ∞

0

dt
∫

M

‖κ+R‖∞ |Ttθ|E |Ttη|E µ(dx)

� ‖m‖∞
∫ ∞

0

dt
∫

M

‖κ+R‖∞ e−2δtTt|θ|E Tt|η|E µ(dx)

� ‖m‖∞ ‖κ+R‖∞
1
2δ
‖θ‖p ‖η‖q.

Thus we have shown that

|(ϕ(−L)θ, η)| � ‖θ‖p ‖η‖q

which implies that ϕ(−L) is bounded in Lp. 	


4 Hodge–Kodaira operator

In this section we consider the the Hodge–Kodaira operator −(dd∗ + d∗d)
acting on differential forms. What remains to show is the defective intertwining
property. We have to seek for operators Λ and K that satisfy

−∇(dd∗ + d∗d)θ = Λ∇θ +Kθ.

Even if θ is a differential form, ∇θ is no longer a differential form. So we
discuss the issue in the framework of tensor fields. Let M be a Riemannian
manifold and ∇ be the Levi-Civita connection. The Riemannian curvature
tensor is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

where X , Y , Z ∈ Γ (TM). Here Γ denotes the set of all smooth sections of
a vector bundle. In this case, Γ (TM) is the set of vector fields. Let TnM =
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T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
n

be a tensor bundle of type (0, n). The exterior bundle

is denoted by
∧p
T ∗M = T ∗M ∧ · · · ∧ T ∗M︸ ︷︷ ︸

n

. We define an operator ∆HK on

Γ (TnM) as follows. u1⊗· · ·⊗un, ui ∈ Γ (T ∗M) is a typical form of an element
of Γ (TnM). Any element of Γ (TnM) can be written as a linear combination
of them. We are given a Riemmanian metric g and there exists a natural
isomophism & : T ∗M → TM e.g.,

〈ω,X〉 = g(ω�, X), ω ∈ T ∗M, X ∈ TM.

In the sequel, we omit g and denote the inner product g(X,Y ) by (X,Y ).
The inner product in T ∗M is also denoted by (ω, η). The natural pairing
between T ∗M and TM is denoted by 〈ω,X〉. We take a local orthonormal
basis {e1, . . . , en} and let {ω1, . . . , ωn} be its dual basis. We introduce linear
opetators S(n)

p,q 1 � p, q � n on Γ (Tn) as follows; for p �= q,

S(n)
p,q (u1 ⊗ · · · ⊗ un)

=
(
R(u�p, ek)u

�
q, el

)
u1 ⊗ · · · ⊗

p

ω̆k ⊗ · · · ⊗
q

ω̆l ⊗ · · · ⊗ un. (4.1)

Here we used the Einstein rule: we omit the summation sign for repeated
indices. For example, in the equation above

∑n
k,l=1 is omitted. For p = q, we

define

S(n)
p,p (u1 ⊗ · · · ⊗ un) =

(
Ricu�p, ek

)
u1 ⊗ · · · ⊗

p

ω̆k ⊗ · · · ⊗ un

=
(
R(u�p, ei)ei, ek

)
u1 ⊗ · · · ⊗

p

ω̆k ⊗ · · · ⊗ un. (4.2)

Ric denotes the Ricci tensor.
We now define the operator ∆HK by

∆HKv = −∇∗∇v −
n∑

p,q=1

S(n)
p,q v. (4.3)

Here the superscript HK stands for Hodge–Kodaira. This notation is justified
by the following proposition.

Proposition 4.1. For θ ∈ Γ (
∧p
T ∗M), it holds that

∆HKθ = −(dd∗ + d∗d)θ. (4.4)

Proof. We first note the following identity: for u1, . . . , un ∈ Γ (T ∗M),

u1 ∧ u2 ∧ · · · ∧ un :=
∑

σ

sgnσ uσ(n) ⊗ · · · ⊗ uσ(n)



Lp multiplier theorem for the Hodge–Kodaira operator 239

=
∑

α

(−1)α−1uα ⊗ (u1 ∧
α
∨· · · ∧ un).

Here σ runs over the set of all permutations of order n, sgnσ is the sign of σ
and

α
∨ means that uα is deleted. Similarly we have

u1 ∧ u2 ∧ · · · ∧ un =
∑

α<β

(−1)α+β−1(uα ⊗ uβ − uβ ⊗ uα)(u1 ∧
α
∨
β
∨· · · ∧ un).

Next let us compute
∑
p,q S

(n)
p,q . First, for

∑
p�=q S

(n)
p,q

∑

p�=q
S(n)
p,q (u1 ∧ u2 ∧ · · · ∧ un)

=
∑

p�=q
S(n)
p,q

∑

σ

sgnσ uσ(1) ⊗ · · · ⊗ uσ(n)

=
∑

p�=q

∑

σ

sgnσ (R(u�σ(p), ek)u
�
σ(q), el)uσ(1) ⊗ · · · ⊗

p

ω̆k ⊗ · · · ⊗
q

ω̆l ⊗ · · · ⊗ uσ(n).

Here p-th uσ(p) is replaced by ωk and q-th uσ(q) is replaced by ωl. By exchang-
ing the order of summation, we have
∑

p�=q
S(n)
p,q (u1 ∧ u2 ∧ · · · ∧ un)

=
∑

α�=β

∑

σ

sgnσ
(
R(u�α, ek)u

�
β, el

)
uσ(1) ⊗ · · · ⊗

σ−1(α)

ω̆k ⊗ · · · ⊗
σ−1(β)

ω̆l ⊗ · · · ⊗ uσ(n)

=
∑

α�=β

(
R(u�α, ek)u

�
β, el

)∑

σ

sgnσ uσ(1) ⊗ · · · ⊗
σ−1(α)

ω̆k ⊗ · · · ⊗
σ−1(β)

ω̆l ⊗ · · · ⊗ uσ(n)

=
∑

α�=β

(
R(u�α, ek)u

�
β, el

)
u1 ∧ · · · ∧

α

ω̆k ∧ · · · ∧
β

ω̆l ∧ · · · ∧ un

=
∑

α<β

(
R(u�α, ek)u

�
β, el

)
ωk ∧ ωl ∧ u1 ∧

α
∨
β
∨· · · ∧ un

+
∑

α>β

(
R(u�α, ek)u

�
β , el

)
ωl ∧ ωk ∧ u1 ∧

α
∨
β
∨· · · ∧ un

=
∑

α<β

(
R(u�α, ek)u

�
β, el

)
ωk ∧ ωl ∧ u1 ∧

α
∨
β
∨· · · ∧ un

+
∑

α>β

(
R(u�β, el)u

�
α, ek

)
ωl ∧ ωk ∧ u1 ∧

α
∨
β
∨· · · ∧ un

= 2
∑

α<β

(
R(u�α, ek)u

�
β, el

)
ωk ∧ ωl ∧ u1 ∧

α
∨
β
∨· · · ∧ un.

Similarly we have
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∑

p

S(n)
p,p (u1 ∧ u2 ∧ · · · ∧ un) =

∑

p

S(n)
p,p

∑

σ

sgnσ uσ(1) ⊗ · · · ⊗ uσ(n)

=
∑

p

∑

σ

sgnσ
(
Ricu�σ(p), ek

)
uσ(1) ⊗ · · · ⊗

p

ω̆k ⊗ · · · ⊗ uσ(n).

Here the p-th uσ(p) is replaced by ωk. Exchanging the order of summation,
we have
∑

p

S(n)
p,p (u1 ∧ u2 ∧ · · · ∧ un)

=
∑

α

∑

σ

sgnσ (Ric u�α, ek)uσ(1) ⊗ · · · ⊗
σ−1(α)

ω̆k ⊗ · · · ⊗ uσ(n)

=
∑

α

(Ric u�α, ek)u1 ∧ · · · ∧
α

ω̆k ∧ · · · ∧ un

=
∑

α

(−1)α−1(Ric u�α, ek)ω
k ∧ u1 ∧

α
∨· · · ∧ un

Using this identity, we can calculate −(dd∗+ d∗d). Before that we have to
recall the Weitzenböck formula:

− (dd∗ + d∗d) = −∇∗∇
+
(
R(el, ej)ek, ei

)
ωl ∧ ωk ∧ i(ej)i(ei)− (Ric ek, ei)ωk ∧ i(ei).

Here i( . ) denotes the interior product, i.e., i(X)θ = θ(X, . , . . . , . ). Now we
have

−(dd∗ + d∗d)(u1 ∧ · · · ∧ un)
= −∇∗∇(u1 ∧ · · · ∧ un) +

(
R(el, ej)ek, ei

)
ωl ∧ ωk ∧ i(ej)i(ei)

×
∑

α<β

(−1)α+β−1(uα ⊗ uβ − uβ ⊗ uα)(u1 ∧
α
∨
β
∨· · · ∧ un)

− (Ric ek, ei)ωk ∧ i(ei)
∑

α

(−1)α−1uα ⊗ (u1 ∧
α
∨· · · ∧ un)

= −∇∗∇(u1 ∧ · · · ∧ un)

+
∑

α<β

(−1)α+β−1{〈uα, ei〉〈uβ , ej〉 − 〈uβ , ei〉〈uα, ej〉}

×
(
R(el, ej)ek, ei

)
ωl ∧ ωk ∧ u1 ∧

α
∨
β
∨· · · ∧ un

−
∑

α

(−1)α−1(Ric ek, ei)〈uα, ei〉i(ei)ωk ∧ u1 ∧
α
∨· · · ∧ un

= −∇∗∇(u1 ∧ · · · ∧ un) +
∑

α<β

(−1)α+β−1
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×
{(
R(el, u

�
β)ek, u

�
α

)
−
(
R(el, u�α)ek, u

�
β

)}
ωl ∧ ωk ∧ u1 ∧

α
∨
β
∨· · · ∧ un

−
∑

α

(−1)α−1(Ric ek, uα)ωk ∧ u1 ∧
α
∨· · · ∧ un

= −∇∗∇(u1 ∧ · · · ∧ un)

+ 2
∑

α<β

(−1)α+β−1
(
R(el, u

�
β)ek, u

�
α

)
ωl ∧ ωk ∧ u1 ∧

α
∨
β
∨· · · ∧ un

−
∑

α

(−1)α−1(Ric ek, uα)ωk ∧ u1 ∧
α
∨· · · ∧ un

= −∇∗∇(u1 ∧ · · · ∧ un)

− 2
∑

α<β

(−1)α+β−1
(
R(u�α, ek)u

�
β , el

)
ωk ∧ ωl ∧ u1 ∧

α
∨
β
∨· · · ∧ un

−
∑

α

(−1)α−1(Ric ek, uα)ωk ∧ u1 ∧
α
∨· · · ∧ un

= −∇∗∇(u1 ∧ · · · ∧ un)−
∑

p,q

S(n)
p,q (u1 ∧ · · · ∧ un)

= ∆HK(u1 ∧ · · · ∧ un)

which is the required identity. 	


We are interested in the intertwining property for the Hodge–Kodaira
operator −(dd∗ + d∗d). By the above proposition, it is enough to calculate
∆HK. We first show the intertwining property for ∇∗∇.

Proposition 4.2. It holds that

−∇(∇∗∇)u− (∇∗∇)∇u =
n+1∑

j=2

{S(n+1)
1,j ∇u + S(n+1)

j,1 ∇u}

+ S(n+1)
1,1 ∇u + ωk ⊗∇iR(n)(ei, ek)u (4.5)

Proof. Pick a point x ∈M and fix it. We take a normal coordinate at x. Then
there exists a local frame {e1, e2, . . . , en} of TM so that ∇eiej(x) = 0. To
avoid complexity, we simply denote ∇i in place of ∇ei . Let {ω1, ω2, . . . , ωn}
be the dual frame. Due to our choice of a local frame, at the point x it holds
that ∇2

i,j = ∇i∇j , [ei, ej] = 0 and ∇iωk = 0. Moreover we have the following
identity at x:

−[ei,∇jek] = ∇i∇jek, (4.6)
∇i∇∇jek

= ∇∇i∇jek
, (4.7)

〈∇i∇iek, ωl〉 = −〈ek,∇i∇iωl〉 (4.8)

Here (4.7) is the identity for TnM .
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To see (4.6) we note that the torsion is free and so we have

[ei,∇jek] = ∇i∇jek −∇∇jek
ei = ∇i∇jek.

As for (4.7), we use the definition of the curvature R(n).

∇i∇∇jek
= R(n)(ei,∇jek) +∇∇jek

∇i +∇[ei,∇jek]

= ∇∇i∇jek
. (thanks to (4.6) )

(4.8) can be shown as

0 = ∇i∇i〈ek, ωl〉
= 〈∇i∇iek, ωl〉+ 2〈∇iek,∇iωl〉+ 〈ek,∇i∇iωl〉
= 〈∇i∇iek, ωl〉+ 〈ek,∇i∇iωl〉.

We use these identities freely. From now on all equations are evaluated at the
point x. Now

−(∇∗∇)∇u +∇(∇∗∇)u

= ∇i∇i(ωk ⊗∇ku)−∇∇iei(ω
k ⊗∇ku)−∇(∇i∇iu−∇∇ieiu)

= ∇i∇iωk ⊗∇ku+ 2∇iωk ⊗∇i∇ku+ ωk ⊗∇i∇i∇ku
− ωk ⊗∇k∇i∇iu+ ωk ⊗∇k∇∇ieiu

= ∇i∇iωk ⊗∇ku+ ωk ⊗∇i∇i∇ku− ωk ⊗∇k∇i∇iu+ ωk ⊗∇k∇∇ieiu

= ∇i∇iωk ⊗∇ku+ ωk ⊗∇i
{
R(n)(ei, ek)u+∇k∇iu+∇[ei,ek]u

}

− ωk ⊗
{
R(n)(ek, ei)∇iu+∇i∇k∇iu+∇[ek,ei]∇iu

}
+ ωk ⊗∇k∇∇ieiu

= ∇i∇iωk ⊗∇ku+ ωk ⊗
{
∇iR(n)(ei, ek)u+R(n)(∇iei, ek)u

+R(n)(ei,∇iek)u+R(n)(ei, ek)∇iu+∇i∇[ei,ek]u
}

− ωk ⊗R(n)(ek, ei)∇iu+ ωk ⊗∇k∇∇ieiu

= ∇i∇iωk ⊗∇ku+ ωk ⊗∇iR(n)(ei, ek)u + 2ωk ⊗R(n)(ei, ek)∇iu
+ ωk ⊗

{
∇i∇[ei,ek]u+∇k∇∇ieiu

}
.

On the other hand, using (4.6), (4.7) and (4.8), we have

ωk⊗
{
∇i∇[ei,ek]u+∇k∇∇ieiu

}

= ωk ⊗ (∇i∇∇iek
−∇i∇∇kei +∇k∇∇iei)u

= ωk ⊗ (∇∇i∇iek
+∇R(ek,ei)ei

+∇∇[ek,ei]ei)u

= ωk ⊗ (∇∇i∇iek
+∇R(ek,ei)ei

)u

= ωk ⊗ (〈∇i∇iek, ωl〉∇lu+ 〈R(ek, ei)ei, ωl〉∇lu)
= ωk ⊗ 〈∇i∇iek, ωl〉∇lu+ ωk ⊗ 〈Ric ek, ωl〉∇lu
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= −ωk ⊗ 〈ek,∇i∇iωl〉∇lu+ ωk ⊗ 〈Ric ek, ωl〉∇lu (thanks to (4.8) )

= −∇i∇iωl ⊗∇lu+ ωk ⊗ 〈Ric ek, ωl〉∇lu.

Combining all of them, we have

−(∇∗∇)∇u+∇(∇∗∇)u

= ωk ⊗∇iR(n)(ei, ek)u+ 2ωk ⊗R(n)(ei, ek)∇iu+ ωk ⊗ 〈Ric ek, ωl〉∇lu

= ωk ⊗∇iR(n)(ei, ek)u+
n+1∑

j=2

(
S

(n+1)
1,j ∇u+ S(n+1)

j,1 ∇u
)

+ S(n+1)
1,1 ∇u.

This completes the proof. 	


We are now ready to prove the intertwining property for ∆HK.

Proposition 4.3. Take any local orthonormal frame {e1, e2, . . . , ed} and its
dual frame {ω1, ω2, . . . , ωd}. Then it holds that

∇∆HK
n u = ∆HK

n+1∇u−
n∑

p,q=1

ωk ⊗ (∇kS(n)
p,q )u− ωk ⊗ (∇iR(n)(ei, ek))u. (4.9)

Proof. We recall (4.3). Then

∇∆HK
n u−∆HK

n+1∇u

= −∇
(
∇∗∇+

n∑

p,q=1

S(n)
p,q

)
+
(
∇∗∇+

n+1∑

p,q=1

S(n+1)
p,q

)
∇u

= −
n+1∑

j=2

(
S

(n+1)
1,j ∇u+ S(n+1)

j,1 ∇u
)
− S(n+1)

1,1 ∇u− ωk ⊗∇iR(n)(ei, ek)u

−
n∑

p,q=1

ωk ⊗
(
∇kS(n)

p,q

)
u−

n∑

p,q=1

ωk ⊗ S(n)
p,q∇ku+

n+1∑

p,q=1

S(n+1)
p,q ∇u

= −
n+1∑

j=2

(
S

(n+1)
1,j ∇u+ S(n+1)

j,1 ∇u
)
− S(n+1)

1,1 ∇u− ωk ⊗∇iR(n)(ei, ek)u

−
n∑

p,q=1

ωk ⊗
(
∇kS(n)

p,q

)
u−

n+1∑

p,q�2

S(n+1)
p,q ∇u+

n+1∑

p,q=1

S(n+1)
p,q ∇u

= −
n∑

p,q=1

ωk ⊗
(
∇kS(n)

p,q

)
u− ωk ⊗∇iR(n)(ei, ek)u

which completes the proof. 	
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The above intertwining property for ∆HK is defective, i.e., it satisfies the
identity of the type (2.11). The defective term is removed if we replace ∇
with the exterior derivative d. To define the exterior derivative, we need to
introduce the alternating operation A as follows. For a tensor u of type (0, n),
we define A(n) by

A(n)u(X1, . . . , Xn) =
∑

σ

sgnσ u(Xσ(1), . . . , Xσ(n)).

The exterior derivative is defined by

d = A(n+1)∇u.

This definition is consistent with the usual definition for differential forms.
Now we have the following intertwining property.

Proposition 4.4. For u ∈ Γ (Tn(M)), it holds that

d∆HK
n u = ∆HK

n+1du. (4.10)

Proof. By Proposition 4.3, we have

d∆HK
n u = ∆HK

n+1du

−
n∑

p,q=1

A(n+1)
(
ωk ⊗

(
∇kS(n)

p,q

)
u
)
−A(n+1)

(
ωk ⊗

(
∇iR(n)(ei, ek)

)
u
)
.

We have to show that the additional terms vanish. Before proving this, we
recall the Bianchi identity for the Riemannian curvature:

−SR(X,Y )Z = 0, (4.11)
S∇XR(Y, Z) = 0. (4.12)

Here S stands for the cyclic sum, e.g.,

SR(X,Y )Z = R(X,Y )Z +R(Y, Z)X +R(Z,X)Y.

(4.11) is called the first Bianchi identity and (4.12) is called the second Bianchi
identity.

We may assume that u = u1 ⊗ · · · ⊗ un. For p = q, we have

n∑

p=1

A(n+1)
(
ωk ⊗

(
∇kS(n)

p,p

)
u
)
−A(n+1)

(
ωk ⊗

(
∇iR(n)(ei, ek)

)
u
)

=
n∑

p=1

A(n+1)
(
ωk ⊗ u1 ⊗ · · · ⊗ ∇k Ricu�p ⊗ · · · ⊗ un

+ ωk ⊗ u1 ⊗ · · · ⊗ ∇iR(ei, ek)u�p ⊗ · · · ⊗ un
)
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=
n∑

p=1

(−1)p
{
∇k Ricu�p ∧ ωk ∧ u1 ∧

p
∨· · · ∧ un

+∇iR(ei, ek)u�p ∧ ωk ∧ u1 ∧
p
∨· · · ∧ un

}
.

We need to compute ∇k Ricu�p ∧ ωk +∇iR(ei, ek)u�p ∧ ωk. To do this,

∇k Ricu�p ∧ ωk +∇iR(ei, ek)u�p ∧ ωk

= ∇kR(u�p, ei)ei ∧ ωk +∇iR(ei, ek)u�p ∧ ωk

=
(
∇kR(u�p, ei)ei, el

)
ωl ∧ ωk +

(
∇iR(ei, ek)u�p, el

)
ωl ∧ ωk

=
{
−
(
∇u�

p
R(ei, ek)ei, el

)
−
(
∇iR(ek, u�p)ei, el

)

+
(
∇iR(ei, ek)u�p, el

)}
ωl ∧ ωk (by the 2nd Bianchi identity)

= −
(
∇u�

p
R(ei, ek)ei, el

)
ωl ∧ ωk

+
{(
∇iR(ei, el)u�p, ek

)
+
(
∇iR(ei, ek)u�p, el

)}
ωl ∧ ωk

= 0.

Here, in the last line, we used that the coefficients are symmetric with respect
to k and l.

For p �= q, we may assume p < q.

A(n+1)
(
ωk ⊗

(
∇kS(n)

p,q

)
u
)

= A(n+1)
(
ωk ⊗

(
∇kR(u�p, el)u

�
q, em

)
u1 ⊗ · · · ⊗

p

w̆l ⊗ · · · ⊗
q

ω̆m ⊗ · · ·un
)

=
(
∇kR(u�p, el)u

�
q, em

)
ωk ∧ u1 ∧ · · · ∧

p

ω̆l ∧ · · · ∧
q

ω̆m ∧ · · · ∧ un

=
(
∇kR(u�p, el)u

�
q, em

)
ωk ∧ ωl ∧ ωm ∧ u1 ∧

p
∨
q
∨· · · ∧ un.

To calculate (∇kR(u�p, el)u�q, em)ωk ∧ ωl ∧ ωm, we have
(
∇kR(u�p, el)u

�
q, em

)
ωk ∧ ωl ∧ ωm

=
{(
∇u�

p
R(el, ek)u�q, em

)
−
(
∇lR(ek, u�p)u

�
q, em

)}
ωk ∧ ωl ∧ ωm

(by the 2nd Bianchi identity)

=
(
∇u�

p
R(el, ek)em, u�q

)
ωk ∧ ωl ∧ ωm −

(
∇lR(ek, u�p)u

�
q, em)ωk ∧ ωl ∧ ωm

=
(
∇lR(u�p, ek)u

�
q, em

)
ωk ∧ ωl ∧ ωm (by the first Bianchi identity)

=
(
∇kR(u�p, el)u

�
q, em

)
ωl ∧ ωk ∧ ωm (by relabeling)

= −
(
∇kR(u�p, el)u

�
q, em

)
ωk ∧ ωl ∧ ωm.

The last term is just the same as the original one with the opposite sign. Thus
we have (

∇kR(u�p, el)u
�
q, em

)
ωk ∧ ωl ∧ ωm = 0

as desired. 	
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Summary. We establish necessary and sufficient conditions for a sequence of d-
dimensional vectors of multiple stochastic integrals Fk

d = (F k
1 , . . . , F k

d ), k � 1, to
converge in distribution to a d-dimensional Gaussian vector Nd = (N1, . . . , Nd). In
particular, we show that if the covariance structure of Fk

d converges to that of Nd,
then componentwise convergence implies joint convergence. These results extend to
the multidimensional case the main theorem of [10].

Key words: Multiple stochastic integrals, Limit theorems, Weak convergence,
Brownian motion.

AMS Subject classification: 60F05, 60H05.

1 Introduction

For d � 2, fix d natural numbers 1 � n1 � · · · � nd and, for every k � 1,
let Fkd = (F k1 , . . . , F

k
d ) be a vector of d random variables such that, for

each j = 1, . . . , d, F kj belongs to the njth Wiener chaos associated to a
real valued Gaussian process. The aim of this paper is to prove necessary
and sufficient conditions to have that the sequence Fkd converges in distri-
bution to a given d-dimensional Gaussian vector, when k tends to infin-
ity. In particular, our main result states that, if, for every 1 � i, j � d,
limk→+∞ E[F ki F

k
j ] = δij , where δij is the Kronecker symbol, then the fol-

lowing two conditions are equivalent: (i) Fkd converges in distribution to a
standard centered Gaussian vector Nd(0, Id) (Id is the d× d identity matrix),
(ii) for every j = 1, . . . , d, F kj converges in distribution to a standard Gaussian
random variable. Now suppose that, for every k � 1 and every j = 1, . . . , d,
the random variable F kj is the multiple Wiener–Itô stochastic integral of a

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 247–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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square integrable kernel f (k)
j , for instance on [0, 1]nj . We recall that, accord-

ing to the main result of [10], condition (ii) above is equivalent to either
one of the following: (iii) limk→+∞ E[(F kj )4] = 3 for every j, (iv) for every
j and every p = 1, . . . , nj − 1 the contraction f (k)

j ⊗p f (k)
j converges to zero

in L2([0, 1]2(nj−p)). Some other necessary and sufficient conditions for (ii) to
hold are stated in the subsequent sections, and an extension is provided to
deal with the case of a Gaussian vector Nd with a more general covariance
structure.

Besides [10], our results should be compared with other central limit the-
orems (CLT) for non linear functionals of Gaussian processes. The reader is
referred to [2], [6], [7], [8], [15] and the references therein for several results
in this direction. As in [10], the main tool in the proof of our results is a well
known time-change formula for continuous local martingales, due to Dambis,
Dubins and Schwarz (see e.g. [13, Chapter 5]). In particular, this technique
enables to obtain our CLTs, by estimating and controlling expressions that are
related uniquely to the fourth moments of the components of each vector Fkd.

The paper is organized as follows. In Section 2 we introduce some nota-
tion and discuss preliminary results; in Section 3 our main theorem is stated
and proved; finally, in Section 4 we present some applications, to the weak
convergence of chaotic martingales (that is, martingales admitting a multi-
ple Wiener integral representation), and to the convergence in law of random
variables with a finite chaotic decomposition.

2 Notation and preliminary results

Let H be a separable Hilbert space. For every n � 1, we define H⊗n to be
the nth tensor product of H and write H�n for the nth symmetric tensor
product of H , endowed with the modified norm

√
n! ‖ . ‖H⊗n . We denote by

X = {X(h) : h ∈ H} an isonormal process on H , that is, X is a centered
H-indexed Gaussian family, defined on some probability space (Ω,F ,P) and
such that

E[X(h)X(k)] = 〈h, k〉H , for every h, k ∈ H .

For n � 1, let Hn be the nth Wiener chaos associated to X (see for
instance [9, Chapter 1]): we denote by IXn the isometry between Hn and
H�n. For simplicity, in this paper we consider uniquely spaces of the form
H = L2(T,A, µ), where (T,A) is a measurable space and µ is a σ-finite and
atomless measure. In this case, IXn can be identified with the multiple Wiener–
Itô integral with respect to the process X , as defined e.g. in [9, Chapter 1].
We also note that, by some standard Hilbert space argument, our results can
be immediately extended to a generalH . The reader is referred to [10, Section
3.3] for a discussion of this fact.

Let H = L2(T,A, µ); for any n, m � 1, every f ∈ H�n, g ∈ H�m, and
p = 1, . . . , n∧m, the pth contraction between f and g, noted f⊗p g, is defined
to be the element of H⊗m+n−2p given by
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f ⊗p g(t1, . . . , tn+m−2p) =
∫

Tp

f(t1, . . . , tn−p, s1, . . . , sp)×

× g(tn−p+1, . . . , tm+n−2p, s1, . . . , sp) dµ(s1) . . . dµ(sp);

by convention, f ⊗0 g = f ⊗ g denotes the tensor product of f and g. Given
φ ∈ H⊗n, we write (φ)s for its canonical symmetrization. In the special case
T = [0, 1], A = B([0, 1]) and µ = λ, where λ is Lebesgue measure, some
specific notation is needed. For any 0 < t � 1, ∆nt stands for the symplex
contained in [0, t]n, i.e. ∆nt := {(t1, . . . , tn) : 0 < tn < · · · < t1 < t}. Given a
function f on [0, 1]n and t ∈ [0, 1], ft denotes the application on [0, 1]n−1

given by
(s1, . . . , sn−1) �−→ f(t, s1, . . . , sn−1).

For any n,m � 1, for any pair of functions f , g such that f ∈ L2([0, 1]n,
B([0, 1]n), dλ⊗n) := L2([0, 1]n) and g ∈ L2([0, 1]m), and for every 1 < t � 1
and p = 1, . . . , n ∧m, we write f ⊗tp g for the pth contraction of f and g on
[0, t], defined as

f ⊗tp g(t1, . . . , tn+m−2p) =
∫

[0,t]p
f(t1, . . . , tn−p, s1, . . . , sp)×

× g(tn−p+1, . . . , tm+n−2p, s1, . . . , sp) dλ(s1) . . . dλ(sp);

as before, f ⊗t0 g = f ⊗ g. Eventually, we recall that if H = L2([0, 1],B([0, 1]),
dλ), then X coincides with the Gaussian space generated by the standard
Brownian motion

t �−→Wt := X(1[0,t]), t ∈ [0, 1]

and this implies in particular that, for every n � 2, the multiple Wiener–
Itô integral IXn (f), f ∈ L2([0, 1]n), can be rewritten in terms of an iterated
stochastic integral with respect toW , that is: IXn (f) = I1n((f)s) = n! J1

n((f)s),
where

J tn
(
(f)s

)
=

∫ t

0

· · ·
∫ un−1

0

(
f(u1, . . . , un)

)
s
dWun . . . dWu1

Itn
(
(f)s

)
= n! J tn

(
(f)s

)
, t ∈ [0, 1].

3 d-dimensional CLT

The following facts will be used to prove our main results. LetH = L2(T,A, µ),
f ∈ H�n and g ∈ H�m. Then,

F1: (see [1, p. 211] or [9, Proposition 1.1.3])

IXn (f)IXm (g) =
n∧m∑

p=0

p!
(
n

p

)(
m

p

)
IXn+m−2p(f ⊗p g); (1)
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F2: (see [16, Proposition 1])

(n+m)! ‖(f ⊗0 g)s‖2H⊗n+m = m!n! ‖f‖2H⊗n‖g‖2H⊗m

+
n∧m∑

q=1

(
n

q

)(
m

q

)
n!m! ‖f ⊗q g‖2H⊗n+m−2q (2)

F3: (see [10])

E[IXn (f)4] = 3(n!)2‖f‖4H⊗n +
n−1∑

p=1

(n!)4

(p! (n− p)!)2

[
‖f ⊗p f‖2H⊗2(n−p)

+
(

2n− 2p
n− p

)
‖(f ⊗p f)s‖2H⊗2(n−p)

]
. (3)

Let Vd be the set of all (i1, i2, i3, i4) ∈ (1, . . . , d)4, such that one of the
following conditions is satisfied: (a) i1 �= i2 = i3 = i4, (b) i1 �= i2 = i3 �= i4
and i4 �= i1, (c) the elements of (i1, . . . , i4) are all distinct. Our main result is
the following.

Theorem 1. Let d � 2, and consider a collection 1 � n1 � · · · � nd < +∞
of natural numbers, as well as a collection of kernels

{(
f

(k)
1 , . . . , f

(k)
d

)
: k � 1

}

such that f (k)
j ∈ H�nj for every k � 1 and every j = 1, . . . , d, and

lim
k→∞

j!
∥∥f (k)
j

∥∥2

H⊗nj = 1, ∀j = 1, . . . , d,

lim
k→∞

E

[
IXni

(
f

(k)
i

)
IXnl

(
f

(k)
l

)]
= 0, ∀1 � i < l � d.

(4)

Then, the following conditions are equivalent:

(i) for every j = 1, . . . , d

lim
k→∞

∥∥f (k)
j ⊗p f (k)

j

∥∥
H⊗2(nj−p) = 0

for every p = 1, . . . , nj − 1;

(ii) limk→∞ E

[(∑
i=1,...,d I

X
ni

(
f

(k)
i

))4] = 3d2, and

lim
k→∞

E

[
4∏

l=1

IXnil

(
f

(k)
il

)
]

= 0

for every (i1, i2, i3, i4) ∈ Vd;
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(iii) as k goes to infinity, the vector
(
IXn1

(
f

(k)
1

)
, . . . , IXnd

(
f

(k)
d

))
converges in

distribution to a d-dimensional standard Gaussian vector Nd(0, Id);
(iv) for every j = 1, . . . , d, IXnj

(
f

(k)
j

)
converges in distribution to a standard

Gaussian random variable;
(v) for every j = 1, . . . , d,

lim
k→∞

E

[
IXnj

(
f

(k)
j

)4] = 3.

Proof. We show the implications

(iii) =⇒ (ii) =⇒ (i) =⇒ (iii) and (iv)⇐⇒ (v) ⇐⇒ (i)

(iii) =⇒ (ii). First notice that, for every k � 1, the multiple integrals
IXn1

(
f

(k)
1

)
, . . . , IXnd

(
f

(k)
d

)
are contained in the sum of the first nd chaoses asso-

ciated to the Gaussian measure X . As a consequence, condition (4) implies
(see e.g. [3, Chapter V]) that for every M � 2 and for every j = 1, . . . , d

sup
k�1

E

[∣∣∣IXnj

(
f

(k)
j

)∣∣∣
M]

< +∞

and the conclusion is obtained by standard arguments.

(ii) =⇒ (i). The key of the proof is the following simple equality

E

[( d∑

i=1

IXni

(
f

(k)
i

))4
]

=
d∑

i=1

E

[
IXni

(
f

(k)
i

)4]

+ 6
∑

1�i<j�d
E

[
IXnj

(
f

(k)
j

)2
IXni

(
f

(k)
i

)2] +
∑

(i1,...,i4)∈Vd

E

[
4∏

l=1

IXnil

(
f

(k)
il

)
]
.

By the multiplication formula (1), for every 1 � i < j � d,

IXni

(
f

(k)
i

)
IXnj

(
f

(k)
j

)
=

ni∑

q=0

q!
(
ni
q

)(
nj
q

)
IXni+nj−2q

(
f

(k)
i ⊗q f (k)

j

)

and therefore

E

[
IXni

(
f

(k)
i

)2
IXnj

(
f

(k)
j

)2]

=
ni∑

q=0

[
q!
(
ni
q

)(
nj
q

)]2

(ni + nj − 2q)!
∥∥∥
(
f

(k)
i ⊗q f (k)

j

)
s

∥∥∥
2

H⊗ni+nj−2q
.

Now, relations (2) and (3) imply that

E

[( d∑

i=1

IXni

(
f

(k)
i

))4
]

= T1(k) + T2(k) + T3(k)
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where

T1(k) =
d∑

i=1

{
3(ni!)2

∥∥f (k)
i

∥∥4

H⊗ni
+
ni−1∑

p=1

(ni!)4

(p! (ni − p)!)2

[∥∥f (k)
i ⊗p f (k)

i

∥∥2

H⊗2(ni−p)

+
(

2ni − 2p
ni − p

)∥∥(f (k)
i ⊗p f (k)

i

)
s

∥∥2

H⊗2(ni−p)

]}

T2(k) = 6
∑

1�i<j�d

{
ni!nj !

∥∥f (k)
i

∥∥2

H⊗ni

∥∥f (k)
j

∥∥2

H⊗nj

+
ni∑

q=1

[(
q!
(
ni
q

)(
nj
q

))2

(ni + nj − 2q)!
∥∥(f (k)

i ⊗q f (k)
j

)
s

∥∥2

H⊗ni+nj−2q

+
(
ni
q

)(
nj
q

)
ni!nj !

∥∥f (k)
i ⊗q f (k)

j

∥∥2

H⊗nj+ni−2q

]}
,

and

T3(k) =
∑

(i1,...,i4)∈Vd

E

[
4∏

l=1

IXnil

(
f

(k)
il

)
]
.

But

3
d∑

i=1

(ni!)2
∥∥f (k)
i

∥∥4

H⊗ni
+ 6

∑

1�i<j�d
ni!nj!

∥∥f (k)
i

∥∥2

H⊗ni

∥∥f (k)
j

∥∥2

H⊗nj

= 3

[
d∑

i=1

ni!
∥∥f (k)
i

∥∥2

H⊗ni

]2

and the desired conclusion is immediately obtained, since condition (4) ensures
that the right side of the above expression converges to 3d2 when k goes to
infinity.

(i) =⇒ (iii). We will consider the case

H = L2
(
[0, 1],B([0, 1]), dx) (5)

where dx stands for Lebesgue measure, and use the notation introduced at the
end of Section 2. We stress again that the extension to a general, separable
Hilbert space H can be done by following the line of reasoning presented in
[10, Section 3.3.] and it is not detailed here. Now suppose (i) and (5) hold.
The result is completely proved, once the asymptotic relation

d∑

i=1

λiI
X
ni

(
f

(k)
i

)
=

d∑

i=1

λini! J1
ni

(
f

(k)
i

) Law===⇒
k↑+∞

∥∥λd
∥∥

Rd ×N(0, 1)
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is verified for every vector λd = (λ1, . . . , λd) ∈ R
d. Thanks to the Dambis–

Dubins–Schwarz Theorem (see [13, Chapter V]), we know that for every k,
there exists a standard Brownian motion W (k) (which depends also on λd)
such that

d∑

i=1

λini! J1
ni

(
f

(k)
i

)
= W (k)

[∫ 1

0

( d∑

i=1

λini! J tni−1

(
f

(k)
i,t

))2
dt

]

= W (k)

[
d∑

i=1

λ2
i

∫ 1

0

(
ni! J tni−1

(
f

(k)
i,t

))2
dt

+2
∑

1�i<j�d
λiλjni!nj!

∫ 1

0

[
J tni−1

(
f

(k)
i,t

)
J tnj−1

(
f

(k)
j,t

)]
dt

]
.

Now, since (4) implies

E

[(
ni! J1

ni

(
f

(k)
i

))2
]
−−−→
k↑+∞

1

for every i, condition (i) yields—thanks to Proposition 3 in [10]—that

d∑

i=1

λ2
i

∫ 1

0

(
ni! J tni−1

(
f

(k)
i,t

))2

dt L2

−−−→
k↑+∞

∥∥λd
∥∥2

Rd .

To conclude, we shall verify that (i) implies also that for every i < j

∫ 1

0

[
J1
ni−1

(
f

(k)
i,t

)
J1
nj−1

(
f

(k)
j,t

)]
dt =

∫ 1

0

[
Itni−1

(
f

(k)
i,t

)
Itnj−1

(
f

(k)
j,t

)]

(ni − 1)! (nj − 1)!
dt L2

−−−→
k↑+∞

0.

To see this, use once again the multiplication formula (1) to write

∫ 1

0

dt
[
Itni−1

(
f

(k)
i,t

)
Itnj−1

(
f

(k)
j,t

)]

=
ni−1∑

q=0

(
ni + nj − 2(q + 1)

)
! q!

(
ni − 1
q

)(
nj − 1
q

)
×

×
∫

∆
ni+nj−2(q+1)
1

[∫ 1

s1

dt
(
f

(k)
i,t ⊗tq f

(k)
j,t

)
s

(
s1, . . . , sni+nj−2(q+1)

)]

dWs1 . . .dWsni+nj−2(q+1) ,

when ni < nj , or, when ni = nj
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∫ 1

0

dt
[
Itni−1

(
f

(k)
i,t

)
Itnj−1

(
f

(k)
j,t

)]

=
∫ 1

0

dtE
[
Itni−1

(
f

(k)
i,t

)
Itni−1

(
f

(k)
j,t

)]
+
ni−2∑

q=0

(
2ni − 2(q + 1)

)
! q!

