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SoiCP: A Seamless Outdoor–Indoor
Crowdsensing Positioning System

Zan Li , Xiaohui Zhao , Fengye Hu , Zhongliang Zhao , José Luis Carrera Villacrés, and Torsten Braun

Abstract—Seamless outdoor–indoor positioning plays a critical
role in many emerging applications, e.g., large-coverage user nav-
igation in cities, smart buildings, and analytics of user spatial
location big data. It is still challenging to construct a large-
scale seamless outdoor–indoor positioning system due to the
limited coverage of indoor positioning. In this paper, we pro-
pose a seamless outdoor–indoor crowdsensing positioning (SoiCP)
system in which a radio map is automatically constructed based
on crowdsourcing pedestrian dead reckoning (PDR) traces with-
out professional site surveying. The constructed radio map is
robust to inaccurate PDR traces and does not rely on prior
knowledge of floor plans. In SoiCP, the crowdsensed radio map is
obtained by a proposed three-step trace matching algorithm. This
algorithm leverages building gates and WiFi fingerprints as land-
marks to merge the noisy crowdsourcing traces and accurately
construct the user walking paths. Moreover, following the crowd-
sensed radio map, SoiCP uses an enhanced particle filter to fuse
PDR, GPS, and WiFi fingerprinting for seamless outdoor–indoor
positioning with high accuracy. The comprehensive real-world
experiments in two large-scale shopping malls demonstrate that
SoiCP can effectively crowdsense the walking paths and track
moving users with high accuracy.

Index Terms—Crowdsensing, indoor positioning, particle filter,
trace matching.

I. INTRODUCTION

IN RECENT years, the location information of people has
become increasingly important for many emerging appli-

cations, such as large-coverage location-based services (LBS),
smart buildings, and analytics of user spatial location big
data. Although the global positioning system (GPS) provides
satisfactory outdoor positioning services, it does not work
indoor. WiFi is currently the dominant wireless local area
networking standard and is becoming the leading technol-
ogy for indoor positioning [1]–[3]. WiFi fingerprinting based
on received signal strength indicator (RSSI) has been widely
used in commercial indoor positioning systems because of
its high accuracy and ubiquitousness. Generally, a traditional
fingerprinting system requires a radio map comprised of a
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massive number of WiFi fingerprints. Each WiFi fingerprint
consists of an RSSI list and its ground truth location label. To
build up radio maps, professionals consume huge amount of
time to conduct site surveying for the ground truth location
labels [4]. Therefore, at present, the traditional fingerprint-
ing systems are merely deployed at certain buildings where
a site survey has been conducted by professionals. They can-
not achieve large coverage of indoor positioning services for a
massive number of buildings to meet the requirement of seam-
less outdoor–indoor positioning, e.g., in the scenario of smart
cities.

To avoid intensive training efforts in fingerprinting, it is
becoming interesting for researchers to crowdsense radio maps
based on crowdsourcing user traces. Crowdsensing indoor
positioning systems collect location-related information from
crowdsourcing users instead of professionals, such as WiFi
RSSI, pedestrian dead reckoning (PDR) traces, and GPS, to
automatically build radio maps. Several researchers [5]–[9] uti-
lize floor plans and landmarks to estimate the locations of the
crowdsourcing users for labeling radio maps. However, floor
plans are normally not available for large-scale positioning.
Hence, crowdsensing walking paths without floor plans has
a potential for automatic construction of radio maps in ubiq-
uitous positioning. Trace matching algorithms are the critical
technique for crowdsensing walking paths by adjusting the
locations of the raw traces based on limitations among the
traces defined by indoor landmarks such as radio signals and
magnetic field. Although some studies [10], [11] have been
conducted for trace matching and claim good accuracy, they
are derived and verified under the conditions that the rotation
errors of the raw traces are small and Gaussian distributed,
which may not be realistic in some real-world crowdsourcing
scenarios.

