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Abstract 

The major function of parallel computing system is how to coordinate communication between the various processors. Some 
parallel computing techniques require specialized programming to permit the processors to work together in parallel. It can be 
seen that on Monte Carlo simulations, algorithms proceed by averaging large numbers of computed values. It is sometimes 
straightforward to have different processors compute different values, and then use an appropriate average of these values to 
produce a final result. In this paper give an introduction to the generalized Monte Carlo method and its related algorithms. This 
paper aims to describe Monte Carlo methods with parallel computing techniques and to present some Monte Carlo algorithms 
to solve some problems in gas dynamics. 
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1. Introduction

We have already known that in the computer science where 
the subject of parallel computing is very prominent and 
includes such as parallel randomized algorithms and parallel 
simulation. Nowadays, as computer processors become 
cheaper and more plentiful, there is great potential for having 
them compute together in a coordinated application. A major 
point of parallel computing is how to coordinate 
communication between the various processors; indeed, some 
parallel computing techniques require specialized 
programming to permit the processors to work together in 
parallel. It can be seen that on Monte Carlo simulations, 
algorithms proceed by averaging large numbers of computed 
values. It is sometimes straightforward to have different 
processors compute different values, and then use an 
appropriate average of these values to produce a final answer.  

The complex nonlinear structure of the collision integral 
and the large number of variables (seven in the general case) 
present severe difficulties for the analysis including the 
numerical analysis. The high dimension, the probabilistic 

nature of the kinetic processes, and complex molecular 
interaction models are the natural prerequisites for the 
application of the Monte Carlo methods. The first paper 
devoted to the Monte Carlo method was published as early as 
in 1873 [1]. It described the experimental determination of  π 
by a realization of the stochastic process of tossing a needle on 
a sheet of ruled paper. A striking example is the use of von 
Neumann’s idea to simulate the neutron trajectories in the Los 
Alamos laboratory in 1940. Although the Monte Carlo 
methods require a large amount of computations, the absence 
of computers at that time did not discourage the researchers. 
The name of these methods comes from the capital of the 
Principality of Monaco, which is famous for its Casino; indeed, 
the roulettes used in the casino are perfect tools for generating 
random numbers. The first paper [2] that systematically 
expanded this method was published in 1949. In that paper, 
the Monte Carlo method was used to solve linear integral 
equations. It could easily be guessed that these equations were 
related to the problem of the passage of neutrons through 
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matter. In Russia, studies concerning the Monte Carlo 
methods appeared after the Geneva International Conference 
on the Peaceful Uses of Atomic Energy. One of the first 
Russian studies is [3]. 

The numerical statistical methods in rarefied gas dynamics 
developed in three directions: the use of the Monte Carlo 
methods to evaluate the collision integrals in the regular finite 
difference schemes for solving the kinetic equations; the direct 
statistical simulation of physical phenomena, which is 
subdivided into two approaches: the simulation of trajectories 
of test particles by the Haviland method [4] and the simulation 
of the evolution of the ensemble of particles by the Bird 
method [5]; the construction of a stochastic process using the 
Ulam–Neumann procedure [6] corresponding to the solution 
of the kinetic equation. 

The revelation of the direct simulation of method Monte 
Carlo (DSMC) in various areas of the applied mathematics is 
connected, as a rule, with the necessity of solution of the 
qualitatively new problems, arising from the needs of practice. 
Such a situation appeared by the creation of the atomic 
weapon, at the initial stage of a mastering of space, by the 
investigation of the phenomena of atmospheric optics, of the 
physical chemistry, and of the modeling of turbulence (G. von 
Neumann, Metropolis N., Unlam S., Vladimirov V.S., Sobol 
I.M., Marchuk G.I., Ermakov, S.M., Mikhailov G.A., Bird 
G.A., Haviland J.K., Lavin M.D., Pullin D.I., Kogan M.N., 
Perepukhov V.A., Beloserkovskii O.M., Yanitskii V.E., 
Khlopkov Yu.I., Ivanov M.S. and Eropheev A.I.). 

The aim of this paper is to present the Monte Carlo methods 
with parallel techniques. In this paper present some Monte 
Carlo algorithms to solve some parallel computation 
problems. 