(
ni − 1
q

)2
×

×
∫

∆
ni+nj−2(q+1)
1

[∫ 1

s1

dt
(
f

(k)
i,t ⊗tq f

(k)
j,t

)
s

(
s1, . . . , sni+nj−2(q+1)

)]

dWs1 . . .dWsni+nj−2(q+1) .

In what follows, for every m � 2, we write tm to indicate a vector
(t1, . . . , tm) ∈ R

m, whereas dtm stands for Lebesgue measure on R
m; we

shall also use the symbol t̂m = maxi(ti). Now fix q < ni − 1 � nj − 1, and
observe that, by writing p = q + 1,
∫

∆
ni+nj−2(q+1)
1

ds1 . . . dsni+nj−2(q+1)

×
[∫ 1

s1

dt
(
f

(k)
i,t ⊗tq f

(k)
j,t

)
s

(
s1, . . . , sni+nj−2(q+1)

)]2

�
∫

[0,1]ni−p

dsni−p

∫

[0,1]nj−p
dτnj−p

×
[∫ 1

ŝni−p∨τ̂nj−p

dt
∫

[0,t]p−1
dup−1 f

(k)
j (t, τnj−p,up−1)f

(k)
i (t, sni−p,up−1)

]2

= C(k)

and moreover

C(k)2 =
{∫ 1

0

dt
∫

[0,1]p−1
dup−1

∫ 1

0

dt′
∫

[0,1]p−1
dvp−1 1(ûp−1�t,v̂p−1�t′)

×
[∫

[0,t∧t′]ni−p

dsni−p f
(k)
i (t, sni−p,up−1)f

(k)
i (t′, sni−p,vp−1)

]

×
[∫

[0,t∧t′]nj−p
dτnj−p f

(k)
j (t, τnj−p,up−1)f

(k)
j (t′, τnj−p,vp−1)

]}2

� Ci(k)× Cj(k)

where, for γ = i, j

Cγ(k) =
∫ 1

0

dt
∫

[0,1]p−1
dup−1

∫ 1

0

dt′
∫

[0,1]p−1
dvp−1

×
[∫

[0,t∧t′]nγ−p

dsnγ−p f
(k)
γ (t, snγ−p,up−1)f (k)

γ (t′, snγ−p,vp−1)
]2

and the calculations contained in [10] imply immediately that both Cj(k)
and Ci(k) converge to zero whenever (i) is verified. On the other hand, when
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q = ni − 1 < nj − 1
∫

∆
nj−ni
1

[∫ 1

s1

dt
(
f

(k)
i,t ⊗tni−1 f

(k)
j,t

)
s

(
s1, . . . , snj−ni

)]2

ds1 . . . dsnj−ni

�
∫

[0,1]nj−ni

dτnj−ni

×
[∫ 1

τ̂nj−ni

dt
∫

[0,t]ni−1
duni−1 f

(k)
j (t, τnj−ni ,uni−1)f

(k)
i (t,uni−1)

]2

= D(k)

and also
D(k)2 � D1(k)×D2(k)

where

D1(k) =
∫ 1

0

dt
∫

[0,1]ni−1
duni−1

∫ 1

0

dt′
∫

[0,1]ni−1
dvni−1

×
[∫

[0,t∧t′]nj−ni

dτnj−ni f
(k)
j (t, τnj−ni ,uni−1) f

(k)
j (t′, τnj−ni ,vni−1)

]2

and

D2(k) =
∫ 1

0

dt
∫

[0,1]ni−1
duni−1

∫ 1

0

dt′
∫

[0,1]ni−1
dvni−1

×
(
f

(k)
i (t,uni−1)f

(k)
i (t′,vni−1)

)2 =
∥∥f (k)
i

∥∥4

H⊗ni

so that the conclusion is immediately achieved, due to (4). Finally, recall that
for ni = nj
∫ 1

0

dtE
[
Itni−1

(
f

(k)
i,t

)
Itni−1

(
f

(k)
j,t

)]

= (ni − 1)!
∫ 1

0

dt
∫

[0,t]ni−1
duni−1 f

(k)
j (t,uni−1)f

(k)
i (t,uni−1)

=
(
(ni − 1)!

)2
∫

∆
ni
1

dt duni−1 f
(k)
j (t,uni−1)f

(k)
i (t,uni−1)

=
[
(ni − 1)!
ni!

]2

E

[
IXni

(
f

(k)
i

)
IXni

(f (k)
j

)]
−−−→
k↑+∞

0

again by assumption (4). The proof of the implication is concluded.

(iv) ⇐⇒ (v)⇐⇒ (i). This is a consequence of Theorem 1 in [10]. 	


In what follows, Cd = {Cij : 1 � i, j � d} indicates a d×d positive definite
symmetric matrix. In the case of multiple Wiener integrals of the same order,
a useful extension of Theorem 1 is the following
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Proposition 1. Let d � 2, and fix n � 2 as well as a collection of kernels
{(
f

(k)
1 , . . . , f

(k)
d

)
: k � 1

}

such that f (k)
j ∈ H�n for every k � 1 and every j = 1, . . . , d, and

lim
k→∞

j! ‖f (k)
j ‖2H⊗n = Cjj , ∀j = 1, . . . , d,

lim
k→∞

E

[
IXn

(
f

(k)
i

)
IXn

(
f

(k)
j

)]
= Cij , ∀1 � i < j � d.

(6)

Then, the following conditions are equivalent:

(i) as k goes to infinity, the vector
(
IXn

(
f

(k)
1

)
, . . . , IXn

(
f

(k)
d

))
converges in dis-

tribution to a d-dimensional Gaussian vector Nd(0,Cd) = (N1, . . . , Nd)
with covariance matrix Cd;

(ii)

lim
k→∞

E

[( ∑

i=1,...,d

IXn
(
f

(k)
i

))4
]

= 3
( d∑

i=1

Cii+2
∑

1�i<j�d
Cij

)2
= E

[( d∑

i=1

Ni

)4
]
,

and

lim
k→∞

E

[
4∏

l=1

IXn
(
f

(k)
il

)
]

= E

[
4∏

l=1

Nil

]

for every (i1, i2, i3, i4) ∈ Vd;
(iii) for every j = 1, . . . , d, IXn

(
f

(k)
j ) converges in distribution to Nj, that is,

to a centered Gaussian random variable with variance Cjj ;
(iv) for every j = 1, . . . , d,

lim
k→∞

E

[
IXn

(
f

(k)
j

)4] = 3C2
jj ;

(v) for every j = 1, . . . , d

lim
k→∞

∥∥f (k)
i ⊗p f (k)

i

∥∥
H⊗2(n−p) = 0,

for every p = 1, . . . , n− 1.

Sketch of the proof. The main idea is contained in the proof of Theorem 1.
We shall discuss only implications (ii) =⇒ (v) and (v) =⇒ (i). In particular,
one can show that (ii) implies (v) by adapting the same arguments as in the
proof of Theorem 1 to show that

E

[( d∑

i=1

IXn
(
f

(k)
i

))4
]

= V1(k) + V2(k) + V3(k)



Gaussian limits for vector-valued multiple stochastic integrals 257

where

V1(k) =
d∑

i=1

{
3(n!)2

∥∥f (k)
i

∥∥4

H⊗n +
n−1∑

p=1

(n!)4

(p!(n− p)!)2

[∥∥f (k)
i ⊗p f (k)

i

∥∥2

H⊗2(n−p)

+
(

2n− 2p
n− p

)∥∥∥
(
f

(k)
i ⊗p f (k)

i

)
s

∥∥∥
2

H⊗2(n−p)

]}

V2(k) = 6
∑

1�i<j�d

{
(n!)2

∥∥f (k)
i

∥∥2

H⊗n

∥∥f (k)
j

∥∥2

H⊗n

+
n−1∑

q=1

[(
q!
(
n

q

)2
)2

(2n− 2q)!
∥∥∥
(
f

(k)
i ⊗q f (k)

j

)
s

∥∥∥
2

H⊗2n−2q

+
(
n

q

)2

(n!)2
∥∥f (k)
i ⊗q f (k)

j

∥∥2

H⊗2n−2q

]}

+12(n!)2
∑

1�i<j�d

〈
f

(k)
i , f

(k)
j

〉2

H⊗n

and

V3(k) =
∑

(i1,...,i4)∈Vd

E

[
4∏

l=1

IXn
(
f

(k)
il

)
]
.

But (6) yields

3(n!)2
d∑

i=1

∥∥f (k)
i

∥∥4

H⊗n + 6
∑

1�i<j�d

[
(n!)2

∥∥f (k)
i

∥∥2

H⊗n

∥∥f (k)
j

∥∥2

H⊗n

+ 2(n!)2
〈
f

(k)
i , f

(k)
j

〉2

H⊗n

]
−−−→
k↑+∞

3
d∑

i=1

C2
ii + 6

∑

1�i<j�d

[
CiiCjj + 2C2

ij

]

and the conclusion is obtained, since

E

[( d∑

i=1

Ni

)4]
= 3

d∑

i=1

C2
ii + 6

∑

1�i<j�d

[
CiiCjj + 2C2

ij

]
+

∑

(i1,...,i4)∈Vd

E

[
4∏

l=1

Nil

]
.

Now keep the notations of the last part of the proof of Theorem 1. The
implication (v)⇒ (i) follows from the calculations therein contained, implying,
thanks to (6), that the quantity

∫ 1

0

( d∑

i=1

λin! J tn−1

(
f

(k)
i,t

))2

dt

converges in L2 to
∑
i=1,...,d λ

2
iCii + 2

∑
1�i<j�d λiλjCij , and therefore the

desired conclusion. The remaining details can be easily provided by the reader.
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4 Applications

In this section, we will present some consequences of our results. We mention
that our list of applications is by no means exhaustive; for instance, the weak
convergence results for quadratic functionals of (fractional) Brownian motion
given in [10], [11] and [12] can be immediately extended to the multidimen-
sional case. An example is given in the following generalization of the results
contained in [12].

Proposition 2. Let W be a standard Brownian motion on [0, 1] and, for
every d � 2, define the process

t �−→ W⊗dt :=
∫ t

0

· · ·
∫ sd−1

0

dWsd
. . .dWs1 , t ∈ [0, 1].

Then: (a) for every d � 1 the vector

1√
log(1/ε)

(∫ 1

ε

da
a2
W⊗2
a ,

∫ 1

ε

da
a3
W⊗4
a , . . . ,

∫ 1

ε

da
ad+1

W⊗2d
a

)

converges in distribution, as ε→ 0, to
(
N1(0, 1), 2

√
3!N2(0, 1), . . . , d

√
(2d− 1)!Nd(0, 1)

)

where the Nj(0, 1), j = 1, . . . , d, are standard, independent Gaussian random
variables; (b) by defining, for every d � 1 and for every j = 0, . . . , d, the
positive constant

c(d, j) =
(2d)!

2d−j(d− j)! ,

for every d � 1 the vector

1√
log(1/ε)

(∫ 1

ε

da
a2
W 2
a − c(1, 0) log

1
ε
,

∫ 1

ε

da
a3
W 4
a − c(2, 0) log

1
ε
, . . .

. . . ,

∫ 1

ε

da
ad+1

W 2d
a − c(d, 0) log

1
ε

)

converges in distribution to a Gaussian vector (G1, . . . , Gd) with the following
covariance structure:

E[Gk′Gk] =
k′∑

j=1

c(k, j)c(k′, j)j2(2j − 1)!

for every 1 � k′ � k � d.
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Proof. From Proposition 4.1 in [12], we obtain immediately that for every
j = 1, . . . , d,

1√
log(1/ε)

∫ 1

ε

da
aj+1

W⊗2j
a

(d)−→ j
√

(2j − 1)!Nj(0, 1),

and the asymptotic independence follows from Theorem 1, since for every i �= j

E

[∫ 1

ε

da
aj+1

W⊗2j
a

∫ 1

ε

db
bi+1

W⊗2i
b

]
=

∫ 1

ε

da
aj+1

∫ 1

ε

db
bi+1

E
[
W⊗2j
a W⊗2i

b

]
= 0.

To prove point (b), use for instance Stroock’s formula (see [14]) to obtain
that for every k = 1, . . . , d

∫ 1

ε

da
ak+1

W 2k
a =

k∑

j=1

c(k, j)
∫ 1

ε

da
aj+1

W⊗2j
a + c(k, 0) log

1
ε
,

so that the result derives immediately from point (a). 	


In what follows, we prove a new asymptotic version of Knight’s theorem—
of the kind discussed e.g. in [13, Chapter XIII]—and a necessary and sufficient
condition for a class of random variables living in a finite sum of chaoses—and
satisfying some asymptotic property—to have a Gaussian weak limit. Further
applications will be explored in a subsequent paper.

More specifically, we are interested in an asymptotic Knight’s theorem
for chaotic martingales, which, in our terminology, are martingales having
a multiple Wiener integral representation (we stress that there is no relation
with normal martingales with the chaotic representation property, as discussed
e.g. in [1, Chapter XXI]). To this end, take d � 2 integers

1 � n1 � n2 � · · · � nd,

and, for j = 1, . . . , d and k � 1 take a class

{φtj,k : t ∈ [0, 1]}

of elements of H�nj , such that there exists a filtration {Ft : t ∈ [0, 1]},
satisfying the usual conditions and such that, for every k and for every j, the
process

t �−→Mj,k(t) = IXnj
(φtj,k), t ∈ [0, 1],

is a Ft-continuous martingale on [0, 1], vanishing at zero. We note 〈Mj,k,Mj,k〉
and 〈Mj,k,Mi,k〉, 1 � i, j � d, the corresponding quadratic variation and
covariation processes, whereas βj,k is the Dambis–Dubins–Schwarz Brownian
motion associated to Mj,k. Then, we have the following
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Proposition 3 (Asymptotic Knight’s theorem for chaotic martin-
gales). Under the above assumptions and notation, suppose that for every
j = 1, . . . , d,

〈Mj,k,Mj,k〉
(d)−−−→

k→+∞
Tj , (7)

where t �→ Tj(t) is a deterministic, continuous and non-decreasing process. If
in addition

lim
k→+∞

E[〈Mi,k,Mj,k〉t] = 0 (8)

for every i �= j and for every t, then {Mj,k : 1 � j � d} converges in
distribution to

{Bj ◦ Tj : 1 � j � d},
where {Bj : 1 � j � d} is a d-dimensional standard Brownian motion.

Proof. Since

Mj,k(t) = βj,k(〈Mj,k,Mj,k〉t), t ∈ [0, 1],

and 〈Mj,k,Mj,k〉 weakly converges to Tj, we immediately obtain that Mj,k
converges in distribution to the Gaussian process Bj ◦Tj. Thanks to Theorem
1, it is now sufficient to prove that, for every i �= j and for every s, t ∈ [0, 1],
the quantity E[Mj,k(s)Mi,k(t)] converges to zero. But

E[Mj,k(s)Mi,k(t)] = E[〈Mi,k,Mj,k〉t∧s]

and assumption (8) yields the result. 	


Remark. An analogue of Proposition 4 for general martingales verifying (7)
can be found in [13, Exercise XIII.1.16], but in this case (8) has to be replaced
by

〈Mj,k,Mi,k〉
(d)−−−→

k→+∞
0

for every i �= j. Since chaotic martingales have a very explicit covariance
structure (due to the isometric properties of multiple integrals), condition (8)
is usually quite easy to verify. We also recall that—according e.g. to [13,
Theorem XIII.2.3]—if condition (7) is dropped, to prove the asymptotic in-
dependence of the Brownian motions {βj,k : 1 � j � d} one has to check the
condition

lim
k→+∞

〈Mi,k,Mj,k〉τk
j (t) = lim

k→+∞
〈Mi,k,Mj,k〉τk

i (t) = 0

in probability for every i �= j and for every t, where τkj and τki are the stochas-
tic time-changes associated respectively to 〈Mj,k,Mj,k〉 and 〈Mi,k,Mi,k〉.

We conclude the paper by stating a result on the weak convergence of
random variables belonging to a finite sum of Wiener chaoses to a standard
normal random variable (the proof is a direct consequence of the arguments
contained in the proof of Theorem 1).
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Proposition 4. Let 1 � n1 < · · · < nd, d � 2, and let f (k)
j ∈ H�nj , for

every k � 1 and 1 � j � d. Assume that

nj! lim
k↑+∞

∥∥f (k)
j

∥∥2

H⊗nj = 1, j = 1, . . . , d, (9)

and

lim
k↑+∞

∑

(i1,...,i4)∈Vd

E

[
4∏

l=1

IXnil

(
f

(k)
il

)
]

� 0. (10)

Define moreover S(k)
d =

∑
j=1,...,d I

X
nj

(
f

(k)
j

)
. Then, the following condi-

tions are equivalent:

(i) the sequence d−1/2S
(k)
d converges in distribution to a standard Gaussian

random variable, as k tends to infinity;
(ii) for every j = 1, . . . , d,

lim
k↑+∞

∥∥f (k)
j ⊗p f (k)

j

∥∥2

H⊗2(nj−p) = 0, p = 1, . . . , nj − 1;

(iii) for every j = 1, . . . , d, IXnj

(
f

(k)
j

)
converges in law to a standard Gaussian

random variable, as k goes to infinity.

An interesting consequence of the above result is the following

Corollary 1. Let 1 � n1 < · · · < nd, d � 2, f (k)
j ∈ H�nj , k � 1 and 1 �

j � d. Assume moreover that (9) is verified and that, for every k, the random
variables IXnj

(
f

(k)
j

)
, j = 1, . . . , d, are pairwise independent. Then, the sequence

d−1/2S
(k)
d , k � 1, defined as before, converges in law to a standard Gaussian

random variable N(0, 1) if, and only if, for every j, IXnj

(
f

(k)
j

)
converges in

law to N(0, 1).

Proof. We know from [16] (see also [4]) that, in the case of multiple stochastic
integrals, pairwise independence implies mutual independence, so that condi-
tion (10) is clearly verified. 	


Remarks. (i) If we add the assumption that, for every j, the sequence
IXnj

(
f

(k)
j

)
, k � 1, admits a weak limit, say µj , then the conclusion of Corol-

lary 6 can be directly deduced from [5, p. 248]. As a matter of fact, in such a
reference the following implication is proved: if the d probability measures µj ,
j = 1, . . . , d, are such that (a)

∫
xdµj(x) = 0 for every j, and (b) µ1 � · · ·�µd,

where � indicates convolution, is Gaussian, then each µj is necessarily Gaus-
sian.

(ii) Condition (10) is also satisfied when d = 2 and n1 + n2 is odd.
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Summary. We show that the renormalized self-intersection local time γt(x) for
both the Brownian motion and symmetric stable process in R1 is differentiable in
the spatial variable and that γ′t(0) can be characterized as the continuous process
of zero quadratic variation in the decomposition of a natural Dirichlet process. This
Dirichlet process is the potential of a random Schwartz distribution. Analogous
results for fractional derivatives of self-intersection local times in R1 and R2 are also
discussed.

1 Introduction

In their study of the intrinsic Brownian local time sheet and stochastic area
integrals for Brownian motion, [14, 15, 16], Rogers and Walsh were led to
analyze the functional

A(t, Bt) =
∫ t

0

1[0,∞)(Bt −Bs) ds (1)

where Bt is a 1-dimensional Brownian motion. They showed that A(t, Bt) is
not a semimartingale, and in fact showed that

A(t, Bt)−
∫ t

0

LBs
s dBs (2)

has finite non-zero 4/3-variation. Here Lxs is the local time at x, which is
formally Lxs =

∫ s
0 δ(Br − x) dr, where δ(x) is Dirac’s ‘δ-function’. A formal

application of Ito’s lemma, using d
dx1[0,∞)(x) = δ(x) and d2

dx2 1[0,∞)(x) = δ′(x),
yields

A(t, Bt)−
∫ t

0

LBs
s dBs = t+

1
2

∫ t

0

∫ s

0

δ′(Bs −Br) dr ds (3)
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dation and PSC-CUNY.
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which motivates the subject matter of this paper. We study the process which
is formally defined as

γ′t = −
∫ t

0

∫ s

0

δ′(Xs −Xr) dr ds (4)

where δ′ is the derivative of the delta-function, and Xt is Brownian motion
or, more generally, a symmetric stable process in R1. The process γ′t is related
to the self-intersection local time process which is formally defined as

αt =
∫ t

0

∫ s

0

δ(Xs −Xr) dr ds. (5)

If we set

αt(y) =
∫ t

0

∫ s

0

δ(Xs −Xr − y) dr ds (6)

we obtain a ‘near intersection’ local time, and formally differentiating in y
suggests that (4) is the derivative d

dyαt(y)
∣∣
y=0

.
The process αt has not been studied much in one dimension since it can

be expressed in terms of the local time Lyt of the process Xt: αt = 1
2

∫
(Lyt )

2 dy
and αt(y) =

∫∫ t
0
Lx−ys dsLxs dx. The fact that Lyt is not differentiable in the

spatial variable y indicates that the existence of (4) and its identification as
a derivative requires some care.

In two dimensions, even for Brownian motion, αt does not exist and must
be ‘renormalized’ by subtracting off a counterterm. This was first done by
Varadhan [22], and has been the subject of a large literature, see Dynkin [4],
Le Gall [12], Bass and Khoshnevisan [1], Rosen [20, 21]. The resulting renor-
malized self-intersection local time turns out to be the right tool for the solu-
tion of certain “classical” problems such as the asymptotic expansion of the
area of the Wiener and stable sausage in the plane and fluctuations of the
range of stable random walks. (See Le Gall [11, 10], Le Gall–Rosen [13] and
Rosen [19]).

The process γ′t in R1, in a certain sense, is even more singular than self-
intersection local time in R2, but as we shall see, due to the symmetry prop-
erties of δ′, there is no need for a counterterm. We begin with a precise def-
inition of γ′t, show that it exists, is the spatial derivative of the renormalized
self-intersection local time γt(x) = αt(x) − E

(
αt(x)

)
, and has zero quadratic

variation. We then show how it can be characterized as the continuous process
of zero quadratic variation in the decomposition of a natural Dirichlet process.
This Dirichlet process is the potential of a random Schwartz distribution.

Let

αt,ε(y)
def=

∫ t

0

∫ s

0

fε(Xs −Xr − y) dr ds (7)

and

α′t,ε(y)
def= −

∫ t

0

∫ s

0

f ′ε(Xs −Xr − y) dr ds (8)
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where fε is an approximate δ-function at zero, i.e. fε(x) = f(x/ε)/ε with f a
positive, C1, even function of x supported in the unit interval with

∫
f dx = 1.

We then define

αt(y) = lim
ε→0

αt,ε(y), α′t(y) = lim
ε→0

α′t,ε(y) (9)

γt(y) = lim
ε→0

(
αt,ε(y)− E

(
αt,ε(y)

))
(10)

and
γ′t(y) = lim

ε→0

(
α′t,ε(y)− E

(
α′t,ε(y)

))
(11)

whenever the limit exists. We set γ′t = γ′t(0). Let

hβ(x) =
{
c(β) sgn(x)|x|β−2 if x �= 0
0 if x = 0 (12)

where c(β) = −π−1Γ (2−β) cos((1−β)π/2) if 1 < β < 2 and c(2) = −1. Note
that hβ(x) is not continuous at x = 0.

Theorem 1. Let Xt denote the symmetric stable process of order β > 3/2 in
R1. Then αt,ε(y) and α′t,ε(y) converge a.s. and in all Lp spaces as ε→ 0 for
any (t, y) ∈ R+ ×R1.

The following hold almost surely:

1. For any continuous function g(y) we have
∫ t

0

∫ s

0

g(Xs −Xr) dr ds =
∫
g(y)αt(y) dy. (13)

and if g ∈ C1

∫ t

0

∫ s

0

g′(Xs −Xr) dr ds = −
∫
g(y)α′t(y) dy. (14)

2. α′t(y)− hβ(y)t is continuous in y.
3. {γt(y) , (t, y) ∈ R+ × R1} and {γ′t(y) , (t, y) ∈ R+ × R1} are continuous

and γt(y) is differentiable in y with γ′t(y) = d
dyγt(y).

4. α′t(0) = γ′t(0).

We see from (13) and (14) that α′t(y) is the distributional derivative of
αt(y). However, we see from 2. that α′t(y) is not continuous at y = 0 so that
these equations do not allow us to characterize α′t(0).

For any function gt and any sequence τ = {τn} of partitions τn = {0 =
t0 < tn,1 < · · · < tn,n = T } of [0, T ], with mesh size |τn| = maxi |tn,i − tn,i−1|
going to 0, we set

Vp(g; τ) = lim
n→∞

n∑

i=1

|gtn,i − gtn,i−1 |p (15)
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whenever it exists.
In [16], Rogers and Walsh show that for Brownian motion V4/3(γ′; τ) is a

finite non-zero constant, independent of τ . Let β′ denote the usual conjugate
exponent to β, i.e. 1

β + 1
β′ = 1.

Theorem 2. Let X be a symmetric stable process of order β > 3/2 in R1.
Then Vp(γ′; τ) = 0 for any τ and any p > 2β′

3 .

Note that for Brownian motion this shows that Vp(γ′; τ) = 0 for any
p > 4/3. We conjecture that for the symmetric stable process of order β > 3/2
in R1 we have that V 2β′

3
(γ′; τ) is a finite non-zero constant, independent of τ .

We now obtain an intrinsic characterization for γ′t, which doesn’t involve
limits. The key idea is that γ′t has zero quadratic variation. In the case of
renormalized intersection local time γt for Brownian motion in the plane this
was observed by Bertoin, [2] and extended by us in [21].

Recall that a continuous adapted process Zt is said to have zero quadratic
variation, if for each T > 0 and any sequence of partitions τn = {0 = t0 <
t1 < · · · < tn = T } of [0, T ], with mesh size |τn| = maxi |ti − ti−1| going to 0

lim
n→∞

E

( ∑

ti∈τn

(Zti − Zti−1)
2

)
= 0. (16)

Föllmer [7] has coined the term “Dirichlet process” to refer to any process
which can be written as the sum of a martingale and a process of zero quadratic
variation. It is important to note that such a decomposition is unique. The
class of Dirichlet processes is much wider than the class of semimartingales.

We use Yt to denote our stable process Xt killed at an independent expo-
nential time λ. In the following theorem γ′t will be defined for the process Yt
in place of Xt.

Let us begin with a special case of the Doob–Meyer decomposition for
semimartingales. Let Lµt denotes the continuous additive functional of Xt
with Revuz measure µ. Using the additivity of Lµt and the Markov property
we have

Ex(Lµλ | Ft) = Lµt∧λ + U1µ(Yt) (17)

where Ft = σ(Ys , s � t). Equivalently, U1µ(Yt) = Mt − Lµt∧λ where Mt =
Ex(Lµλ | Ft) is a martingale. This is the Doob–Meyer decomposition for the
potential U1µ(Yt). We will show that γ′t arises in a similar decomposition for
the potential of a random Schwartz distribution. This new potential will no
longer be a semimartingale but a Dirichlet process, and γ′t will correspond to
the process of zero quadratic variation in the decomposition of this Dirichlet
process.

Let Ft be the random additive distribution-valued process defined by

Ft(g) = − lim
ε→0

∫ t

0

∫
g(y + Yr)f ′ε(y) dy dr (18)
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whenever the limit exists. It follows by integration by parts that for all g ∈
C∞0 (R1)

Ft(g) =
∫ t

0

g′(Yr) dr. (19)

With this definition it is natural to set

U1Ft(x) = − lim
ε→0

∫ t

0

∫
u1
(
x− (y + Yr)

)
f ′ε(y) dy dr (20)

whenever the limit exists.
Note that formally

U1Ft(x) = −
∫ t

0

du1

dx
(x− Ys) ds. (21)

We have the following analogue of the Doob–Meyer decomposition.

Theorem 3. Let Y be a symmetric stable process of order β > 3/2 in R1,
killed at an independent exponential time λ. Then γ′t is continuous a.s. with
zero quadratic variation and

U1Ft(Yt) = Mt − γ′t (22)

where Mt is the martingale Ex(γ′∞ | Ft).

In view of Theorem 3 we can characterize the renormalized intersec-
tion local time γ′t as the continuous process of zero quadratic variation
in the decomposition of the random potential U1Ft(Yt) which is formally
−
∫ t
0
du1

dx (Yt − Ys) ds.

1.1 Fractional derivatives

All our results can be extended to fractional derivatives. There are in fact sev-
eral natural candidates for the fractional derivative of order 0 < ρ < 1 in Rd:
g(ρ)(x) = (2π)−d

∫
eipxw(p)ĝ(p) dp with w(p) positively homogeneous of index

ρ, i.e. w(λp) = |λ|pw(p) for all λ > 0. Our results can be extended for any
such w(p), but for simplicity we work with symmetric fractional derivatives:
w(−p) = −w(p) which allows us to avoid introducing counterterms. In one
dimension this determines w(p) up to a constant factor: w(p) = sgn(p)|p|ρ.
Then we study

γ
(ρ)
t = −

∫ t

0

∫ s

0

δ(ρ)(Xs −Xr) dr ds. (23)

More precisely, let

α
(ρ)
t,ε (y)

def= −
∫ t

0

∫ s

0

f (ρ)
ε (Xs −Xr − y) dr ds, (24)
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α
(ρ)
t (y) = lim

ε→0
α

(ρ)
t,ε (y) (25)

and
γ

(ρ)
t (y) = lim

ε→0

(
α

(ρ)
t,ε (y)− E

(
α

(ρ)
t,ε (y)

))
(26)

whenever the limit exists. We set γ(ρ)
t = γ

(ρ)
t (0).

Theorem 4. Let Xt denote the symmetric stable process of order β > 1 ∨
(ρ + 1/2) in R1. Then α

(ρ)
t,ε (y) converges a.s. and in all Lp spaces as ε → 0

for any (t, y) ∈ R+ ×R1.
The following hold almost surely:

1. For any Cρ function g(x) we have
∫ t

0

∫ s

0

g(ρ)(Xs −Xr) dr ds = −
∫
g(y)α(ρ)

t (y) dy. (27)

2. α(ρ)
t (y)− hβ+1−ρ(y)t is continuous in y.

3. {γ(ρ)
t (y) , (t, y) ∈ R+×R1} is a.s. continuous and γ(ρ)

t (y) is the derivative
of order ρ in y of γt(y).

4. α(ρ)
t (0) = γ

(ρ)
t (0).

5. Vp(γ(ρ); τ) = 0 for any τ and any p > 2β
3β−1−2ρ .

Once again, we use Yt to denote our R1 valued Lévy process Xt killed at
an independent exponential time λ and in the following theorem γ

(ρ)
t will be

defined for the process Yt in place of Xt. Let now Φt be the random additive
distribution-valued process defined by

Φt(g) = − lim
ε→0

∫ t

0

∫
g(y + Yr)f (ρ)

ε (y) dy dr (28)

whenever the limit exists. It is easy to check that for all g ∈ C∞0 (R1)

Φt(g) =
∫ t

0

g(ρ)(Yr) dr. (29)

With this definition it is natural to set

U1Φt(x) = − lim
ε→0

∫ t

0

∫
u1
(
x− (y + Yr)

)
f (ρ)
ε (y) dy dr (30)

whenever the limit exists.
Note that formally

U1Φt(x) = −
∫ t

0

(u1)(ρ)(x− Yr) dr. (31)

We have the following analogue of the Doob–Meyer decomposition.
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Theorem 5. Let Y be a symmetric stable process of order β > ρ + 1/2 in
R1, killed at an independent exponential time λ. Then γ(ρ)

t is continuous a.s.
with zero quadratic variation and

U1Φt(Yt) = Mt − γ(ρ)
t (32)

where Mt is the martingale Ex(γ(ρ)
λ | Ft).

We leave to the interested reader the task of formulating analogous results
for fractional derivatives of renormalized self-intersection local times in the
plane.

This paper is organized as follows. In section 2 we prove Theorem 1 and
in section 3 prove Theorem 2. Section 4 contains the short proof of Theorem
3. The proofs of Theorems 4 and 5 are similar and left to the reader.

Acknowledgement. I would like to thank J. Walsh for some very helpful
conversations.

2 Existence of α′
t(x)

Proof of Theorem 1. For any x ∈ R1 and bounded Borel set B ⊆ R2
+ let

α′ε(x,B) = −
∫

B

∫
f ′ε(Xs −Xr − x) dr ds. (33)

α′ε(x,B) is clearly continuous in all parameters as long as ε > 0. We use |B|
to denote the Lebesgue measure of B ⊆ R2

+. For any random variable Y we
set {Y }0 = Y − E(Y ).

The following Lemma will be proven at the end of this section.

Lemma 1. Let X be the symmetric stable process of index β > 3/2 in R1.
Then for some ζ > 0

∣∣∣E
({
α′ε(x,B) − α′ε′(x′, B)

}j
0

)∣∣∣ � c0(ζ, j) |(ε, x) − (ε′, x′)|jζ (34)

and ∣∣E
({
α′ε(x,B)

}j
0

)∣∣ � c0(ζ, j) |B|jζ (35)

for all j ∈ Z+, ε, ε′ ∈ (0, 1], x, x′ ∈ R1 and all Borel sets B ⊆ A1
1 =:

[0, 1/2]× [1/2, 1].

Let

Ank = [(2k − 2)2−n, (2k − 1)2−n]× [(2k − 1)2−n, (2k)2−n]. (36)

Using the scaling Xλt
L= λ1/βXt and f ′λε(x) = 1

λ2 f
′
ε(x/λ) we have
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α′ε(x,B) L= 2−n(2−2/β)α′2n/βε(2
n/βx, 2nB) (37)

so that from (34) and (35) we have that for all Borel sets B ⊆ An+1
k

∣∣E
(
{α′ε(x,B)−α′ε′(x′, B)}j0

)∣∣ � c0(ζ, j)2−nj(2−2/β−ζ/β) |(ε, x)−(ε′, x′)|ζj (38)

and ∣∣E
(
{α′ε(x,B)}j0

)∣∣ � c0(ζ, j)2−nj(2−2/β−2ζ) |B|ζj . (39)

For any B let
γ′ε(x,B) = {α′ε(x,B)}0. (40)

Following Le Gall [12] we write

γ′ε(x,B) =
∑

n,k

γ′ε(x,B ∩Ank ) (41)

for any B ⊆ {0 � r � s � 1}. Using (38) and (39) together with independence
we then have, (see Prop. 3.5.2 of [8]),

∣∣∣∣∣E
({ 2n∑

k=1

γ′ε(x,B ∩An+1
k )− γ′ε′(x′, B ∩An+1

k )
}j)∣∣∣∣∣ (42)

� c0(ζ, j)2nj/22−nj(2−2/β−ζ/β) |(ε, x)− (ε′, x′)|ζj ,

and
∣∣∣∣∣E

({ 2n∑

k=1

γ′ε(x,B ∩An+1
k )

}j)∣∣∣∣∣ � c0(ζ, j)2nj/22−nj(2−2/β−2ζ) |B|ζj (43)

so that
‖γ′ε(x,B)− γ′ε′(x′, B)‖j � c |(ε, x)− (ε′, x′)|ζ (44)

and
‖γ′ε(x,B)‖j � c |B|ζ (45)

if we choose ζ > 0 so that 1/2− 2+ 2/β+ ζ(2 + 1/β) < 0. This is possible for
β > 4/3 (and we are assuming that β > 3/2).

Let Bt = {0 � r � s � t} and set γ′ε,t(x) =: γ′ε(x,Bt). If t, t′ � M < ∞
then |Bt −Bt′ | � M |t− t′| so that by (45) for some c <∞

‖γ′ε,t(x)− γ′ε,t′(x)‖j � c |t− t′|ζ (46)

and combined with (44) this shows that for some ζ > 0

‖γ′ε,t(x) − γ′ε′,t′(x′)‖j � c |(ε, x, t)− (ε′, x′, t′)|ζ . (47)

Kolmogorov’s lemma then shows that locally
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|γ′ε,t(x)− γ′ε′,t′(x′)| � cω |(ε, x, t)− (ε′, x′, t′)|ζ′ , ε, ε′ > 0 (48)

for some ζ′ > 0, which assures us of a locally uniform and hence continuous
limit

γ′t(x) = lim
ε→0

γ′ε,t(x). (49)

The next Lemma is proven in section 5.

Lemma 2. For the symmetric stable process of index β > 1 we can find a
continuous function h(x) with h(0) = 0 such that for each x

lim
ε→0

E
(
α′ε,t(x)

)
− h(x) =

{
c(β) sgn(x)|x|β−2t if x �= 0
0 if x = 0 (50)

where c(β) = −2Γ (2 − β) cos((1 − β)π/2) if 1 < β < 2 and c(2) = −1.
Furthermore, (50) converges locally uniformly in x away from 0 and locally
in L1.

Using this Lemma and the locally uniform convergence (49) we see that

α′t(x) = lim
ε→0

α′ε,t(x) (51)

exists for all x, t, and α′t(0) = γ′t(0). Furthermore the convergence is locally
uniform in x away from 0 and locally in L1.

A similar and simpler analysis shows that locally

|γε,t(x)− γε′,t′(x′)| � cω |(ε, x, t)− (ε′, x′, t′)|ζ′ , ε, ε′ > 0 (52)

for some ζ′ > 0, which assures us of a locally uniform and hence continuous
limit

γt(x) = lim
ε→0

γε,t(x). (53)

Using the bound ps(y) � c/s1/β we can check that
∫ t
0

∫ s
0
ps−r(y) dr ds is

bounded and continuous in y and that uniformly in x

lim
ε→0

E
(
αε,t(x)

)
= lim
ε→0

∫ t

0

∫ s

0

(∫
fε(y − x)ps−r(y) dy

)
dr ds (54)

= lim
ε→0

∫
fε(y − x)

(∫ t

0

∫ s

0

ps−r(y) dr ds
)

dy

=
∫ t

0

∫ s

0

ps−r(x) dr ds

Together with the locally uniform convergence of (53) we see that

αt(x) = lim
ε→0

αε,t(x). (55)

locally uniformly.
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Now let g(x) be a C1 function with compact support. The locally L1

convergence in (51) and the fact that {Xs ; 0 � s � t} is bounded a.s. shows
that

∫
g(x)α′t(x) dx = lim

ε→0

∫
g(x)α′ε,t(x) dx (56)

= − lim
ε→0

∫
g(x)

(∫ t

0

∫ s

0

f ′ε(Xs −Xr − x) dr ds
)

dx

= − lim
ε→0

∫ t

0

∫ s

0

(∫
g′(x)fε(Xs −Xr − x) dx

)
dr ds

= − lim
ε→0

∫ t

0

∫ s

0

fε ∗ g′(Xs −Xr) dr ds

= −
∫ t

0

∫ s

0

g′(Xs −Xr) dr ds.

Since the path {Xs ; 0 � s � t} is bounded a.s. we have that α′t(x) has
compact support a.s. so that (56) holds for all C1 functions g(x).

Similarly, using the locally uniform convergence (55) we see that for any
continuous function h(x) we have

∫
h(x)αt(x) dx =

∫ t

0

∫ s

0

h(Xs −Xr) dr ds. (57)

Therefore ∫
g(x)α′t(x) dx = −

∫
g′(x)αt(x) dx (58)

holds for all C1 functions g(x).
It is clear that d

dxγε,t(x) = γ′ε,t(x) for any ε > 0 and hence

γε,t(x) = γε,t(y) +
∫ x

y

γ′ε,t(z) dz. (59)

The locally uniform convergence shown above then implies that

γt(x) = γt(y) +
∫ x

y

γ′t(z) dz (60)

and therefore d
dxγt(x) = γ′t(x). This completes the proof of Theorem 1.