In this paper, we propose a seamless outdoor–indoor crowd-
sensing positioning (SoiCP) system without site surveying, as
shown in Fig. 1. SoiCP requires neither priori knowledge of
a floor plan nor manual initialization of PDR traces to crowd-
sense a radio map. It is robust to biased rotation of PDR traces
caused by magnetic interference. Additionally, we design an
enhanced particle filter to fuse PDR, GPS, and WiFi finger-
printing for seamless outdoor–indoor positioning. Our main
contributions are summarized in two aspects as follows.

A. Crowdsensing Radio Map

We propose a three-step (intra, inner, and inter) trace
matching algorithm as shown in Fig. 2 to merge noisy user
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Fig. 1. SoiCP system.

Fig. 2. Three-step trace matching algorithm.

traces collected by crowdsourcing for automatic construction
of indoor walking paths. This algorithm relies on two kinds
of ubiquitous landmarks, i.e., building gates and WiFi fin-
gerprints. In the algorithm, intratrace matching merges the
opportunistic outdoor–indoor PDR traces in which users walk
through a target building to generate parts of walking paths
according to the building gates as landmarks. An unsuper-
vised learning approach, density-based spatial clustering of
applications with noise (DBSCAN) [12], is adopted based on
WiFi similarity to cluster and locate the gate points which are
defined as the step points detected as building gates on the
traces. Then, we design an inner trace matching algorithm to
compensate the turning errors of the indoor PDR traces by
minimizing an indicator named “force” which is defined as
a weighted summation of physical distances among the WiFi
fingerprints with high similarity. Finally, we design an inter-
trace matching algorithm by merging the processed indoor
PDR traces to the outdoor–indoor ones. We also formulate
the intertrace matching problem as an optimization problem to
minimize the forces between the indoor and outdoor–indoor
PDR traces by translating and rotating the indoor PDR traces.

Note that the indoor PDR traces are preprocessed based on an
enhanced magnetic interference detection method to reduce
the rotation errors. The crowdsensed walking paths are used
to label the WiFi fingerprints in the radio map.

B. Seamless Outdoor–Indoor Positioning

We design an enhanced particle filter to fuse PDR, GPS,
and WiFi fingerprinting for seamless outdoor–indoor posi-
tioning according to the crowdsensed radio map. In the
particle filter, we propose enhanced methods for both system
and observation models. For the system model, an adaptive
heading direction estimation algorithm relying on the afore-
mentioned enhanced magnetic interference detection algorithm
is proposed to design an enhanced PDR for updating particles.
For the observation model, GPS is used outdoor to update
the associated weights of the particles in which a GPS accu-
racy detection algorithm and an adaptive observation model are
proposed. The estimated locations based on WiFi fingerprint-
ing are taken as indoor measurements to update the associated
weights. Moreover, an enhanced indoor and outdoor detector
(IO detector) is proposed to switch the observation models.

According to our comprehensive experiments conducted in
two large-scale shopping malls, SoiCP crowdsenses walking
paths with mean accuracies of 2.8 and 2.6 m. In indoor
environments, SoiCP can track moving users with mean accu-
racies of 3.0 and 2.9 m by integrating PDR, GPS, and
WiFi fingerprinting, which outperforms WiFi fingerprinting
and PDR-GPS fusion algorithms.

In the remainder of this paper, the related work is reviewed
in Section II. The problems and challenges for crowdsensing
positioning are discussed in Section III. Our main contribu-
tions in SoiCP are presented in Sections IV–VI. Section IV
presents an overview of the system and the methods for raw
user trace generation. Section V introduces the three-step trace
matching algorithm for crowdsensing radio maps. Section VI
presents the proposed particle filter for seamless outdoor–
indoor positioning. Section VII describes the experiments and
evaluation results in the large-scale shopping malls. Finally,
Section VIII concludes this paper.