2. General Principle of Monte Carlo 

Methods 

The general scheme of the Monte Carlo method is based on 
the central limit theorem, which states that, the random 
quantity 
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equal to the sum of a large number of random variables with 
the same expectation m and the same dispersions σ2. They 
have the normal distribution with the expectation N and the 
variance N σ2. Assume that we want to solve an equation or 
find the result of some process I. If we can construct the 
random variable ξ with the probability density p(x) such that 
the expectation of this variable is equal to the unknown 
solution M(ξ) = I, then we obtain a simple method for 
estimating the solution and its error: 
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This implies the general properties of the Monte Carlo 
methods as below: 

- the absolute convergence to the solution with the rate 1/N. 
- an unfavorable dependence of the error ε on the number of 

trials: ε ≈ 1/√N (to reduce the error by an order of magnitude, 
the number of trials must by increased by two orders of 
magnitude). 

- the main method of reducing the error is the variance 
reduction; in other words, this is a good choice of the 
probability density p(x) of the random variable ξ in 
accordance with the physical and mathematical formulation of 
the problem. 

- the error is independent of the dimensionality of the 
problem. 

- a simple structure of the computation algorithm (the 
computations needed to realize a proper random variable are 
repeated N times). 

The structure of the random variable ξ can be generally 
based on a physical model of the process that does not require 
a formulation of the controlling equations as in regular 
methods; this fact is increasingly important for modern 
problems. 

We illustrate the main features of the Monte Carlo methods 
and the conditions under which these methods outperform the 
conventional finite difference methods or are inferior to them 
using the following example. Suppose that we want to 
evaluate the definite integral of a continuous function over the 
interval [a, b]: 

To evaluate this integral using the Monte Carlo method, we 
construct a random variable with the probability density p(x) 
such that  

(ξ) ξ ( )М p x dx

∞

−∞

= ⋅∫  

is equal to I. Now, if we set ξ = f(x)/p(x) within the integration 
limits, then we have, by the central limit theorem, 
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On the one hand, the evaluation of I by above formula can 
be interpreted as the solution of mathematically stated 
problem; on the other hand, it can be interpreted as a direct 
simulation of the area under the function of f(x). The 
evaluation of the one-dimensional integral I1 by the Monte 
Carlo method corresponds to the computation of I using the 
rectangular rule with the step ∆x ≈ 1/ √N and an error O(∆x). If 
f(x) is sufficiently “good”, the integral I1 in the 
one-dimensional case can be calculated accurate to O(∆x

2) 
using the trapezoid rule, accurate to O(∆x

3) using the 
parabolic rule, and to any desired accuracy without a 
considerable increase in the computational effort. In the 
multidimensional case, the difficulties in using schemes of a 
high order of accuracy increase; for this reason, they are rarely 
used for the calculation of n-dimensional integrals In for n ≥ 3. 

Let us compare the efficiency of the regular and statistical 
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methods for the problem described above. Let n be the 
dimensionality of the problem, Y be the number of nodes on an 
axis, R = Y 

n
 be the total number of nodes for the regular 

methods, q be the order of accuracy, N be the number of 
statistical trials, and ν be the number of operations needed to 
process one node (to perform one statistical trial). Then, εL = Y 
–q

 is the error of the regular methods, εK = N 
–1/2 is the error of 

the statistical methods, L(ε) = ν⋅R = ν⋅ε-n/q  is the number of 
operations when the problem is solved by a regular method, 
and K(ε) = ν⋅N = ν⋅ε −2 is the number of operations when the 
problem is solved by the Monte Carlo method. Then, in the 
case of an equal number of operations needed to obtain a 
solution with the same accuracy using each of the methods, we 
have n = 2q. Therefore, for n ≥ 3 and q = 1 (first-order 
schemes), the Monte Carlo methods are preferable. For other 
classes of problems, the relation between the efficiency of the 
methods can be different [7-12]. 