Proof of Lemma 1. We begin by showing how to find a bound
∣∣∣E

((
α′ε(x,B)

)j)∣∣∣ � cj (61)

uniform in ε ∈ (0, 1] , x ∈ R1 and B ⊆ A1
1.

We use
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f ′ε(x) =
i

2π

∫
eipxpf̂(εp) dp (62)

and independence to write that

E
((
α′ε(x,B)

)j) (63)

=
1

(2πi)j

∫ ∫

Bj

exp
(
−ix

j∑

k=1

pk

)
E

(
exp

( j∑

k=1

i pk(Xsk
−Xrk

)
))

j∏

k=1

pkf̂(εpk) dsk drk dpk

=
1

(2πi)j

∫ ∫

Bj

exp
(
−ix

j∑

k=1

pk

)
E

(
exp

( j∑

k=1

i pk(X1/2 −Xrk
)
))

E

(
exp

( j∑

k=1

i pk(Xsk
−X1/2)

)) j∏

k=1

pkf̂(εpk) dsk drk dpk.

We write
j∑

k=1

pk(X1/2 −Xrk
) =

j∑

k=1

vk(Xtk+1 −Xtk) (64)

where the t1, . . . , tj are the ri’s relabeled so that t1 � t2 � · · · � tj � tj+1
def=

1/2 and vi =
∑
l:rl�ti pl so that the vi’s span Rj. Similarly we rewrite

j∑

k=1

pk(Xsk
−X1/2) =

j∑

k=1

v′k(Xt′k −Xt′k−1
) (65)

with t′0
def= 1/2. Then using (63) and independence we have

E
((
α′ε(x,B)

)j) (66)

=
1

(2πi)j

∫ ∫

Bj

exp
(
−ix

j∑

k=1

pk

)
exp

(
−

j∑

k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−

j∑

k=1

|v′k|β(tk − tk−1)
) j∏

k=1

pkf̂(εpk) dsk drk dpk.

Using this and the simple bound
∫ 1

0

e−t|v|
β

dt � c

1 + |v|β (67)

we have the uniform bound
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∣∣∣E
((
α′ε(x,B)

)j)∣∣∣ � cj
∫ ∏ 1

1 + |vk|β
∏ 1

1 + |v′k|β
j∏

k=1

|pk| dpk (68)

� cj
∥∥∥∥
∏ |pk|1/2

1 + |vk|β

∥∥∥∥
2

∥∥∥∥
∏ |pk|1/2

1 + |v′k|β

∥∥∥∥
2

.

Since vi =
∑
l:rl�ti pl, we see that each pk can be represented as the difference

pk = vi−vi−1 for some i, and each vi appears in the representation of at most
two pk’s. Thus

∥∥∥∥
∏ |pk|1/2

1 + |vk|β

∥∥∥∥
2

2

=
∫ ∏ |pk|

1 + |vk|2β
dpk (69)

� cj
∫ ∏ 1 + |vk|+ |vk|2

1 + |vk|2β
dvk

which is bounded if β > 3/2.
We can now establish (34). To handle the variation in x we replace (66)

by

E
((
α′ε(x,B) − α′ε(x′, B)

)j) (70)

=
1

(2πi)j

∫ ∫

Bj

( j∏

k=1

{exp(−i pkx)− exp(−i pkx′)}
)

exp
(
−

j∑

k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−

j∑

k=1

|v′k|β(tk − tk−1)
)

j∏

k=1

pkf̂(εpk) dsk drk dpk

and use the bound

| exp(−i pkx) − exp(−i pkx′)| � C|pk|ζ |x− x′|ζ (71)

for any 0 � ζ � 1.
Similarly to handle the variation in ε we replace (66) by

E
((
α′ε(x,B)− α′ε′(x,B)

)j)
(72)

=
1

(2πi)j

∫ ∫

Bj

exp
(
−ix

j∑

k=1

pk

)
exp

(
−

j∑

k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−

j∑

k=1

|v′k|β(tk − tk−1)
) j∏

k=1

pk
(
f̂(εpk)− f̂(ε′pk)

)
dsk drk dpk

and use the bound
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∣∣f̂(εpk)− f̂(ε′pk)
∣∣ � C|pk|ζ |ε− ε′|ζ (73)

for any 0 � ζ � 1. Since (70)-(72) hold also when j = 1, we obtain (34).
To prove (35) we first apply Holder’s inequality to (66):

E
((
α′ε(x,B)

)j) (74)

=
1

(2πi)j

∫ ∫

Bj

exp
(
−ix

j∑

k=1

pk

)
exp

(
−

j∑

k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−

j∑

k=1

|v′k|β(tk − tk−1)
) j∏

k=1

pkf̂(εpk) dsk drk dpk

� cj |B|j/a
∫ (∫

Bj

exp
(
−a′

j∑

k=1

|vk|β(t′k+1 − t′k)
)

exp
(
−a′

j∑

k=1

|v′k|β(tk − tk−1)
) j∏

k=1

dsk drk

)1/a′ j∏

k=1

|pk| dpk

for any 1/a + 1/a′ = 1. The last integral can be bounded as before if a′ is
chosen close to 1. As in the proof of (34), this completes the proof of (35) and
therefore of Lemma 1.

3 p-variation of γ′
t

Proof of Theorem 2. Since we know that α′t,ε → γ′t in L2, we have

E
(
(γ′t − γ′t′)2

)
(75)

= lim
ε→0

E
(
(α′t,ε − α′t′,ε)2

)

= lim
ε→0

E

((∫ t

t′

∫ s

0

f ′ε(Xs −Xr) dr ds
)2
)

= lim
ε→0

∫ ∫
{

0�s1�s2�s3�s4
t′�s3�t ; t′�s4�t

} E
(
exp

(
−i p(Xs2 −Xs1)− i(p+ q)(Xs3 −Xs2)

)

exp
(
−i q(Xs4 −Xs3)

)) 4∏

k=1

dsk pqf̂(εp)f̂(εq) dp dq

+ lim
ε→0

∫ ∫
{

0�s1�s2�s3�s4
t′�s3�t ; t′�s4�t

} E
(
exp

(
−i p(Xs2 −Xs1)− i(p+ q)(Xs3 −Xs2)

)

exp
(
−i p(Xs4 −Xs3)

)) 4∏

k=1

dsk pqf̂(εp)f̂(εq) dp dq

= lim
ε→0

∫ ∫
{

0�s1�s2�s3�s4
t′�s3�t ; t′�s4�t

} e−(s2−s1)|p|β−(s3−s2)|p+q|β−(s4−s3)|q|β
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4∏

k=1

dsk pqf̂(εp)f̂(εq) dp dq

+ lim
ε→0

∫ ∫
{

0�s1�s2�s3�s4
t′�s3�t ; t′�s4�t

} e−(s2−s1)|p|β−(s3−s2)|p+q|β−(s4−s3)|p|β

4∏

k=1

dsk pqf̂(εp)f̂(εq) dp dq

Consider the first summand on the right hand side of (75). It is bounded
by

∫ ∫
{

t′�r1+r2+r3�t
t′�r1+r2+r3+r4�t

} e−r2|p|
β−r3|p+q|β−r4|q|β

4∏

k=1

drk|p||q| dp dq (76)

� C(t− t′)1+a
∫

1
1 + |p|β

1
1 + |p+ q|β

1
1 + |q|(1−a)β |p||q| dp dq

where we first integrated with respect to dr4 using Hölder’s inequality with
0 � a � 1

∫ t−(r1+r2+r3)

t′−(r1+r2+r3)

e−r4|q|
β

dr4 � (t− t′)a
(∫ t

0

e−r4|q|
β/(1−a) dr4

)(1−a)
, (77)

then with respect to dr1 using
∫ t−(r2+r3)

t′−(r2+r3)
dr1 � t − t′, and finally the dr2,

dr3 integrals are bounded using (67). It is easily seen that (76) is bounded as
long as β − 1 + (1− a)β − 1 > 1, i.e. a < 2− 3/β.

Now consider the second summand on the right hand side of (75). An
attempt to use a bound similar to (76) where we bound pq by |pq| would
be fatal. Rather, we first observe that

∫
e−(s3−s2)|q|β q dq = 0 and use this to

rewrite the second summand on the right hand side of (75) as

lim
ε→0

∫ ∫
{

0�s1�s2�s3�s4
t′�s3�t ; t′�s4�t

} e−(s2−s1)|p|β−(s4−s3)|p|β (78)

{
e−(s3−s2)|p+q|β − e−(s3−s2)|p|βe−(s3−s2)|q|β

} 4∏

k=1

dsk pqf̂(εp)f̂(εq) dp dq.

Now we bound this as in (76) by
∫ ∫

{
t′�r1+r2+r3�t

t′�r1+r2+r3+r4�t
} e−r2|p|

β−r4|p|β (79)

∣∣∣e−r3|p+q|
β

− e−r3|p|
β

e−r3|q|
β
∣∣∣

4∏

k=1

drk|p||q| dp dq

� C(t− t′)1+a
∫

1
1 + |p|(2−a)β

∣∣∣∣
1

1 + |p+ q|β −
1

1 + |p|β + |q|β

∣∣∣∣ |p||q| dp dq.
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Here we proceeded as in (76) except that for the dr3 integral we used
∫

e−r
∣∣∣e−r|p+q|

β − e−r(|p|
β+|q|β)

∣∣∣dr �
∣∣∣∣

1
1 + |p+ q|β −

1
1 + |p|β + |q|β

∣∣∣∣ (80)

by arguing separately depending on whether or not |p|β + |q|β > |p + q|β .
We claim that once again the integral on the right hand side of (79) is finite
whenever β− 1 + (1− a)β− 1 > 1, i.e. a < 2− 3/β. This is clear in the region
where |q| � 2|p| since we can use the bound 1

1+|p|(2−a)β � 1
1+|p|β

c
1+|q|(1−a)β . If,

however, |q| > 2|p|, we can use the bound

∣∣∣∣
1

1 + |p+ q|β −
1

1 + |p|β + |q|β

∣∣∣∣∣ =

∣∣l|p+ q|β − |q|β − |p|β
∣∣

(1 + |p+ q|β)(1 + |p|β + |q|β) (81)

� c|p||q|β−1 + |p|β
(1 + |p+ q|β)(1 + |p|β + |q|β)

� c|p||q|β−1

(1 + |q|β)2 .

This allows us to bound the resulting integral from the right hand side of (79)
by

c

∫ |p|2
1 + |p|(2−a)β

1
(1 + |q|β) dp dq (82)

which leads to the same result as before.
Finally, for h � 2 we have

E
(
(γ′t − γ′t′)h

)
�
{
E
(
(γ′t − γ′t′)2

)}h/2 � C(t− t′)(1+a)h/2. (83)

We will have h-variation 0 when (1 + a)h/2 > 1 for some a < 2 − 3/β, i.e.
(3 − 3/β)h/2 > 1. Thus we will have h-variation 0 when h > (2/3)β′. This
completes the proof of Theorem 2.

4 The Doob–Meyer decomposition

Proof of Theorem 3. It is easy to check that the proofs of Theorems 1
and 2 go through with X replaced by Y and in that case

γ′∞ = lim
ε→0

γ′ε,∞ and γ′t = lim
ε→0

γ′ε,t (84)

converge a.s. and in all Lp spaces. Let

U1Fε,t(y) = −
∫ t

0

∫
u1
(
x− (y − Yr)

)
f ′ε(x) dxdr. (85)

The proof of Theorem 3 then follows from (84) and the next Lemma.
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Lemma 3. Let {Ys ; s ∈ R1
+} be the exponentially killed symmetric stable

process of index β > 3/2 in R1. Then for any ε > 0

U1Fε,t(Yt) = Ex(γ′ε,∞ | Ft)− γ′ε,t (86)

Proof of Lemma 3. We have

γ′ε,t = −
{∫ t

0

∫ s

0

f ′ε(Ys − Yr) dr ds
}

(87)

so that

γ′ε,∞ = −
{∫ ∞

0

∫ s

0

f ′ε(Ys − Yr) dr ds
}

(88)

= γ′ε,t −
{∫ ∞

t

∫ s

t

f ′ε(Ys − Yr) dr ds
}

−
{∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds
}
.

Now, using the fact that {Ys ; s ∈ R1
+} has independent increments

E

({∫ ∞

t

∫ s

t

f ′ε(Ys − Yr) dr ds
} ∣∣∣∣ Ft

)
(89)

= E

(∫ ∞

t

∫ s

t

f ′ε(Ys − Yr) dr ds
∣∣∣∣ Ft

)
− E

(∫ ∞

t

∫ s

t

f ′ε(Ys − Yr) dr ds
)

= 0

and

E

({∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds
} ∣∣∣∣ Ft

)
(90)

= E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds
∣∣∣∣ Ft

)
− E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds
)
.

We have

E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds
∣∣∣∣ Ft

)
(91)

= E

(∫ ∞

t

∫ t

0

f ′ε
(
(Ys − Yt) + (Yt − Yr)

)
dr ds

∣∣∣∣ Ft
)

= Ē

(∫ ∞

0

∫ t

0

f ′ε
(
Ȳs + (Yt − Yr)

)
dr ds

)

where {Ȳs ; s ∈ R1
+} is an independent copy of {Ys ; s ∈ R1

+} and Ē denotes
expectation with respect to {Ȳs ; s ∈ R1

+}. Hence
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E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds
∣∣∣∣ Ft

)
=

∫ t

0

∫
f ′ε(x+ Yt − Yr)u1(x) dxdr (92)

=
∫ t

0

∫
u1
(
x− (Yt − Yr)

)
f ′ε(x) dxdr.

The same sort of argument shows that

E

(∫ ∞

t

∫ t

0

f ′ε(Ys − Yr) dr ds
)

=
∫ t

0

∫
f ′ε(x + y)u1(x)pr(y) dxdy dr (93)

which is zero by symmetry. This concludes the proof of Lemma 3.

5 Proof of Lemma 2

Proof of Lemma 2. We have

E
(
α′ε,t(x)

)
= −

∫ t

0

∫ s

0

(∫
f ′ε(y − x)ps−r(y) dy

)
dr ds (94)

We first consider the case 1 < β < 2. Using the fact that f ′ε is an odd fuction,
Plancherel and then Fubini

−
∫ t

0

∫ s

0

(∫
f ′ε(y − x)ps−r(y) dy

)
dr ds (95)

= i(2π)−1

∫ t

0

∫ s

0

(∫
eipxpf̂(εp)e−(s−r)|p|β dp

)
dr ds

= i(2π)−1

∫
eipxpf̂(εp)

(∫ t

0

∫ s

0

e−(s−r)|p|β dr ds
)

dp

and
∫ t

0

∫ s

0

e−(s−r)|p|β dr ds (96)

=
∫ t

0

∫ t

r

e−(s−r)|p|β ds dr =
∫ t

0

(∫ t−r

0

e−s|p|
β

ds
)

dr

=
∫ t

0

∫ r

0

e−s|p|
β

ds dr = t

∫ ∞

0

e−s|p|
β

ds−
∫ t

0

∫ ∞

r

e−s|p|
β

ds dr

= t|p|−β −
∫ t

0

e−r|p|
β |p|−β dr = t|p|−β − (1 − e−t|p|

β

)|p|−2β .

Hence

E
(
α′ε,t(x)

)
= i(2π)−1t

∫
eipx sgn(p)|p|1−β f̂(εp) dp (97)

−i(2π)−1

∫
eipx sgn(p)(1 − e−t|p|

β

)|p|1−2β f̂(εp) dp.



280 Jay Rosen

It is easily checked that (1 − e−t|p|
β

)|p|1−2β ∈ L1(R1) so that the last term
converges uniformly as ε → 0 to a continuous limit. On the other hand, it
follows from [9, formula (13), page 173] that

i(2π)−1

∫
eipx sgn(p)|p|1−β f̂(εp) dp (98)

= −π−1Γ (2− β) cos
(
(1− β)π/2

) ∫
sgn(y)|y|β−2fε(y − x) dy.

Since sgn(y)|y|β−2 is locally in L1 and continuous away from 0, this last term
converges locally uniformly away from 0 and locally in L1 to c(β) sgn(x)|x|β−2.
On the other hand, when x = 0, (94) is 0 by symmetry. This completes the
proof of Lemma 2 for β �= 2.

For Brownian motion, we proceed differently. We first write

−
∫ t

0

∫ s

0

(∫
f ′ε(y − x)ps−r(y) dy

)
dr ds (99)

=
∫ t

0

∫ s

0

(∫
fε(y − x)p′s−r(y) dy

)
dr ds.

We have p′s(y) = −1
(2π)1/2s3/2 ye−y

2/2s so that, for y �= 0, {|p′s(y)| ; s � 0} is the
density of T|y|, the first hitting time of |y| for Brownian motion. Hence

∫ ∞

0

|p′s(y)| ds = 1, y �= 0. (100)

This justifies the use of Fubini
∫ t

0

∫ s

0

(∫
fε(y − x)p′s−r(y) dy

)
dr ds (101)

=
∫
fε(y − x)

(∫ t

0

∫ s

0

p′s−r(y) dr ds
)

dy

and then, just as in (96)

∫ t

0

∫ s

0

p′s−r(y) dr ds = t

∫ ∞

0

p′s(y) ds−
∫ t

0

∫ ∞

r

p′s(y) ds dr, y �= 0. (102)

Just as in (100) we see that the first integral is − sgn(y) for y �= 0. Now
|p′s(y)| � 1

(2π)1/2s3/2 |y|, so that by the dominated convergence theorem the
second integral is continuous in y. As before, when y = 0, the left hand side
of (99) is 0 by symmetry. Lemma 2 now follows.
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176.

18. , Continuity and singularity of the intersection local time of stable pro-
cesses in R2, Ann. Probab. 16 (1988), 75–79.

19. , The asymptotics of stable sausages in the plane, Ann. Probab. 20
(1992), 29–60.

20. , Joint continuity of renormalized intersection local times, Ann. Inst.
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On Squared Fractional Brownian Motions

Nathalie Eisenbaum and Ciprian A. Tudor
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UMR 7599, CNRS - Université de Paris VI
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Summary. We have proved recently that fractional Brownian motions with Hurst
parameter H in (0, 1/2] satisfy a remarkable property: their squares are infinitely
divisible. In the Brownian motion case (the case H = 1/2), this property is com-
pletely understood thanks to stochastic calculus arguments. We try here to take
advantage of the stochastic calculus recently developed with respect to fractional
Brownian motion, to construct analogous explanations of this property in the case
H �= 1/2.

1 Introduction

A process (Xt, t � 0) is infinitely divisible if for any n ∈ N
� there exist n i.i.d.

processes X(1), . . . , X(n) such that

X
(law)
= X(1) + · · ·+X(n).

The question of the infinite divisibility of squared fractional Brownian motions
has been recently solved (see [4]). The answer depends on the value of the
Hurst parameter H . More precisely, let (γt, t � 0) be a fractional Brownian
motion with parameter H in (0, 1);

• if H > 1/2, γ2 is not infinitely divisible;
• if H � 1/2, γ2 is infinitely divisible.

The proof is based on a criterion established by Griffiths [6] and con-
sists in computing the sign of each cofactor of the covariance matrix of
(γt1 , γt2 , . . . , γtn) for every (t1, t2, . . . , tn) in R

+
n . More recently, the difference

between the cases H � 1/2 and H > 1/2 has been clearly explained in [5]: in
the first case the covariance is the Green function of a Markov process and in
the second case it is not. But we think that the property of infinite divisibility
should also be understandable from the point of view of stochastic calculus.
More precisely, for any value of H in (0, 1) we can set Y1,0 = γ2 and, for any
x � 0, Y1,x = (γ +

√
x)2. More generally for any d ∈ N

∗ we set

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 282–289, 2005.
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Yd,0 =
d∑

i=1

(
γ(i)

)2

where γ(1), . . . , γ(d) are d independent fractional Brownian motions with Hurst
parameter H .

We can similarly define for any d ∈ N
∗ and any x � 0

Yd,x =
d∑

i=1

(
γ(i) + bi

)2

for any (b1, b2,...bd) in R
d such that

∑d
i=1 b

2
i = x.

When H � 1/2, thanks to the infinite divisibility of γ2, the existence of
Yd,x for non integers d and x � 0 satisfying the following property has been
shown in [4]

Yd,x + Yd′,x′
(law)
= Yd+d′,x+x′ (A)

for any (d, d′, x, x′) in R
4
+ and for Yd,x and Yd′,x′ chosen independently.

The property (A) is called the additivity property. In the case H = 1/2,
the family (Yd,x)d,x�0 was already known and called the family of the squared
Bessel processes. Squared Bessel processes can also be defined as solutions
of stochastic differential equations driven by a real valued Brownian motion.
Indeed for a fixed couple (d, x), Yd,x is the unique solution of

X(t) = x+ 2
∫ t

0

√
X(s) dBs + dt (1)

where B is real valued Brownian motion.
The additivity property of (Yd,x)d,x�0 and the infinite divisibility of each

Yd,x can then easily be derived from that definition (see for example Revuz
and Yor [10]).

Since stochastic calculus with respect to fractional Brownian motion has
been extensively developed these past years, it is then natural to ask, when
H � 1/2, whether similarly to the case H = 1/2, Yd,x could be obtained as the
solution of a stochastic differential equation driven by a fractional Brownian
motion with parameter H .

To start solving that question, we present here the most natural attempt.
Namely we ask whether Yd,x is a solution of the equation

X(t) = x+ 2
∫ t

0

√
X(s) dZHs + dt2H

where ZH is a fractional Brownian motion with parameter H .
Note that the same question can be asked in the case H > 1/2 for d in N

∗.
We show that in any case the answer is negative. Nevertheless we think that

the family (Yd,x)d,x�0 should correspond to a family of stochastic differential
equations indexed by (d, x).
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Besides, from our proof one can deduce that for every d ∈ N
�, d � 2, the

process
∫ t
0

∑d
i=1

γ(i)
s√
Yd,0(s)

dγ(i)
s is not a fractional Brownian motion. This latter

question has been raised up by Guerra and Nualart in a recent preprint [7]
where the process Yd,0 is called the squared d-dimensional fractional Bessel
process.

In Section 2, we recall some preliminaries on stochastic integration with
respect to fractional Brownian motions. In Section 3, our result is properly
stated and established.

We mention that after the completion of this work we received the paper
[8] where an analogous result is obtained with a totally different proof based
on chaos expansion.

2 Malliavin Calculus with respect to the fractional
Brownian motion

In this section, we give only the elements of the Malliavin calculus that are
essential to the proof given in Section 3. For a complete exposition one should
consult the paper of Alòs et al. [1] and the book of Nualart [9]. Let T be the
time interval [0, 1] and let (γHt )t∈T the one-dimensional fractional Brownian
motion with Hurst parameter H ∈ (0, 1). This means by definition that γH is
a centered Gaussian process with covariance

r(t, s) = E
(
γHs γ

H
t

)
=

1
2
(
t2H + s2H − |t− s|2H

)
.

This process has the Wiener integral representation (see e.g. [3]) γHt =∫ t
0
KH(t, s) dWs, where W = {Wt : t ∈ T } is a Wiener process, and KH(t, s)

is a deterministic kernel (we will not need its expression). In the sequel we
will work with a fixed H so we will omit to write it.

Let K∗ be the operator on L2(T ) defined as follows

if H >
1
2

, (K∗ϕ)(s) =
∫ 1

s

ϕ(r)
∂K

∂r
(r, s) dr, ∀s ∈ T

if H <
1
2

, (K∗ϕ)(s) = K(1, s)ϕ(s)+
∫ 1

s

(
ϕ(r)−ϕ(s)

)∂K
∂r

(r, s) dr, ∀s ∈ T.

Let H be the canonical Hilbert space of the fractional Brownian motion.
This space is actually the closure of the vector space of indicator functions
{1[0,t], t ∈ T } with respect to the scalar product

〈1[0,t],1[0,s]〉H = r(t, s).

LetDγ and δγ denote respectively the derivative operator and the anticipating
(Skorohod) integral with respect to γ that can be defined using the space H
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(see [1] for more details). Since γ ∈ Dom(δγ) if and only ifH > 1/4 (see [2]), an
extended divergence integral was needed to include the case of any parameter
H ∈ (0, 1). We refer to [2] for the construction of the extended integral. LetH′
be the Hilbert space H′ = K∗,aK∗(L2(0, 1)), where K∗,a denotes the adjoint
operator ofK∗. We can construct a Malliavin derivative usingH′ instead ofH.
A process u ∈ L2(T × Ω) belongs to the extended domain of the divergence
integral (u ∈ Dom∗(δγ)) if there exists a random variable δ′,γ(u) satisfying

∫ 1

0

E(usK∗,aK∗DsF ) ds = E
(
δ′,γ(u)F

)
. (2)

for every “smooth” random variable F . This way, Dom(δγ) ⊂ Dom∗(δγ)
and δ′,γ restricted to Dom(δγ) coincides with δγ . It has been proved in
[2] that for any H ∈ (0, 1) and f ∈ C2(R) satisfying a growth condition,
f ′(γ) ∈ Dom∗(δγ) and the following Itô’s formula holds

f(γt) = f(0) +
∫ t

0

f ′(γs) dγs +H
∫ t

0

f ′′(γs)s2H−1 ds. (3)

3 On the integral representation for the fractional Bessel
processes

In Section 1, the process Yn,0, that we will simply denote by Yn, has been
introduced for any n ∈ N

∗ and any H ∈ (0, 1) as follows

Yn =
n∑

i=1

(
γ(i)

)2

where γ(1), . . . , γ(n) are n independent fractional Brownian motions with
Hurst parameter H .

Thanks to the Itô formula (3) we have for every i

(
γ

(i)
t

)2 = 2
∫ t

0

γ(i)
s dγ(i)

s + t2H

which leads to

Yn(t) = 2
∫ t

0

n∑

i=1

γ(i)
s dγ(i)

s + nt2H .

Moreover, for n � 2, in [7] the authors established the following representation
for the fractional Bessel processes (see also [8])

√
Yn(t) = ZHt +H(n− 1)

∫ t

0

s2H−1

√
Yn(s)

ds (4)

where the process ZH is defined by
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ZHt =
∫ t

0

n∑

i=1

γ
(i)
s√
Yn(s)

dγ(i)
s . (5)

In view of the representation of the squared Bessel processes given by (1) in
the introduction and of the relation (4), it is hence natural to ask whether Yn
satisfies

Yn(t) = 2
∫ t

0

√
Yn(s) dZHs + nt2H (6)

where the process ZH is given by (5). If ZH was a semimartingale then (6)
would be necessarily satisfied. Since ZH is not a semimartingale, it makes no
sense to check (6) without assuming the nature of ZH . Therefore, we ask the
following question for n ∈ N

� and H ∈ (0, 1):

Question Q. Is the following statement true: The process ZH given by (5)
is a fractional Brownian motion and the equation (6) is satisfied?

We prove that the above statement is true if and only if H = 1/2.

Proposition 1. For any value of (n,H) in N
� × (0, 1) \ { 1

2}, the answer to
question Q is negative.

The case n = 1 is the most delicate to treat because of the appearance of
the local time. Actually for the other cases we have the following result:

Proposition 2. For every n � 2 and for every H ∈ (0, 1) \ { 1
2} the process

ZH given by (5) is not a fractional Brownian motion.

Proof of Proposition 2. Assuming that ZH is a fractional Brownian motion we
can use Itô’s formula (3) to compute

(√
Yn(t)

)2 thanks to (4). Then Yn has
to satisfy (6) and that leads to a contradiction by applying Proposition 1. 	


Proof of Proposition 1. There exist n independent real valued Brownian mo-
tions W (1), W (2), . . . , W (n) such that for every i, γ(i) admits the following
representation γ(i)

t =
∫ t
0
K(t, s) dW (i)

s .
We will need the following basic properties of Yn(t):

• The process Yn is 2H-self-similar. This follows immediately from the H-
self-similarity of the fBm.

• Since γt/tH is a standard normal random variable, Yn(t)/t2H =
(
γ

(1)
t

/
tH

)2+
· · · +

(
γ

(n)
t

/
tH

)2 has a chi-square distribution with n-degrees of freedom

which probability density function is pn(x) = (1/2)n/2

Γ (n/2) x
n/2−1 e−x/2, x > 0.

As a consequence, if m+ n > 0

E
(
Yn(t)

)m/2 = tHm
(1/2)n/2

Γ (n/2)

∫ ∞

0

x
m+n

2 −1 e−x/2 dx

= tHm
2m/2

Γ (n/2)
Γ
(m+ n

2

)
. (7)
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We will use the identity:

K∗,aK∗1[0,t](s) =
d
ds
r(t, s) = H

(
(t− s)2H−1 + s2H−1

)
(8)

which follows from (2) since

r(t, s) = E(γtγs) = E

(
γt

∫ 1

0

1[0,s](α) dγα

)
=
∫ s

0

K∗,aK∗1[0,t](α) dα.

Suppose first n � 2 and assume that the answer to question Q is positive.
Multiplying both sides of (4) by ZHt we hence have

ZHt
(
Yn(t)− nt2H

)
= 2ZHt

∫ t

0

√
Yn(s) dZHs .

On one hand, by (2),

E

(
2ZHt

∫ t

0

√
Yn(s) dZHs

)
= 2

∫ t

0

E
(√
Yn(s)

)
K∗,aK∗1[0,t](s) ds

= 2H E
(√
Yn(1)

) ∫ t

0

rH
(
(t− r)2H−1 + r2H−1

)
dr. (9)

On the other hand, using (2) and the chain rule for the derivative operator
(see [9], Prop. 1.2.3, p. 30),

E
(
ZHt

(
Yn(t)− nt2H

))
= E

(
Yn(t)

n∑

i=1

∫ t

0

γ
(i)
s√
Yn(s)

dγ(i)
s

)

=
n∑

i=1

∫ t

0

E

(
γ

(i)
s√
Yn(s)

K∗,aK∗Dγ,is Yn(t)

)
ds

where Dγ,i denotes the derivation with respect to γ(i). Since Dγ,is Yn(t) =
2γ(i)
t 1[0,t](s), we obtain

E
(
ZHt (Yn(t)− nt2H)

)
= 2

n∑

i=1

∫ t

0

E

(
γ

(i)
t γ

(i)
s√

Yn(s)

)
K∗,aK∗1[0,t](s) ds (10)

Using again (2) and the chain rule for the derivative operator, we have

E

(
n∑

i=1

γ
(i)
t γ

(i)
s√

Yn(s)

)
=

n∑

i=1

E

∫ t

0

K∗,aK∗Dγ,iα

(
γ

(i)
s√
Yn(s)

)
dα

= r(t, s)
n∑

i=1

(
1√
Yn(s)

− (γis)2

Yn(s)3/2

)

= (n− 1)r(t, s)E

(
1√
Yn(s)

)

= r(t, s)
E
(√
Yn(s)

)

r2H
= E

(√
Yn(1)

) r(t, s)
rH

.
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Consequently, thanks to (10),

E
(
ZHt

(
Yn(t)− nt2H

))

= 2H E
(√
Yn(1)

) ∫ t

0

r(t, s)
sH

(
(t− s)2H−1 + s2H−1

)
ds. (11)

By (9) and (11) we finally obtain

∫ t

0

(
r(t, s)
sH

− sH
)(

(t− s)2H−1 + s2H−1
)
ds = 0

or, by doing the change of variable z = s/t,

t3H
∫ 1

0

1− (1− z)2H − z2H
zH

(
(1− z)2H−1 + z2H−1

)
dz = 0.

Note that the function f(z) = 1 − (1 − z)2H − z2H keeps a constant sign on
[0, 1] (it is positive if H > 1/2 and negative if H < 1/2). The integral is zero
if the integrand is zero almost-everywhere and this is false unless H = 1/2.

Suppose now n = 1 and assume that the the answer to question Q is posi-
tive. In this case ZHt =

∫ t
0

sign(γs) dγs. The equation (6) yields, by multiplying
both sides by ZHt , to the relation

∫ t

0

E|γs|K∗,aK∗1[0,t](s) ds =
∫ t

0

E
(
sign(γs)|γt|

)
K∗,aK∗1[0,t](s) ds.

Using the self-similarity of |γs| and the joint distribution of (γt, γs) we obtain
E|γs| = sHE|γ1| and E

(
sign(γs)|γt|

)
= r(t,s)

sH E|γ1|. A repetition of the previ-
ous arguments finishes the proof. 	


Remark. • Note that in [8] the authors showed using a different method that
the process ZH given by (5) is not a fractional Brownian motion for every
n � 1 and H ∈ (0, 1).

• Although the process (5) is not a fractional Brownian motion, it satisfies
some properties that the fractional Brownian motion enjoys: it is H-self-
similar, has long range dependence (if H > 2/3) and has the same 1/H
variation as the fractional Brownian motion with Hurst parameter H (see
[8] and [7]). Nevertheless the question of the nature of the law of ZH is still
open. In particular, we still don’t know whether it is Gaussian or not.
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Summary. In this article a class of multifractional processes is introduced, called
Generalized Multifractional Gaussian Process (GMGP). For such multifractional
models, the Hurst exponent of the celebrated Fractional Brownian Motion is replaced
by a function, called the multifractional function, which may be irregular. The main
aim of this paper is to show how to identify irregular multifractional functions in
the setting of GMGP. Examples of discontinuous multifractional functions are also
given.
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1 Introduction

Fractional Brownian Motion, that was introduced in [16] and studied in [19],
is the continuous mean-zero Gaussian process {BH(t)}t∈R, depending on a
parameter H ∈ (0, 1), called the Hurst index, with covariance kernel

E
(
BH(s)BH(t)

)
= c

(
|s|2H + |t|2H − |s− t|2H

)
, (1)
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where s, t are arbitrary reals and c > 0 is a constant. This process has impor-
tant applications in modeling [6]. One of its main interests is that its point-
wise Hölder regularity can be prescribed via its Hurst parameter. Indeed, the
Hölder exponent of FBM, at any point, is equal to H , almost surely. Recall
that, for a stochastic process X , the Hölder exponent at a point t0, is defined
as

αX(t0) = sup
{
α, lim sup

h→0

|X(t0 + h)−X(t0)|
|h|α = 0

}
. (2)

However, the Hölder exponent of FBM remains the same all along its trajec-
tory and this can be restrictive in some situations. For this reason, various
models have been proposed to replace the Hurst index H ∈ (0, 1) by a function
h(t). These so-called multifractional models5 are useful in various domains of
applications, see for instance [1, 15, 18, 11, 17]. The starting point of these
generalizations is very often the harmonizable representation of the FBM:

BH(t) =
∫

R

e−it·ξ − 1
|ξ| 12+H

W (dξ) (3)

whereW (dξ) is a Wiener measure such that X is a real valued process (cf. [12]
or page 1138 in [1] for a discussion on the Wiener measure). For example we
may recall the Multifractional Brownian Motion (MBM), whose harmonizable
representation is given by:

Bh(t) =
∫

R

e−it·ξ − 1
|ξ| 12+h(t)

W (dξ) (4)

where h is a Hölder function ranging in [a, b] ⊂ (0, 1). The function h is called
the multifractional function. This process has been introduced independently
in [22] (where the denomination MBM was introduced) and in [10]. Similarly
to FBM, MBM is continuous and its Hölder exponent at any point t0 is equal
to h(t0), almost surely. However, one of the main problems with these models is
that their Hölder exponents cannot be irregular, because h must be Hölderian.
Recall that when the function h is discontinuous then the trajectories of the
MBM are themselves, with probability 1, discontinuous (see Proposition 1
of [1]).

The continuity of h is a real drawback for some applications, for instance
image classification and segmentation: The Hölder regularity is expected to
vary abruptly on textured zones and around edges. On the other hand, the
identification of h has been performed under the assumption that h is contin-
uously differentiable [8].

5 One should not confuse multifractional and multifractal. A multifractal process
has a multifractal spectrum that takes non trivial values on a set of positive mea-
sure. A multifractional process is a process with non constant pointwise Hölder
exponent. Multifractality implies multifractionality, while the converse is false.
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Recently, two continuous Gaussian processes with irregular Hölder expo-
nents have been introduced. These processes are the Generalized Multifrac-
tional Brownian Motion (in short GMBM) [5, 4] and the Step Fractional
Brownian Motion (in short SFBM) [7]. The GMBM is an extension of the
MBM while the SFBM is an extension of the FBM. In this article we will
study a Gaussian process that is slightly more general than the GMBM, so
let us first recall the definition of the GMBM. Let λ > 1 be an arbitrary
fixed real, and (h) = (hn)n∈N be a sequence of Hölder functions with values
in [a, b] ⊂ (0, 1). The GMBM with parameters λ and (h) is the continuous
Gaussian process {Y(h)(t)}t∈R defined for every real t as

Y(h)(t) =
∫

0<ξ<1

e−it·ξ − 1
ξ

1
2+h0(t)

W (dξ) +
+∞∑

n=1

∫

λn−1�ξ<λn

e−it·ξ − 1
ξ

1
2+hn(t)

W (dξ).

One of the main properties of the GMBM is that its Hölder exponent at any
point t0 is almost surely equal to lim inf

n→∞
hn(t0), under the assumption that

|||hn||| = o(2na), where |||hn||| denotes the Hölder norm of hn (see [2, 5, 4]).
Therefore, the Hölder exponent of the GMBM is of the most general form:
any lim inf of positive continuous functions (see [14, 3, 2]). In contrast, the
one of SFBM is a step function (see subsection 1.3.1 in [7]). As a consequence,
the Hölder exponent of the GMBM may be discontinuous everywhere while
that of the SFBM can only be discontinuous on a finite set. Likewise, the
Hölder exponent of the GMBM may be constant except on a finite set (see
Proposition 1 of [5]), while this is impossible with the SFBM. On the other
hand, the parameters of the SFBM have been identified in [7], and we present
in this article an identifiable model which has many desirable properties of
the GMBM.

Let us define a Generalized Multifractional Gaussian Process (in short
GMGP) by its harmonizable representation:

X(t) =
∫ +∞

0

e−it·ξ − 1
ξ

1
2+H(t,ξ)

W (dξ). (5)

where W (dξ) is a Wiener measure such that X is real valued process and
H : R×(0,+∞)→ [a, b] ⊂ (0, 1) is called the Hurst function. Clearly the MBM
is a GMGP for which H(t, ξ) does not depend on the frequency variable ξ and
is always equal to the multifractional function h(t). Actually the GMGP model
is very close to the GMBM: On the one hand, every GMBM with parameters
λ and (hn)n∈N is a GMGP with Hurst function H(t, ξ) = 1[0,1)(ξ)h0(t) +
+∞∑

n=1

1[λn−1,λn)(ξ)hn(t). On the other hand, if H : R × (0,+∞) → [a, b] ⊂

(0, 1) is continuous in almost all ξ, then it is not hard to see that the high
frequencies part of the GMBM of parameter λ and (H( . , λn))n∈N converges, in
distribution to that of the GMGP with Hurst function H( . , . ), when λ→ 1.
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As for the SFBM, it is also, in some sense, similar to the GMGP, although,
contrarily to the SFBM, no wavelet expansion is needed to introduce the
GMGP. We refer to [13] for a comparison between SFBM and GMBM with
parameter λ = 2.