II. RELATED WORK

A. Pedestrian Dead Reckoning

PDR is a key technique used in both crowdsensing radio
maps and fusion-based positioning. PDR is comprised of three
parts, i.e., step detection, step length estimation, and heading
direction estimation. For step detection, one step is detected
based on a pair of peak and valley in the measured accelerom-
eter data [13]. However, noisy accelerometer data may degrade
its accuracy. For step length estimation, a linear model for the
step frequency and length is often used [14]. Heading direc-
tion estimation obtained by a compass or a gyroscope is the
most challenging part in PDR. A compass designed by a mag-
netic sensor can obtain the absolute direction but is subject to
magnetic interference inside buildings whose direction devi-
ation may be larger than 100◦ [15]. The heading direction
can also be obtained by integrating the angle velocity from
gyroscope based on an initial angle as a reference, which is
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TABLE I
DIFFERENT CROWDSENSING RADIO MAP SYSTEMS

normally accurate for a short time but prone to accumulated
errors in long-time measurements. There are many studies
conducted in fusion of compass and gyroscope to improve
the accuracy of heading direction estimation. X-AHRS [16]
fuses gyroscope, accelerometer, and magnetometer to estimate
Euler angles in which a parameter β is introduced to tune
the impact of magnetometer and gyroscope on the estimated
Euler angles. β is determined by the magnetic interference
inside buildings but the interference is difficult to know.
Li et al. [17] and Hong et al. [18] proposed to obtain head-
ing errors based on floor plans which are however unavailable
for some positioning scenarios, especially the crowdsourcing
cases. A magnetic interference detection algorithm is proposed
in [19] by comparing the Euler angles estimated by magne-
tometer and gyroscope. The algorithm can only detect the local
distorted magnetic field in limited areas but cannot handle the
entire distorted magnetic field affected by the iron structures of
buildings.

B. Crowdsensing Radio Maps

To avoid labor-intensive site surveying, crowdsensing radio
map approaches have recently been proposed. Zee [6] is
an early crowdsensing indoor positioning system with zero
efforts leveraging the movement of users and a floor plan
to filter infeasible locations over time. UnLoc [7] is another
crowdsensing indoor positioning system relying on some fixed
landmarks with known locations in a floor plan to achieve
trace matching. LIFS [5] leverages crowdsourcing PDR traces
and a floor plan to automatically construct a 3-D radio map.
Yu et al. [20] detected the door of each room as a refer-
ence location and cluster the fingerprints which are linked to
their corresponding physical locations based on a floor plan.
Ramchandran [21] leveraged a floor plan and wearable sen-
sors to get the ground truth locations of the data collectors.
RCILS [22] abstracts the indoor map as the semantics graph
in which the edges are the possible user paths and the ver-
texes are the locations where users may take special activities.
RCILS requires a floor plan for matching the graph to the tar-
get building. Zhuang et al. [23] adopted a commercial PDR
algorithm to obtain the accurate user traces and construct the
radio map. Li et al. [24] proposed a robust PDR algorithms.
They leveraged big data techniques to obtain large amount of
user traces and mark these traces with an accuracy indicator
used to improve positioning accuracy. However, this approach
requires large amount of time to collect enough PDR traces
for positioning. FineLoc [25] leverages bluetooth to efficiently
merge the user traces. Benefitting from the small coverage
of bluetooth, the traces can be accurately merged. To know
the absolute location of the generated walking paths in the

target building, some bluetooth nodes with known locations
are required. However, the floor plans or additional devices,
e.g., wearable sensors, commercial PDR systems, and blue-
tooth nodes in the aforementioned works, may not be available
for some crowdsourcing positioning scenarios especially for
smart cities with a large number of buildings.