3. Parallelization of the Statistical 

Algorithms 

The parallelization of computations for the high-productive 
supercomputer systems appears to be one of the main ways of 
development of the modern computational mathematics. The 
supercomputers are the more and more widely used for a 
solution of the fundamental and applied problems in the areas 
of nuclear physics, climatology, economics, pharmacology, 
modeling of the training devices, and of the virtual reality, 
computational aerodynamics. Due to those specific features of 
the Monte Carlo methods, which were repeatedly stressed in 
the present paper, the statistical modeling begins to play the 
more and more noticeable role in all, indicated above areas of 
science and techniques. For these reasons, the actuality of the 
problems mentioned is growing very considerably, taking into 
account the fact that the computational aerodynamics is the 
most promoted area of the elaboration, development, and 
application of the Monte Carlo methods. As the mentioned 
above features of these methods permit to state, that the 
numerical schemes of a statistical modeling might be, in quite 
a natural way, transferred onto the parallel processors. The 
present authors are not aware of any studies on the 
parallelization of computations involving the methods, based 
on the modeling of trajectories of the “trial particles”, but, 
nevertheless, the way of distribution of computations is, in this 
case, quite evident. Clearly, the successive modeling of the 
independent trajectories should be entrusted to the individual 
processors, while the information for the averaging will be 
gathered by a server. 

Equally clearly is, that in this case, the productivity of the 
method is growing in direct proportionality to the number of 
parallel processors. As it is seen from the analysis of materials 
of the International Symposia on Rarefied Gas Dynamics, in 
the present time the statistical method, most popular all around 
the world, is the method of modeling of the “evolution of the 
ensemble of particles”, proposed by Bird [13, 14], and the 
modifications of that method. Therefore, the most of scientific 

works on the distribution of computations is devoted just to 
that method. 

One of the ways of such a distribution is, moreover, 
sufficiently evident. Since the structure of a computational 
algorithm possess a similarity for any temporal cut, at each of 
the processors the problem is set in its complete volume, while 
the information for averaging in time is coming to a server. 
Once again, it is evident, that the productivity of a method 
grows in a direct proportionality to the number of parallel 
processors. 

Clearly, such an evident way of parallelization of the 
computations lays rather essential limitations on the class of 
those problems, which might be treated with the help of 
parallels computers. First, each individual processor should 
possess a sufficient power for the autonomous 
accommodation inside of itself of the complete problem, and 
such a demand is automatically excluding the modeling of 
complicated and multi-dimensional processes with a large 
volume of information. Second, lost is the possibility of using 
the memory of the parallel system in its totality, as well as its 
additional possibilities. And there is yet another reason, which 
stipulates the necessity for the elaboration of new methods of 
the distribution of computations. The supercomputers are 
rather expensive and not easily accessible. In the quality of 
their alternative appear the network cluster systems, or the 
network clusters, that is, the totalities of computers united by a 
network and possessing the common control. The network 
cluster systems are comparatively inexpensive, relatively 
simple in their arrangement, and by the sufficient quantity of 
active machinery they provide the productivity, comparable to 
that of supercomputers. Used here is the library of Message 
Passing Interface (MPI), which presents a low-level, but, at 
the same time, extremely convenient interface of the 
programming for a network cluster, and is based on the idea of 
exchange by communications among the parallel processors. 

The programming for a network clusters is different from 
the usual models of programming on the basis of one 
processor, or even of the multitude of them. As concerns the 
network, the realization of the usual mechanism of the 
exchange of information is proved to be difficult because of 
the high overhead expenses, stipulated by the necessity to let 
to each of the processors the individual copy of one and the 
same dividable memory. Moreover, the solution of modern 
problems demands the increase of a total volume of the 
accessible operative memory of parallel computers. For this 
reason, by the programming for the network clusters is used, 
as a rule, the Single Program-Multiple Data technology 
(SPMD). The idea of SPMD consists in a tendency to divide 
the large array of information between the identical 
processors.  