The sequel of this paper is organized as follows. In section 2, we first obtain
the pointwise Hölder exponent of the GMGP. We then define our estimator
and we give the precise assumptions ensuring its almost sure convergence.
Section 3 is devoted to three examples where the Hurst functions H(t, ξ)
converge to multifractional functions of particular interest. The proof of the
results are performed in section 4.

2 Statement of the results

Following the correspondence between the GMBM and the GMGP, the mul-
tifractional function of a GMGP is defined to be:

h(t) = lim
ξ→+∞

H(t, ξ), (6)

when the limit exists. This definition is coherent with the fact that the lo-
cal properties of the sample paths are given by the high frequencies of the
harmonizable representation. In this paper we will show that, similarly to
the GMBM, at any point t0, the Hölder exponent of the GMGP is almost
surely equal to h(t0). To identify the multifractional function that governs
the regularity of the sample paths, we will then use the generalized quadratic
variation

VN =
N−2∑

p=0

(
X
(p+ 2
N

)
− 2X

(p+ 1
N

)
+X

( p
N

))2

. (7)

Actually first the infimum of the multifractional function inft∈(0,1) h(t) = h∗
will be identified. Before stating the main results and making precise the
technical assumptions we need to explain why h∗ is naturally identified in
this framework. As a rule of thumb one may assume for multifractional models
that

EVN ≈

N−2∑

p=0

1
N2h(p/N)

(8)

and then it is classical to have

lim
N→+∞

ln(EVN )
ln(N)

= 1− 2h∗. (9)

In this article we will prove a Law of the Large Numbers for VN and the
preceding heuristic suggests to take as an estimator:

ĥN = 1/2
(

1− ln(VN )
ln(N)

)
. (10)
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Let us now state more precisely the technical assumptions needed to de-
termine the Hölder regularity of GMGP and to show that ĥN is a consistent
estimator of h∗. First of all we state a weak assumption on the multifractional
function h that will entail (9):

A 1. ∃C > 0, ∀N � 1

1
C
N1−2h∗ �

N−2∑

p=0

1
N2h(p/N)

� CN1−2h∗ . (11)

Note that C is a generic constant that may change in this article and that
the last inequality of (11) is always satisfied. The lower bound in (11) means
that there is a sufficiently large number of points p/N such that h(p/N) is
close to h∗.

The asymptotic behavior (11) is clearly true under mild assumptions of
smoothness for t→ h(t) and we will see in the examples that it is fulfilled for
non trivial functions h(t).

One needs then to strengthen the existence of the limit (6) to ensure
that (8) is satisfied. The following technical assumption states that the speed
of convergence of H(t, ξ) to h(t) is compatible with (8).

A 2. ∀0 � t � 1, ∀ξ � 0, H(t, ξ) � h(t).
∃α < 1 such that

N−2∑

p=0

∫ +∞

Nα

|h(p/N)−H(p/N, ξ)|
ξ2h(p/N)+1

ln(ξ) dξ = o(N1−2h∗). (12)

Let us make some comments to explain (12). In our setting, it will yield
that E VN is sufficiently close to N1−2h∗ to have (9). Now why is (12) a
reasonable assumption? Let us suppose that |H(p/N) − H(p/N, ξ)| � CN .
Then:

∣∣∣∣∣

N−2∑

p=0

∫ +∞

Nα

|h(p/N)−H(p/N, ξ)|
ξ2h(p/N)+1

ln(ξ) dξ

∣∣∣∣∣ �
N−2∑

p=0

CN lnN
N2αh(p/N)

.

If we assume that lim
N→+∞

CN lnNN2αb = 0, then (12) is satisfied because of

A 1. Hence A 2 can be interpreted as a way of expressing that H(t, ξ) is
converging uniformly fast enough to h(t) when ξ → +∞.

The last assumption is concerned with the behaviour of the functions
H( . , ξ) when ξ is finite. It expresses the fact that these functions must be
smooth enough so that the Hölder regularity of the GMGP is indeed gov-
erned by the multifractional function.

A 3. • For 0 < ξ � 4π/3,
H(t, ξ) = b.
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• ∃g such that 0 < g < min(a/2, 1/4) (where H(t, ξ) ∈ [a, b]) and ∃β such
that b < β � 1 such that for 4π/3 < ξ

∣∣∣∣
∂kH

∂ξk
(t, ξ)− ∂

kH

∂ξk
(t′, ξ)

∣∣∣∣ � C|ξ|g−k|t− t′|β (13)

for t, t′ ∈ [0, 1] and k = 0, 1, 2. Moreover
∣∣∣∣
∂kH

∂ξk
(t, ξ)

∣∣∣∣ � Cξg−k (14)

for t ∈ [0, 1] and k = 0, 1, 2.

Of course, in these assumptions, 4π/3 is arbitrary and can be replaced
by any non-negative constant. The inequality 0 < g < min(a/2, 1/4) has
a deeper meaning: it expresses the fact that the Hölder constant of H(t, ξ)
cannot grow too fast when ξ → +∞. Finally, the inequality b < β is similar
to the condition r > sup(a(x)) in the Definition 1.4, p. 41, of [10] or to
the condition suptH(t) < β in Definition 3.1, p. 11, of [4]; we refer to [13]
section 4.2 or to [1] section 2.2 for a more complete discussion.

At this point, we can state the three main results of this paper.

Theorem 1. Under assumption A 3, the Hölder exponent of the GMGP at
each point t0 satisfies almost surely,

αX(t0) = h(t0). (15)

Theorem 2. Under assumptions A 1, A 2, A 3,

lim
N→+∞

ĥN = h∗ almost surely. (16)

Actually, the identification of the infimum h∗ of the multifractional func-
tion h is the result needed to obtain the identification of h itself. The clas-
sical technique to have full identification is the localization of the general-
ized quadratic variations. Basically if one wants to estimate h(t) for a given
t ∈ (0, 1), one has first to localize VN on an (ε,N)-neighborhood of t defined
by

Vε,N (t) =
{
p ∈ Z,

∣∣∣
p

N
− t

∣∣∣ � ε
}
.

Then the localized generalized variation is defined by

Vε,N (t) =
∑

p∈Vε,N (t)

(
X
(p+ 1
N

)
− 2X

( p
N

)
+X

(p− 1
N

))2

. (17)

We define the localized estimator

ĥε,N = 1/2
(

1− ln(Vε,N (t))
ln(N)

)
, (18)
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and we get
lim

N→+∞
ĥε,N = inf

{|s−t|<ε}
h(s) almost surely

as in Remark 1 in [8].
The next step to identify h at point t is to let ε → 0+. For instance,

taking ε = N−γ for γ > 0, one obtains the following result as a corollary of
Theorem 2:

Corollary 1. Fix 0 < γ < 1/2. Under assumptions A 1, A 2 and A 3,

lim
N→+∞

1/2
(

1− γ −
ln(VN−γ ,N (t))

ln(N)

)
= lim inf

s→t
h(s) a.s. (19)

The statement of this corollary is an example of localization of Theorem 2.
Remark that if h is lower semi-continuous and satisfies A 1, A 2, and A 3,
then it is identifiable.

3 Examples

In this section we present three examples of application of Theorem 2, that
illustrate the way this theorem can be used. In each of these examples, one as-
sumes given a precise multifractional function. Then, one constructs a GMGP
by exhibiting a Hurst function H(t, ξ) such that the assumptions A 1, A 2
and A 3 are fulfilled. Techniques similar to the ones used in this section were
put to work in the proofs of Propositions 1 and 2 of [5].

3.1 Hölder continuous multifractional functions

Remark first that if the multifractional function h is β-Hölder continuous
with β > b and satisfies A 1, one may choose a Hurst function H(t, ξ) that
interpolates a constant for 0 � ξ � 4π/3 and the multifractional function h(t)
when ξ � 8π/3. One can take for instance

H(t, ξ) = b if 0 � ξ � 4π
3

and

H(t, ξ) =
(
2− 3ξ

4π

)
b+

( 3ξ
4π
− 1

)
h(t) if

4π
3

� ξ � 8π
3
,

and H(t, ξ) = h(t) if ξ � 8π/3. In this case the GMGP exhibits the same
properties as a Multifractional Brownian Motion and the Theorem 2 is the
analogue of the Remark 1 in [8] where the identification of a multifractional
function is performed by localizing the generalized quadratic variations as
in [8]. Please note that an alternate method to corollary 1 has recently been
proposed in [21] to identify the multifractional function of a MBM in the
Hölderian case.
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3.2 Multifractional functions with one jump

In this example we consider a multifractional function that has only one dis-
continuity and that is piecewise constant. This very simple example can be
easily extended to the case of piecewise constant functions with a finite num-
ber of jumps. The GMGP associated to this kind of multifractional function
are comparable to SFBM for the applications. Let us suppose that

h(t) = b 1[0,t0] + a1(t0,1] (20)

where t0 ∈ (0, 1) and 0 < a < b < 1. A 1 is clearly satisfied with h∗ = a.
Then one can construct a Hurst function that admits such a multifractional
function through the following procedure:

• For 0 < ξ � 4π/3,
H(t, ξ) = b ∀t ∈ [0, 1].

• for 4π/3 < ξ let us choose 0 < f < min(a/6, 1/12)

H(t, ξ) =






b if t � t0

a+ (b− a) sin4

(
πξf

2

(
t− t0 −

1
ξf

))
if t ∈

[
t0, t0 +

1
ξf

)

a if t � t0 +
1
ξf
.

An elementary computation shows that A 3 is fulfilled with g = 3f and
β = 1. To check A 2, let us remark that, if & denotes the cardinality of a
set,
∣∣∣∣∣

N−2∑

p=0

∫ +∞

Nα

|h(p/N)−H(p/N, ξ)|
ξ2h(p/N)+1

ln(ξ) dξ

∣∣∣∣∣

� (b− a) &
{
p such that t0 � p

N
� t0 +

1
Nαf

}
×
∫ +∞

Nα

ln(ξ)
ξ2a+1

dξ.

Hence
∣∣∣∣∣

N−2∑

p=0

∫ +∞

Nα

|h(p/N)−H(p/N, ξ)|
ξ2h(p/N)+1

ln(ξ) dξ

∣∣∣∣∣ � CN lnN
Nαf

1
N2h∗α

.

Then α is chosen such that α(f + 2h∗) > 2h∗ to have (12).

3.3 Multifractional functions with accumulation of jumps

Let us address the more interesting case of piecewise constant multifractional
functions which have an infinite number of jumps. In this example let us
suppose the multifractional function is defined by
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h(t) =






1/2 if t � 1/2

1
2

+
1

k + 1
if

1
2

+
1

k + 1
< t � 1

2
+

1
k

1
2

+
1
3

if 1 � t

(21)

where k � 2. This multifractional function fulfills A 1 with h∗ = 1/2, and
t = 1/2 is the time where the jumps accumulate. Let us now exhibit a Hurst
function corresponding to (21) by using the construction of the previous exam-
ple which is valid when the multifractional function has only a finite number
of jumps. Let us define the function (21) where only k0 jumps are considered:

hk0(t) =






1/2 if t � 1/2

1
2

+
1

k + 1
if

1
2

+
1

k + 1
< t � 1

2
+

1
k

, for k � k0

1
2

+
1

k0 + 1
if

1
2

+
1
k0

� t.

(22)

Then one can construct, with the same technique as in the example of sec-
tion 3.2, a Hurst function corresponding to hk0 which is denoted by Hk0(t, ξ)
and is defined for (k0(k0 +1))1/f � ξ. If we fix f < min(a/6, 1/12) in the pre-
vious example, then this last condition simply means that [12 + 1

k ,
1
2 + 1

k + 1
ξf ]

is included in the intervals where hk0 is constant. Hence this condition allows
us to manage the jumps of hk0 separately. Let us now introduce a Hurst func-
tion corresponding to (21) by taking more and more jumps into account when
ξ → +∞. Define

K(ξ) = sup
{
k ∈ N

∗ such that
(
k(k + 1)

)1/f � ξ
}

(23)

and define the Hurst function with the Hk0 ’s

H(t, ξ) = HK(ξ)(t, ξ). (24)

It is not difficult to check that this Hurst function satisfies A 3 since

∂mH

∂ξm
(t, ξ) =

∂mHk0
∂ξm

(t, ξ)

when (k0(k0 + 1))1/f � ξ � ((k0 + 1)(k0 + 2))1/f . To check A 2 let us write

∫ +∞

Nα

N−2∑

p=0

|h(p/N)−H(p/N, ξ)|
ξ2h(p/N)+1

ln(ξ) dξ = I + J

where

I =
∫ +∞

Nα

[ N
2 + N

K(ξ)+1 ]∑

p=0

1
K(ξ)+1

ξ2h(p/N)+1
ln(ξ) dξ,
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and where [x] stands for the integral part of x. |h(p/N)−H(p/N, ξ)| has been
replaced by its constant value for the considered p’s. The second part is

J =
∫ +∞

Nα

N−2∑

p=[ N
2 + N

K(ξ)+1 ]+1

|hK(ξ)(p/N)−HK(ξ)(p/N, ξ)|
ξ2h(p/N)+1

ln(ξ) dξ.

Let us upper-bound I by remarking that if Nα � ξ then

1
K(ξ) + 1

� CN
−αf

2 .

Hence

|I| � N × CN
−αf

2

∫ +∞

Nα

ln(ξ)
ξ2

dξ

and α is chosen such that

|I| � C
N ln(N)
Nα(1+f/2)

= o(1)

which is the required estimate since h∗ = 1/2.
To upper-bound J let us remark that for a fixed ξ, hK(ξ) has K(ξ) jumps

at time 1
2 + 1

k+1 of magnitude 1
k −

1
k+1 . Hence

N−2∑

p=[ N
2 + N

K(ξ)+1 ]+1

|hK(ξ)(p/N)−HK(ξ)(p/N, ξ)| � CN1−αf
K(ξ)∑

k=1

(1
k
− 1
k + 1

)

� CN1−αf

where the factor CN1−αf comes from &{p such that t0 � p/N � t0 + 1
Nαf }

for each jump t0 as in the previous example. Then

|J | � CN1−αf ln(N)
Nα

which yields (12) for a convenient α.

4 Proof of the results

In this section, Theorems 1, 2 and Corollary 1 are proved. First let us describe
the main steps of the proofs. In the definition (5) of the GMGP we remark
that the integrand

e−it·ξ − 1
|ξ| 12+H(t,ξ)

depends of the variable t twice. To study the generalized variation VN a new
process is considered
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Y (s, t) =
∫ +∞

0

e−is·ξ − 1
|ξ| 12+H(t,ξ)

W (dξ) (25)

where this dependence is split into two variables (s, t). Then a variation WN
associated to this process Y is introduced

WN =
N−2∑

p=0

(
Y
(p+ 2
N

,
p

N

)
− 2Y

(p+ 1
N

,
p

N

)
+ Y

( p
N
,
p

N

))2

, (26)

WN is simpler to study than VN because its variation does not involve the
variable t that appears in the Hurst function. Moreover one can see easily that

VN =
N−2∑

p=0

(
Y
(p+ 2
N

,
p+ 2
N

)
− 2Y

(p+ 1
N

,
p+ 1
N

)
+ Y

( p
N
,
p

N

))2

. (27)

A result very similar to Proposition 2.1 in [2] (namely Proposition 1 below)
shows that the process Y is Hölder continuous in the second variable uniformly
with respect to the first variable. This fact yields the regularity result of
Theorem 1 and that VN can be replaced by WN . This is the first step in the
proof of Theorem 2. Then it is shown that

lim
N→+∞

ln(EWN )
ln(N)

= 1− 2h∗

in the second step. The third step consists in a study of the asymptotics of
the variance of WN that allows to replace EWN by WN in the previous limit.
Finally Corollary 1 is proved.

4.1 Study of Y

In this part we prove the Hölder continuity of Y . Although the main lines of
the proof of the following Proposition are similar to those of Proposition 2.1
in [2], we will give this proof for completeness.

Proposition 1. Under assumption A 3, there exists an almost surely positive
random variable C(ω) such that:

sup
s∈[0,1]

|Y (s, t)− Y (s, t′)| � C(ω)|t− t′|β (28)

for t, t′ ∈ [0, 1] where β is defined in (13).

Proof. To get (28) we will apply a series expansion of Y in the orthonormal
basis of L2 given by the Lemarié–Meyer wavelets (cf. [20]). This technique is
classical to study the smoothness of multifractional process. As in [2] for the
GMF (see Relation (2.2)) or in [10] for the MBM we get
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Y (s, t) =
+∞∑

j=0

+∞∑

k=−∞
sj,k(s, t)ηj,k (29)

where ηj,k are identically distributed standard Gaussian variables and where
the coefficients are:

sj,k(s, t) = 2−j/2
∫ +∞

0

e−is·ξ − 1
ξ

1
2+H(t,ξ)

ψ̂j,k(ξ) dξ. (30)

Please note that equation (29) is only true up to an additive smooth process.
In (30) (ψj,k)j,k∈Λ+ is the Lemarié–Meyer basis indexed by Λ+ = {j, k, j �
0, and k ∈ Z} as explained in [20] or in page 29 of [10]. Then the Hölder
continuity of Y derives from estimates on the coefficients sj,k (cf. [2]).
∃ε, ∀k ∈ Z

|sj,k(s, t)| � C2−jε
{

1
(1 + |2js− k|2) +

1
1 + k2

}
, (31)

for j � 1

|sj,k(s, t)− sj,k(s, t′)| � Cj2−jε|t− t′|β
{

1
(1 + |2js− k|2) +

1
1 + k2

}
. (32)

Note that the estimates (31) and (32) are quite similar to those in Lemma
2.5 in [2]. This Lemma is, to a certain extent, inspired from Proposition 4.1,
page 79 in [10]. The estimate (31) and classical almost sure bounds for the
supremum of Gaussian variables yield that the series in (29) converges almost
surely. Then (32) yields the Hölder continuity of Y . Remark that

Y (s, t)− Y (s, t′) =
+∞∑

j=1

+∞∑

k=−∞

(
sj,k(s, t)− sj,k(s, t′)

)
ηj,k

where the terms for j = 0 are dropped since the Hurst function is constant
on {ξ � 4π/3}. The main ingredient to get these estimates are integrations
by parts in the integral of (30). In the framework of GMGP, to carry these
integrations by parts, the only new point compared to [2] is the dependence of
the Hurst function H(t, ξ) on a continuous parameter ξ instead of a discrete
parameter n. In the following argument we only stress how the assumption A 3
allows us to control the additional terms caused by this dependence.

Let us study the Hölder continuity of the coefficients sj,k’s. One can write

sj,k(s, t)− sj,k(s, t′) = 2−j/2
∫ +∞

0

(e−isξ − 1)ei2−jkξ

×
(
ξ−( 1

2+H(t,ξ)) − ξ−( 1
2 +H(t′,ξ)))ψ̂(2−jξ) dξ

where we have only used the translation-dilatation structure of the Lemarié–
Meyer basis
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ψj,k(s) = 2j/2ψ(2js− k),
for j � 1. The factor e−isξ − 1 in the previous integral can be split since the
support of ψ̂ is contained in [2π/3, 8π/3] and the first part leads to

2−j/2
∫ +∞

0

ei(k−2js)2−jξ
(
ξ−( 1

2+H(t,ξ)) − ξ−( 1
2+H(t′,ξ)))ψ̂(2−jξ) dξ.

The second part is of the same form but ei(k−2js)2−jξ is replaced by 1. Hence
this second part yields the second terms in the brackets in the right hand side
of (31) and of (32). Let us define

g(t, t′, ξ) =
(
ξ−( 1

2+H(t,ξ)) − ξ−( 1
2+H(t′,ξ)))ψ̂(2−jξ).

After performing two integrations by parts on the last integral one gets for
s �= 2jk

2−j/2
∫ +∞

0

ei(k−2js)2−jξ

i2(k − 2js)22−2j

∂2g(t, t′, ξ)
∂ξ2

dξ.

Then the Leibniz rule is applied to the preceding partial derivative

∂2g(t, t′, ξ)
∂ξ2

=
2∑

p=0

(
2
p

)
∂p

∂ξp
(
ξ−( 1

2+H(t,ξ)) − ξ−( 1
2 +H(t′,ξ)))

× 2−(2−p)j ∂
2−pψ̂

∂ξ2−p
(2−jξ). (33)

Because of the support of ψ̂ the partial derivatives of ψ̂ can be bounded
independently of j, p, hence we have only to bound integrals that comes from
the factors (ξ−( 1

2+H(t,ξ)) − ξ−( 1
2+H(t′,ξ))). For instance for p = 0

Ij =
∫ 8π2j/3

2π2j/3

(
ξ−( 1

2 +H(t,ξ)) − ξ−( 1
2+H(t′,ξ))) dξ

�
∫ 8π2j/3

2π2j/3

|H(t, ξ)−H(t′, ξ)| ln(ξ)
ξa+1/2

dξ. (34)

Then applying (13) for k = 0 yields

Ij � Cj2−j(a+
1
2−g−1)|t− t′|β (35)

which is exactly the estimate we need for (32) if we take 0 < ε < a− g.
Let us now consider the contribution of the term p = 1 in the sum (33).

First

∂

∂ξ
ξ−( 1

2+H(t,ξ)) = −1
2
ξ−( 3

2 +H(t,ξ)) −H(t, ξ)ξ−( 3
2+H(t,ξ))

− ln(ξ)
∂H

∂ξ
(t, ξ)ξ−( 1

2+H(t,ξ)). (36)
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And the first term of (36) leads to

Jj,0 =
−1
2

∫ 8π2j/3

2π2j/3

(
ξ−( 3

2+H(t,ξ)))− ξ−( 3
2+H(t′,ξ))) dξ � Cj2j(−ε−1/2)|t− t′|β .

This bound gives the same contribution as Ij to (32). To conclude the case
p = 1 we have to bound

Jj,1 =
∫ 8π2j/3

2π2j/3

(
H(t′, ξ)ξ−( 3

2+H(t′,ξ)) −H(t, ξ)ξ−( 3
2+H(t,ξ))

)
ln(ξ) dξ

and

Jj,2 =
∫ 8π2j/3

2π2j/3

(
∂H

∂ξ
(t′, ξ)ξ−( 1

2+H(t′,ξ)) − ∂H
∂ξ

(t, ξ)ξ−( 1
2+H(t,ξ))

)
ln(ξ) dξ.

The first term is split into

∫ 8π2j/3

2π2j/3

(
H(t′, ξ)−H(t, ξ)

)
ξ−( 3

2 +H(t′,ξ)) dξ

which is of negligible compared to Jj , because of (13) for k = 1 and into

∫ 8π2j/3

2π2j/3

H(t, ξ)
(
ξ−( 3

2+H(t′,ξ)) − ξ−( 3
2+H(t,ξ))

)
dξ

which is also negligible compared to Jj,0, because of (14) for k = 1. With
similar techniques it is shown that Jj,2 is of the same order as jJj,0.

The contribution of the term p = 2 in the sum (33) is estimated with sim-
ilar arguments. Let us stress only one technical point. The partial derivative
∂2

∂ξ2 ξ
−( 1

2+H(t,ξ)) leads to consider a term:

∫ 8π2j/3

2π2j/3

(∣∣∣∣
∂H

∂ξ
(t′, ξ)

∣∣∣∣
2(
ξ−( 1

2+H(t,ξ)) − ξ−( 1
2 +H(t′,ξ)))

)
ln(ξ) dξ.

Because of (14) for k = 1 we have

∣∣∣∣
∂H

∂ξ
(t′, ξ)

∣∣∣∣
2

� Cξ2g−2

and we have seen that the preceding integral is conveniently bounded if 2g<a.
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4.2 Study of the Hölder regularity of the GMGP

The Hölder regularity of the GMGP X , can be studied quite similarly to that
of the GMBM [2], [4] and [5]. The proof of Theorem 1 follows exactly the
same lines as that of Theorem 1.1 in [2], so we will only sketch it. Let t0 be a
fixed real, and let Yt0 be the Gaussian process defined for every real t by

Yt0(t) =
∫ +∞

0

e−it.ξ − 1
ξ1/2+H(t0,ξ)

W (dξ)

(this is nothing but Y (s, t) where the second variable is fixed).
First step: Using (28), we show that almost surely,

αX(t0) ∧ β = αYt0
(t0) ∧ β.

Second step: Using (6), we show that for arbitrarily small ε > 0, some constant
c > 0 and every t, t′

E(|Yt0(t)− Yt0(t′)|2) � c|t− t′|2(h(t0)−ε).

Then a strong version of Kolmogorov criterion (see for instance Lemma 3.2
of [2]) implies that, almost surely, αYt0

(t0) � h(t0).
Third step: Using (6) again, we show that for every t0 and arbitrarily small
ε > 0,

lim
n→∞

E(|Yt0(t0 + 2−n)− Yt0(t0)|2)
2−2n(h(t0))+ε)

= +∞,

and then Lemma 2.2 of [2] implies that almost surely, αYt0
(t0) � h(t0).

4.3 Comparison of WN and VN

In this section it is explained how estimates concerningWN can be transferred
to VN . We postpone the proof of

1
C
N1−2b � 1

C
N1−2h∗ � WN � CN1−2h∗ (37)

to section 4.6. Let us now prove that if (37) is true we have

lim
N→+∞

1/2
(

1− ln(VN )
ln(N)

)
= h∗

which is the result we aim at. Let us rewrite (26) as

WN =
N−2∑

p=0

[
2∑

k=0

dkY
(p+ k
N

,
p

N

)]2

(38)

where d0 = 1, d1 = −2, and d2 = 1; then VN can also be written:
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VN =
N−2∑

p=0

[
2∑

k=0

dkY
(p+ k
N

,
p+ k
N

)]2

.

Hence we have

∣∣W 1/2
N − V 1/2

N

∣∣ �




N−2∑

p=0

[
2∑

k=0

dk

(
Y
(p+ k
N

,
p

N

)
− Y

(p+ k
N

,
p+ k
N

))]2



1/2

� C




N−2∑

p=0

[
2∑

k=0

sup
s∈[0,1]

∣∣∣∣Y
(
s,
p

N

)
− Y

(
s,
p+ k
N

)∣∣∣∣

]2



1/2

and the following estimates are consequences of (28) and of (37):
∣∣W 1/2
N − V 1/2

N

∣∣ � CN1/2−β

∣∣W 1/2
N − V 1/2

N

∣∣W−1/2
N � CN b−β .

Since β > b it is clear by writing

ln
(
V

1/2
N

)
= ln

(
1 +

(
V

1/2
N −W 1/2

N

)
W
−1/2
N

)
+ ln

(
W

1/2
N

)

that

lim
N→+∞

1/2
(

1− ln(VN )
ln(N)

)
= lim
N→+∞

1/2
(

1− ln(WN )
ln(N)

)
= h∗.

4.4 Asymptotics of EWN

In order to obtain the asymptotics ofWN , our next step is to study the asymp-
totics of EWN . Theorem 2 will then be a consequence of the asymptotics for
the variance of WN and the Borel–Cantelli lemma. Let us rewrite WN as
in (38) with definition (25):

WN =
N−2∑

p=0

(∫ +∞

0

( 2∑

k=0

dke−i p+k
N ξ

)
W (dξ)

ξH(p/N,ξ)+1/2

)2

.

Because of the isometry given by the Wiener measure we have

EWN =
N−2∑

p=0

∫ +∞

0

16 sin4

(
ξ

2N

)
dξ

ξ2H(p/N,ξ)+1
. (39)

Let us also remark that

16
∫ +∞

0

sin4

(
ξ

2N

)
dξ

ξ2h(p/N)+1
=
F
(
h(p/N)

)

N2h(p/N)
(40)
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where

F (s) =
∫ +∞

0

16
sin4(ξ/2)
ξ2s+1

dξ

is a continuous function on the interval (0, 1) and hence is bounded on [a, b].
Let us consider

W̃N =
N−2∑

p=0

F
(
h(p/N)

)

N2h(p/N)
,

assumption A 1 yields

1
C
N1−2h∗ � W̃N � CN1−2h∗ .

Let us show that under assumption A 2 we have
∣∣EWN − W̃N

∣∣ = o(N1−2h∗). (41)

Because of (39) and (40)

∣∣EWN − W̃N
∣∣ �

N−2∑

p=0

∫ +∞

0

16 sin4

(
ξ

2N

)∣∣ξ−2H(p/N,ξ)−1 − ξ−2h(p/N)−1
∣∣ dξ.

(42)
Then the integrals in (42) are split into three parts:

∣∣EWN − W̃N
∣∣ � J1

N + J2
N + J3

N .

The first term is

J1
N =

N−2∑

p=0

∫ 1

0

16 sin4

(
ξ

2N

)∣∣ξ−2H(p/N,ξ)−1 − ξ−2h(p/N)−1
∣∣dξ

� C

N−2∑

p=0

∫ 1

0

sin4

(
ξ

2N

)∣∣H(p/N, ξ)− h(p/N)
∣∣

ξ2θ(p/N,ξ)+1
ln(ξ) dξ

where θ(p/N, ξ) ∈ [a, b]. Hence

J1
N � C

N − 1
N4

∫ 1

0

ξ ln(ξ) dξ � C/N3

and J1
N = o(N1−2h∗). Let us now consider

J2
N =

N−2∑

p=0

∫ Nα

1

16 sin4

(
ξ

2N

)∣∣ξ−2H(p/N,ξ)−1 − ξ−2h(p/N)−1
∣∣ dξ

� C

N−2∑

p=0

∫ Nα

1

sin4

(
ξ

2N

)∣∣H(p/N, ξ)− h(p/N)
∣∣

ξ2θ′(p/N,ξ)+1
ln(ξ) dξ



Regularity and identification of GMGP 307

where θ′(p/N, ξ) � h(p/N). Hence

J2
N �

N−2∑

p=0

C

N4

∫ Nα

1

ξ3
∣∣H(p/N, ξ)− h(p/N)

∣∣
ξ2h(p/N)

ln(ξ) dξ

�
N−2∑

p=0

C

N4
Nα(4−2h(p/N)) ln(N)

� CN4α−3−2h∗α ln(N)

and since α < 1, J2
N = o(N1−2h∗). For the third part we have

J3
N =

N−2∑

p=0

∫ +∞

Nα

16 sin4

(
ξ

2N

)∣∣ξ−2H(p/N,ξ)+1 − ξ−2h(p/N)+1
∣∣dξ

� C
N−2∑

p=0

∫ +∞

Nα

∣∣H(p/N, ξ)− h(p/N)
∣∣

ξ2θ′′(p/N,ξ)+1
ln(ξ) dξ

where θ′′(p/N, ξ) � h(p/N). Thus,

J3
N � C

N−2∑

p=0

∫ +∞

Nα

∣∣H(p/N, ξ)− h(p/N)
∣∣

ξ2h(p/N)+1
ln(ξ) dξ

and J3
N = o(N1−2h∗) because of A 2. Hence

∣∣EWN − W̃N
∣∣ = o

(
N1−2h∗

)

and
1
C
N1−2h∗ � EWN � CN1−2h∗ (43)

is obtained.

4.5 Asymptotics of var(WN)

Let us now show that almost surely

lim
N→+∞

WN
EWN

= 1.

Since the processX is Gaussian, classical formulas for the variance of Gaussian
variables lead to:

var(WN ) = 2
N−2∑

p,p′=0

E

(∫ +∞

0

( 2∑

k=0

dke−i p+k
N ξ

)
W (dξ)

ξH(p/N,ξ)+1/2

×
∫ +∞

0

( 2∑

k=0

dkei p′+k
N ξ

)
W (dξ)

ξH(p′/N,ξ)+1/2

)2

(44)
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var(WN ) = 2
N−2∑

p,p′=0

(∫ +∞

0

ei(
p′−p

N )ξ16 sin4

(
ξ

2N

)

× dξ
ξH(p/N,ξ)+H(p′/N,ξ)+1

)2

. (45)

At this point one needs similar estimates for the integrals in the previous
formula to the one we had when we considered EWN . However to apply the
Borel–Cantelli Lemma we aim at

var(WN ) = O
(
N1+2g−4h∗ ln2(N)

)

and we prove
∣∣∣∣
∫ +∞

0

ei( p′−p
N )ξ 16 sin4

(
ξ

2N

)
dξ

ξH(p/N,ξ)+H(p′/N,ξ)+1

∣∣∣∣

� C
Ng ln(N)

Nh(p/N)+h(p′/N)

1
|p− p′|+ 1

which yields the needed estimates. Once more the factor 1
|p−p′|+1 that allows

us to have a better estimate for g < 1/2 than var(WN ) = O(N2−4h∗ ln2(N))
is obtained by integrations by parts in the integrals of (45). Let us compute

∂

∂ξ

(
sin4

(
ξ

2N

)

ξH(p/N,ξ)+H(p′/N,ξ)+1

)

=
2 sin3

(
ξ

2N

)
cos

(
ξ

2N

)

NξH(p/N,ξ)+H(p′/N,ξ)+1
−

sin4
(
ξ

2N

)(
H(p/N, ξ) +H(p′/N, ξ) + 1

)

ξH(p/N,ξ)+H(p′/N,ξ)+2

−
sin4

(
ξ

2N

)(
∂H
∂ξ (p/N, ξ) + ∂H

∂ξ (p′/N, ξ)
)
ln(ξ)

ξH(p/N,ξ)+H(p′/N,ξ)+1
. (46)

Then the contribution of the first term of (46) to (45) is given by

4
∫ +∞

0

ei( (p′−p)ξ
N ) sin3

(
ξ

2N

)
cos

(
ξ

2N

)
dξ

i(p− p′)ξH(p/N,ξ)+H(p′/N,ξ)+1
(47)

when p− p′ �= 0. This integral is then easily bounded by:

I1 =
4

|p− p′|

∫ +∞

0

∣∣sin3
(
ξ

2N

)∣∣dξ
ξH(p/N,ξ)+H(p′/N,ξ)+1

which we split into three terms to get the required estimates. The first one is:

I1,1 =
4

|p− p′|

∫ 1

0

∣∣sin3
(
ξ

2N

)∣∣ dξ
ξH(p/N,ξ)+H(p′/N,ξ)+1

� C

N3|p− p′| ;
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the second one is

I1,2 =
4

|p− p′|

∫ N

1

∣∣sin3
(
ξ

2N

)∣∣dξ
ξH(p/N,ξ)+H(p′/N,ξ)+1

� C

N3|p− p′|

∫ N

1

ξ2−h(p/N)−h(p′/N) dξ

� C

Nh(p/N)+h(p′/N)|p− p′| ;

and the third one

I1,3 =
4

|p− p′|

∫ +∞

N

∣∣sin3
(
ξ

2N

)∣∣ dξ
ξH(p/N,ξ)+H(p′/N,ξ)+1

� C(
Nh(p/N)+h(p′/N)

)
(|p− p′|)

.

Hence

|I1| �
(
C1

N3
+

C2

Nh(p/N)+h(p′/N)

)(
1

|p− p′|+ 1

)
(48)

where the easier case p = p′ is also considered. With similar arguments we get
for the second term of (46)

|I2| �
(
C1

N3
+

C2

Nh(p/N)+h(p′/N)

)(
Ng

|p− p′|+ 1

)
(49)

and the last term of (46) yields

|I3| �
(
C3

N3
+

C4

Nh(p/N)+h(p′/N)

)(
Ng ln(N)
|p− p′|+ 1

)
(50)

where (14) has been used for k = 1. Hence we deduce that

var(WN ) = O(N1+2g−4h∗ ln2(N)).

4.6 Almost sure convergence

In order to show that

lim
N→+∞

WN
EWN

= 1 almost surely

we apply Markov inequality for A > 0:

P

(∣∣∣∣
WN

EWN
− 1

∣∣∣∣
4

� A

)
� E

∣∣∣∣
WN

EWN
− 1

∣∣∣∣
4/
A.
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Moreover the same arguments as in the proof of Proposition 2 p. 43 of [9]
yield that

E |WN − EWN |4 � C var(WN )2

then

P

(∣∣∣∣
WN

EWN
− 1

∣∣∣∣
4

� A

)
� C var(WN )2

(EWN )4
.

For g < 1/4 the sequence

var(WN )2

(EWN )4
� CN4g−2 ln2(N)

is summable and the Borel–Cantelli lemma yields the required almost sure
convergence. With (43) and the results of section 4.3, this fact concludes the
proof of Theorem 2.

4.7 Proof of Corollary 1

To prove the corollary, let us fix t ∈ (0, 1) and set

h∗(ε) = inf
{|s−t|<ε}

h(s)

Let also

Wε,N =
∑

p∈Vε,N (t)

(
Y
(p+ 2
N

,
p

N

)
− 2Y

(p+ 1
N

,
p

N

)
+ Y

( p
N
,
p

N

))2

.

With the same arguments as in the proof of Theorem 2
ε

C
N1−2h∗(ε) � E Wε,N � CεN1−2h∗(ε)

and, if we take ε = N−γ ,

lim
N→+∞

1/2
(

1−
ln(E WN−γ ,N )

lnN

)
= lim inf

s→t
h(s).

Moreover
var(Wε,N ) = O

(
εN1+2g−4h∗(ε) ln2(N)

)

and if we take 0 < γ < 1/2,

lim
N→+∞

WN−γ ,N

EWN−γ ,N
= 1 (51)

almost surely. Next
∣∣W1/2

ε,N −W1/2
ε,N

∣∣W−1/2
ε,N � CN b−β

is still true and the corollary is proved.
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Summary. We show that the sum of two free random variables can have a free
Poisson law without any of them having a free Poisson law.

Key words: free probability theory, Raikov theorem, free Poisson distribution, free
convolution, R-transform.
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The classical convolution ∗ of probability measures on R has an analogue
in the theory of free probability, the free convolution 	 (see [3]), and the
structures of semi-groups defined by classical and free convolutions on the set
of probability measures on R present many analogies. For example, we can
define infinitely divisible laws in the same way for both convolutions, and there
exists a natural isomorphism between the semi-group of classical infinitely
divisible laws and the semi-group of free infinitely divisible laws (see [2]).
This isomorphism transforms a Gaussian law into the semi-circle law with the
same mean and the same variance, a Poisson law into the Marchenko–Pastur
law with the same mean (see [5]). Moreover, there is a deep correspondence
between limit theorems for weak convergence of sums of independent random
variables and limit theorems for weak convergence of sums of free random
variables (see [2]). It then seems natural to see how far the analogy goes.

Two already established properties of free convolution show that the iso-
morphism between the semi-group of classical infinitely divisible laws and the
semi-group of free infinitely divisible laws cannot be extended to the set of
probability measures. The first one is the following (see [7]): for every proba-
bility measure µ on the real line, there exists a family (µt)t�1 of probability
measures such that µ1 = µ and for all s, t � 1, one has µs+t = µs	µt. There
is no similar result when we replace 	 by ∗ for µ = 1

2 (δ0 + δ1). The second
one is the failure of the Cramér theorem for free random variables: the sum of
two free random variables can be distributed according to the semi-circle law
without any of them having a semi-circle law—the classical Cramér theorem

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 313–319, 2005.
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states that if the sum of two independent random variables is Gaussian, then
each of them is Gaussian.

We will show in this article that the analogue of Raikov’s theorem for
free probability is false: the sum of two free random variables can have a free
Poisson law (i.e. a Marchenko–Pastur law) without any of them (even after
translation) having a free Poisson law—the classical Raikov theorem states
that if the sum of two independent random variables has, after translation, a
Poisson law, then each of them has, after translation, a Poisson law. The proof
is very close to the proof given in [4] of the failure of the Cramér theorem for
free random variables.