Much research has been conducted in crowdsensing
radio map without assistant of floor plans and additional
devices. Walkie-Markie [11], PiLoc [10], and its extension
MPiLoc [26] are the most similar systems as this paper which
leverage WiFi similarity to merge the user traces. Precisely,
leveraging crowdsourcing PDR traces and WiFi access points
as landmarks, Walkie-Markie generates the indoor walking
paths of buildings. It needs to find the correct locations of the
WiFi access points on each trace based on their largest RSSIs.
However, due to the instability of WiFi RSSI, the locations
of WiFi access points may not be reliable and correspond-
ingly influence the generated walking paths. On the other hand,
Walkie-Markie requires the direction errors of PDR traces fol-
lowing a zero-mean Gaussian distribution and a measurement
with long time for enough user traces is necessary for trace
matching. Additionally, the absolute locations of the walk-
ing paths are not provided in Walkie-Markie. PiLoc clusters
user traces based on their shapes and WiFi similarity, and
merges the traces by averaging the corresponding step points
in the same cluster. Moreover, the authors further extend PiLoc
to support multifloor radio map crowdsensing in a system
called MPiLoc. For PiLoc and MPiLoc, the direction errors
of PDR traces are assumed to be small and follow a zero-
mean Gaussian distribution. In this case, they can cluster the
traces with their shapes and merges the traces by simply aver-
aging the corresponding step points in the same cluster. Large
direction errors will significantly affect the trace clustering
and merging. On the other hand, the authors mention that
the absolute locations of the walking paths can be obtained
by some occasional GPS locations near windows, but they
do not provide a clear solution. In practice, indoor GPS sig-
nals obtained from windows are normally unreliable. Different
from Walkie-Markie, PiLoc and its extension MPiLoC, we tar-
get on a crowdsensing radio map system without assistant of
floor plans, in which the direction errors of the raw traces are
random and the absolute locations of the walking paths are
obtained.

Table I lists the differences among some recent crowdsens-
ing radio map systems.

C. Seamless Indoor and Outdoor Positioning

To achieve large coverage of LBSs, seamless indoor and
outdoor positioning fusing multimodel sensors is required.
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Bayesian filters are often utilized for sensor fusion such
as Kalman filter (KF), extended Kalman filter (EKF), and
particle filter. In indoor environments, Li et al. [27] adopted
a Kalman filter to fuse inertial sensors and WiFi finger-
prints for indoor positioning. Moreover, they extended their
solution to support 3-D positioning by fusing barometers.
However, their solution only considers positioning in indoor
environments but not work for outdoor environments. In out-
door environments, Kim et al. [28] and Kourogi et al. [29]
adopted Kalman filters for GPS-inertial measurement unit
(IMU) fusion. The covariance of GPS measurements in the
Kalman filters is set based on GPS accuracy detected by
the distribution of satellites and signal to noise ratio (SNR)
of the received GPS signals. For indoor environments, WiFi
signals are often integrated with IMU sensors for indoor posi-
tioning. References [30]–[32] fuse IMU sensors and WiFi
RSSI by particle filters. Weyn et al. [33] fused GPS, WiFi,
and global system for mobile communications (GSM) signals
in the measurement models of particle filters with different
weights to achieve a seamless indoor and outdoor positioning
without distinguishing the users’ indoor and outdoor status.
Hansen et al. [34] investigated four strategies for GPS and
WiFi fingerprinting handover.

Nowadays, with various sensors integrated in smartphones,
indoor and outdoor detection (IO detection) is more often used
as a switching engine to switch the indoor and outdoor posi-
tioning techniques. Morillo et al. [35] and Hardegger et al. [36]
proposed combined approaches with radio signals and iner-
tial sensors to achieve outdoor exit detection. However, in
those work [35], [36], the detection accuracy is not given.
According to our experience, these approaches relying only
on radio signals and inertial sensors are normally not accurate
enough for real-time switching indoor and outdoor position-
ing. Li et al. [37] designed an IO detection by integrating light
sensor, cellular network information, and magnetic sensor with
a hidden Markov model (HMM) estimator, which achieves
a detection precision of higher than 90%. Radu et al. [38]
proposed a semisupervised learning solution by integrating
more information, such as battery temperature and micro-
phone detected noise amplitude, and they declared a detection
precision of 93.3% with high robustness. The high detection
accuracy in [37] and [38] mainly relies on the light sen-
sors. Although IO detection based on light sensors is reliable,
light sensors may not be always available, especially when
smartphones are placed in pockets.