In this paper, we would like to describe the usage of 
Message Passing Interface (MPI), which presents a low-level, 
but, at the same time, extremely convenient interface of the 
programming for a network cluster, and is based on the idea of 
exchange by communications among the parallel processors 
[8]. The programming for a network clusters is different from 
the usual models of programming on the basis of one 



4 Yuri Ivanovich Khlopkov et al.:  Monte Carlo Method and Its Parallel Computing Technique in Molecular Gas Dynamics 
 

processor, or even of the multitude of them. 
As concerns the network, the realization of the usual 

mechanism of the exchange of information is proved to be 
difficult because of the high overhead expenses, stipulated by 
the necessity to let to each of the processors the individual 
copy of one and the same dividable memory. Moreover, the 
solution of modern problems demands the increase of a total 
volume of the accessible operative memory of parallel 
computers. For this reason, by the programming for the 
network clusters is used, as a rule, the Single 
Program-Multiple Data technology (SPMD). The idea of 
SPMD consists in a tendency to divide the large array of 
information between the identical processors. After that each 
of the processors will carry out the processing of its part of 
data. In the case of SPMD-approach it would be sufficient to 
send from time to time to the processors the blocks of data, 
which are demanding the labor-consuming treatment, and 
afterwards — to gather the results of their work. If the time of 
processing of the block of data by one processor is 
considerably larger than the time of sending of that block 
through the network, then the network cluster systems 
becomes to be very effective. Just such an approach is used in 
MPI.  

Here always exists a certain main processor, which realizes 
the distribution of data between the other processors, and upon 
the termination of computations gathers the results and 
demonstrates them to the user. Usually, after the distribution 
of data the master processor carries out the processing of the 
part of these data, thus aspiring to use the system’s resources 
in the most effective way. Actually, each of the 
communications presents in itself a packet of the typified data, 
which one of the processors might send to the other one or to 
the group of them. 

4. Structure of the Parallel Algorithm 

Here in the basis of a parallel algorithm is set the method by 
Belotserkovskii–Yanitskii. The algorithm is elaborated taking 
into account the demand for the low expenditures on the 
acceptation/transmission and on the processing of information 
connected with the interaction of the master processor and the 
several subordinated processors. Thus, the structure of 
algorithm appears as follow:  

1. The motion of particles is divided into two stages: 
collision and transfer.  

2. Before the beginning of the calculations each of the 
subordinated processors obtains from the master one the range 
of those numbers of cells (the numeration of the cells is 
one-dimensional and through), which this processor should 
use, as well as the initial data introduced by user. After that 
each of the subordinated processors generates the particles 
within its own range of cells and in accordance to the initial 
conditions. 

3. Begins the process of computation, by which each of the 
subordinated processors works only with its range of cells.  

4. Before each of the new steps is carried out the 
computation of dt-step in time. Each of the subordinated 

processors sends its minimal dt to the master one, where is 
determined the common minimal dt and sent to all the 
subordinated processors. 

5. Each of the subordinated processors realizes the collision 
of particles. 

6. Each of the subordinated processors realizes the transfer 
of particles. During that event those particles, which fly out of 
the range of cell’s numbers for the present processor, are 
transported into the buffer for the subsequent sending to the 
master processor. 

7. Sending of the particles, which flew out of the range of 
cell’s numbers to the master processor.  

8. Sorting of the particles accepted into groups connected 
with processors and sending these particles to the 
subordinated processors. 

9. Repeating of the points from 4 up to 8, till the moment, 
when will be reached the prescribed time t of the experiment. 

The scheme of the parallel algorithm working with a 
designation of the stages of the data exchange between the 
processors is as below: 

Master processor 

1. Introduction of the parameters of computation  
2. Sending of the parameters of computation to the 

subordinated processor 
3. Transference of the boundaries of a computational area 
4. Minimal time step dt to the master one 
5. Obtainment and the choice of minimal step dt  

6. Transference of the minimal temporal step dt  

7. Sending the particles to the master processor 
8. Obtainment of the arrays of particles  
9. Formation of arrays for subordinate processors 
10. Transfer of the arrays to the corresponding subordinate 

processors 
Repetition of the steps from 5 to 10  
Subordinated processor 

1. Introduction of the parameters of computation 
2. Obtainment of the parameters of computation 
3. Obtainment of the boundaries of a computational area 
4. Initialization of the initial distribution 
5. Transference of the step dt 