In order to prove our result, we need to discuss the analytic method for
calculating free convolutions. We will restrict ourselves to compactly sup-
ported probability measures on R. Let C

+ (resp. C
−) denote the upper (resp.

lower) half plane. Given µ a compactly supported measure on R, consider the
function

Gµ : C
+ −→ C

−

z �−→
∫

dµ(t)
z − t .

This function, called Cauchy transform of µ, is analytic, and lim
|z|→∞

zGµ(z) = 1.

Hence there exists a function Kµ that is meromorphic in a neighborhood in
C
− of zero, with a single pole at zero such that Gµ(Kµ(z)) = z for z close

to zero. One can write Kµ(z) = 1
z + Rµ(z), where Rµ is an analytic function

in a neighborhood of zero in C
− (i.e. V ∩ C

− with V a neighborhood of zero
in C), called the R-transform of µ. It was shown in [8] (see also in [9]) that
Rµ determines µ and that Rµ�ν = Rµ +Rν .

The R-transform of the free Poisson law with mean λ, that we will denote
by µλ, is given by the formula

Rµλ
(z) =

λ

1− z .

Theorem 1. Consider 0 < λ < 1, r ∈
]
0,
√
λ

1−λ
[
. Let (fn)n∈N be a sequence of

analytic functions on
{
z;

∣∣z − 1
1−λ

∣∣ > r
}
, such that

(i) for all n, for all z, fn(z) = fn(z),
(ii) for all n, lim

∞
zf ′n(z) = lim

∞
fn(z) = 0,

(iii) the sequence (fn) converges uniformly to 0 when n tends to infinity.
Then when n is large enough, the function z �→ λ

1−z+fn(z) is the R-transform
of a compactly supported probability measure on R.

Before giving the proof of the theorem, here is the corollary that has led
us to establish it.
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Corollary 1. Consider λ > 0. There exist two compactly supported probabil-
ity measures on R which, even after translation, are not free Poisson laws,
and whose free convolution is the free Poisson law with mean λ.

Proof. Consider 0 < λ′ < min{1, λ/2}. It suffices to define, with ε small
enough, µ+ to be the law whose R-transform is z �→ λ′

1−z + ε
(z−1/(1−λ))2 (such

a law exists by the theorem), and µ− to be the law whose R-transform is
z �→ λ′

1−z −
ε

(z−1/(1−λ))2 + λ−2λ′
1−z (such a law exists by the theorem and because

the sum of two R-transforms is a R-transform). Then the pair µ+, µ− is
suitable. 	


As a preliminary to the proof of the theorem, here is a lemma that states
the existence of a measure (see [1]).

Lemma 1. Let G be an analytic function from the upper half plane C
+ to

the lower half plane C
− that satisfies:

(i) zG(z) tends to 1 when |z| tends to infinity,
(ii) denoting by K the inverse function of G from a neighborhood of 0 in C

−

(i.e. from V ∩ C
− with V a neighborhood of zero in C) to a neighborhood of

infinity in C
+, the function z �→ K(z)− 1

z can be extended to a neighborhood
of zero in C.
Then there exists a compactly supported probability measure on R whose
Cauchy transform is G.

Here is the proof of the theorem. The symbols � and � will denote respec-
tively the real and imaginary parts.

Proof. By the lemma, it is enough to show that when n is large enough, there
exists a domain Ωn of C

−, neighborhood of 0 in C
−, such thatKn induces a bi-

jection from Ωn onto C
+, whereKn(z) = 1

z+ λ
1−z+fn(z); and that the inverse

function ofKn satisfies (i) and (ii) of the lemma. For convenience, we will work
with the functions ψn(z) = Kn

( √
λ

1−λz + 1
1−λ

)
, and ψ(z) = Kµλ

( √
λ

1−λz + 1
1−λ

)
.

Recall Kµλ
(z) = 1

z + λ
1−z .

Fix α ∈ ]0, 1/10[ such that 1− 2α > max{r,
√
λ} and 1 + 2α < 1/

√
λ, and

fix η ∈ ]0, α/2[.
First, let us note few properties of the function ψ, that we will then extend

to the functions ψn with n large enough, using Rouché’s theorem.
We have

ψ(z) =
z(1− λ)2(√

λz + 1
)(
z +

√
λ
) ,

so zero is the unique preimage of zero by ψ, and for every non zero Z, the set
of the preimages of Z by ψ is the set of the roots of

X2 +
(

1√
λ

+
√
λ− (1− λ)2

Z
√
λ

)
X + 1.

Their product is one, so ψ is one-to-one in C
+ and in C

−. We deduce:
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(a) when n is large enough, ψn is one-to-one in a neighborhood of A = {z; 1−
η � |z| � 1 + η, |z ± 1| � η, � z � 0}.
For the same reason, ψ is one-to-one in

{
z ∈ C; 0 < |z| < 1, z �= −

√
λ
}

and
in

{
z ∈ C; 1 < |z|, z �= − 1√

λ

}
. Hence:

(b) for n large enough, ψn is one-to-one in a neighborhood of the corona
B = {z; 1 − 2η � |z| � 1 − η} and in a neighborhood of the corona C =
{z; 1 + η � |z| � 1 + 2η}.
We have

�
(
ψ(z)

)
=

(1− λ)2
√
λ∣∣√λz + 1

∣∣∣∣z +
√
λ
∣∣ (1 − |z|2)� z,

so ψ(z) is real if and only if z is real or has modulus one, hence:
(c) for n large enough, �ψn(z) < 0 for z = reiθ ∈ B with θ ∈ [−π + η,−η],
(d) for n large enough, �ψn(z) > 0 for z = reiθ ∈ C with θ ∈ [−π + η,−η].
On the other hand, we have

ψ′(z) = (1− λ)2
√
λ

z2 − 1
(√
λz + 1

)2(
z +

√
λ
)2

so ψ′ vanishes only on 1 and −1, and for all z in the unit circle such that
z �= ±1, the gradient ∇(�ψ)(z) is non null and orthogonal to the tangent of
the circle, hence
(e) for n large enough, ∂�ψn/∂r > 0 on z = reiθ ∈ A with θ ∈ [−π+ η,−η].
At last, ψ′′(1) and ψ′′(−1) are non null, so
(f) for n large enough, ψ′n is one-to-one ψn is at most two-to-one in a neigh-
borhood of each of the disks D = {z; |z + 1| � α} and E = {z; |z − 1| � α},
(g) for n large enough, ψ′n has no zero in both disks {z; |z ± 1| < η}.
For such a value of n, we actually have
(c′) �ψn(z) < 0 for z = reiθ ∈ B with θ ∈ ]−π, 0[,
(d′) �ψn(z) > 0 for z = reiθ ∈ C with θ ∈ ]−π, 0[.
Indeed, if for instance �ψn(z) were positive for some z ∈ B in the lower
half plane, then we would deduce the existence of z′ ∈ B ∩ C

− for which
�ψn(z′) = 0. But then ψn(z′) = ψn(z′) = ψn(z′), and this contradicts condi-
tion (b). Let un and vn be the unique zeros of ψ′n in D and E, respectively.
Observe that un and vn must be real. Indeed, as ψ′n(un) = ψ′n(un) = 0 and
un ∈ D, uniqueness implies un = un.

Consider now the set

Fn,0 = {z ∈ (A ∪D ∪ E); z /∈ R, ψn(z) ∈ R} ∪ {un, vn}.

We can show that Fn,0 is an analytic curve that contains a curve γn joining
un to vn in the half upper plane (the proof is the same as the one page 219
in the article by D. Voiculescu and H. Bercovici [4]).
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Denote by Θn the part of the lower half plane below ]−∞, un] ∪ γn ∪
[vn,+∞[. Let us show that ψn is a one-to-one map from Θn onto the half
upper plane.

For R > 100, let γn,R be the contour that runs (anticlockwise) through

γ∗n ∪ [vn, R] ∪ {z ∈ C
−; |z| = R} ∪

[
−R,− 1√

λ
− 1
R

]

∪
{
z ∈ C

−;
∣∣∣∣z +

1√
λ

∣∣∣∣ =
1
R

}
∪
[
− 1√

λ
+

1
R
, un

]
.

By the residues formula, it suffices to show that for every ω in the upper half
plane, the integral of ψ′n

ψn−ω over the contour γn,R tends to 2iπ when R tends
to infinity (this integral is well defined for R large enough, when n and ω are
fixed, because lim

∞
ψn = 0).

(1) Computation of the limit of the integral on the complementary of the
semi-circles in the curve γn,R:
By our hypothesis on fn,

lim
x→−∞

ψn(x) = 0 and lim
x

<→− 1√
λ

ψn(x) = +∞,

lim
x→+∞

ψn(x) = 0 and lim
x

>→− 1√
λ

ψn(x) = +∞.

The function ψn is real on the complement of the semi-circles, so, when
R tends to +∞, the integral of ψ′n

ψn−ω on this complement tends to

∫ +∞

−∞

dy
y − ω = iπ.

(2) Computation of the limit of the integral on the large semi-circle:
By hypothesis,

lim
R→∞

(
R sup
|z|=R

∣∣∣∣
ψ′n(z)

ψn(z)− ω

∣∣∣∣

)
= 0,

so the integral on the large semi-circle tends to 0 when R tends to infinity.
(3) Computation of the limit of the integral on the small semi-circle:

By the same arguments as in (1) and (2), the integral of ψ′

ψ−ω on the
complementary of the small semi-circle in the contour

{z ∈ C
−; |z| = 1} ∪ [1, R] ∪ {z ∈ C

−; |z| = R} ∪
[
−R,− 1√

λ
− 1
R

]

∪
{
z ∈ C

−; |z +
1√
λ
| = 1

R

}
∪
[
− 1√

λ
+

1
R
,−1

]
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(running anticlockwise) tends to iπ when R tends to +∞. Otherwise, ψ
being a one-to-one map from {z ∈ C

−; |z| > 1} to C
+, the integral of

ψ′
ψ−ω on the contour

{z ∈ C
−; |z| = 1} ∪ [1, R] ∪ {z ∈ C

−; |z| = R} ∪
[
−R,− 1√

λ
− 1
R

]

∪
{
z ∈ C

−; |z +
1√
λ
| = 1

R

}
∪
[
− 1√

λ
+

1
R
,−1

]

(going anticlockwise) tends to 2iπ when R tends to +∞, so the integral
of ψ′

ψ−ω on {z ∈ C
−; |z + 1/

√
λ| = 1

R} tends to iπ when R tends to +∞.
But clearly, because of the boundedness of fn and f ′n in a neighborhood
of zero, we have

lim
R→+∞

∫

|z+ 1√
λ
|,� z�0

(
ψ′n(z)

ψn(z)− ω
− ψ′(z)
ψ(z)− ω

)
dz = 0.

So the integral of ψ′n(z)
ψn(z)−ω on the small semi-circle of γn,R tends to iπ

when R tends to +∞.

Thus, ψn is a one-to-one map from Θn onto the upper half plane. Hence
Kn is a one-to-one map from

{ √
λ

1−λz + 1
1−λ ; z ∈ Θn

}
, that we denote by Ωn,

onto C
+.

Let us show that the inverse function Gn of Kn satisfies the hypothesis of
the lemma.

(i) Let us show that zGn(z) tends to 1 when |z| tends to infinity. The function
Kn is bounded in the complementary, in Ωn, of any open disk centered
in zero with radius larger than 1 + 1/

√
λ, so Gn(z) tends to zero when |z|

tends to infinity. But zGn(z) = Kn(Gn(z))Gn(z), so the limit of zGn(z)
when |z| tends to infinity is the limit of yKn(y) when y tends to zero,
that is 1.

(ii) The function that associates Kn(z)− 1
z to z can be analytically extended

to a neighborhood of zero in C because fn is analytic in a neighborhood
of zero.

So the theorem is proved. 	

The proof is very close to the proof given in [4] of the failure of the Cramér

theorem for free random variables. In that article, the authors show also the
superconvergence to the central limit theorem for free random variables: in
addition to the weak convergence, we know that for n large enough, the mea-
sures have analytic densities, and that their densities converge uniformly to
the density of the semi-circle law. The superconvergence in the free Poisson
limit theorem has already been shown (using explicit computations) in [5].

Aknowledgments. The author would like to thank his advisor Philippe
Biane for his comments on a draft of this paper.
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A Sharp Small Deviation Inequality
for the Largest Eigenvalue of a Random Matrix
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Summary. We prove that the convergence of the largest eigenvalue λ1 of a n × n
random matrix from the Gaussian Unitary Ensemble to its Tracy–Widom limit
holds in a strong sense, specifically with respect to an appropriate Wasserstein-like
distance. This unifying approach allows us both to recover the limiting behaviour
and to derive the inequality P(λ1 � 2+t) � C exp(−cnt3/2), valid uniformly for all n
and t. This inequality is sharp for “small deviations” and complements the usual
“large deviation” inequality obtained from the Gaussian concentration principle.
Following the approach by Tracy and Widom, the proof analyses several integral
operators, which converge in the appropriate sense to an operator whose determinant
can be estimated.

Key words: Random matrices, largest eigenvalue, GUE, small deviations.

Introduction

LetHn be the set of n-dimensional (complex) Hermitian matrices. The general
element of Hn is denoted by A(n), and its entries are denoted by (a(n)

ij ).
We exclusively focus on the Gaussian Unitary Ensemble GUE, which can

be defined by the data of a probability measure Pn on Hn which fulfills the
following conditions:

1. The n2 random variables (a(n)
ii ), (�a(n)

ij )i<j , (�a(n)
ij )i<j are independent,

2. ∀i, a(n)
ii follows the Gaussian law N(0, 1/n),

3. ∀i < j, �a(n)
ij and �a(n)

ij follow the Gaussian law N(0, 1/2n).

The measure Pn is uniquely determined by these three conditions because
of the extra symmetry constraint aij = aji; it can also be made explicit.
Hn is a vector space on which the scalar product 〈u, v〉 := tr(uv) induces a
Euclidean structure, hence a Lebesgue measure. The probability measure Pn

has a density with respect to this Lebesgue measure, which can be shown to
be equal to

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 320–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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dPn :=
1
cn

exp
(
−n

2
trM2

)
dM

where cn is a normalization constant.
The GUE has the wonderful property of invariance under rotation: indeed

the measure Pn is invariant under the conjugation action of the unitary group.
This makes calculations easier and is very useful for the study of eigenvalues,
which are also invariant under the same action.

From now on, “random matrix” means “element of (Hn,Pn)” seen as a
probability space. Let (Ω,P) denote the product of all these probability spaces∏∞
i=n(Hn,Pn); an element of Ω is a sequence of random matrices, the n-th

matrix being of size n. However, for all the questions we shall consider, the
relationships between the Hn’s for different n’s are immaterial.

For more background, we refer the reader to the monograph [10]. Through-
out the argument, C, c, c′, . . . will stand for positive universal constants, inde-
pendent of the dimension and of any other parameters that may be involved.
The values of these constants may change from place to place.

Let λ1(A(n)) � λ2(A(n)) � . . . � λn(A(n)) be the ordered eigenvalues of a
random matrix A(n). The global asymptotic behavior of these eigenvalues is
well-known. The most famous result in this topic is the semi-circle law, which
can be stated as follows: let N(A(n)) be the probability measure on R derived
from the random matrix A(n) in the following way (δx denotes the Dirac mass
at point x)

N
(
A(n)

)
:=

n∑

k=1

δλk(A(n)).

Then, P-almost surely, the sequence of probabilities (N(A(n)) converges
weakly to a deterministic measure µc, with a density with respect to Lebesgue
measure given by

dµc :=
1
2π

1[−2,2]

√
4− x2 dx.

We are interested here in the asymptotic behavior of the largest eigenvalue
λ1(A(n)), which is a so-called local problem. Classical results (see e.g. [1], also
for precise references to the original articles) claim that

lim
n→∞

λ1

(
A(n)

)
= 2 P-almost surely.

The asymptotic behaviour of λ1(A(n)) was further clarified by Tracy and
Widom, who proved the following result: there exists a continuous decreasing
function ψTW from R onto (0, 1) such that

lim
n→∞

Pn

(
λ1

(
A(n)

)
� 2 + xn−2/3

)
= ψTW(x). (1)

This function ψTW naturally arises as a determinant linked to the so-called
“Airy kernel”, which will be defined later. The most difficult point of Tracy
and Widom’s work was to show that this function ψTW can be written in terms
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of a Painlevé function (see [17]). From this point one can deduce asymptotic
behavior of ψTW around +∞ and find universal positive constants C, c, C′,
c′ such that for x large enough

c′ exp
(
−C′x3/2

)
� ψTW(x) � c exp

(
−Cx3/2

)
. (2)

The remainder of this article is organized as follows: in section 1, we define
an appropriate Wasserstein distance and state our main theorem which asserts
that Tracy–Widom convergence holds in this strong distance. In section 2, we
derive from this theorem the small deviation inequality and compare it with
the classical one. Section 3 introduces the needed framework of determinantal
kernels, which are classical in this field, and section 4 contains the proof of
the main theorem. Finally, section 5 contains an alternative simple derivation
of upper bounds (2) for the Tracy–Widom distribution.

1 Convergence in Terms of a Wasserstein Distance

We call tail function of a measure µ on R the function ψµ : R → [0, 1] de-
fined by ψµ(x) := µ((x,+∞)). Such a function is decreasing, left-continuous,
tends to 1 at −∞ and to 0 at +∞. The tail function just equals 1 minus the
cumulative distribution function. The function appearing in the r.h.s. of (1)
is the tail function of the Tracy–Widom distribution on R (we denote this
distribution by TW ).

We want to prove that the law of the rescaled largest eigenvalue tends to
the Tracy–Widom law in a strong sense. As we only focus on the upper tail,
we can consider truncated laws, supported on an interval [a,+∞) for some
real a. Let Λan be the probability measure with tail function defined by

ψΛa
n
(x) =

{
Pn(λ1(A(n)) � 2 + xn−2/3) if x � a,
1 if x < a.

Similarly, let TW a be the truncated Tracy–Widom law defined by

ψTWa (x) =
{
ψTW(x) if x � a,
1 if x < a.

We are going to show that for any a, Λan tends to TW a with respect to
the distance defined through a mass transportation problem in its Monge–
Kantorovich formulation (see [12]).

A mass transportation problem is the question of optimizing the trans-
shipment from a measure to another with respect to a given cost. More pre-
cisely, let µ and ν be two probability measures on the same space X , and
c : X × X → R+ a symmetric function vanishing on the diagonal (c(x, y)
represent the price to pay to transfer a unit of mass from x to y). Ways to
carry µ onto ν are represented through probability measures π on the square
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space X ×X having µ and ν as marginals (this means that for any measur-
able subset A of X , π(A ×X) = µ(A) and π(X ×A) = ν(A)). We denote by
Π(µ, ν) the space of such π.

The Wasserstein distance associated with the problem is the “minimum
cost to pay”, defined by

d(µ, ν) = inf
π∈Π(µ,ν)

∫

X2
c(x, y) dπ(x, y).

We are going to consider a very special case of this problem. Let us suppose
that X = R and that the cost c is defined as follows

c(x, y) :=
∣∣∣∣
∫ y

x

w(t) dt
∣∣∣∣ (3)

where w is a positive function.
We can now state the main result of this note

Theorem 1. Let w(x) := exp(γx3/2) and let d be the Wasserstein distance
associated with the cost induced by w via the formula (3). Then, for any fixed
a ∈ R, if γ > 0 is small enough, Λan tends to TW a for the distance d:

lim
n→∞

d(Λan, TW
a) = 0.

2 The Small Deviation Inequality

The simplest idea to get concentration inequalities for the largest eigenvalue of
a GUE random matrix is to use Gaussian concentration; it is a straightforward
consequence of the measure concentration phenomenon in the Gaussian space
(see [1]) that

∀t > 0, ∀n, Pn

(
λ1

(
A(n)

)
� Mn + t

)
< exp

(
−nt2/2

)
(4)

where Mn is the median of λ1(A(n)) with respect to the probability measure
Pn. One has the same upper estimate if the median Mn is replaced by the
expected value Enλ1(A(n)).

The value of Mn can be controlled: for example we have Mn � 2 + c/
√
n.

This will be a consequence of our Proposition. Plugging this into the equation
(4), we get the following result, where C is a universal constant

∀t > 0, ∀n, Pn

(
λ1

(
A(n)

)
� 2 + t

)
< C exp

(
−nt2/2

)
. (5)

We ask the question whether in fact both Enλ1(A(n)) and Mn are smaller
than 2. Note that since the function λ1 is convex, its median with respect to
Pn does not exceed its expected value ([7]). A positive answer to this question
would imply that one could choose C = 1 in the inequality (5). The answer
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to the analogous question is known to be positive for the GOE (Gaussian
Orthogonal Ensemble), an ensemble of real symmetric matrices defined in a
similar way as GUE (see [10] for a precise definition). The argument, due
to Gordon, uses a result about comparison of the supremum of Gaussian
processes known as Slepian’s lemma (see [1]) and doesn’t carry over to the
complex setting.

There are similar though not as simple results for Pn(λ1(A(n)) � 2 − t),
but in this paper we will concentrate on the “upper tail” estimates.

The result of Tracy and Widom (1) shows that the majoration (5) is not
optimal for very small values of t. If for example t is equal to xn−2/3 for a
fixed x, then the right-hand side in concentration inequality (5) tends to 1
when n grows to ∞, whereas the left-hand side tends to ψTW(x), which can
be very small.

We would like to derive from our Theorem a deviation inequality which
would improve the inequality (5) for small values of t. For this purpose, the
uniform convergence in (1) (which, by Dini’s theorem, follows formally from
the pointwise convergence) is not enough. But we will prove in this section
that our Theorem implies the following Proposition:

Proposition 1. There exist positive universal constants C and c such that
for every positive t and any integer n

Pn

(
λ1

(
A(n)

)
� 2 + t

)
� C exp

(
−cnt3/2

)
. (6)

Of course, by symmetry of the law Pn, similar results are true for the
smallest eigenvalue λn(A(n))

Pn(λn(A(n)) � −2− t) � C exp
(
−cnt3/2

)
. (7)

Using the fact that for a Hermitian matrix A, the norm equals the maxi-
mum absolute value of an eigenvalue, we get a similar estimate for ‖A(n)‖

Pn

(∥∥A(n)
∥∥ � 2 + t

)
� C exp

(
−cnt3/2

)
. (8)

We need the following lemma to prove the proposition, which will help us
to explicitly compute Wasserstein distance

Lemma 1. Suppose that the measures µ and ν are defined on R, and that
the cost c is defined by an integral, as in (3). If µ and ν are regular enough,
for example if ψµ and ψν are piecewise C1, then the Wasserstein distance
for the cost c equals

d(µ, ν) =
∫ ∞

−∞
w(t)|ψµ(t)− ψν(t)| dx. (9)

Proof. In fact, this transportation problem is explicitly solvable. For a one-
dimensional problem with a cost satisfying the Monge condition (which is
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always the case when the cost is defined using an integral as in (3)), the
optimal transshipment is achieved through the map T defined as follows (see
[12], chapter 3.1) ∫ x

−∞
dµ =

∫ T (x)

−∞
dν.

Thus, we can compute the value of d(µ, ν)

d(µ, ν) =
∫ 1

0

c
(
ψ−1
µ (u), ψ−1

ν (u)
)
du.

Let us consider first the particular case when ψµ � ψν . This allows us to drop
the absolute values in the definition of c (see (3)) and unfold the calculations.
Using the appropriate changes of variables, we come to the equality (9).

For general µ and ν, define µ ∧ ν and µ ∨ ν using their tail functions

ψµ∧ν(x) = min
(
ψµ(x), ψν(x)

)
and ψµ∨ν(x) = max

(
ψµ(x), ψν(x)

)
.

We easily check that ψµ∧ν � ψµ∨ν , d(ψµ, ψν) = d(ψµ∧ν , ψµ∨ν) and that the
value of the r.h.s. of (9) does not change if we replace ψµ and ψν by ψµ∧ν and
ψµ∨ν . This yields the conclusion for the general case. 	


Using this lemma, we get from our theorem (with a = 0), using the upper
bound (2) for ψTW , the uniform estimate

∫ ∞

0

w(x)Pn
(
λ1

(
A(n)

)
� 2 + xn−2/3

)
dx � C

which implies immediately for x � 1 (keep in mind that ψn is decreasing)

ψn(x) � C exp
(
−γ(x− 1)3/2

)
� C′ exp

(
−γ′x3/2

)
. (10)

This is, up to the rescaling t = xn−2/3, the content of the proposition.

Now we can also easily show that our theorem implies the Tracy–Widom
limit (1): using the uniform bound (10) and Lebesgue’s convergence theorem,
we get from the Theorem that ψTW is the pointwise limit of the ψn’s on
[a,+∞), and thus on the whole real line if we let a go to −∞.

It should be emphasized that recently (independently from and slightly
preceding this work), this small deviation result has been proved by Ledoux
in [8] using an argument based on the Harer–Zagier recurrence formula (see [5]
for a simple proof of this formula). The same paper by Ledoux contains an-
other proof based on hypercontractivity which gives the result up to a polyno-
mial factor; this method works also for the Laguerre Unitary Ensemble (see [8]
for the definition). However, the existence of a Tracy–Widom limit does not
follow from this approach. More generally, many contributions to this and
related topics either address the limit behaviour or provide dimension-free
bounds, rarely combining the two. Our technique captures both phenomena
in a single “stroke”.
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3 Relation to Determinants

The remainder of this note is devoted to the proof of the main theorem. For
simplicity, we will prove only the case a = 0, and drop all the superscripts.
The proof for a general a requires only routine modifications.

We are first going to express all involved quantities in terms of determi-
nants of certain operators. This is quite classical work due to Gaudin and
Mehta (see [10]). Part of the calculations done here are present, at least im-
plicitly, in the paper by Tracy and Widom ([17]).

We need new notation. Let (Hn) be the Hermite polynomials, which are
defined by

Hn(t) := (−1)n exp
(
t2
)( d

dt

)n
exp

(
−t2

)
.

They are orthogonal for the measure on R of density exp(−x2) with respect
to Lebesgue measure. Then we note

φn(t) :=
1√
dn
Hn(t) exp

(
−t2/2

)
(11)

where dn :=
∫

R
Hn(x)2 dx = 2nn!

√
π. The family (φn) is therefore orthonor-

mal in L2(R). We introduce

kn(x, y) :=
n−1∑

j=0

φj(x)φj(y).

We can associate to kn an integral operatorKn acting on the Hilbert space
L2(R) in the following way

(Knf)(x) :=
∫

R

kn(x, y)f(y) dy. (12)

This operator Kn is nothing but the orthogonal projection in L2(R) onto
the subspace spanned by (φj)1�j�n.

This is a very general setting: if we have a measure space (X,µ) and a
“kernel” k ∈ L2(X × X), we can define an operator K on L2(X) using a
formula similar to (12). From now on, all kernels are assumed to belong to
L2(X×X) and are denoted by small letters; associated integral operators are
denoted by the corresponding capital letter.

It is straightforward to prove that Hilbert–Schmidt operators on L2(X) are
exactly integral operators with a L2 kernel. Moreover, the Hilbert–Schmidt
norm of the operator and the L2 norm of the kernel coincide. This fact is
proved in [3], which is a good reference for a reader who wants more detail on
integral operators. Let us just quote the formula for compositions of operators:
if k and l are two kernels on the same space (X,µ), then the operator KL is
an integral operator with kernel (kl):
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(kl)(x, y) =
∫

X

k(x, z)l(z, y) dµ(z). (13)

The tail function of λ1(A(n)) can now be expressed using the kernel kn.
The key formula is the following (see [10])

∀t ∈ R, Pn

(√
n√
2
λ1

(
A(n)

)
� t

)
= det

[t,∞)

(
Id−Kn

)
. (14)

In the formula (14), the right-hand side must be understood as the de-
terminant of the operator Kn acting on the space L2([t,∞)) (or equivalently
of the operator with kernel equal to is the restriction of kn to [t,∞)2). This
restricted operator is denoted K [t]

n .
It may not be immediately obvious how to define such a determinant,

as the operator involved acts on an infinite-dimensional space. However, the
operator Kn that we consider here has a finite rank, hence we can define its
determinant as if it were acting on a finite-dimensional space.

A problem will arise when we want to consider limits of such operators,
which might fail to have a finite rank. Fortunately, a whole theory of deter-
minants (and traces) of integral operators exists (so-called “Fredholm” deter-
minants). In fact, there are several possible ways to extend these concepts
to the infinite-dimensional case. We will focus on a more algebraic approach,
due to Grothendieck (see [4] or [13] for a complete exposition), which defines
determinants of a nuclear (= trace class) perturbation of identity in terms of
traces of its exterior powers (here N is a nuclear operator, for which trace is
well-defined):

det(Id +N) := 1 +
∞∑

k=1

tr
(
Λk(N)

)
.

Of course, this definition coincides with the usual one in the finite-
dimensional case.

The presence of the factor
√
n/
√

2 in equation (14) requires an explana-
tion. It arose because there are several possible normalizations. We chose to
define the GUE so that the first eigenvalue is about 2, while other authors,
as Tracy and Widom in [17], prefer to locate it around

√
2n (there are still

other normalizations but an exhaustive list would be too long). As we kept
their notation for the kernels kn, a scaling factor will appear when we pass
from a normalization to the other one.

To get a nontrivial limit, we must replace the t in formula (14) by the
following rescaling, as for the Tracy–Widom limit (1)

t = τn(x) :=
√
n√
2

(
2 +

x

n2/3

)
.

Let also k̃n be the rescaled kernel
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k̃n(x, y) :=
1√

2n1/6
kn

(
τn(x), τn(y)

)
.

We can see using a change of variable that K̃ [x]
n and K [τn(x)]

n have the same
eigenvalues. More precisely, if f is an eigenfunction of K̃ [x]

n , then f ◦ τ−1
n is an

eigenfunction of K [τn(x)]
n , with the same eigenvalue.

Plugging these renormalizations into the formula (14), we obtain

Pn

(
λ1

(
A(n)

)
� 2 + xn−2/3

)
= det

[x,+∞)

(
Id− K̃n

)
. (15)

Using the previous definition for the tail function ψn, we can write for a
positive s

ψn(s) = 1− det
(
Id− K̃ [s]

n

)
.

The following result was known before Tracy and Widom’s work (see for
example [2])

lim
n→∞

k̃n(x, y) = k(x, y) (16)

uniformly on compact subsets in x and y.
Here k is the kernel, often called Airy kernel, defined by

k(x, y) :=
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y . (17)

The kernel k is extended by continuity to the diagonal. The function Ai
is called the Airy function. It is very useful in physics and can be defined by
several means. One of them is the following integral representation

Ai(z) :=
1
2π

∫ ∞

−∞
exp

(
i(zt+ t3/3)

)
dt.

It can also be written as a combination of Bessel functions. It satisfies the
Airy ODE

∂2

∂x2
y(x) = xy(x). (18)

The asymptotic behavior of Ai is well-known, for example [16] contains
the following formula, valid when x tends to +∞

Ai(x) ∼ 1
2

3−1/4√π x−1/4 exp
(
− 2

33/2
x3/2

)
. (19)

The function ψTW can be defined using this Airy kernel

ψTW(x) := 1− det
(
Id−K [x]

)
. (20)

In [17] Tracy and Widom found another expression for ψTW . Let q be the
solution of the Painlevé II ODE
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∂2

∂x2
q(x) = xq(x) + 2q(x)3

which is determined by the asymptotics q(x) ∼ Ai(x) for x close to +∞. Then
we have the representation

ψTW(x) = 1− exp
(
−
∫ ∞

x

(t− x)q(t)2 dt
)
. (21)

It is easy to get from (19) and (21) the bounds (2) for the asymptotic
behavior of ψTW . However, as we do not really need all the depth of Tracy
and Widom’s results and connections to Painlevé functions, we will reprove
this fact in a more elementary way at the end of this note.

4 Convergence of the Operators

The convergence in (16) as determined in the existing literature is rather
weak; in particular, it does not imply convergence of the associated integral
operators in the Hilbert–Schmidt norm or even in the operator norm on L2.
In particular, we are not a priori allowed to exchange limit and determinant
in (15) when n tends to infinity.

Our main step will be to show that K̃n tends to K with respect to the
nuclear (trace class) norm. To that end we need several lemmas.

Lemma 2. The following equality holds

( ∂
∂x

+
∂

∂y

)
kn(x, y) = −

√
n

2
(
φn(x)φn−1(y) + φn−1(x)φn(y)

)
.

Proof. We start with the Christoffel–Darboux formula (see [16])

kn(x, y) =
√
n

2
φn(x)φn−1(y)− φn−1(x)φn(y)

x− y .

Then we apply the operator ∂/∂x+∂/∂y to each term. We use the formula
(11) and the following identities (those which are not obvious are shown in
[16])

φ′n(x) = −exp(−x2/2)√
dn

(
H ′n(x)− xHn(x)

)
,

H ′n−1(x) = 2xHn−1(x)−Hn(x),
H ′n(x) = 2nHn−1(x).

We obtain exactly the expected result. 	
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Lemma 3. The following integral representation holds

k̃n(x, y) =
n1/6

2
√

2

∫ ∞

0

φn
(
τn(x+ z)

)
φn−1

(
τn(y + z)

)
(22)

+ φn−1

(
τn(x+ z)

)
φn

(
τn(y + z)

)
dz.

Proof. If we apply the operator ∂/∂x + ∂/∂y to the right-hand side of (22)
(there is no trouble with interchanging the operations “∂/∂x + ∂/∂y” and
“
∫∞
0

” since all the functions involved are Schwartz functions), we get after
standard calculations

n1/6

2
√

2

(
φn

(
τn(x)

)
φn−1

(
τn(y)

)
+ φn−1

(
τn(x)

)
φn

(
τn(y)

))
.

Lemma 2 asserts that we obtain exactly the same expression when we
apply the operator ∂/∂x + ∂/∂y to the left member of (22). Thus, the two
members of the equation are equal modulo a function (say, α) which only
depends on x−y. But both members tend to zero when x et y tend to infinity
in an independent way. Therefore the function α has to vanish identically and
the lemma is proved. 	


Let us introduce some extra notation. The following kernels are defined on
[s,+∞)2, where s is any positive number

a[s]
n (x, y) :=

n1/12

21/4
φn

(
τn(x+ y − s)

)
,

b[s]n (x, y) :=
n1/12

21/4
φn−1

(
τn(x+ y − s)

)
,

a[s](x, y) := Ai(x+ y − s).
The equality (22) can be translated in terms of operators (this is just a

consequence of the formula (13) for the composition of kernels)

K̃ [s]
n =

1
2
(
A[s]
n B

[s]
n +B[s]

n A
[s]
n

)
. (23)

A similar equality for the operator K is proved (exactly in the same way)
in [17]

K [s] =
(
A[s]

)2
. (24)

We shall subsequently show that (for a fixed s) the operators A[s]
n and B[s]

n

tend to A[s] with respect to the Hilbert–Schmidt norm. To that end, we need
estimates for φn contained in two lemmas that follow.

Lemma 4. The functions φn, after rescaling, converge to Ai, uniformly on
compact subsets in y:

φn
(
τn(y)

)
2−1/4n1/12 → Ai(y) and φn−1

(
τn(y)

)
2−1/4n1/12 → Ai(y). (25)
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Proof. This is an immediate consequence of the following asymptotic formulae
for Hermite polynomials due to Plancherel and Rotach. They can be found,
in a slightly different presentation, in the book by Szegö ([16])

If x =
√

2n+ 1 +
y√

2n1/6
, then φn(x) = 21/4n−1/12

(
Ai(y) +O(n−3/4)

)
.

The O holds when n tends to +∞, uniformly in y on compact subsets. 	


Lemma 5. We have a bound for φn which is uniform in n: there exists a
positive constant c such that for any y > 0 and any integer n

{
n1/12φn

(
τn(y)

)
� C exp

(
−cy3/2

)
,

n1/12φn
(
τn−1(y)

)
� C exp

(
−cy3/2

)
.

(26)

Proof. Let us sketch a proof of the first inequality in (26). We will use the
following result, which is an exercise on page 403 of [11]. It is valid for x � 1

Hn(νx) � 1.13
√

2π exp
(
−ν2/4

)
ν(3ν2−1)/6 exp

(
ν2x2/2

)( ζ

x2 − 1

)1/4
Ai
(
ν4/3ζ

)

where ν :=
√

2n+ 1 and

ζ :=
(

3
4
x
√
x2 − 1− 3

4
Argchx

)2/3
.

Using the definition of φn given in formula (11) and Stirling’s formula to
estimate dn, we obtain

n1/12φn(νx) � C

(
ζ

x2 − 1

)1/4
Ai(ν4/3ζ).

We deduce from (19) a bound for Ai, and we also use the inequality ζ �
c(x− 1) to get

n1/12φn
(√

2n+ 1x
)

� Cn−1/6 1
(x− 1)1/4

exp
(
−c(2n+ 1)(x− 1)3/2

)
. (27)

We now return to our notation through the change of variable
√

2n+ 1 x =
τn(y). We can estimate x in the following way

x � 1− c

n
+

y√
2n1/6

√
2n+ 1

.

For y large enough, we even have

x � 1 + c
y

n2/3
. (28)
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Combining (27) and (28) yields

n1/12φn
(
τn(y)

)
� C

1
y1/4

exp
(
−cy3/2

)
.

The factor y−1/4 can be deleted if c is made small enough. This inequality
is only true for y large enough, but we keep in mind that convergence in (25)
was uniform on compact subsets, so we can extend it to all positive y, and the
inequality is proved. The same scheme of demonstration works for the second
inequality, with τn−1 instead of τn. 	


We are now ready to prove our main theorem.

Proof of Theorem 1. We denote by ‖ . ‖HS the Hilbert–Schmidt norm and by
ν the nuclear norm.

We are first going to estimate the quantity |ψn(s) − ψTW(s)| = | det(Id −
K̃

[s]
n )− det(Id−K [s])|. To reach this goal, we will use the following estimate

(see [4]), valid for any two nuclear operators A and B

| det(Id +A)− det(Id +B)| � ν(A −B) e1+ν(A)+ν(B). (29)

It will be useful to notice that lemma 5 implies in particular the following
remark: there is a positive C such that for any s � 0 and any integer n, all the
quantities ‖A[s]

n ‖HS , ‖B[s]
n ‖HS and ‖A[s]‖HS are bounded by C (remember

that the Hilbert–Schmidt norm is just the L2-norm of the kernel). Using
inequalities (23), (24) and the noncommutative Hölder inequality, we get that
ν(K [s]) and ν(K̃ [s]

n ) are also bounded by the constant. Hence we can drop the
exponential factor in formula (29)

|ψn(s)− ψTW(s)| � Cν
(
K̃ [s]
n −K [s]

)
.

We need to estimate the quantity ν(K̃ [s]
n −K [s]). The key to do this is to

use the equalities (23) et (24) to get

K̃ [s]
n −K [s] =

1
4

((
A[s]
n −A[s]

)(
B[s]
n +A[s]

)
+
(
A[s]
n +A[s]

)(
B[s]
n −A[s]

)

+
(
B[s]
n +A[s]

)(
A[s]
n −A[s]

)
+
(
B[s]
n −A[s]

)(
A[s]
n +A[s]

))
.

The non-commutative Hölder inequality yields

ν
(
K̃ [s]
n −K [s]

)
� 1

2

∥∥A[s]
n −A[s]

∥∥
HS

∥∥B[s]
n +A[s]

∥∥
HS

(30)

+
1
2

∥∥A[s]
n +A[s]

∥∥
HS

∥∥B[s]
n −A[s]

∥∥
HS
.