We propose a preliminary approach for crowdsensing radio
maps based on building gates and WiFi fingerprints as land-
marks in [39] (a conference paper). The work of [39] is the
basis of this paper. In this paper, we extend the crowdsensing
walking paths algorithm in [39] to support trace matching with
multiple gate points. Then, leveraging an enhanced magnetic
inference detection algorithm, we improve intratrace matching
by a joint estimation of rotation angle and locations. Moreover,
we provide an accurate seamless outdoor–indoor positioning
algorithm based on an enhanced particle filter in this paper. We
conduct comprehensive experiments to test the effectiveness of
the SoiCP system.

Fig. 3. PDR errors.

III. PROBLEM STATEMENT AND TECHNICAL CHALLENGES

To design a seamless outdoor–indoor positioning system
without site surveying and priori knowledge of floor plans,
we need to handle the following issues.

A. Crowdsensing Radio Map

1) PDR Errors: Due to the inaccuracy of inertial sensors
and PDR algorithms, the errors of the collected PDR traces
can be divided into three categories. We take Fig. 3 as an
instance, in which a user walks along the path from points A to
B and back to point A (marked as A’) twice. Two PDR traces,
namely PDR1 and PDR2, are obtained according to PDR algo-
rithms. First, due to the drift of gyroscope, the turning angles
at turn B cannot be accurately measured, which produces turn-
ing errors θ ′. Therefore, the shapes of PDR traces are different
from the ground truth paths. Second, the PDR traces may
rotate with certain angles owing to the distorted indoor mag-
netic field, which is referred to as rotation errors �′. Third,
because of the step length errors, the lengths of PDR traces
can also be different from the ground truth lengths.

2) Uncertainty of Absolute Locations: The collected PDR
traces only indicate the relative movement of users without
absolute locations, e.g., latitude and longitude in the World
Geographic Reference System (GEOREF). For a crowdsourc-
ing system, it is unrealistic to initialize each PDR trace with a
known starting point. Even if certain PDR traces may oppor-
tunistically obtain GPS locations around a target building,
these PDR traces are generally not accurate enough to pro-
duce walking paths because of low GPS accuracy near tall
buildings.

3) Trace Matching: Due to the PDR errors and the uncer-
tainty of absolute locations, the PDR traces may represent
different walking paths even if they are collected from the
same ground truth path. As shown in Fig. 3, PDR1 and
PDR2 are separated even if they are collected from the same
path. To recover the walking paths of a target building, we
need to design trace matching algorithms to merge (parts of)
the PDR traces collected from the same ground truth path.
Typically, trace matching can be achieved by leveraging some
fixed landmarks with known locations in the target building,
such as stairs, elevators, and doors. However, in a real-world
crowdsensing positioning scenario, the locations of these land-
marks are difficult to obtain because floor plans are normally
unavailable.
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B. Seamless Outdoor–Indoor Positioning

1) Sensor Fusion: Particle filter is a powerful tool to
fuse multiple positioning techniques for seamless outdoor
and indoor positioning. A properly designed particle filter
is required to adaptively switch or fuse different positioning
techniques to achieve higher accuracy.

2) Indoor and Outdoor Detection: Accurate IO detection
is critical for switching indoor and outdoor positioning tech-
niques. Light sensors can accurately detect indoor and outdoor
status with short delay. However, in certain cases that the light
sensors are unavailable, radio signals such as cellular networks
and WiFi are used for IO detection, which, however, may
encounter large delay due to the instability of radio signals.

3) GPS Accuracy Detection: In outdoor environments, GPS
is fused with inertial sensors in particle filters. The accuracy
of GPS determines its impact on the final locations. GPS accu-
racy reported from Android phones is calculated by many
factors, e.g., distribution of the observed satellites, SNR of
the received GPS signals, and pseudo ranges. However, the
Android-reported GPS accuracy is still not reliable according
to some preliminary tests.

4) Heading Direction Estimation: PDR positioning based
on inertial sensors are used in a particle filter for both outdoor
and indoor positioning. As the most challenging part, heading
direction estimation is subject to indoor magnetic interference
and finally affects the positioning accuracy.