6. Obtainment and recording of step dt 
7. The cycle over all the cells: 
• Collision of the particles 
• Transfer of the particles 
• The particle in computational area array of the particles 
• The particle out of computational area buffer for the 

transference 
8. Transference of buffer to the master processor 
9. Obtainment of the array of particles caught by the area of 

computations for the present computer 
10. Repetition of the steps from 5 to 9 
The use of a notion of the distributed operative memory, 

when the operative memory of several computers is acting as 
integrity. Such an approach is increasing not only the 
accessible volume of a memory, but also its aggregate working 
ability, since the processes of reading/writing are going on at 
several computers in parallel and independently of each other. 
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5. Some Results by Monte Carlo 

Methods 

With the help of this method was solved, in particular, the 
rather labor-consuming problem of the interferention of two 
turbulent spots and aerodynamic characteristic of hypersonic 
vehicles [7, 8, 14, 15]. The turbulence presents in itself the 
most complicated area of the mechanics of fluid and gas, 
connected with the stochastical processes, with the 
complicated nonlinear equations, with the 
multi-dimensionality, and with the large volumes of 
information. The numerical study of the various phenomena in 
turbulence is hampered by the fact that the existing 
mathematical models of turbulence are not numerous and not 
perfect. Moreover, many of these phenomena do not possess 
the reliable physical model. For these reasons, those properties 
of the Monte Carlo methods in their application to the study of 
turbulent flows, which were formulated in the work [8, 16]. 
The distribution functions of turbulent spots are described in 
figure 1 and 2.  

 

Fig. 1. The distribution functions of turbulent energy of the interacting spots 

at t = 0 

 

Fig. 2. Functions of the distribution of turbulent energy of the interacting 

spots at t = 40 

The DSMC method is commonly used to simulate rarefied 
flow problems, and the accuracy of the method depends 
directly on the accuracy of the gas-surface interaction model 
[9-12]. The Maxwell model is the most widely used and is 
based on classical thermodynamics in which it is assumed that 
molecules will either reflect diffusely from a surface with 
complete energy accommodation or will reflect specularly 
with no change in energy. An accommodation coefficient ατ is 
defined which specifies the fraction of molecules that will be 
scattered diffusely, with ατ = 0 giving complete specular 
reflection, and ατ = 1 giving complete diffuse reflection. In the 
(Cercignani-Lampic-Lord, CLL) model, the transformations 
of the normal and tangential components of velocity are 
assumed to be manually independent.  

 

Fig. 3. Dependencies Cx (α) with different gas-surface interaction models 

The Lennard-Jones potential function reflected the fact that 
the attractive forces dominated at high distances, and the 
repulsive forces dominated at small distances. The calculation 
was carried out in a range of angles of attack from –90° to 90°. 
The angle of attack changed by rotating the body around the 
center of mass around the axis z. Parameters of the problem as 
follows: velocity relationship V∞ /√2RT∞ = 20, the ratio of 
specific heat is 5/3. The total particles were using 5×106 
particles. The tangential accommodation coefficient ατ = 1 and 
the energy accommodation coefficient αn = 1. 

The results of the aerodynamic characteristics of reentry 
vehicle by using Monte Carlo method with different 
gas-surface interaction models are described in fig 3. In figure 
shows the coefficient of aerodynamic force Cx with 
application of different models (Maxwell, Lennard-Jones, 
CLL). The coefficient Cx increase as the angle of attack 
increase. The multiple reflections have not been taken into 
account, since they are not significant for this body at the 
variation of the angle of attack. It is clear that the coefficient is 
sensitive to different models of interaction of molecules with 
surface. The method used in this paper is good for calculation 
aerodynamic characteristics of reentry vehicles. 
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6. Conclusions 

With the connection Monte Carlo methods parallel 
computing techniques is growing the actuality of the studies 
conducted in many areas [17, 18], such as the computational 
aerodynamics of the most advanced area of physics and 
mathematics. Thus, formulated is the connection between the 
direct statistical modeling of the aerodynamical processes and 
the solution of kinetic equations, and it is shown that the 
contemporary stage of the development of computational 
methods proves to be inconceivable without a complex 
approach to the construction of algorithms taking into account 
all the peculiarities of the problem to be solved: the physical 
nature of a process, the mathematical model, the theoretical 
aspects of computational mathematics, and of stochastical 
processes. Considered are the possible ways of development 
of the methods of statistical modeling.  
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