The factors with a “+” are easy to get rid of: we can use the triangle
inequality to write ‖A[s]

n +A[s]‖HS � ‖A[s]
n ‖HS+‖A[s]‖HS , which is uniformly

bounded according to the remark following formula (29). We obtain
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ν
(
K̃ [s]
n −K [s]

)
� C

(∥∥A[s]
n −A[s]

∥∥
HS

+
∥∥B[s]

n −A[s]
∥∥
HS

)
.

We can now calculate the Wasserstein distance from Λn to TW , using the
expression given by lemma 1

d(Λn, TW ) =
∫ ∞

0

exp
(
γs3/2

)
|ψn(s)− ψTW(s)| ds

� C

∫ ∞

0

exp
(
γs3/2

)(∥∥A[s]
n −A[s]

∥∥
HS

+
∥∥B[s]

n −A[s]
∥∥
HS

)
ds.

First deal with the term ‖A[s]
n −A[s]‖HS . Using the definition of A[s]

n and
A[s] we get
∫ ∞

0

exp
(
γs3/2

)∥∥A[s]
n −A[s]

∥∥
HS

ds (31)

=
√

2
∫ ∞

0

exp
(
γs3/2

)(∫ ∞

0

z

((n1/12

21/4
φn ◦ τn −Ai

)
(z + s)

)2

dz
)1/2

ds.

Fix an ε > 0 and use the uniform bound of lemma 5: we get that for γ
small enough, S large enough and any n

√
2
∫ ∞

S

exp
(
γs3/2

)(∫ ∞

0

z

((n1/12

21/4
φn ◦ τn −Ai

)
(z + s)

)2
dz

)1/2
ds � ε.

Similarly, for Z large enough, any s smaller than S and any n

(∫ ∞

Z

z

((n1/12

21/4
φn ◦ τn −Ai

)
(z + s)

)2

dz
)1/2

� ε√
2S exp(S3/2)

.

Now we can split the integral in (31) into three terms to get (remember
that the convergence in lemma 4 is uniform on compact subsets):

∫ ∞

0

exp(γs3/2)
∥∥A[s]

n −A[s]
∥∥
HS

ds � 3ε for n large enough.

We can write a similar estimate with Bn instead of An. We finally deduce
that, for n large enough, d(Λn, TW ) � 6Cε. Hence Λn tends to TW in the
Wasserstein sense. This is the announced result. 	


5 An Elementary Proof of Asymptotics for ψ
TW

To prove our theorem, we needed the upper asymptotics (2) for ψTW . It is
possible to derive them from the representation (21): keeping in mind that
q ∼ Ai, we get from (19)
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∫ ∞

x

(t− x)q2(t) dt � C exp
(
−cx3/2

)
.

Hence, (21) yields

ψTW(x) � 1− exp
(
−C exp(−cx3/2)

)
� C′ exp

(
−cx3/2

)
.

However, for sake of completeness, we are going to derive in this section
this last result in a more elementary way, i.e. without using the Painlevé
representation. To do this, we need some facts about integral operators. Of
course, a general integral operator can fail to be nuclear (for example, any
Hilbert–Schmidt operator from L2(X) into itself can be written as an integral
operator). Nevertheless, there exist several “nuclearity tests”, criteria ensuring
that under some conditions, kernels generate nuclear operators ([3],[4]). The
main result in this topic is Mercer’s theorem, which enables us to expand
a continuous self-adjoint kernel (i.e. the associated operator is self-adjoint)
as a series of eigenfunctions of the operator. Unfortunately, these results are
usually stated when dealing with a compact space of finite measure, and we
have to consider half-infinite intervals [s,+∞). However, the standard proofs
work also in this setting with only slight modifications.

A result which fits the present context is the following

Lemma 6. Let X = [s,+∞), equipped with the Lebesgue measure, and k be
a kernel on X ×X which satisfies the following conditions:

1. k ∈ L2(X ×X)
2. k is jointly continuous
3. K is positive self-adjoint as an operator on L2(X)
4. There exists a continous positive function ' in L2(X) such that |k(x, y)| �
'(x)'(y) for every x, y in X.

Then the operator K is nuclear and the trace formula holds

tr(K) =
∫ ∞

s

k(x, x) dx. (32)

Proof. We are going to derive our result from the classical finite-measure case
using a change of density trick. Let µ be the measure on X with density '2

with respect to Lebesgue measure; we have µ(X) < ∞. If we (isometrically)
identify L2(X, dx) with L2(X,µ) sending f to f/', the integral operator K
viewed from L2(X,µ) into itself has kernel k(x, y)/'(x)'(y). To get the result
we simply apply to the new kernel the following version of Mercer’s theorem
(it can be proved adapting straightforward the classical proof from [14]): if µ is
a finite Borel measure on X and k a continuous bounded positive self-adjoint
kernel, then the associated operator K is nuclear and its trace is equal to the
integral of the kernel along the diagonal. 	




A Small Deviation Inequality for Random Matrices 335

Lemma 7. The following estimation holds

∃C, c > 0, ∀s > 0, ψTW(s) � C exp
(
−cs3/2

)
.

Proof. By definition (see [13]), we have

ψTW(s) =
∞∑

k=1

(−1)k−1 tr
(
Λk

(
K [s]

))
.

Using the fact that tr(Λk(K [s])) � tr(K [s])k/k!, we get

|ψTW(s)| � exp
(
trK [s]

)
− 1.

Actually, formula (20) shows that ψ
TW

is positive since we have 0 � K [s] �
1. In the end, the convexity of the exponential function on [0, trK [0]] yields
for s � 0

ψ
T W

(s) � C trK [s].

It is not hard to check that the kernel k[s] satisfies the hypotheses of
lemma 6; to check condition 4 we can cook up a function ' using Ai and its
derivative.

Thus we can rewrite the trace of K [s] as an integral

ψ
T W

(s) � C

∫ ∞

s

(
(Ai′(x))2 − xAi(x)

)
dx. (33)

The value of K on the diagonal comes from (17) and the Airy ODE (18).
Using (19), we can write

∃C, c > 0, ∀s � 0 Ai(s) � C exp
(
−cs3/2

)
. (34)

A similar majoration holds for Ai′: we only need to write Ai′(s) =∫∞
s

Ai′′(x) dx and to use formulae (18) and (34)

∃C, c > 0, ∀s � 0 Ai′(s) � C exp
(
−cs3/2

)
. (35)

The conclusion comes when combining formulae (33), (34) and (35). 	


Possible Generalizations

Of course, we expect the inequalities analogous to (6) to be true in a much
more general setting. Basically, each time a Tracy–Widom-like behavior has
been proved or is suspected, we can ask whether such a uniform estimate
holds.

The most natural extension would be the setting of general Wigner ma-
trices, for which universality of Tracy–Widom limit has been proved by Sosh-
nikov ([15]). However, the bounds on moments he obtained do not suffice to
derive the small deviation inequality.
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Tracy and Widom proved results similar to (1), involving a different limit
law, for the matrix ensembles GOE and GSE (the real orthogonal and the
symplectic cases) in [18].

Several authors investigated the behavior of the largest s-number (also
called singular value) of a rectangular m×n matrix with independent entries,
when the ratio m/n tends to a limit in (0, 1). The paper [6] contains a result
analogous to (1) for the Gaussian case (the so-called Wishart ensemble). There
is strong numerical evidence indicating that a convergence on the scale n−2/3

as in Tracy–Widom behavior occurs also universally in this case, for the largest
s-number, but also for the smallest one.

Another quantity of interest is the norm of a n ×m random matrix as a
operator from (np to (mq . Concentration results have been recently obtain in
this case by Meckes (cf [9]).

In all these cases, we know concentration inequalities similar to (5), it
would be interesting to prove the corresponding small deviation result.
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Université Paul Sabatier
118 route de Narbonne
31062 TOULOUSE Cedex 4 France
e-mail:fbaudoin@cict.fr, symplectik@aol.com

Summary. The goal of this article is to understand geometrically the asymptotic
expansion of stochastic flows. Precisely, we show that a hypoelliptic diffusion can be
pathwise approximated at each (normal) point by the lift of a Brownian motion in
a graded nilpotent group with dilations. This group, called a Carnot group, appears
as a tangent space in Gromov–Hausdorff’s sense. We then apply this geometrical
point of view in different domains:

• the study of the spectrum of regular sub-Laplacians;
• the study of Riemannian Brownian motions.
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1 Introduction

In a famous paper, K.T. Chen [8] has shown how to deeply generalize the
Baker–Campbell–Hausdorff formula in a context which can be used in the
theory of flows of deterministic differential equations. The use of this Chen
formal expansion of a flow is illustrated in the paper of R.S. Strichartz [28].
It has then been discovered, in particular by Ben Arous [2] and [3], that
this expansion could also be applied in the theory of stochastic differential
equations. Using this expansion, Ben Arous was for instance able to derive,
after Rotschild and Stein [27], the asymptotic expansion of a hypoelliptic
kernel on the diagonal.

In this paper, we would like to present how to use some ideas from sub-
Riemannian geometry and some ideas from the Gromov metric geometry to
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describe the geometrical content of this Chen expansion of a stochastic flow.
More precisely, consider stochastic differential equations on R

n of the type

Xx0t = x0 +
d∑

i=1

∫ t

0

Vi(Xx0s ) ◦ dBis, t � 0, (1)

where:

1. x0 ∈ R
n;

2. V1, . . . , Vd are C∞ bounded vector fields on R
n;

3. ◦ denotes Stratonovich integration;
4. (B1

t , . . . , B
d
t )0�t�T is a d-dimensional standard Brownian motion.

Since (Xx0t )0�t�T is a strong solution of (1), we know from the general theory
of stochastic differential equations that Xx0 is a predictable functional of B.
If we want to better understand this pathwise representation, the best tool is
certainly the Chen expansion of the stochastic flow associated with the SDE.
Indeed, through the Chen expansion, the Itô map

I : C
(
[0, T ],Rd

)
−→ C

(
[0, T ],Rn

)
, B �−→ X,

established by the SDE can be formally factorized in the following manner

I = F ◦H.

The map
H : C

(
[0, T ],Rd

)
−→ C

(
[0, T ], exp(gd,∞)

)
,

is a horizontal lift in exp(gd,∞) where gd,∞ is the free Lie algebra with d
generators. And F is simply a map exp(gd,∞)→ R

n.
This factorization can be made totally rigorous in the case where the vec-

tor fields Vi generate a nilpotent Lie algebra. Therefore, in this nilpotent case,
the geometry of this Itô map stems directly from the geometry of a finite
dimensional quotient of exp(gd,∞). In the case where the Vi do not generate
a nilpotent Lie algebra anymore but satisfy the strong Hörmander condition,
then Gromov’s notion of tangent space shows that it is still possible to ap-
proximate locally the geometry of the Itô map by the geometry of a finite
dimensional quotient of exp(gd,∞). From this point of view, the geometry of
finite dimensional quotients of exp(gd,∞) is thus of particular interest. The
study of these quotients can be reduced to the study of the so-called free
Carnot groups. They are graded nilpotent groups with dilations. Their geom-
etry is not Riemannian but sub-Riemannian.

In the first part of the paper, we develop precisely this point of view. The
second part of paper focusses on two applications:

• the study of the spectrum of regular sub-Laplacians;
• the study of Riemannian Brownian motions.
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2 Motivation: Taylor and Chen Expansion of Stochastic
Flows

Let f : R
n → R be a smooth function and denote by (Xx0t )t�0 the solution of

(1) with initial condition x0 ∈ R
n. First, by Itô’s formula, we have

f(Xx0t ) = f(x0) +
d∑

i=1

∫ t

0

(Vif)(Xx0s ) ◦ dBis, t � 0.

Now, if apply Itô’s formula to Vif(Xxs ), we obtain

f(Xx0t ) = f(x0) +
d∑

i=1

(Vif)(x0)Bit +
d∑

i,j=1

∫ t

0

∫ s

0

(VjVif)(Xx0u ) ◦ dBju ◦ dBis.

We can continue this procedure to get after N steps

f(Xx0t ) = f(x0) +
N∑

k=1

∑

I=(i1,...,ik)

(Vi1 . . . Vikf)(x0)
∫

∆k[0,t]

◦ dBI + RN(t),

for some remainder term RN , where we used the notations:

1.
∆k[0, t] = {(t1, . . . , tk) ∈ [0, t]k, t1 � · · · � tk};

2. If I = (i1, . . . , ik) ∈ {1, . . . , d}k is a word with length k,
∫

∆k[0,t]

◦ dBI =
∫

0�t1�···�tk�t
◦ dBi1t1 ◦ · · · ◦ dBiktk .

If we dangerously do not care about convergence questions (these questions
are widely discussed in Ben Arous [3], see also the end of this section), it is
tempting to let N → +∞ and to assume that RN → 0. We are thus led to
the nice (but formal!) formula

f(Xx0t ) = f(x0) +
+∞∑

k=1

∑

I=(i1,...,ik)

(Vi1 . . . Vikf)(x0)
∫

∆k[0,t]

◦ dBI . (2)

We can rewrite this formula in a more convenient way. Let Φt be the stochastic
flow associated with the SDE (1). There is a natural action of Φt on smooth
functions: the pull-back action given by

(Φ∗t f)(x0) = (f ◦ Φt)(x0) = f(Xx0t ).

Formula (2) shows then that we have the following formal expansion for this
action
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Φ∗t = IdRd +
+∞∑

k=1

∑

I=(i1,...,ik)

Vi1 . . . Vik

∫

∆k[0,t]

◦ dBI .

Though this formula does not make sense from an analytical point of view, at
least, it shows that the probabilistic information contained in the stochastic
flow is given by the set of Stratonovich chaos

∫
∆k[0,t]

◦ dBI . What is a priori
much less clear is that the algebraic information which is relevant for the study
of Φ∗t is given by the structure of the Lie algebra spanned by the Vi. This
is the content of Chen’s expansion theorem which we now present. Denote
by R[[X1, . . . , Xd]] the non-commutative algebra of formal series with d
indeterminates.

Definition 1. The signature of the Brownian motion (Bt)t�0 is the element
of R[[X1, . . . , Xd]] defined by

S(B)t = 1 +
+∞∑

k=1

∑

I=(i1,...,ik)

Xi1 . . . Xik

∫

∆k[0,t]

◦ dBI , t � 0.

Remark 1. Observe that the signature hence defined is the solution of the
formal stochastic differential equation

S(B)t = 1 +
d∑

i=1

∫ t

0

S(B)sXi ◦ dBis, t � 0.

Remark 2. The element of R[[X1, . . . , Xd]] defined by

Pt = 1 +
+∞∑

k=1

∑

I=(i1,...,ik)

Xi1 . . . Xik E

(∫

∆k[0,t]

◦ dBI
)
, t � 0.

is called the expectation of the signature of the Brownian motion (Bt)t�0. It
is a pleasant exercise to show that

Pt = exp

(
1
2
t

d∑

i=1

X2
i

)
.

Observe that the semigroup property of Pt, that is

Pt+s = PtPs,

stems directly from the fact that the increments of (Bt)t�0 are independent
and stationary.

The bracket between two elements U and V of R[[X1, . . . , Xd]] is simply
given by

[U, V ] = UV − V U,
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and it is easily checked that this bracket endows R[[X1, . . . , Xd]] with a Lie
algebra structure. We denote by L(X1, . . . , Xd) the Lie sub-algebra spanned
by X1, . . . , Xd. The following theorem, which is a restatement of a result of
K.T. Chen [8] and R.S. Strichartz [28], can be seen as a deep generalization of
the Baker–Campbell–Hausdorff formula. Before we give this theorem, here is
some notation. If I = (i1, . . . , ik) ∈ {1, . . . , d}k is a word, we denote by |I| = k
its length and by XI the commutator defined by

XI = [Xi1 , [Xi2 , . . . , [Xik−1 , Xik ] . . . ]].

The group of permutations of the index set {1, . . . , k} is denoted by Sk. If
σ ∈ Sk, we denote by e(σ) the cardinality of the set

{
j ∈ {1, . . . , k − 1}, σ(j) > σ(j + 1)

}
.

Moreover for σ ∈ Sk, we denote by σ · I the word (iσ(1), . . . , iσ(k)).

Theorem 1 (Chen–Strichartz formula). We have

S(B)t = exp

(
∑

k�1

∑

I=(i1,...,ik)

ΛI(B)tXI

)
,

where:

ΛI(B)t =
∑

σ∈Sk

(−1)e(σ)

k2

(
k − 1
e(σ)

)
∫

∆k[0,t]

◦ dBσ
−1·I .

Remark 3. The first terms of the Chen–Strichartz expansion are:

1.
∑

I=(i1)

ΛI(B)tXI =
d∑

k=1

BitXi;

2. ∑

I=(i1,i2)

ΛI(B)tXI =
1
2

∑

1�i<j�d
[Xi, Xj]

∫ t

0

Bis ◦ dBjs −Bjs ◦ dBis.

Thus, thanks to this theorem, the formal expansion of the stochastic flow Φ∗t
acting on functions reads now

Φ∗t = exp

(
∑

k�1

∑

I=(i1,...,ik)

ΛI(B)tVI

)
.

This heuristic discussion can actually be made rigorous and leads to the fol-
lowing result of Castell [7], which is an improvement of Ben Arous [3]:
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Proposition 1. Let (Xx0t )t�0 be the solution of (1) associated with the initial
condition Xx00 = x0. Then for all integer N � 2,

Xx0t =

[
exp

(
N−1∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI

)]
(x0) + tN/2RN(t), t � 0,

where the remainder term RN is bounded in probability when t → 0. More
precisely, ∃ α, c > 0 such that ∀A > c,

lim
t→0

P

(
sup

0�s�t
sN/2|RN (s)| � AtN/2

)
� exp

(
−A

α

c

)
.

All this clearly shows how the Lie algebra L = Lie(V1, . . . , Vd) which is
generated by the vector fields Vi comes naturally into the study of Xx0. If we
want now to understand more deeply how the properties of this Lie algebra
determine the geometry of Xx0 , it is wiser to begin with the simplest cases.
In a way, the simplest Lie algebras are the nilpotent ones. In that case, i.e. if
L is nilpotent, then the sum

∑

k�1

∑

I=(i1,...,ik)

ΛI(B)tVI

is actually finite and we are going to show that the solutions of equation (1)
can be represented from the lift of the Brownian motion (Bt)t�0 in a graded
free nilpotent Lie group with dilations. These groups called the free Carnot
groups are now introduced and their geometries are discussed.

3 Carnot Groups and Nilpotent SDE’s

We introduce now the notion of Carnot group. Carnot groups are to sub-
Riemannian geometry what Euclidean spaces are to Riemannian geometry.
Numerous papers and some books are devoted to the analysis of these groups
(see for example [11] and [15]).

Definition 2. A Carnot group of depth N is a simply connected Lie group G

whose Lie algebra can be written

V1 ⊕ · · · ⊕ VN ,

where
[Vi,Vj ] = Vi+j

and
Vs = 0, s > N ;
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We consider in all this section a Lie group G which satisfies the hypothesis
of the above definition. Notice that the vector space V1, which is called the ba-
sis of the Carnot group G, Lie-generates g, where g denotes the Lie algebra of
G. Since G is nilpotent and simply connected, the exponential map is a diffeo-
morphism and the Baker–Campbell–Hausdorff formula therefore completely
characterizes the group law of G because for U , V ∈ g,

expU expV = exp
(
P (U, V )

)

for some universal Lie polynomial P . On g we can consider the family of linear
operators δt : g → g, t � 0 which act by scalar multiplication ti on Vi. These
operators are Lie algebra automorphisms due to the grading. The maps δt
induce Lie group automorphisms ∆t : G → G which are called the canonical
dilations of G.

Example 1 (Heisenberg Group). The Heisenberg group H can be represented
as the set of 3× 3 matrices:




1 x z
0 1 y
0 0 1



 , x, y, z ∈ R.

The Lie algebra of H is generated by the matrices

D1 =




0 1 0
0 0 0
0 0 0



 , D2 =




0 0 0
0 0 1
0 0 0



 , D3 =




0 0 1
0 0 0
0 0 0



 ,

for which the following equalities hold

[D1, D2] = D3, [D1, D3] = [D2, D3] = 0.

Thus
h ∼ R

2 ⊕ [R,R],

and, therefore, H is a (free) two-step Carnot group.

Now take a basis U1, . . . , Ud of the vector space V1. The vectors Ui can be
seen as left invariant vector fields on G so that we can consider the following
stochastic differential equation on G:

dB̃t =
d∑

i=1

∫ t

0

Ui
(
B̃s

)
◦ dBis, t � 0, (3)

which is easily seen to have a unique (strong) solution (B̃t)t�0 associated with
the initial condition B̃0 = 0G.

Definition 3. The process (B̃t)t�0 is called the lift of the standard Brownian
motion (Bt)t�0 in the group G with respect to the basis (U1, . . . , Ud).
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Notice that (B̃t)t�0 is a Markov process with generator 1
2

∑d
i=1 U

2
i . This

second-order differential operator is, by construction, left-invariant and hy-
poelliptic. As a direct consequence of the Chen–Strichartz formula expansion,

Proposition 2. We have

B̃t = exp

(
N∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tUI

)
, t � 0.

Remark 4. We have the following scaling property, for every c > 0,
(
B̃ct

)
t�0

law=
(
∆√cB̃t

)
t�0
,

which stems from the elementary fact
(
ΛI(B)ct

)
t�0

law=
(
c|I|/2ΛI(B)t

)

t�0
.

This scaling property leads directly to the following property of the density
p̃t of B̃t with respect to any Haar measure of G:

pt(0G) =
C

tD/2
, t > 0,

where C > 0 and D =
∑N
i=1 i dimVi.

We now turn to the geometry of G. The Lie algebra g can be identified
with the set of left-invariant vector fields on G. From this identification and
from the decomposition

g = V1 ⊕ · · · ⊕ VN ,
we deduce a decomposition of the tangent space TxG to G at x:

TxG = V1(x) ⊕ · · · ⊕ VN (x),

where Vi(x) is the fibre at x of the left-invariant distribution spanned by Vi.
This decomposition endows naturally G with a left-invariant (0, 2)-tensor g.
Precisely, for x ∈ G, we define gx as being the scalar product on TxG such
that:

1. The vectors U1(x), . . . , Ud(x) form an orthonormal basis;
2. gx|Vi(x)×Vj(x) = 0, if i or j is different from 1.

An absolutely continuous curve c : [0, 1]→ G is called horizontal if for almost
every s ∈ [0, 1] we have c′(s) ∈ V1(c(s)). The length of a horizontal curve c
with respect to g is defined by

l(c) =
∫ 1

0

√
gc(s)

(
c′(s), c′(s)

)
ds.

We can now state the basic result on the geometry of Carnot groups: Chow’s
theorem.
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Theorem 2. Given two points x and y ∈ G, there is at least one horizontal
absolutely continuous curve c : [0, 1]→ G such that c(0) = x and c(1) = y.

Proof. Denote by G the subgroup of diffeomorphisms G → G generated by
the one-parameter subgroups corresponding to U1, . . . , Ud. The Lie algebra
of G can be identified with the Lie algebra generated by U1, . . . , Ud, i.e. g.
We deduce that G can be identified with G itself, so that it acts transitively
on G. It means that for every x ∈ G, the map G→ G, g → g(x) is surjective.
Thus, every two points in G can be joined by a piecewise smooth horizontal
curve where each piece is a segment of an integral curve of one of the vector
fields Ui. 	


Remark 5. In the above proof, the horizontal curve constructed to join two
points is not smooth. Nevertheless, it can be shown that it is always possible
to connect two points with a smooth horizontal curve (see Gromov [16] p. 120).

The Carnot–Carathéodory distance between x and y and denoted by
dg(x, y) is defined as being the infimum of the lengths of all the horizon-
tal curves joining x and y. It is easily checked that this distance satisfies
dg(∆cx,∆cy) = cdg(x, y), for every c > 0, x, y ∈ G.

Remark 6. The distance dg depends on the choice of a basis for V1. Neverthe-
less, it can be shown that all the Carnot–Carathéodory distances that can be
constructed are bi-Lipschitz equivalent.

A horizontal curve with length dg(x, y) is called a sub-Riemannian geodesic
joining x and y. The topology of the metric space (G, dg) is really of interest.
Indeed, though the topology given by the distance dg is compatible with the
natural topology of the Lie group G,

Proposition 3. The Hausdorff dimension of the metric space (G, dg) is
equal to

D =
N∑

j=1

j dimVj .

We conclude now our short presentation of the Carnot groups with the
free Carnot groups. The Carnot group G is said to be free if g is free. In that
case, dimVj is the number of Hall words of length j in the free algebra with
d generators. We thus have, according to Bourbaki [6] (see also Reutenauer
[26] p. 96):

dimVj =
1
j

∑

i | j
µ(i)dj/i, j � N,

where µ is the Möbius function. We easily deduce from this that when N →
+∞,

dim g ∼ dN

N
.
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An important algebraic point is that there are many algebraically non isomor-
phic Carnot groups having the same dimension (even uncountably many for
n � 6), but up to isomorphism there is one and only one free Carnot with a
given depth and a given dimension for the basis. Actually, as in the theory of
vector spaces, we can reduce the study of the free Carnot groups to standard
numerical models. Set m = dim G. Choose now a Hall family and consider the
R
m-valued process (B∗t )t�0 obtained by writing the components of (ln(B̃t))t�0

in the corresponding Hall basis of g. It is easily seen that (B∗t )t�0 solves a
stochastic differential equation that can be written

B∗t =
d∑

i=1

∫ t

0

Di(B∗s ) ◦ dBis,

where the Di are polynomial vector fields on R
m (for an explicit form of

the Di, which depend of the choice of the Hall basis, we refer to Vershik–
Gershkovich [13], p. 27). With these notations, we have the following propo-
sition which stems from our very construction.

Proposition 4. On R
m, there exists a unique group law 
 which makes the

vector fields D1, . . . , Dd left invariant. This group law is unimodular1, poly-
nomial of degree N and we have moreover

(Rm,
) ∼ G.

The group (Rm,
) is called the free Carnot group of step N over R
d. It will

be denoted by GN(Rd). The process B∗ will be called the lift of B in GN (Rd).

Remark 7. Notice that, by construction, GN (Rd) is endowed with the basis
of vector fields (D1, . . . , Dd). These vector fields agree at the origin with
(∂/∂x1, . . . , ∂/∂xd).

The universality of GN (Rd) is the following. If G1 and G2 are two Carnot
groups, a Lie group morphism φ : G1 → G2 is said to be a Carnot group
morphism if for any t � 0, g ∈ G1,

φ
(
∆G1
t g

)
= ∆G2

t φ(g),

where ∆G1 (resp. ∆G2) denote the canonical dilations on G1 (resp. G2).

Proposition 5. Let G be a Carnot group. There exists a surjective morphism
of Carnot groups π : GN(Rd) → G, where d is the dimension of the basis of
G and N its depth.
1 A group law on R

m is said to be unimodular if the translations leave the Lebesgue
measure invariant.
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Proof. Let U1, . . . , Ud be a basis of the basis of G. Since GN (Rd) is free, there
exists a unique surjective morphism of Lie algebras dπ : gN(Rd) → g such
that dπ(Di) = Ui, i = 1, . . . , d. We can now define a surjective morphism of
Carnot groups π : GN(Rd) → G by π(eg) = edπ(g), g ∈ gN(Rd). Observe that
it defines π in a unique way because in Carnot groups the exponential map is
a diffeomorphism. 	


After this quite long digression on Carnot groups, we now come back to
the study of the SDE (1) and assume that the Lie algebra L = Lie(V1, . . . , Vd)
is nilpotent of depth N , i.e., that every commutator constructed from the Vi
with length greater than N is 0.

Theorem 3. There exists a smooth map

F : R
n ×GN (Rd) −→ R

n

such that, for x0 ∈ R
n, the solution (Xx0t )0�t�T of the SDE (1) can be written

Xx0t = F (x0, B
∗
t ),

where B∗ is the lift of B in the group GN (Rd).

Proof. An iteration of Itô’s formula shows that the process
[
exp

(
N∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI

)]
(x0),

solves the equation (1) (for further details, we refer to Castell [7] or Strichartz
[28]). We deduce hence by pathwise uniqueness property that

Xx0t =

[
exp

(
N∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI

)]
(x0).

The definition of GN (Rd) shows that we can therefore write

Xx0t = F (x0, B
∗
t ). 	


The above theorem shows the universal property of GN (Rd) in theory of
nilpotent stochastic flows. Here is its counterpart in the theory of second order
hypoelliptic operators (this property is implicitly pointed out in the seminal
work of Rotschild and Stein [27]).

Proposition 6. Let

L =
d∑

i=1

V 2
i
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be a second order differential operator on R
n. Assume that the Lie algebra L =

Lie(V1, . . . , Vd) which is generated by the vector fields Vi admits a stratification

E1 ⊕ · · · ⊕ EN ,

with E1 = span(V1, . . . , Vd), [E1, Ei] = Ei+1 and [E1, EN ] = 0. Then, there
exists a submersion map π : R

m → R
n, with m = dim GN (Rd) such that for

every smooth f : R
n → R,

∆GN (Rd)(f ◦ π) = (Lf) ◦ π,

where ∆GN (Rd) =
∑
i=1D

2
i , is the canonical sub-Laplacian on GN (Rd).

4 Nilpotentization of a differential System and canonical
Approximation of a hypoelliptic Diffusion

The previous section has shown the fundamental role played by the Lie algebra
L = Lie(V1, . . . , Vd) in the study of the solution Xx0 . In particular, if L is
nilpotent, we have represented Xx0 from the lift of B in a free Carnot whose
depth is the degree of nilpotence of L. In this section we show how to extend
these results when L is not nilpotent anymore. To make this extension possible
we shall assume in the sequel that the following assumption is satisfied:

Strong Hörmander Condition. For every x ∈ R
n, we have:

span
{
VI(x), I ∈

⋃

k�1

{1, . . . , d}k
}

= R
n.

We recall that if I = (i1, . . . , ik) ∈ {1, . . . , d}k is a word, we denote by VI
the commutator defined by

VI = [Vi1 , [Vi2 , . . . , [Vik−1 , Vik ] . . . ]].

Let us mention that in the sub-Riemannian litterature, the strong Hörmander
condition is more often refered to as Chow’s condition or bracket generating
condition. In that case, in some sense made precise later it is possible to
approximate L at each (regular) point by a nilpotent Lie algebra. Therefore,
by using the results of the previous chapter, this approximation leads to a
canonical pathwise approximation of Xx0 in small times.

First, we have to introduce some concepts of differential geometry. The set
of linear combinations with smooth coefficients of the vector fields V1, . . . , Vd
is called the differential system (or sheaf) generated by these vector fields. It
will be denoted by D in the sequel. Notice that D is naturally endowed with
a structure of C∞(Rn,R)-module. For x ∈ R

n, we put
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D(x) = {X(x), X ∈ D}.

If the integer dimD(x) does not depend on x, then D is said to be a distri-
bution. Observe that the Lie bracket of two distributions is not necessarily a
distribution, so that we really have to work with differential systems. The Lie
brackets of vector fields in D generates a flag of differential systems,

D ⊂ D2 ⊂ · · · ⊂ Dk ⊂ · · · ,

where Dk is recursively defined by the formula

Dk = Dk−1 + [D,Dk−1].

As a module, Dk is generated by the set of vector fields VI , where I describes
the set of words with length k. Moreover, due to the Jacobi identity, we have
[Di,Dj ] ⊂ Di+j . This flag is called the canonical flag associated with the
differential system D. Hörmander’s strong condition, which we supposed to
hold, states that for each x ∈ R

n, there is a smallest integer r(x) such that
Dr(x) = R

n. This integer is called the degree of non holonomy at x. Notice
that r is an upper continuous function, that is, r(y) � r(x) for y near x. For
each x ∈ R

n, the canonical flag induces a flag of vector subspaces,

D(x) ⊂ D2(x) ⊂ · · · ⊂ Dr(x)(x) = R
n.

The integer list
(
dimDk(x)

)
1�k�r(x) is called the growth vector of D at x.

The point x is said to be a regular point of D if the growth vector is constant
in a neighborhood of x. Otherwise, we say that x is a singular point. On a
Carnot group, due to the homogeneity, all points are regular.

We are now able to define in a purely algebraic manner what will be
relevant for us: the nilpotentization and the tangent space of D at a regular
point. Later, we shall see that this tangent space also can be constructed in
a purely metric manner. Let Vi = Di/Di−1 denote the quotient differential
systems, and define

N (D) = V1 ⊕ · · · ⊕ Vk ⊕ · · ·
The Lie bracket of vector fields induces a bilinear map on N (D) which re-
spects the grading: [Vi,Vj ] ⊂ Vi+j . Actually, N (D) inherits the structure of a
sheaf of Lie algebras. Moreover, if x is a regular point of D, then this bracket
induces a r(x)-step nilpotent graded Lie algebra structure on N (D)(x). Ob-
serve that the dimension ofN (D)(x) is equal to n and that from the definition,
(V1(x), . . . , Vd(x)) Lie-generates N (D)(x).

Definition 4. If x is a regular point of D, the r(x)-step nilpotent graded Lie
algebra N (D)(x) is called the nilpotentization of D at x. This Lie algebra is
the Lie algebra of a unique Carnot group which will be written Gr(D)(x) and
called the tangent space to D at x.

Remark 8. The notation Gr is for Gromov.
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Definition 5. If x is a regular point of D, we say that x is a normal point
D if there exists a neighborhood U of x such that:

1. for every y ∈ U , y is a regular point of D;
2. for every y ∈ U , there exists a Carnot algebra isomorphism ψ : N (D)(x) →
N (D)(y), such that ψ(Vi(x)) = Vi(y), i = 1, . . . , d.

Let us mention that it may happen that N (D)(x) is not constant in a
neighborhood of x even if x is regular (see [32]). At this point, it may be
useful to give several examples.

Example 2. Let G be a Carnot group with Lie algebra g and consider for D the
left invariant differential system which is generated by the basis of G. Then,
D satisfies the strong Hörmander condition and it is immediate that for every
x ∈ G,

N (D)(x) = g,

Gr(D)(x) = G.

Example 3. Let M be a manifold of dimension d. Assume that there ex-
ists on M a family of vector fields (V1, . . . , Vd) such that for every x ∈ M,
(V1(x), . . . , Vd(x)) is a basis of the tangent space at x . Denote by D the dif-
ferential system generated by (V1, . . . , Vd) (it is actually a distribution). Then,
D satisfies the strong Hörmander condition and for every x ∈ M,

N (D)(x) = R
d,

Gr(D)(x) = R
d.

Example 4. Consider the Lie group SO(3), i.e., the group of 3 × 3, real, or-
thogonal matrices of determinant 1. Its Lie algebra so(3) consists of 3 × 3,
real, skew-adjoint matrices of trace 0. A basis of so(3) is formed by

V1 =




0 1 0
−1 0 0
0 0 0



 , V2 =




0 0 0
0 0 1
0 −1 0



 , V3 =




0 0 1
0 0 0
−1 0 0





Observe that the following commutation relations hold

[V1, V2] = V3, [V2, V3] = V1, [V3, V1] = V2,

so that the differential system D which is generated by V1 and V2 satisfies the
strong Hörmander condition. The group SO(3) can be seen as the orthonormal
frame bundle of the unit sphere S

2 and, via this identification, D is generated
by the horizontal lifts of vector fields on S

2. Therefore, in a way, the sub-
Riemannian geometry associated with D is the geometry of the holonomy on
S

2. This example will be generalized in this paper; actually many interesting
examples of sub-Riemannian geometries arise from principal bundles. In that
case, it is easily checked that for every x ∈ SO(3),
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N (D)(x) = g2(R2),

Gr(D)(x) = G2(R2).

Example 5. Consider the Lie group SU(2), i.e., the group of 2 × 2, complex,
unitary matrices of determinant 1. Its Lie algebra su(2) consists of 2 × 2,
complex, skew-adjoint matrices of trace 0. A basis of su(2) is formed by

V1 =
1
2

(
i 0
0 −i

)
, V2 =

1
2

(
0 1
−1 0

)
, V3 =

1
2

(
0 i
i 0

)
.

Note the commutation relations

[V1, V2] = V3, [V2, V3] = V1, [V3, V1] = V2,

so that the differential system D which is generated by V1 and V2 satisfies
the strong Hörmander condition. Let us mention that there exists an explicit
homomorphism SU(2) → SO(3) which exhibits SU(2) as a double cover of
SO(3), so that this example is actually a consequence of the previous one.
Therefore, for every x ∈ SU(2),

N (D)(x) = g2(R2),

Gr(D)(x) = G2(R2).

A really striking fact is that the tangent space Gr(D)(x) at a regular
point is not only a differential invariant but also a purely metric invariant.
Actually Gromov discovered that it is possible, in a very general way, to define
a notion of tangent space to an abstract metric space. This point of view is
widely developed in [16] and [17], and is the starting point of the so-called
metric geometry.

The Gromov–Hausdorff distance between two metric spaces M1 and M2 is
defined as follows: δGH(M1,M2) is the infimum of real numbers ρ for which
there exists isometric embeddings of M1 and M2 in a same metric space M3,
say i1 : M1 → M3 and i2 : M2 → M3, such that the Hausdorff distance of
i1(M1) and i2(M2) as subsets of M3 is lower than ρ. Thanks to this distance,
we have now a convenient notion of limit of a sequence metric spaces.

Definition 6. A sequence of pointed metric spaces (Mn, xn) is said to Gro-
mov–Hausdorff converge to the pointed metric space (M, x) if for any positive
R

lim
n→+∞

δGH

(
BMn(xn, R),BM(x,R)

)
= 0,

where BMn (xn, R) is the open ball centered at xn with radius R in Mn. In
that case we shall write

lim
n→+∞

(Mn, xn) = (M, x).
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If M is a metric space and λ > 0, we denote by λ ·M the new metric space
obtained by multiplying all distances by λ.

Definition 7. Let M be a metric space and x0 ∈ M. If the Gromov–Hausdorff
limit

lim
n→+∞

(n ·M, x0)

exists, then this limit is called the tangent space to M at x0.

To apply now this concept of tangent space in our context, we first con-
struct a Carnot–Carathéodory distance associated with our differential system
D. This can be done using Chow’s theorem in its full generality (see chapter
2 of Montgomery [23]).

Theorem 4. Let (x, y) ∈ R
n × R

n. There exists at least one absolutely con-
tinuous curve c : [0, 1]→ R

n such that:

1. For almost all s ∈ [0, 1], c′(s) ∈ span(V1(c(s)), . . . , Vd(c(s)));
2. c(0) = x and c(1) = y.

Thanks to this theorem, it is possible, as we did it in the case of Carnot
groups, to define a distance on R

n. The starting point of Gromov’s metric
geometry is then the following question: What can be said about the geometry
of the differential system D by using only this Carnot–Carathéodory distance?

For instance, we have the following theorem due to Mitchell [22] (see also
Pansu [24]).

Theorem 5. Let x0 ∈ R
n be a regular point of D, then the tangent space at

x0 in the Gromov–Hausdorff sense exists and is equal to Gr(D)(x0).

Actually, even if x0 is not a regular point of D, the tangent space in the
Gromov–Hausdorff sense exists. Therefore, from this theorem, it is possible to
define Gr(D)(x0) at any point of D. Nevertheless, if x0 is not a regular point,
then Gr(D)(x0) is not a Lie group (see [1]).