C. Target and Challenges of This Paper

In this paper, we mainly aim to answer two questions.
1) Is it possible to design a trace matching algorithm to

effectively merge the noisy crowdsourcing traces with
large PDR errors and uncertain absolute locations?

2) How can we efficiently fuse PDR, GPS, and WiFi
fingerprinting to achieve seamless outdoor–indoor posi-
tioning?

To answer and solve the aforementioned questions, we must
handle the following challenges, respectively, for crowdsens-
ing radio map and seamless outdoor–indoor positioning.

1) Noisy PDR Traces: As mentioned above, it is challeng-
ing to obtain PDR traces with high accuracy. Especially,
the distortion of indoor magnetic field will significantly
affect the estimation of heading direction. For both
crowdsensing radio map and seamless outdoor–indoor
positioning, PDR algorithms play an important role.
Hence, compensation of heading direction errors result-
ing from the indoor magnetic field is a key to the whole
system.

2) Noisy GPS Locations: GPS locations are used for assign-
ing absolute locations to the user traces on the step of
crowdsensing radio map and also for outdoor position-
ing on the step of seamless outdoor–indoor positioning.
However, GPS locations are normally noisy, especially
around the tall buildings, and its accuracy is difficult to
obtain. Hence, it is necessary to design a reliable GPS
accuracy detection method.

3) Landmarks for Trace Matching: WiFi signals are often
used for tracing matching as landmarks due to their

ubiquitousness. However, they are normally unstable and
lack of absolute locations to recover the walking paths.
Hence, our designed trace matching algorithm with WiFi
signals should be robust to the instability of WiFi sig-
nals. Moreover, in addition to WiFi signals, we need to
find another kind of landmarks to further improve trace
matching and obtain the absolute locations of walking
paths.

4) IO Detection: IO detection is critical to switch the indoor
and outdoor positioning techniques in seamless outdoor–
indoor positioning. Light sensors are normally reliable
to design an IO detector but they can only be used
when the light intensity significantly changes between
indoor and outdoor environments. Otherwise, the tradi-
tional solutions with ubiquitous signals, such as WiFi
signals, magnetic field, and GPS signals are normally
unreliable. Therefore, to design a reliable IO detector is
another significant issue for seamless indoor and outdoor
positioning.

IV. OVERVIEW OF SEAMLESS OUTDOOR–INDOOR

CROWDSENSING POSITIONING SYSTEM

A. System Overview

Fig. 1 presents an overview of the proposed SoiCP system.
This prototype system runs on smartphones and a cloud for
crowdsourcing data collection and positioning engine. The part
of crowdsourcing data collection is responsible for collecting
massive sensor data from accelerometer, gyroscope, magne-
tometer, WiFi, GPS, and light sensors based on a self-designed
Android application. In the current system, the users need to
click a button in the Android application to start the data col-
lection. Then, all sensor data are stored in the smartphone
locally. In all our measurements, the accelerometer, gyroscope,
and magnetometer are sampled with a rate of 50 Hz. The
light sensor is sampled in every 350 ms. The WiFi signals are
scanned in every 3 s and the GPS locations are obtained in
every second. The data from different sensors are stored in
separated files. Each piece of sensor data is timestamped with
the linux time of the smartphone when it is sampled. Hence,
all the sensor data in the separated files can be synchronized
for future processing.

The sensor data from all users are first collected in a local
working station, which can be a desktop or a laptop. Then,
the collected sensor data are sent to a remote cloud server
placed in the University of Bern where one virtual machine
(VM) is assigned for the SoiCP system and the positioning
engine runs. The VM is installed with an Ubuntu system in
which Python is adopted for processing data. The positioning
engine of SoiCP consists of two parts: 1) crowdsensing indoor
radio maps and 2) seamless outdoor–indoor positioning based
on multisensor fusion. The part of crowdsensing indoor radio
maps focuses on automatic construction of indoor radio maps
with zero effort for site surveying. A three-step trace matching
algorithm runs in this part to merge the crowdsourcing user
traces and generate the indoor walking paths. Each fingerprint
in the generated radio map is labeled with the location on
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Fig. 4. Variation of acceleration during walking.

the crowdsensed indoor walking paths. Based on the crowd-
sensed radio map, an enhanced particle filter fusing PDR, GPS,
and WiFi fingerprinting is utilized for seamless outdoor–indoor
positioning with high accuracy.

B. Raw User Trace Generation

To obtain the user traces, we design an offline PDR algo-
rithm applied on the collected IMU sensor data (accelerometer
and gyroscope), which consists of step detection, step length
estimation, and heading direction estimation.

1) Step Detection: As shown in Fig. 4, human walking
generates periodic variations of the measured accelerometer
data [40]. Therefore, we detect peaks and valleys from the
magnitude of triaxial accelerometer data as steps. To prevent
the misrecognition of the steps due to noisy accelerometer
data, we first smooth the magnitude of accelerometer data via a
moving average filter and subtract the gravity. In consequence,
we detect peaks and valleys as in Fig. 4. The magnitude of a
peak is marked as Ap and detection time as Tp. The magnitude
of a valley is marked as Av and detection time as Tv. When
the following two conditions are met, a pair of neighbor valley
and peak is recognized as a step:

{
�A = Ap − Av > 0.5 m/s2

�T = Tv − Tp > 0.15 s.
(1)

2) Step Length Estimation: We estimate the step length by
a linear model [14]

L = a × f + b (2)

where L is the step length, f is the step frequency, and (a, b)

are the coefficients calibrated for individuals. We set both a
and b be 0.25, which are the optimal coefficients without priori
knowledge of user features, such as lengths and weights [14].

3) Heading Direction Estimation: We adopt the X-AHRS
filter [16] fusing gyroscope and accelerometer to estimate the
Euler angles. Magnetometer is not used at this step to avoid
the heading direction errors due to severe indoor distortion of
magnetic field. With only gyroscope and accelerometer, each
PDR trace may encounter the turning error θ ′ and the large
rotation error �′ introduced in Section II but can better keep
its original shape.

We classify the generated PDR traces into indoor and
outdoor–indoor traces relying on light sensors. As shown in
Fig. 5, outdoor light intensity is significantly stronger than
that of indoor during daytime. Note that it is reasonable to

Fig. 5. Variation of light intensity outdoor and indoor.

only conduct the crowdsourcing data collection during day-
time, which is different from real-time positioning. The light
intensity on an indoor PDR trace is higher than 1000lx all
through. For an outdoor–indoor PDR trace, the light intensity
is smaller than 1000lx in the middle part but larger than 1000lx
at both ends.

V. CROWDSENSING INDOOR RADIO MAPS

A three-step trace matching algorithm described in Fig. 2
is designed in SoiCP to merge the crowdsourcing user traces
to recover the walking paths and construct the radio map.

A. Intratrace Matching

At the first step, intratrace matching merges the outdoor–
indoor PDR traces based on the building gates as landmarks
because the users walking through the building will definitely
cross certain gates. At this step, we cluster the detected gate
points on each trace, estimate their locations, and merge the
traces according to them.

1) Gate Landmark Detection and Clustering: We detect 2N
gates on N traces based on the sudden change of light sensor
data as shown in Fig. 5. Since the ground truth gates which
these detected gates belong to are unknown, we have to cluster
these 2N detected gates for trace matching. To cluster the gate
landmarks, we make use of WiFi similarity around the gates.
We first search for the corresponding WiFi RSSI list around
each detected gate landmark and then obtain their universal
set of the MAC addresses with length M. We further define a
feature vector to represent each gate landmark, in which each
feature is the WiFi RSSI of one MAC address as

RSSIn = {
RSSIn,1, RSSIn,2, . . . , RSSIn,M

}
(3)

where n represents the nth gate point. We further form a WiFi
feature matrix with a size of 2N × M containing the feature
vectors of 2N gate landmarks. Because the Euclidean distances
of the feature vectors are generally small for nearby locations,
we utilize DBSCAN [12] to cluster the gate points because it
does not require to specify the number of clusters representing
the number of gates.