Example 6. Consider in R
2, the two vector fields

V1 =
∂

∂x
, and V2 = x

∂

∂y
.

These vector fields span R
2 everywhere, except along the line x = 0, where

adding

[V1, V2] =
∂

∂y

is needed. So, the distribution D generated by V1 and V2 satisfies the strong
Hörmander condition. The sub-Riemannian geometry associated with D is
called the geometry of the Grusin plane. In that case, for every (x, y) ∈ R

2,
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Gr(D)(x, y) = R
2,

if x �= 0, whereas
Gr(D)(x, y) = G2(R2)/ exp(RV2),

if x = 0.

We now apply the concepts introduced above to study the SDE (1).

Theorem 6. Let x ∈ R
n be a normal point of D. Let (Xxt )t�0 denote the

solution of (1) with initial condition x. There exist a surjective Carnot group
morphism

πx : Gr(x)(Rd) −→ Gr(D)(x)

and a local diffeomorphism

ψx : U ⊂Gr(D)(x) −→ R
n

such that
Xxt = ψx (πxB∗t ) + t

r(x)+1
2 R(t), 0 < t < T

where:

1. U is an open neighborhood of the identity element of Gr(D)(x);
2. B∗ is the lift of B in the free Carnot group Gr(x)(Rd);
3. T is an almost surely non negative stopping time;
4. R is bounded in probability when t→ 0.

Proof. From Castell’s result [7],

Xxt =

[
exp

(
r(x)∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI

)]
(x) + t

r(x)+1
2 R(t), t � 0,

where the remainder term R is bounded in probability when t → 0. Now,
since x is a normal point of D, we can write

[
exp

(
r(x)∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI

)]
(x) = ψx(B̂t), t < T,

where

1. ψx : U ⊂ Gr(D)(x) → R
n is a local diffeomorphism;

2. B̂ is the lift of B in the Carnot group Gr(D)(x), with respect to the family
(V1(x), . . . , Vd(x)) (recall that by construction, this family Lie-generates
N (D)(x)) ;

3. T is an almost surely non negative stopping time.
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Now, since gr(x)(Rd) is free, there exists a unique Lie algebra surjective ho-
momorphism αx : gr(x)(Rd) → N (D)(x) such that αx(Di) = Vi(x). Since
Carnot groups are simply connected nilpotent groups for which the exponen-
tial map is a diffeomorphism, there exists a unique Carnot group morphism
πx : Gr(x) → Gr(D)(x) such that dπx = αx (see also proposition 5). We have
πx(B∗t ) = B̂t which concludes the proof. 	


Remark 9. Observe that πxB∗t is a lift of B in the Carnot group Gr(D)(x).

Remark 10. We stress that theorem (6) is not true in general if x is not a
normal point of D. Indeed, let us assume that the nilpotentization N (D)(x)
is not constant in a neighborhood of x and that there exists a bi-Lipschitz
map ψx : U ⊂ Gr(D)(x) → R

n. In that case a sub-Riemannian extension
extension of Rademacher’s theorem due to [21] would imply that ψx is almost
everywhere Pansu differentiable and the derivatives would provide Carnot
group morphisms between groups which are not isomorphic.

An immediate corollary of this theorem is the behaviour in small times
of a hypoelliptic heat kernel on the diagonal. This behaviour, first discovered
by Rotschild and Stein [27] using the parametrix method (see also [31]), has
then been understood in a probabilistic way by Ben Arous [2] and Léandre
[18], [19].

Corollary 1. Let x0 be a normal point of D. Let pt, t > 0, denote the density
of Xx0 with respect to the Lebesgue measure. We have,

pt(x0) ∼
t→0

C(x0)
tD(x0)/2

,

where C(x0) is a non negative constant depending smoothly of x0 and D(x0)
the Hausdorff dimension of the tangent space Gr(D)(x0).

Remark 11. At a regular point, even if N (D)(x0) is not constant in a neigh-
borhood of x0, the previous asymptotic development holds.

5 Regular self-adjoint sub-Laplacians on compact
manifolds

Let M be a connected compact smooth manifold. We consider on M a second
order differential operator

L =
d∑

i=1

V 2
i ,

which satisfies the strong Hörmander condition. Let D denote the differential
system generated by V1, . . . , Vd. We assume that there exists a Carnot group
G such that for every x ∈ M,
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Gr(D)(x) = G.

If the above assumptions are satisfied, then L will be said to be regular. Since
the manifold M is assumed to be compact, it is possible to develop a spectral
theory for L which is similar to the spectral theory of elliptic operators. More
precisely, if we denote by X the diffusion associated with L, by using Bony’s
strong maximal principle for hypoelliptic operators (see [5]), it is possible to
show that X is Harris recurrent. That is, there is a Borel measure m on M

which is invariant for X such that for every Borel set A ⊂ M:

1. m(A) > 0 implies that for any x ∈ M, and t > 0,

P(∃ s > t, Xs ∈ A |X0 = x) = 1;

2. ∫

M

P(Xt ∈ A |X0 = x)m(dx) = m(A), t > 0.

Observe that m is a solution of the equation

L∗m = 0,

so that, by Hörmander’s theorem, it admits a smooth density. We shall now
assume furthermore that L is self-adjoint with respect to m, i.e., for any
smooth functions f , g : M → R

∫

M

g(Lf) dm =
∫

M

(Lg)f dm.

In that case, etL is a compact selfadjoint operator in L2(M,m). We deduce
that L has a discrete spectrum tending to −∞. Denote by Sp(L) the set of
eigenvalues of L repeated according to multiplicity.

Theorem 7. For λ > 0, let

N(λ) = Card
(
Sp(L) ∩ [−λ, 0]

)
.

We have
N(λ) ∼

λ→+∞
C(L,M)λD/2,

where C(L,M) is a non negative constant and D the Hausdorff dimension of
G.

Proof. The asymptotic expansion of the heat semigroup etL on the diagonal
leads to

Tr
(
etL

)
=
∫

M

pt(x, x)m(dx) ∼
t→0

K

tD/2
,

where K is a non negative constant. On the other hand,

Tr
(
etL

)
=

+∞∑

k=0

Nk e−µkt,

where
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1. {−µk} is the set of eigenvalues of L;
2. Nk = dim{f | Lf = −µkf}.

Therefore,
+∞∑

k=0

Nk e−µkt ∼
t→0

K

tD/2
.

The result follows then from the following theorem of Karamata: if µ is a
Borel measure on [0,∞), α ∈ (0,+∞), then

∫ +∞

0

e−tλ µ(dλ) ∼
t→0

1
tα
,

implies ∫ x

0

µ(dλ) ∼
x→+∞

xα

Γ (1 + α)
.

	


Remark 12. We believe that the constant C(L,M) is an interesting invariant
of the sub-Riemannian geometry that L induces on M (recall that in the
Riemannian case, it is simply, up to scale, the Riemannian volume of the
manifold). For instance, it would be interesting to know if C(L,M) is the
Hausdorff measure of M.

To conclude this section, it may be interesting to study carefully an exam-
ple. Consider the Lie group SU(2). As already seen, a basis of su(2) is formed
by

V1 =
1
2

(
i 0
0 −i

)
, V2 =

1
2

(
0 1
−1 0

)
, V3 =

1
2

(
0 i
i 0

)
,

and the commutation relations hold

[V1, V2] = V3, [V2, V3] = V1, [V3, V1] = V2. (4)

We want to study the regular sub-Laplacian

L = V 2
2 + V 2

3 .

Actually, we shall study the following family of operators defined for ε ∈ [0, 1],

Lε = εV 2
1 + V 2

2 + V 2
3 .

Observe that each Lε is self-adjoint with respect to the normalized Haar
measure of SU(2). For ε > 0, Lε is elliptic so that

Card
(
Sp(Lε) ∩ [−λ, 0]

)
∼

λ→+∞
Cελ

3/2,

whereas
Card

(
Sp(L) ∩ [−λ, 0]

)
∼

λ→+∞
Cλ2.

Therefore, this is interesting to understand the spectrum when ε→ 0.
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Proposition 7. Let ε ∈ [0, 1). The set of eigenvalues of Lε is the set

{−λεn,m, n ∈ N, 0 � m � n},

where

λεn,m = ε
n2

4
+
n

2
− (1− ε)m2 + (1 − ε)mn.

Moreover, the multiplicity of λεn,m is equal to n+ 1.

Proof. We use the theory of representations of SU(2); for a detailed account
on it, we refer to Taylor [29], chapter 2. Let ε ∈ [0, 1). Thanks to the relations
(4), note that Lε commutes with L1 = V 2

1 + V 2
2 + V 2

3 . Therefore Lε acts on
each eigenspace of L1. We can examine the spectrum of Lε by decomposing
L2 (SU(2)) into eigenspaces of L1, which is equivalent to decomposing it into
subspaces irreducible for the regular action of SU(2)× SU(2) given by

(
(g, h) · f

)
(x) = f(g−1xh), f ∈ L2

(
SU(2)

)
, g, h, x ∈ SU(2).

Now, it is known (see for instance Taylor [29]) that, up to equivalence, for
every k ∈ N, there exists one and only one irreducible representation πk :
SU(2) → C

k+1. Thus, by the Peter–Weyl theorem, the irreducible spaces of
L2 (SU(2)) for the regular action are precisely the spaces of the form

Vk = span{πi,jk , 1 � i, j � k + 1},

where πi,jk denotes the components of the representation πk in a chosen or-
thonormal basis of C

k+1. Observe now that each space Vk is an eigenspace
of L1. The associated eigenvalue is −k(k + 2)/4. If we consider now the left
regular representation

(g · f)(x) = f(g−1x), f ∈ L2 (SU(2)) , g, x ∈ SU(2),

then Vk is a direct sum of k + 1 irreducible representations of SU(2), each
equivalent to πk:

Vk =
k+1⊕

l=1

Vk,l,

where Vk,l = span{πi,lk , 1 � i � k + 1}. Each Vk,l splits into one-dimensional
eigenspaces for V1:

Vk,l =
⊕

µ

Vk,l,µ,

where,

µ ∈
{
−k

2
,−k

2
+ 1, . . . ,

k

2

}
,

and on Vk,l,µ,
V1 = iµ.



The tangent space to a hypoelliptic diffusion and applications 359

Since Lε = L1 − (1 − ε)V 2
1 , we have

Lε = −
(
k(k + 2)

4
− (1− ε)µ2

)
,

on Vk,l,µ. 	


From this, we deduce immediately:

Card
(
Sp(Lε) ∩ [−λ, 0]

)
∼

λ→+∞

8
3
√
ε λ3/2,

whereas
Card

(
Sp(L) ∩ [−λ, 0]

)
∼

λ→+∞
2λ2.

6 Application to the study of Brownian motions on
Riemannian manifolds

To conclude the paper, we provide a very general and natural geometric frame-
work in which regular hypoelliptic operators appear.

Let (M, g) be a d dimensional connected compact Riemannian manifold.
We assume that the Riemannian curvature tensor on (M, g) is nowhere de-
generate. We denote by ∆ the Laplace–Beltrami operator on M (for us ∆
is negative). The tangent bundle to M is denoted by TM and TmM is the
tangent space at m: We have hence TM =

⋃
nTnM. The orthonormal frame

bundle of M is denoted by O (M). Therefore, (O (M) ,M,Od (R)) is a principal
bundle on M with structure group the group Od (R) of d× d orthogonal ma-
trices. We denote by π the canonical surjection O (M) → M. The horizontal
fundamental vector fields of O (M) are denoted by (Hi)i=1,...,d . The Bochner
horizontal Laplacian, i.e. the lift of ∆, is then given by

∆O(M) =
d∑

i=1

H2
i .

We denote by D the differential system on O (M) generated by the horizontal
vector fields H1, . . . , Hd, that is, the horizontal distribution for the Levi-Civita
connection on M. We have the following proposition (compare to Chernyakov’s
theorem, see [13] p. 22):

Proposition 8. The distribution D satisfies the strong Hörmander condition.
Moreover, any point x0 ∈ O(M) is a regular point of D and Gr(D)(x0) =
G2(Rd).

Proof. From Cartan’s formula, we get

Θ([Hi, Hj ]) = HiΘ(Hj)−HjΘ(Hi)− dΘ(Hi, Hj),
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where Θ is the tautological one-form on O(M). Now, from the first structural
equation, we have

dΘ = −Θ ∧ ω

where ω is the Levi-Civita connection form. This implies,

Θ([Hi, Hj ]) = 0.

Thus, the commutator of two fundamental vector fields is vertical. Using the
second structure equation

dω = −ω ∧ ω +Ω,

where Ω is the curvature form, we obtain in a similar way with Cartan’s
formula

ω([Hi, Hj ]) = −Ω(Hi, Hj).

This ensures that for any x0 ∈ O(M) the family (Hi(x0), [Hj , Hk](x0)) is
always a basis of the tangent space because of the assumed non-degenerence
of Ω. 	


By applying theorem 6 and using the identification G2(Rd) � R
d ×

R
d(d−1)/2, we get hence

Corollary 2. Let (Bt)t�0 be a Brownian motion on M. There exist a local
diffeomorphism

ψ : U ⊂ R
d × R

d(d−1)/2 −→ O(M)

and a standard linear Brownian motion (βt)t�0 on R
d, such that for any

smooth function f : M → R,

f(Bt) = f

(
(π ◦ ψ)

(
βt,

(∫ t

0

βis dβjs − βjs dβis

)

1�i<j�d

))
+ t3/2R(t, f),

for 0 < t < T , where:

1. U is an open neighborhood of 0 in R
d × R

d(d−1)/2;
2. π : O(M) → M is the bundle projection;
3. T is an almost surely non negative stopping time;
4. R is bounded in probability when t→ 0.

Remark 13. We believe that the same analysis can be performed in other
bundles than orthonormal bundles. More precisely, we have in mind spinor
bundles. In that case, an analogue of the above approximation theorem seems
closely related to Bismut’s proof of the Atiyah–Singer theorems (see [4]).
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7 Conclusion and Comments

• Let us mention that the geometry of the Chen expansion is also of par-
ticular importance in the “rough paths” theory of T. Lyons [20]. Indeed,
Lyons’ fundamental theorem shows that for any Itô map B → X , coming
from a hypoelliptic system or not, there exists a continuous (in a convenient
topology) map F : C([0, T ],G2(Rd)) → C([0, T ],Rn) such that X = F (B∗),
where B∗ is the lift of B in the free two-step Carnot group G2(Rd).

• As a conclusion, we would like to say that we think that many ideas of
Gromov’s metric geometry could be applied in probability theory.
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Summary. We present a result of homogenization for a class of second order
parabolic partial differential equations with locally periodic coefficients, and highly
oscillating potential. Our method of proof is mainly probabilistic. We deduce the
homogenization result from weak convergence for a class of diffusion processes.

1 Introduction

In this paper we deal with the problem of the homogenization property of
the following singular parabolic PDE in Rd with locally periodic coefficients,
understood in the strong sense of Gilbarg and Trudinger [6] chapter 9, with
a Cauchy type boundary condition uε(0, x) = g(x), for all ε > 0,

∂tu
ε(t, x) = Lεuε(t, x) + λε

(
x,
x

ε

)
uε(t, x), (1)

where

Lε( . ) =
1
2

d∑

i,j=1

aij

(
x,
x

ε

)
∂2
xixj

( . )+
d∑

i=1

(
ε−1bi

(
x,
x

ε

)
+ci

(
x,
x

ε

))
∂xi( . ), (2)

and λε(x) = ε−1e(x, x/ε) + f(x, x/ε). The matrix a(x, y) is assumed to be
symmetric, for all x, y ∈ Rd, and all the coefficients are periodic with respect
to the second variable with period one in each direction in Rd. The latter is
called the fast variable as opposed to the first slow component. The operator
Lε is supposed to be uniformly elliptic. That is ∃β strictly positive and finite
s.t. for all x, y and ξ in Rd,

β‖ξ‖2 � (a(x, y)ξ, ξ). (3)

In studying homogenization, it is required to find the form of the limit
operator L, if any, to the sequence Lε+λεI whereby the real sequence uε(t, x)
also converges to the solution u(t, x) of

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 363–392, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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∂u(t, x)/∂t = Lu(t, x),

subject to the same Cauchy initial boundary condition u(0, x) = g(x). That L
is also a differential operator is well accounted for in, for example, Allaire [1].
Homogenization thus appears as a kind of a reverse process to standard ap-
proximation technics in functional analysis. We intend here to substantially
weaken the known regularity constraints on the coefficients aij(x, y), bi(x, y),
ci(x, y), e(x, y), f(x, y), for x and y in Rd and i, j = 1, . . . , d, that were ob-
served to ensure the validity of the homogenization property. In Bensoussan
and al. [2], for example, it was assumed that all the coefficients were twice
continuously differentiable with bounded partial derivatives, including those
of order zero.

1.1 Probabilistic approach

After the pioneer work of Freidlin [4], the probabilistic way of handling the
problem has been exposed in Chapter 3 of Bensoussan, Lions and Papanico-
laou [2]. Pardoux [8] used that approach in order to solve the fully periodic
case with a highly oscillating potential. For the same approach applied to ran-
dom homogenization, we refer the reader to the survey of Olla [7]. The idea of
the probabilistic approach is to build on some probability space (Ω,F ,Ft, Bt,
Xεt ,P), where Bt is under P an Ft Brownian motion, the diffusions Xεt in Rd

solutions to the stochastic differential equations for 0 � t � T ,

Xεt = x+
∫ t

0

(
ε−1b(Xεs , X

ε
s/ε)+ c(Xεs , X

ε
s/ε)

)
ds+

∫ t

0

σ(Xεs , X
ε
s/ε) dBs, (4)

where the matrix σ satisfies σσ∗(x, y) = a(x, y), whenever sufficient regular-
ity conditions are exhibited. The operator Lε turns out to be the generator of
the Markov process Xεt . Conditions for relative compactness of the laws PXε

in C[0, T ] are looked for. Uniqueness of the limit point P 0 follows from weak
uniqueness of the associated SDE, see Stroock and Varadhan [11]. The gen-
erator L0 that corresponds to the law P 0 is considered to be the limit of the
sequence Lε. To finish off, a Girsanov argument coupled to the Feynman–Kac
formula, which yields an effective (probabilistic) formula for uε(t, x), deals
with the perturbation due to λεI. In the totally periodic case, a crucial idea
due to Freidlin [4], see Pardoux [8] page 499, is to transform, by means of the
scaling property of the Brownian motion, the short space scale into a long time
behaviour of a diffusion on the compact torus T

d. By the works of Doob in
the forties concerning ergodic theory, a limit at t = ∞ does exist, irrespective
of the starting point x/ε. Unfortunately, it is not obvious how to extend this
argument to the locally periodic case and a different approach is called for. At
this stage, we give a few comments on the method of [2] for the convenience
of the reader and for later reference. The ideas pertaining to ergodic theory
are obviously still in force. The idea is to freeze the slow component in (2)
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and consider the family of operators on the compact torus T
d, indexed by x

and acting on y,

Lx,y( . ) =
1
2

d∑

i,j=1

aij(x, y) ∂2
yiyj

( . ) +
d∑

i=1

bi(x, y) ∂yi( . ). (5)

The coefficient c, though present in the limit, plays no asymptotic role as
far as ergodicity is concerned and the leading term is b, that is why the coef-
ficient c does not appear in (5). To these operators correspond the following
diffusions parametrized by x, with transition densities pt(x, y, y′),

Y xt = y +
∫ t

0

b(x, Y xs ) ds+
∫ t

0

σ(x, Y xs ) dBs.

In fact they may be thought of as diffusions on the torus T
d, i.e.,

Ẏ xt = y +
∫ t

0

b
(
x, Ẏ xs

)
ds+

∫ t

0

σ
(
x, Ẏ xs

)
dBs,

with transition densities

ṗt(x, y, y′) =
∑

k1...kd

pt

(
x, y, y′ +

d∑

i=1

kiei

)
,

ei being the canonical basis of Rd and ki integers. In what follows we shall drop
the dots when no ambiguity arises. As already pointed out, these diffusions
possess invariant probability measures µ(x, dy) with densities p∞(x, y). By
standard elementary mechanisms of ergodic theory, to hope for a convergence
as ε→ 0, we need the following centering condition on the singular coefficient
b, which is rather reminiscent of “passing through the eye of a hurricane”, for
all x, ∫

Td

b(x, y)µ(x, dy) = 0. (6)

We can then solve the Poisson equation

Lx,yb̂(x, y) = −b(x, y). (7)

Given enough regularity on the coefficients, for example so as to make
classical calculations, see [2], a solution b̂(x, y) exists and is also periodic in y.
Moreover the b̂ Itô formula can be simultanuously applied to both the slow
and the fast variables. As a result of this, the singularity ε−1 is not only
lifted (by (7)) but the process Xε itself is recovered “unthorned”, at the small
cost of introducing asymptotically small terms. This is in essence the method
of Freidlin [4]. A martingale problem method now leads to the identification
of the unique limit point law P 0 that was seen to exist by tightness. The
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crucial point here is the need for a locally periodic version of the totally
periodic ergodic theorem of Pardoux [8], Proposition 2.4. This is carried out
again by means of the Itô formula applied in the obvious way, though with
less intuition. Our point is that even if we have less regularity, the freezing
procedure above can be pushed further to effectively stop the slow component
on sufficiently small time intervals ∆t. We can achieve this thanks to tightness.
In other words, we fall back, loosely speeking, to the totally periodic case
which needs a single variable and hence less regularity. Our fundamental task
therefore is to assume enough regularity to ensure tightness. Our technical
manipulations on b̂ and related functions are based on those of Pardoux and
Veretennikov [10] who considered ergodic properties on the whole of Rd for a
similar two-component homogenization problem. However, a lot of additional
work is needed, since our regularity assumptions are much weaker than those
in [10].

In Section 2 we state our conditions on the coefficients and prove tightness
by means of an auxiliary technical Lemma which we prove in Section 4. In
Section 3 the limit generator L0 is identified within a technical Lemma left to
Section 5. The convergence of uε(t, x) to u(t, x) is treated in Section 6.

1.2 Notation

Let ξ denote any component of a coefficient a, b, c, e, f . Expressions like
ξ(Xεs , Xεt /ε) will appear many times below. For the sake of clarity, we shall
systematically write instead ξ(s, t). There should be no confusion between
ξ(s, t) meaning the above quantity, and ξ(x, y), since we use different letters
for space and time variables. Moreover we shall systematically write

∆s,tf( . )

to denote the difference
f(t)− f(s).

The space of k times continuously differentiable functions (k �∞) on an open
domain D of Rd is designated by Ck(D) and those with compact support in
D by CkK(D). The linear space of Rd valued continuous functions on [0, T ] is
denoted by C[0, T ]. If u(x) is a function of x in Rd, we shall write ∂xu(x) to
denote the d-dimensional vector whose i-th coordinate is ∂xiu(x) ; similarly
∂2
xu(x) will denote a d× d matrix and so on. The integral part of real number
x is denoted by [x]. The letters R and r, with possibly subscripts and su-
perscripts, are reserved to indicate unimportant remainder quantities against
leading terms. Unimportant constants will invariably be designated by c the
value of which may vary from line to line while proofs are in process but when
there are many constants within a string of relations, we will use c, c′, . . .
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2 Tightness

We first have to get rid of the singularity ε−1 in (4). The function b̂(x, y) need
not behave regularly in the couple (x, y) so that the joint b̂ Itô formula cannot
be applied a priori and the method outlined in the Introduction will not carry
over. However, thanks to the regularity theory exhibited by elliptic equations,
the Poisson equation (7) is apt to yield enough regularity for the use of the
Itô formula on the fast variable, given sufficient regularity of the coefficients
a and b.

2.1 Assumptions on the coefficients

Our standing assumptions are, next to (3), in which β is fixed, and (6),

Condition 1. Global Lipschitz condition : there exists a constant c s.t. for
any ξ = a, b, c and e,

‖ξ(x, y)− ξ(x′, y′)‖ � c
(
‖x− x′‖+ ‖y − y′‖

)
, ∀x, x′ ∈ Rd, y, y′ ∈ T

d.

The function f is continuous and for some p > d and all x ∈ Rd, f(x, . ) ∈
W 1,p(Td), and moreover there exists c(p) <∞ such that

‖f(x, . )‖W 1,p(Td) � c(p).

Condition 2. The partial derivatives ∂xξ(x, y) as well as the mixed deriva-
tives ∂2

xyξ(x, y) exist and are continuous, ξ = a, b and c, x ∈ Rd, y ∈ T
d.

Condition 3. The coefficients are bounded, i.e. there exists a constant c s.t.
for any ξ = a, b, c, e and f ,

‖ξ(x, y)‖ � c, x ∈ Rd, y ∈ T
d.

2.2 Removing the singularity

We have to control the highly oscillating terms. We have

Lemma 1. Let h(x, y) be a continuous bounded function on Rd × T
d such

that for all x ∈ Rd, ∫

Td

h(x, y)µ(x, dy) = 0.

Then we have

ε−1

∫ t

s

h(r, r) dr = ε−1

∫ t

s

(
∆s,rh( . , r) + ∆s,rL . ,rĥ(s, r)

)
dr

+
∫ t

s

∂yĥ(s, r)c(r, r) dr +
∫ t

s

∂yĥ(s, r)σ(r, r) dBr + ε∆t,sĥ(s, . ).
(8)
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Proof. Let ĥ denote the solution of the Poisson equation (see Lemma 7 below).
From the Itô–Krylov formula (see the Appendix in [9]) we have

ε∆s,tĥ(s, . ) = εĥ(s, t)− εĥ(s, s)

= ε−1

∫ t

s

Lr,rĥ(s, r) dr

+
∫ t

s

∂yĥ(s, r)
(
c(r, r) dr + σ(r, r) dBr

)
.

It follows from (7) that

ε−1

∫ t

s

h(r, r) dr = ε−1

∫ t

s

h(r, r) dr − ε−1

∫ t

s

h(s, r) dr

− ε−1

∫ t

s

Ls,rĥ(s, r) dr.

The Lemma follows, by adding these two identities.

Let us take a fine enough equidistant subdivision, ultimately depending
on ε, of the interval [0, T ] by means of the points ti, i = 0, . . . , [T/∆t] = N ,
where t0 = 0, ∆ti = ti+1− ti. We denote by t∗ the largest ti below t, by t∗ the
least ti above t and by Nt the integer [t/∆t], for t � T . Applying the preceding
lemma to b(x, y) on each ∆ti we can derive a representation ofXεt in which the
singularity is removed by introducing a multiplicative small corrector term.
That is, we use the idea of freezing the slow component that was alluded to in
the Introduction. Indeed, removing the singularity ε−1 amounts to introducing
a partition ti of [0, T ] and a sort of localization procedure. This reduction
phenomenon lies at the root of any asymptotic manipulation on Xεt which
has to be carried out by controlling the out-flow ∆ti. Let us first define, for
0 � s � T ,

R0,ε(s∗, s) = ∆s∗,sb( . , s) + ∆s∗,sL . ,sb̂(s∗, s)

F 0,ε(s∗, s) =
(
I + ∂y b̂(s∗, s)

)
c(s, s)

G0,ε(s∗, s) =
(
I + ∂y b̂(s∗, s)

)
σ(s, s)

and state

Corollary 1. With the notations above, we have for 0 � t � T

Xεt∗ = x+
∫ t∗

0

F 0,ε(s∗, s) ds+
∫ t∗

0

G0,ε(s∗, s) dBs + ε−1

∫ t∗

0

R0,ε(s∗, s) ds

+ ε
Nt−1∑

i=0

∆ti+1,ti b̂(ti, . ).
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Before establishing tightness, we need estimates on the growth of the func-
tions b̂(x, y), ∂xb̂(x, y), ∂y b̂(x, y), ∂2

y b̂(x, y) and ∂2
xy b̂(x, y) for x in Rd and y in

T
d. We will see in Section 3 that these functions arise from the last term in

the decompostion of Xεt∗ above, quite like in the case where b̂(x, y) exhibits
more joint regularity, see the Introduction and [2].

Lemma 2. Under the conditions above, there exists a constant c > 0 s.t. for
all x in Rd and y in T

d

∥∥b̂(x, y)
∥∥ +

∥∥∂xb̂(x, y)
∥∥ +

∥∥∂y b̂(x, y)
∥∥ +

∥∥∂2
y b̂(x, y)

∥∥ +
∥∥∂2
xy b̂(x, y)

∥∥ � c,

and these derivatives are continuous.

The proof of this Lemma will be postponed till section 4. For now suppose
it is true.

2.3 Establishing tightness

Let us first prove the

Lemma 3. There exists a constant c s.t. for all ε > 0 and 0 � s < t � T ,

E
(

sup
s�v�t

‖Xεv −Xεs‖4
)

� c
[
(t− s)2 + ε4

]
.

Proof. Let ti be as in corollary 1 and 0 � s � v � t � T , we can write

‖Xεv −Xεs‖ � ‖Xεv∗ −X
ε
s∗‖+ ‖Xεv −Xεv∗‖+ ‖Xεs −Xεs∗‖.

We need to provide a bound on E(supr∗�v�r ‖Xεv −Xεr∗‖) for 0 � r � T .
By Lemma 1 and Lemma 2,

‖Xεv −Xεr∗‖ � c

(
ε−1

∫ v

r∗
‖Xεu −Xεr∗‖ du+ (v − r∗)

+
∥∥∥∥
∫ v

r∗
G0,ε(r∗, u) dBu

∥∥∥∥ + ε
)
.

Therefore by Hölder and convexity,

‖Xεv −Xεr∗‖
4 � c

(
ε−4(v − r∗)3

∫ v

r∗
‖Xεu −Xεr∗‖

4 du+ (v − r∗)4

+
∥∥∥∥
∫ v

r∗
G0,ε(r∗, u) dBu

∥∥∥∥
4

+ ε4
)
.

Hence
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E
(

sup
r∗�v�r

‖Xεv −Xεr∗‖
4

)
� c

[
ε−4(r − r∗)3

∫ r

r∗
E
(

sup
r∗�v�u

‖Xεv −Xεr∗‖
4

)
du

+ (r − r∗)4 + (r − r∗)2 + ε4
]
.

By the Gronwall–Bellman lemma,

E
(

sup
r∗�v�r

‖Xεv −Xεr∗‖
4

)
� c

(
(r − r∗)2 + (r − r∗)4 + ε4

)
ec
′ε−4(r−r∗)4 . (9)

We now choose ∆ti = ε2. With this choice

E
(

sup
r∗�v�r

‖Xεv −Xεr∗‖
4

)
� cε4.

Since from Lemma 2 the function b̂( . , y) is Lipschitz on Rd uniformly in
y ∈ T

d, we have by convexity for s � v � t

E
(

sup
s�v�t

∥∥∥∥
Nv−1∑

i=Ns+1

∆ti−1,ti b̂( . , ti)
∥∥∥∥

4)
� cE

( Nt−1∑

i=Ns+1

‖Xεti −X
ε
ti−1
‖
)4

� c
( t− s

∆ti

)4

ε4.

Hence

E sup
s�v�t

∥∥∥∥ε
Nv−1∑

Ns+1

∆ti−1,ti b̂( . , ti)
∥∥∥∥

4

� c(t− s)4.

These estimates clearly yield by corollary 1

E sup
s�v�t

‖Xεv∗ −X
ε
s∗‖

4 � c
(
(t∗ − s∗)4 + (t∗ − s∗)2 + ε4

)
,

which implies the result, provided t− s � T .

We can now state the

Theorem 1. Under our assumptions on the coefficients, the family of pro-
cesses {Xε, 0 < ε � 1} is tight in C[0, T ].

Proof. By theorem 8.3 in Billingsley [3], it suffices to check that for any α and
δ > 0, there exist 0 < ε0 � 1 and 0 � θ � T such that

θ−1P
(

sup
s�v�s+θ

‖Xεv −Xεs‖ > δ
)
< α,

for all s � T − θ and ε � ε0. This follows easily from Chebychev’s inequality
and the last Lemma.
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3 Identification of the limit

As pointed out in the Introduction, we can recover our process as a main term,
which converges in law, plus asymptotically small terms, thanks to tightness.
We will proceed to the decompostion of our process Xεt by degrees starting
from Corollary 1. Let us take again a subdivision ti depending on ε. We know
by Corollary 1 that

Xεt∗ = x+
∫ t∗

0

(
I + ∂y b̂(s∗, s)

)
c(s, s) ds+

∫ t∗

0

(
I + ∂y b̂(s∗, s)

)
σ(s, s) dBs

+ ε
Nt−1∑

i=0

∆ti+1,ti b̂(ti, . ) +
Nt−1∑

i=0

ε−1

∫

∆ti

(
∆ti,sb( . , s) + ∆ti,sL . ,sb̂(ti, s)

)
ds.

Denote by F 1,ε
2 (s) the process (I+∂y b̂(s∗, s))c(s, s), by G1,ε(s) the process

(I + ∂y b̂(s∗, s))σ(s, s) and define

R1,ε
Nt

=
Nt−1∑

i=0

ε−1

∫

∆ti

(
∆ti,sb( . , s) + ∆ti,sL . ,sb̂(ti, s)

)
ds. (10)

Let us first deal with the last but one sum in Xεt∗ above. We have

S1,ε
Nt

= ε

Nt−1∑

i=0

∆ti+1,ti b̂(ti, . ) = ε

Nt−1∑

i=1

∆ti−1,ti b̂( . , ti)

+ ε
(
b̂(0, 0)− b̂(tNt−1, tNt)

)
.

Define

S2,ε
Nt

= ε

Nt−1∑

i=1

∆ti−1,ti b̂( . , ti)

R2,ε
Nt

= ε
(
b̂(0, 0)− b̂(tNt−1, tNt)

)
. (11)

We clearly have by Lemma 2

S2,ε
Nt

= ε

Nt−1∑

i=1

∫ 1

0

〈
∂xb̂(Xεti−1

+ (∆ti−1,tiX
ε
· , X

ε
ti/ε),∆ti−1,tiX

ε
·
〉
d(

=
Nt−1∑

i=1

∫ ti

ti−1

∂xb̂(ti−1, ti)b(s, s) ds+ ε
Nt−1∑

i=1

∫ ti

ti−1

∂xb̂(ti−1, ti)c(s, s) ds

+ ε
Nt−1∑

i=1

∂xb̂(ti−1, ti)
∫ ti

ti−1

σ(s, s) dBs

+ ε
Nt−1∑

i=1

∫ 1

0

〈
∂xb̂(Xεti−1

+ (∆ti−1,tiX
ε
· , X

ε
ti/ε)− ∂xb̂(ti−1, ti),∆ti−1,tiX

ε
·
〉
d(.
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Let us denote by F 2,ε
1 (s) the process defined on ]ti−1, ti] by ∂xb̂(ti−1, ti)

b(s, s) and define

R3,ε
Nt

= ε

Nt−1∑

i=1

∫ 1

0

〈
∂xb̂

(
Xεti−1

+ (∆ti−1,tiX
ε
· , X

ε
ti/ε

)
− ∂xb̂(ti−1, ti),∆ti−1,tiX

ε
·
〉
d(

+ ε
Nt−1∑

i=1

∫ ti

ti−1

∂xb̂(ti−1, ti)c(s, s) ds

= R3,ε,1
Nt

+R3,ε,2
Nt

.

(12)

Put

S3,ε
Nt

= ε

Nt−1∑

i=1

∂xb̂(ti−1, ti)
∫ ti

ti−1

σ(s, s) dBs,

then look at the stochastic term

S3,ε,i
Nt

= ε ∂xb̂(ti−1, ti)
∫ ti

ti−1

σ(s, s) dBs

= ε∆ti−1,ti∂xb̂(ti−1, . )
∫ ti

ti−1

σ(s, s) dBs + ε
∫ ti

ti−1

∂xb̂(ti−1, ti−1)σ(s, s) dBs.

We have again by Lemma 2

ε
(
∂xb̂(ti−1, ti)− ∂xb̂(ti−1, ti−1)

)
= ∂2

xyb̂(ti−1, ti−1)∆ti−1,tiX
ε
·

+
∫ 1

0

(
∂2
xy b̂

(
Xεti−1

, (Xεti−1
+ (∆ti−1,tiX

ε
· )/ε

)
− ∂2

xyb̂(ti−1, ti−1)
)
∆ti−1,tiX

ε
· d(.

Let us set U i = ∂2
xyb̂(ti−1, ti−1),

S4,ε
Nt

=
Nt−1∑

i=1

∫ ti

ti−1

U iσ(s, s) dBs
∫ ti

ti−1

σ(s, s) dBs

+ε−1
Nt−1∑

i=1

∫ ti

ti−1

U ib(s, s) ds
∫ ti

ti−1

σ(s, s) dBs

+
Nt−1∑

i=1

∫ ti

ti−1

U ic(s, s) ds
∫ ti

ti−1

σ(s, s) dBs

and

R4,ε
Nt

=
Nt−1∑

i=1

∫ 1

0

(
∆!i∂

2
xy b̂

)
∆ti−1,tiX

ε
· d(

∫ ti

ti−1

σ(s, s) dBs

+ ε
Nt−1∑

i=1

∫ ti

ti−1

∂xb̂(ti−1, ti−1)σ(s, s) dBs

= R4,ε,1
Nt

+R4,ε,2
Nt

,

(13)
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where

∆!i∂
2
xy b̂ = ∂2

xy b̂
(
Xεti−1

, (Xεti−1
+ (∆ti−1,tiX

ε
· )/ε

)
− ∂2

xyb̂(ti−1, ti−1).

The third part of the drift of the Itô main process in Xεt∗ is now lurking
in the background. Indeed the first term in S4,ε

Nt
induces us to write F 3,ε

3 (s) =
Tr ∂2

xyb̂a(s, s). We now define R5,ε
Nt

= R5,ε,1
Nt

+R5,ε,2
Nt

, where

R5,ε,1
Nt

= ε−1
Nt−1∑

i=1

∫ ti

ti−1

U ib(s, s) ds
∫ ti

ti−1

σ(s, s) dBs

R5,ε,2
Nt

=
Nt−1∑

i=1

∫ ti

ti−1

U ic(s, s) ds
∫ ti

ti−1

σ(s, s) dBs.

(14)

Before gathering all the main terms and remainders so far obtained over three
steps above, let us smooth out the irregularities in the construction of the main
parts F 2,ε

1 (s) and F 1,ε
2 (s). Note that for the sake of clarity the level at which

a quantity appears is recorded in the superscript and that step zero served
only to derive tightness. Indeed, let us write the following definition

F (x, y) =
(
∂xb̂b+

(
I + ∂y b̂

)
c+ Tr ∂2

xyb̂a
)
(x, y) (15)

= (F1 + F2 + F3)(x, y)

and
G(x, y) =

((
I + ∂y b̂

)
σ
)
(x, y). (16)

Note that F and G are continuous.
These operations involve the extra rests

R6,ε
Nt

=
Nt−1∑

i=1

∫ ti

ti−1

(
∂xb̂(ti−1, ti)− ∂xb̂(s, s)

)
b(s, s) ds, (17)

R7,ε
Nt

=
∫ t∗

0

(
I + ∂y b̂(s∗, s)

)
c(s, s) ds−

∫ t∗

0

(
I + ∂y b̂(s, s)

)
c(s, s) ds, (18)

R8,ε
Nt

=
Nt−1∑

i=1

∫ ti

ti−1

U iσ(s, s) dBs
∫ ti

ti−1

σ(s, s) dBs −
∫ t∗

0

(
Tr ∂2

xy b̂a
)
(s, s) ds

(19)
and

R9,ε
Nt

=
∫ t∗

0

(
I + ∂y b̂(s∗, s)

)
σ(s, s) dBs −

∫ t∗

0

(
I + ∂y b̂(s, s)

)
σ(s, s) dBs. (20)

We have thus proved the
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Lemma 4. For any subdivision ti with constant step ∆ti we have

Xεt∗ = X
ε

t∗ +RεNt
,

where

X
ε

t∗ = x+
∫ t∗

0

F (s, s) ds+
∫ t∗

0

G(s, s) dBs,

and the remainder RεNt
is the sum of the residual quantities, i.e.

RεNt
=

9∑

i=1

Ri,εNt
.

We can now state the following theorem, which deals with the order of
magnitude of the remainder RεNt

. The proof is defered to section 5.

Theorem 2. With the notations above, we have the decomposition

Xεt = X
ε

t +Rεt , t � 0,

where X
ε

t is the Itô process

X
ε

t = x+
∫ t

0

F (s, s) ds+
∫ t

0

G(s, s) dBs,

and the remainder term Rεt satisfies

P
(

sup
t�T

‖Rεt
∥∥ > δ

)
−→ 0, ∀δ > 0.

Therefore, in order to identify the limit points of PXε , it suffices to do
so for those of PXε . We use a martingale problem approach. Let ϕ(x) be a
function in C∞K (Rd) and apply the Itô formula, we have for t � t0

ϕ
(
X
ε

t

)
− ϕ

(
X
ε

s

)
=
∫ t

s

∂xϕ
(
X
ε

r

)(
F (Xεr , X

ε
r/ε

)
dr +G(Xεr , X

ε
r/ε) dBr

)

+
1
2

∫ t

s

Tr ∂2
xϕ

(
X
ε

r

)
(GG∗)(Xεr , X

ε
r/ε) dr.

Now let Φt0( . ), t0 � T , be a bounded continuous functional on the Wiener
space C[0, T ] which depends only on the past up to t0. Define GG∗ = Λ. We
have

E
[(

∆t0,tϕ
(
X
ε

·
)
−
∫ t

t0

(
∂xϕ

(
X
ε

r

)
F (r, r)+

1
2

Tr ∂2
xϕ

(
X
ε

r

)
Λ(r, r)

)
dr
)
Φt0( . )

]
= 0.

(21)
Let us now homogenize F and Λ by setting
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F (x) =
∫

Td

F (x, y)µ(x, dy)

Λ(x) =
∫

Td

Λ(x, y)µ(x, dy)
(22)

The relation (21) becomes

E
[(

∆t0,tϕ
(
X
ε

·
)
−
∫ t

t0

(
∂xϕ

(
X
ε

r

)
F (Xεr )+

1
2

Tr ∂2
xϕ

(
X
ε

r

)
Λ(Xεr )

)
dr
)
Φt0( . )

]

= E
[(∫ t

t0

(
∂xϕ

(
X
ε

r

)
hF (r, r) +

1
2

Tr ∂2
xϕ

(
X
ε

r

)
hΛ(r, r)

)
dr
)
Φt0( . )

]
, (23)

where hF (x, y) = F (x, y) − F (x) and hΛ(x, y = Λ(x, y)− Λ(x). Now observe
that

Lemma 5. If xn → x, then µxn ⇒ µx.

Proof. The collection of probability measures {µ(xn, . ), n = 1, 2, . . .} on the
compact set T

d is tight. Then there exists a subsequence, still denoted {xn},
and a probability measure µ0 on T

d, s. t. µ(xn, . )⇒ µ0.
For any ϕ ∈ C(Td), t � 0,

∫

Td

ϕ(y)µ(xn, dy) =
∫

Td

Ey[ϕ(Y xn
t )]µ(xn, dy),

hence
∫

Td

ϕ(y)µ(xn, dy) =
∫

Td

Ey[ϕ(Y xt )]µ(xn, dy)

+
∫

Td

Ey[ϕ(Y xn
t )− ϕ(Y xt )]µ(xn, dy).

(24)

But since µ(xn, . ) has a density which is bounded uniformly with respect to
n, see e.g. [8],

∣∣∣∣
∫

Td

Ey[ϕ(Y xn
t )− ϕ(Y xt )]µ(xn, dy)

∣∣∣∣ � c

∫

Td

∣∣Ey[ϕ(Y xn
t )− ϕ(Y xt )]

∣∣ dy,

which tends to zero, as n→∞. Consequently, passing to the limit in (24), we
obtain the identity

∫

Td

ϕ(y)µ0(dy) =
∫

Td

Ey[ϕ(Y xt )]µ0(dy),

for all ϕ and all t � 0. Hence µ0 = µ(x, . ), and the whole sequence {µ(xn, . )}
converges to µ(x, . ).

Lemma 6. The functions F ( . ) and G( . ) are continuous.
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Proof. Let xn → x0. We have
∫

Td

F (xn, y)µ(xn, dy) =
∫

Td

(
F (xn, y)− F (x0, y)

)
µ(xn, dy)

+
∫

Td

F (x0, y)µ(xn, dy).

Now
∥∥∥∥
∫

Td

(
F (xn, y)− F (x0, y)

)
µ(xn, dy)

∥∥∥∥ � sup
y∈Td

‖F (xn, y)− F (x0, y)‖,

which converges to zero when xn → x0. On the other hand it follows from the
previous Lemma that

∫

Td

F (x0, y)µ(xn, dy) −→
∫

Td

F (x0, y)µ(x0, dy),

and the continuity of F follows. The same argument yields the continuity ofG.

We need now a locally periodic ergodic theorem to deal with the expected
value on the right in (23).

Theorem 3. Let h(x, y) be a continuous bounded function on Rd × T
d such

that for all x ∈ Rd, ∫

Td

h(x, y)µ(x, dy) = 0,

h(x, . ) ∈W 1,p(Td) for some p > d, and moreover there exists c(p) <∞ such
that

‖h(x, . )‖W 1,p(Td) � c(p).

Suppose moreover that ϕ ∈ C∞K (Rd). Then

Hε(t) =
∫ t

0

ϕ
(
X
ε

s

)
h(Xεs , X

ε
s/ε) ds

converges to zero in L1(Ω) for any 0 < t � T .

Proof. Let us take yet again a subdivision {ti} with ∆ti = ε and write, by
virtue of Lemma 1,

∫

∆ti

ϕ
(
X
ε

ti

)
h(ti, s) ds =

∫

∆ti

ϕ
(
X
ε

ti

)
∆ti,sL·,sĥ(ti, s) ds

+ ε
∫

∆ti

ϕ
(
X
ε

ti

)
∂yĥ(ti, s)c(s, s) ds+ ε

∫

∆ti

ϕ
(
X
ε

ti

)
∂yĥ(ti, s)σ(s, s) dBs

+ ε2∆ti+1,tiϕ
(
X
ε

ti

)
ĥ(ti, . ).

On the other hand for t � T we can write
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Hε(t) =
∫ t

0

ϕ
(
X
ε

s∗

)
h(s∗, s) ds+RεH ,

where

RεH = Hε(t)−
Nt−1∑

i=0

∫

∆ti

ϕ
(
X
ε

ti

)
h(ti, s) ds−

∫ t

t∗
ϕ
(
X
ε

t∗

)
h(t∗, s) ds.

We first have

E
∣∣∣∣
∫ t∗

0

ϕ
(
X
ε

s∗

)
h(s∗, s) ds

∣∣∣∣

� c

Nt−1∑

i=0

(
E
∫

∆ti

‖∆ti,sXε· ‖
(

sup
j,k

∣∣∂yj ,yk
ĥ(ti, s)

∣∣ + sup
j

∣∣∂yj ĥ(ti, s)
∣∣
)

ds

+ εE
∥∥∥∥
∫

∆ti

∂yĥ(ti, s)c(s, s) ds
∥∥∥∥ + εE

∥∥∥∥
∫

∆ti

∂yĥ(ti, s)σ(s, s) dBs

∥∥∥∥

+ ε2 E
∣∣∆ti+1,ti ĥ(ti, .)

∣∣
)
.

By Lemma 15 below (whose proof is easily adapted to our h here) and
Lemma 3, the first term in the right hand side of the inequality above is
bounded by

c

Nt−1∑

i=0

∫

∆ti

E ‖∆ti,sXε· ‖ ds � c′
(
(∆ti)1/2 + ε

)
= c′

(
ε1/2 + ε

)
.

The second term is easier to render small. The third term which involves a
stochastic integral is treated by the Burkholder–Davis–Gundy inequality and
is bounded by cε1/2. The last term is easy given ε2 in front and the choice of
∆ti = ε. It remains to deal with RεH . We have for s in ]ti, ti+1]

ϕ
(
X
ε

s

)
h(s, s)− ϕ

(
X
ε

ti

)
h(ti, s) = ϕ

(
X
ε

ti

)
∆ti,sh( . , s) + ∆ti,sϕ

(
X
ε

·
)
h(s, s).

It suffices to prove that RεH converges to zero in probability, since it is
bounded. Now let δ > 0 and α > 0. If we denote by τε the first exit time
of the process Xεt from the ball B(0,M), where M is large enough so that
M � ‖x‖, then by virtue of tightness, M can be chosen s.t. for all sufficiently
small ε,

P(τε < T ) � α.

Now

P
(∣∣RεH

∣∣ > δ
)

� P
( Nt∑

i=0

∣∣ϕ
(
X
ε

ti

)∣∣
∫

∆ti

|∆ti,sh( . , s)| ds > δ/2
)

+ P
( Nt∑

i=0

∫

∆ti

∣∣∆ti,sϕ
(
X
ε

·
)
h(s, s)

∣∣ds > δ/2
)
.
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As h(x, y) is continuous, it possesses a modulus of continuity denoted by
γM on B(0,M)× T

d. We have

P
( Nt∑

i=0

∣∣ϕ(X
ε

ti)
∣∣
∫

∆ti

|∆ti,sh( . , s)| ds > δ/2
)

� P
( Nt∑

i=0

c sup
s∈∆ti

γM (‖∆ti,sXε· ‖)∆ti > δ/2 and T � τε
)

+ α

� P
(
ct∗ sup

i
sup
s∈∆ti

γM (‖∆ti,sXε· ‖) > δ/2
)

+ α

� P
(
ct∗γM

(
sup
i

sup
s∈∆ti

‖∆ti,sXε· ‖
)
> δ/2

)
+ α.

As the function γM is continuous the probability above is � 2α. On the
other hand,

P
( Nt∑

i=0

∫

∆ti

∣∣∆ti,sϕ
(
X
ε

·
)
h(s, s)

∣∣ ds > δ/2
)

� P
( Nt∑

i=0

c sup
s∈∆ti

∥∥∆ti,sX
ε

·
∥∥
∫

∆ti

|h(s, s)| ds > δ/2
)

� P
(
c sup

i
sup
s∈∆ti

∥∥∆ti,sX
ε

·
∥∥
∫ t∗

0

|h(s, s)| ds > δ/2
)

� α,

for all sufficiently small ε.

We finally have the

Corollary 2. There is only one limit point of the family Xε as ε→ 0, namely
X0, the Itô process solution of the SDE

X0
t = x+

∫ t

0

F (X0
s ) ds+

∫ t

0

Λ
1/2

(X0
s ) dBs,

where F (x) and Λ(x) are defined in (22) (see also (15), (16)).

Proof. Since F (x) and Λ(x) are continuous, it suffices, in order to be able to
apply Stroock and Varadhan’s uniqueness theorem (see Stroock and Varadhan
[11]), to show that for each x ∈ Rd, the matrix Λ(x) is positive definite.
Suppose this is not the case. Then there exists x ∈ Rd and ξ ∈ Rd\{0} s.t.

〈
Λ(x)ξ, ξ

〉
= 0.

But
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〈
Λ(x)ξ, ξ

〉
=
∫

Td

〈a
(
I + ∂y b̂

)∗
ξ,
(
I + ∂y b̂

)∗
ξ〉(x, y)µ(x, dy)

� β

∫

Td

∥∥(I + ∂y b̂
)∗
ξ
∥∥2(x, y)µ(x, dy).

Our assumption implies that (I + ∂y b̂)∗ξ(x, y) = 0 y a.e., or in other words
for all 1 � i � d, and almost all y,

∂yi

〈
b̂, ξ

〉
(x, y) = −ξi.

But there exists 1 � i � d such that ξi �= 0, and this contradicts the periodicity
of the mapping y → 〈̂b, ξ〉(x, y).

4 Proof of lemma 2

The following result, adapted to our needs here, has already been proved in
Pardoux and Veretennikov [9].

Lemma 7. Consider the Poisson equation for the operator Lx,y on the torus
T
d with parameter x

Lx,yĥ(x, y) = −h(x, y),
where h(x, . ) is continuous and satisfies

∫

Td

h(x, y)µ(x, dy) = 0.

Then for all x the Poisson equation has a solution ĥ(x, . ) in ∩p�1W
2,p(Td).

The solution is unique in each W 2,p(Td), if we impose that
∫

Td

ĥ(x, y)µ(x, dy) = 0.

Moreover
ĥ(x, y) =

∫ ∞

0

dt
∫

Td

h(x, y′)pt(x, y, y′) dy′.

We need to trace up the dependence of b̂, and its derivatives, on x. For
some fixed t0 > 0, we should expect

∂b̂(x, y) =
∫ t0

0

dt
∫

Td

∂b(x, y′)pt(x, y, y′) dy′ +
∫ t0

0

dt
∫

Td

b(x, y′)∂pt(x, y, y′) dy′

+
∫ ∞

t0

dt
∫

Td

∂b(x, y′)
(
pt(x, y, y′)− p∞(x, y′)

)
dy′

+
∫ ∞

t0

dt
∫

Td

b(x, y′)∂
(
pt(x, y, y′)− p∞(x, y′)

)
dy′,
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where ∂ stands for derivatives with respect to x, y. We are led to investigate
the asymptotic behaviour of the derivatives of orders zero and one of the
difference inside the third and fourth integral through a few lemmas. There
is no point rewriting the proof of corollary 2.3 on p. 502 of Pardoux [8] which
gives an exponential bound on the semi-group of the diffusion Y xt on T

d. Note
that this estimate has already been derived by Doob in the forties by different
methods. We have the so called spectral gap Lemma.

Lemma 8. There are positive constants c and ' s.t. for all t � 0,
∥∥∥∥E

y f(Y xt )−
∫

Td

f(y′)p∞(x, y′) dy′
∥∥∥∥
L∞(Td)

� c‖f‖L∞(Td)e
−"t,

where f is any bounded measurable function on the torus.

Due to the boundedness condition on the coefficients, it is easily seen that
the constants c and ' can be chosen independent of x. Hence the above can
be rewritten as

Lemma 9. There are positive constants c and ' s.t. for all t � 0 and x ∈ Rd,
y ∈ T

d, ∫

Td

|pt(x, y, y′)− p∞(x, y′)| dy′ � ce−"t.

On the other hand the method of Friedman [5] chap.1 and chap.9.4. theo-
rem 2 gives the following estimates on the derivatives of the transition densities
of Y xt considered on the whole of Rd (the estimate on the derivatives with
respect to the starting point requires the coefficients a and b to satisfy at least
a Lipschitz condition on y)

Lemma 10. For n = 0, 1 and t � T , there are constants c and c′ s.t. for
all x ∣∣∂ny′pt(x, y, y′)

∣∣ � ct−(n+d)/2e−c
′‖y′−y‖2/t

∣∣∂ny pt(x, y, y′)
∣∣ � ct−(n+d)/2e−c

′‖y′−y‖2/t

and these derivatives are continuous.

We deduce from this the fundamental estimate

Lemma 11. Let n = 0, 1, then there exists a constant c s.t. for all x

sup
y

∣∣∂ny′pt(x, y, y′)− ∂ny′p∞(x, y′)
∣∣ � ce−"t.

Proof. By the Chapman–Kolmogorov identity

∂ny′pt(x, y, y
′) =

∫

Td

pt−1(x, y, y′′)∂ny′p1(x, y
′′, y′) dy′′

∂ny′p∞(x, y′) =
∫

Td

p∞(x, y′′)∂ny′p1(x, y
′′, y′) dy′′,
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therefore

∣∣∆t,∞∂ny′p·(x, y, y′)
∣∣ �

∫

Td

∣∣∆t−1,∞p·(x, y, y′′)
∣∣ ∣∣∂ny′p1(x, y′′, y′)

∣∣ dy′′,

and the Lemma follows from Lemma 9 and Lemma 10.

The following exponential estimate on the derivative with respect to the
starting point of the transition densities makes matters easier to deal with
than in the case of the Rd ergodic theory considered in [10].

Lemma 12. We have for some c and all x, y, t � 1,
∣∣∂ypt(x, y, y′)

∣∣ � ce−"t.

Proof. Clearly

∣∣∂ypt(x, y, y′)
∣∣ =

∣∣∣∣
∫

Td

∂yp1(x, y, y′′)
(
pt−1(x, y′′, y′)− p∞(x, y′)

)
dy′′

∣∣∣∣

� ce−"t.

Now, we are in the position to prove the

Lemma 13. There exists a constant c s.t. for all x, y
∥∥b̂(x, y)

∥∥ � c.

Proof. We have for any t0 fixed

b̂(x, y) =
∫ ∞

0

dt
∫

Td

b(x, y′)
(
pt(x, y, y′)− p∞(x, y′)

)
dy′.

By Lemma 9 and the boundedness of b(x, y) we arrive at the desired result.

Returning to the study of ∂b̂(x, y) we can state

Lemma 14. For some constant c, we have for all x, y
∥∥∂y b̂(x, y)

∥∥ � c.

Proof. The result follows from Lemma 12 and

∂y b̂(x, y) =
∫ ∞

0

dt
∫

Td

b(x, y′)∂ypt(x, y, y′) dy′.

Consider now the second partial derivatives ∂2
y b̂(x, y).

Lemma 15. For some constant c we have for all x, y,
∥∥∂2
y b̂(x, y)

∥∥ � c.
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Proof. As the coefficients a and b are Lipschitz with repect to y, we have from
(7)

Lx,y∂y b̂(x, y) = −∂yb(x, y)− ∂yLx,y b̂(x, y).
It then follows from a variant of Lemma 9.17 in [6] that there exists c s.t.

for all x ∈ Rd and p � 1,

sup
i,j,k

∥∥∂3
yiyjyk

b̂(x, . )
∥∥
Lp(Td)

� c.

Since we can choose p > d, we have from the Sobolev embedding theorem
that for some c,

sup
i,j

∥∥∂2
yiyj

b̂(x, y)
∥∥
L∞(R2d)

� c.

Let us now deal with the partial derivatives of b̂(x, y) with respect to x.

Lemma 16. We have for some constant c and all x, y,
∥∥∂xb̂(x, y)

∥∥ � c.

Proof. We should have

∂xb̂(x, y) =
∫ t0

0

dt
∫

Td

∂xb(x, y′)pt(x, y, y′) dy′

+
∫ t0

0

dt
∫

Td

b(x, y′)∂xpt(x, y, y′) dy′

+
∫ ∞

t0

dt
∫

Td

∂xb(x, y′)
(
pt(x, y, y′)− p∞(x, y′)

)
dy′

+
∫ ∞

t0

dt
∫

Td

b(x, y′)
(
∂xpt(x, y, y′)− ∂xp∞(x, y′)

)
dy′

= I1x(x, y) + I2x(x, y) + I∞,1x (x, y) + I∞,2x (x, y).

We will use now an explicit formula for the derivative of the transition densities
with respect to x, which is denoted qt(x, y, y′), that was established in Pardoux
and Veretennikov [10]. Indeed, by writing ∆pt( . , y, y′) as the solution of a
parabolic PDE, qt(x, y, y′) can be directly represented by the well known
formula for the solutions for a Cauchy initial boundary condition ; namely
we have

qt(x, y, y′) =
∫ t

0

ds
∫

Td

∂xL
∗
x,y′′pt−s(x, y, y

′′)ps(x, y′′, y′) dy′′. (25)

Now we pass on to

Lemma 17. Consider the full transition densities pt(x, y, y′) on Rd. Then
for any T > 0, there exist constants c and c′ such that for all 0 � t � T ,
x, y, y′ ∈ Rd, ∣∣qt(x, y, y′)

∣∣ � ct−d/2e−c
′‖y′−y‖2/t,

and these derivatives are continuous.
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Proof. We have obviously

L∗x,y( . ) = 1/2
∑

i,j

∂yi

(
aij(x, y)∂yj ( . )

)
−
∑

i

∂yi

(
b̃i(x, y)( . )

)
,

where b̃i(x, y) = bi(x, y)− 1
2

∑
j ∂yjaij(x, y). Therefore

qt(x, y, y′)

= −
∑

i

∫ t

0

ds
∫

Td

1/2
∑

j

∂xaij(x, y′′)∂y′′j pt−s(x, y, y
′′)∂y′′i ps(x, y

′′, y′) dy′′

+
∑

i

∫ t

0

ds
∫

Td

∂xb̃i(x, y′′)pt−s(x, y, y′′)∂y′′i ps(x, y
′′, y′) dy′′.

By standard properties of independent Gaussian laws, the Lemma follows
easily.

The relevant bounds on I1x(x, y), I
2
x(x, y) and I∞,1x (x, y) are now straight-

forward.

We carry on with

Lemma 18. Given the same hypotheses as in the previous Lemma, we have
1) q∞(x, y′) = limt→∞ qt(x, y, y′) = ∂xp∞(x, y′);
2) for some c we have |qt(x, y, y′)− q∞(x, y′)| � (c+ c′t)e−"t.

Proof. The first point is in [10] theorem 6. On the other hand, we want an
estimate on qt(x, y, y′) − q∞(x, y′) as a function of t, which is small enough
to allow for a further integral convergence when we come to derivatives of
b̂(x, y) expressed by the Pardoux–Veretennikov formula in Lemma 7 above.
We therefore have to consider the following two parts

∆∞,tq.(x, y, y′) =
∫ t

0

ds
∫

Td

∂xL
∗
x,y′′∆∞,t−sp.(x, y, y

′′)ps(x, y′′, y′) dy′′

−
∫ ∞

t

ds
∫

Td

∂xL
∗
x,y′′p∞(x, y′′)ps(x, y′′, y′) dy′′.

Let us consider the first term on the right hand side above. We have
∫ t

0

ds
∫

Td

∂xL
∗
x,y′′∆∞,t−sp·(x, y, y

′′)ps(x, y′′, y′) dy′′

= −
∑

i

∫ t

0

ds
∫

Td

1/2
∑

j

∂xaij(x, y′′)∂y′′j ∆∞,t−sp·(x, y, y′′)

× ∂y′′i ps(x, y
′′, y′) dy′′

+
∑

i

∫ t

0

ds
∫

Td

∂xb̃i(x, y′′)∆∞,t−sp·(x, y, y′′)∂y′′i ps(x, y
′′, y′) dy′′,
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hence, this term is bounded in absolute value by

c

∫ t

0

e−"(t−s)e−"s ds = cte−"t.

To consider the second term we need to write

∂y′′p∞(x, y′′) =
∫

Td

p∞(x, y′)∂y′′p1(x, y′, y′′) dy′.

We note that
∣∣∂y′′p∞(x, y′′)

∣∣ �
∫

Td

p∞(x, y′)
∣∣∂y′′p1(x, y′, y′′)

∣∣ dy′ � c.

Therefore
∣∣∣∣
∑

i

∫ ∞

t

ds
∫

Td

1/2
∑

j

∂xaij(x, y′′)∂y′′j p∞(x, y′′)∂y′′i ps(x, y
′′, y′) dy′′

∣∣∣∣

� c

∫ ∞

t

e−"s ds = c′e−"t.

The other integration by parts gives the same result. Consequently, the
bound on I∞,2x (x, y) follows.

In the end, we look at the mixed derivatives.

Lemma 19. We have for some constant c and all x, y,
∥∥∂2
xy b̂(x, y)

∥∥ � c.

Proof. Let us write

∂xy b̂(x, y) =
∫ ∞

0

dt
∫

Td

∂xb(x, y′)∂ypt(x, y, y′) dy′

+
∫ ∞

0

dt
∫

Td

b(x, y′)∂yqt(x, y, y′) dy′

= I∞,1xy (x, y) + I∞,2xy (x, y).

As in the case of ∂y b̂(x, y), the integral I∞,1xy (x, y) is easily seen to be
bounded by c. In order to estimate the other term, we write

∂yqt(x, y, y′)

=
∫ t

0

ds
∫

Td

∂xL
∗
x,y′′∂ypt−s(x, y, y

′′)ps(x, y′′, y′) dy′′

= −
∑

i

∫ t

0

ds
∫

Td

1/2
∑

j

∂xaij(x, y′′)∂2
yy′′j
pt−s(x, y, y′′)∂y′′i ps(x, y

′′, y′) dy′′

+
∑

i

∫ t

0

ds
∫

Td

∂xb̃i(x, y′′)∂ypt−s(x, y, y′′)∂y′′i ps(x, y
′′, y′) dy′′

(26)



Diffusion with locally periodic coefficients 385

and remark that

∂2
yy′′pt−s(x, y, y

′′) =
∫

Td

∂ypt−s−1(x, y, y′)∂y′′p1(x, y′, y′′) dy′.

It now follows from Lemma 12 that
∣∣∂ypt−s−1(x, y, y′)

∣∣ � ce−"(t−s−1)

∣∣∂y′′ps(x, y′′, y′)
∣∣ � ce−"s

∣∣∂ypt−s(x, y, y′′)
∣∣ � ce−"(t−s).

Replacing this into (26), we see that
∣∣∂yqt(x, y, y′)

∣∣ � cte−"t,

so that the bound on I∞,2xy (x, y) follows immediately.

Note that the above considerations show that under our conditions, all our
partial derivatives are continuous.

5 Proof of theorem 2

Fix δ > 0 and t � T . Let us choose the optimal subdivision ∆ti = ε2. Now
let α > 0. Let again τε be the exit time from the ball B(0,M) by the process
Xεt . There exists an M so large that for all 0 < ε � 1,

P(τε < T ) � α.

The fundamental subdivision above will serve as a lever that controls the
new subdivisions ∆ik t = ε2/k, k being a natural number which depends on α
and is to be chosen below. In this way we can effectively control Rεt in which
there is a wild discrepancy between the behaviour of R1,ε

Nt
in (10) and R3,ε

Nt
in

(12). In what follows, manipulations with respect to the finer subdivision tik ,
ik = 0, 1, 2, . . . , will be specified by a subscript k. In particular,Nk,t = [kt/ε2].
We have from Lemma 4

RεNt
= Xεt∗ −X

ε

t∗ =
(
Xεt∗ −X

ε
tk,∗

)
+
(
Xεtk,∗ −X

ε

t∗

)
.

On the other hand
Xεtk,∗ = RεNk,t

+X
ε

tk,∗ ,

hence

P
(∥∥RεNt

∥∥ > δ
)

� P
(∥∥Xεt∗ −X

ε
tk,∗

∥∥ > δ/3
)

+ P
(∥∥Xεtk,∗ −X

ε

t∗

∥∥ > δ/3
)
+ P

(∥∥RεNk,t

∥∥ > δ/3
)
.
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By tightness, the first term of the right hand side of the last inequality
is dominated by cδ−1ε. Since F and G are bounded, the second term is also
dominated by cδ−1ε. Let us turn to

P
(∥∥RεNk,t

∥∥ > δ/3
)

�
9∑

i=1

P
(∥∥Ri,εNk,t

∥∥ > cδ
)
.

Let us begin with the critical probabilities. The estimate (9), which is fine
enough for tightness, is however insufficient here and we need the

Lemma 20. For some c > 0, we have for any 0 � r � T

E ‖Xεr −Xεr∗‖ � c
[
ε−1(r − r∗) + r − r∗ + (r − r∗)1/2

]
.

Proof. Due to the boundedness of the integrands, it is an immediate conse-
quence of (4).

We have

P
(∥∥R1,ε

Nk,t

∥∥ > cδ
)

� c′δ−1ε−1

Nk,t−1∑

ik=0

∫

∆tik

E
∥∥∆tik

,sX
ε
·
∥∥ds

� cδ−1
(
ε−2∆tik + ε−1∆tik + ε−1(∆tik)1/2

)

= cδ−1
(
k−1 + εk−1 + k−1/2

)

� α,

provided ε � 1 and k is large enough but fixed, which we assume from now
on. On the other hand

P
(∥∥R3,ε,1

Nk,t

∥∥ > cδ
)

� P
(∥∥R3,ε,1

Nk,t

∥∥ > cδ and T � τε
)

+ α.

We clearly have

‖R3,ε,1
Nk,t

‖ � ε sup
ik

γ∂x b̂

(∥∥Xεtik
−Xεtik−1

∥∥)
(Nk,t−1∑

ik=1

‖∆tik−1,tik
Xε· ‖

)
,

where γ∂x b̂
is a modulus of continuity of ∂xb̂ on B(0,M)× T

d. Now put

Bε,k,1 = k1/2 sup
ik

γ∂xb̂

(∥∥Xεtik
−Xεtik−1

∥∥)

and

Bε,k,2 = k−1/2ε

Nk,t−1∑

ik=1

‖∆tik−1,tik
Xε· ‖.

We obviously have
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‖R3,ε,1
Nk,t

‖ � Bε,k,1 ×Bε,k,2.
Now by Cauchy–Schwarz,

E
(
B2
ε,k,2

)
� c,

and Bε,k,1 tends to zero in probability, as ε → 0, hence we can choose 0 <
ε0 � 1 such that for all 0 < ε � ε0,

P
(∥∥R3,ε,1

Nk,t

∥∥ > cδ
)

� c′α.

The other remainders are treated similarly because no new fundamental
asymptotic phenomenon arises. Indeed, the rests R2,ε

Nk,t
, R3,ε,2

Nk,t
and R4,ε,2

Nk,t
are

easily treated. The quantity R4,ε,1
Nk,t

and R5,ε,1
Nk,t

behave exactly as R1,ε
Nk,t

does.
Indeed we use the following equation obtained clearly from (7)

Lx,y∂xb̂(x, y) = −∂xb(x, y)− ∂xLx,yb̂(x, y),

which garanties a Lipschitz condition on the function ∂2
xyb̂(x, . ).

The term R5,ε,2
Nk,t

is simple. The remaining rests on the list are R6,ε
Nk,t

to

R9,ε
Nk,t

, which clearly tend to zero in probability, as ε tends to zero.
Obviously, all the above estimates are uniform in t � T .

6 Convergence of uε(t, x) to u(t, x)

For us, the solution uε(t, x) to equation (1) subject to the Cauchy initial value
problem uε(0, x) = g(x), for all ε > 0, where g(x) is supposed to be continuous
with at most polynomial growth at infinity is given by the Feynman–Kac
formula

uε(t, x) = E g(Xεt ) exp
(∫ t

0

λε(s, s) ds
)
. (27)

Clearly, e(x, y) must be centered, i.e. we assume that
∫

Td

e(x, y)µ(x, dy) = 0, ∀x ∈ Rd. (28)

Let us first define a few items. Set Y εt =
∫ t
0
λε(s, s) ds and recall that the

functions F (x, y) and G(x, y) were defined in (15) and (16). Furthermore put

Fe(x, y) =
(
∂xêb+ ∂y êc+ Tr ∂2

xy êa
)
(x, y)

and
Ge(x, y) = (∂y êσ)(x, y).

Fix t � T and x in Rd. It follows from Corollary 1 and Theorem 2 that
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Xεt = X
ε

t +Rεt ,

Y εt = Y
ε

t + rεt ,

where

X
ε

t = x+
∫ t

0

F (s, s) ds+
∫ t

0

G(s, s) dBs,

Y
ε

t =
∫ t

0

(f + Fe)(s, s) ds+
∫ t

0

Ge(s, s) dBs,

and both Rεt and rεt converge to zero in probability (uniformly in t � T ), as
ε→ 0.

We now use a Girsanov transform to get rid of the stochastic integral in
the argument of the exponential in (27) above. Indeed, let P̃ denote a new
probability measure s.t. (with the notation Λe = GeG

∗
e)

dP̃
dP

∣∣∣
Ft

= exp
(∫ t

0

Ge(s, s) dBs − 1/2
∫ t

0

Λe(s, s) ds
)
.

Then (27) becomes

uε(t, x) = Ẽ
[
g
(
X
ε

t +Rεt
)
exp

(∫ t

0

(f + Fe + 1/2Λe)(s, s) ds+ rεt

)]
, (29)

where

X
ε

t = x+
∫ t

0

(
F +

(
I + ∂y b̂

)
a∂y ê

∗
)
(s, s) ds+

∫ t

0

G(s, s) dB̃s,

in which (B̃t, t � 0) is a P̃ Brownian motion. The stochastic integrals and
finite variation processes inside Rεt and rεt undergo similar changes. It is clear
that under P̃, these remainders converge to zero in probability. Moreover,
define

f̃(x, y) = (f + Fe + 1/2Λe)(x, y),

C(x) =
∫

Td

f̃(x, y)µ(x, dy),

and let us write ∫ t

0

f̃(s, s) ds =
∫ t

0

C(X0
s ) ds+ r̃εt ,

where

r̃εt =
∫ t

0

(
f̃(s, s)− C(Xεs )

)
ds+

∫ t

0

(
C(Xεs )− C(X0

s )
)
ds.

Clearly, r̃εt converges to zero in probability (under P̃). Now we are able to
state the



Diffusion with locally periodic coefficients 389

Theorem 4. Let t � T and x in Rd, then

uε(t, x) → u(t, x),

as ε→ 0, and the limiting PDE is the following equation

∂tu(t, x) = 1/2
d∑

i,j=1

Aij(x) ∂2
xixj

u(t, x) +
d∑

i=1

Bi(x) ∂xiu(t, x) + C(x)u(t, x),

where
A(x) =

∫

Td

(
I + ∂y b̂

)
a
(
I + ∂y b̂

)∗(x, y)µ(x, dy)

and
B(x) =

∫

Td

(
F +

(
I + ∂y b̂

)
a∂yê

∗
)
(x, y)µ(x, dy).

Proof. It suffices to check that the family of random variables given by

ςε = g
(
X
ε

t +Rεt
)
exp

(∫ t

0

f̃(s, s) ds+ rεt

)

is P̃ uniformly integrable for 0 < ε � 1. Since f̃ is bounded and g grows at
most polynomially at infinity, the required uniform integrability follows from
the following three Lemmas:

Lemma 21. For any t � T and p > 0, there exists a constant c s.t. for all
ε > 0,

Ẽ
∥∥Xεt

∥∥p � c.

Lemma 22. For any t � T and p > 0, there exists a constant c s.t. for all
ε > 0,

Ẽ‖Rεt‖p � c.

Lemma 23. For any t � T and ' > 0, there exists a constant c s.t. for all
ε > 0,

Ẽ exp('rεt ) � c.

Since Rε and rε have similar forms, Lemma 23 is strictly more difficult to
establish than Lemma 22. Hence we will prove only Lemma 21 and Lemma 23.

Proof of Lemma 21. Since F and G are bounded, it suffices to apply the
Cauchy–Schwarz (resp. the Burkholder–Davis–Gundy) inequality to the Lebes-
gue (resp. the stochastic) integral term in the expression of X

ε

t to yield the
desired result.
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Proof of Lemma 23. The only estimates which are not straightforward are
those that exhibit the behaviour of

r1,εNt
=
Nt−1∑

i=0

ε−1

∫

∆ti

(
∆ti,se( . , s) + ∆ti,sL·,sê(ti, s)

)
ds,

with ∆ti = ε2. Hence, in the spirit of section 5, if we can show that for any
' > 0, t > 0,

sup
ε>0

sup
0�s�t

Ẽ exp
('
ε
‖Xεs −Xεs∗‖

)
<∞. (30)

Then we would write

r1,εt � ct∗ε
−1

∫ t∗

0

‖Xεs −Xεs∗‖
ds
t∗
,

hence we deduce from Jensen’s inequality that

Ẽ exp('r1,εt ) �
∫ t∗

0

Ẽ exp
(c't∗
ε
‖Xεs −Xεs∗‖

) ds
t∗

� sup
0�s�t

Ẽ exp
(c't
ε
‖Xεs −Xεs∗‖

)

<∞,

where we have used (30) for the last line.
It thus remains to prove (30). Since s − s∗ � ε2, we have for some c > 0

and all s � t,

(1 − cε) sup
s∗�v�s

‖Xεv −Xεs∗‖ � c

(
ε+ ε2 + sup

s∗�v�s

∥∥∥∥
∫ v

s∗
G0,ε(s∗, u) dB̃u

∥∥∥∥

)
.

Choosing ε small enough, we deduce

c

ε
‖Xεs −Xεs∗‖ � c′ + sup

s∗�v�s

c′′

ε

∥∥∥∥
∫ v

s∗
G0,ε(s∗, u) dB̃u

∥∥∥∥.

Hence our result will follow from the

Lemma 24. Let {Mt, t � 0} be a d-dimensional continuous martingale of
the form

Mt =
∫ t

0

ϕs dBs,

where {Bt, t � 0} is a k-dimensional standard Brownian motion, and
{ϕt, t � 0} is a d × k-dimensional adapted stochastic process, such that
‖ϕt‖ � K, a.s., for all t � 0. Then there exists a constant c depending
only on the dimension d such that

E exp
(

sup
0�s�t

‖Ms‖
)

� c exp
(
cK2t

)
.
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Proof. We have

exp
(

sup
0�s�t

‖Ms‖
)

�
d∏

i=1

exp
(

sup
0�s�t

|M i
s|
)

�
d∏

i=1

[
exp

(
sup

0�s�t
M i
s

)
+ exp

(
sup

0�s�t
(−M i

s)
)]
.

Consequently

E
(
esup0�s�t ‖Ms‖

)
�

( d∏

i=1

E
(
esup0�s�tM

i
s + esup0�s�t(−Mi

s)
)d)1/d

� 2d−1

( d∏

i=1

(
E ed sup0�s�tM

i
s + E ed sup0�s�t(−Mi

s)
))1/d

.

(31)

It thus remains to estimate E exp(d sup0�s�tMs) whenM is one-dimensional.
In that case,

Mt =
∫ t

0

ϕs dBs = W∫ t
0 |ϕs|2 ds,

where {Wt, t � 0} is a standard one-dimensional Brownian motion. Let T =
K2t. We have

sup
0�s�t

Ms � sup
0�r�T

Wr .

But sup0�r�T Wr has the same law as |WT |. Hence,

E exp
(
d sup

0�r�T
Wt

)
= E exp(d|WT |)

� 2E exp(dWT ) = 2 exp
(
d2T

2

)
= 2 exp

(
d2K2t

2

)
. (32)

The result follows from (31) and (32).
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Contributors to the Séminaire are reminded that their articles should be for-
matted for the Springer Lecture Notes series.

Manuscripts should preferably be prepared with LATEX version 2e, using
the macro packages provided by Springer for multi-authored books. These files
can be downloaded using your web browser from:

ftp://ftp.springer.de/pub/tex/latex/mathegl/mult



VISIT THE WEB SITE OF THE SÉMINAIRE!
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find a historical account of the Séminaire, and an on-line index by authors, or
volumes. You have also access to notices on the content of the articles, with
hyperlinks between the notices. A search engine allows you to explore these
notices by keywords or classification.

The database consisting of the notices for all articles is still under con-
struction; about one half of the entire collection has been analyzed so far.

All your comments and suggestions are most welcome. As explained on
the site, you can help us, in particular with the content of the notices.