DBSCAN is a commonly used density-based clustering
algorithm which can efficiently generate clusters of arbitrary
shapes based on a density-based notion of clusters. It uses
a neighborhood radius ε and minimum number of points in
the neighborhood MinPts to classify a set of points into core
points in clusters, border points in clusters and outliers. A core
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point is defined as the one which has at least MinPts points in
its ε neighborhood. If one noncore point is reachable from a
core point, it is a border point. Otherwise, the noncore point
is regarded as an outlier.

DBSCAN sequentially clusters the target points as follows.
Starting from an arbitrary point p unvisited, DBSCAN finds
all points in ε neighborhood of p. If p is a core point, all its
ε-neighborhood points are regarded as in a cluster. For each
point in the cluster, all the density-reachable points are added
into the cluster. A final cluster is obtained by repeating this
process until no new density-reachable points are found. If p
is not a core point, we move to the next point.

2) Gate Landmark Location: After clustering the gate land-
marks, we decide the location of each gate by processing
each outdoor–indoor PDR trace based on the opportunistic
GPS locations. We, respectively, find the GPS locations with
the highest Android-reported accuracy at each end [the last
GPS location (Gi) before the user enters the building and the
first one (Go) after she/he exits] which meet the following
condition ⎧⎨

⎩
P < PThre

�v = |v − v′| <= 1 m/s
�φ = |φ − φ′| <= 10◦

(4)

where P, v′, and φ′ are the Android-reported GPS accuracy,
speed, and bearing angle, respectively. PThre is a threshold
for the Android-reported GPS accuracy and empirically set
to 6 m. v and φ are the speed and bearing angle calculated
according to the adjacent GPS locations. Because the Android-
reported GPS speed and bearing angle are calculated based on
the Doppler effects and GPS locations are estimated based on
the ranges, these two processes are independent [41]. Hence,
we leverage their differences �v and �φ to assist the detection
of good GPS locations. Note that both Gi and Go are the
vectors consisting of their longitudes and latitudes.

Then, Gi and Go are used as pins to process the PDR traces.
We search for the PDR points Pi and Po whose timestamps
are most close to Gi and Go. As shown in Fig. 6, we must
translate, rotate, and scale the PDR trace to achieve

Gi = Pi and Go = Po. (5)

We obtain the rotation angle ω and the scaling factor α by
solving

Go = αS
(
Po − Pi) + Gi (6)

where S is the rotation matrix defined as

S =
[

cos(ω) −sin(ω)

sin(ω) cos(ω)

]
.

Therefore, we translate the starting point of the PDR trace to
Gi, rotate the trace around Gi with an angle of ω and scale it
with a factor α.

After processing the outdoor–indoor PDR traces with GPS
locations, we get the coordinates (latitude and longitude) of
the gate points on each trace. Although the accurate GPS loca-
tions has been selected based on the proposed enhanced GPS
accuracy detection algorithm in (4), the coordinates of the gate

Fig. 6. Intratrace matching for outdoor–indoor PDR traces.

points on each trace are still noisy. Therefore, we further aver-
age the coordinates of the gate landmarks in the same cluster
to obtain their ground truth coordinates.

3) Intratrace Matching via Gate Landmarks: After defin-
ing the number and locations of gate points, we merge the
outdoor–indoor traces based on them. Assuming that the two
gate points on one user trace are, respectively, classified into
the ith and kth clusters whose locations are defined as Di and
Dk, Di and Dk are used as pins (landmarks) to merge the traces.
We first search for the PDR points Pi and Pk whose times-
tamps are most close to Di and Dk. Then, we must translate,
rotate and scale the PDR trace to achieve

Di = Pi and Dk = Pk. (7)

We obtain the rotation angle �intra and the scaling factor
αintra by solving

Di = αintraS′(Pi − Pk
)

+ Dk (8)

where

S′ =
[

cos
(
�intra

) −sin
(
�intra

)
sin

(
�intra

)
cos

(
�intra

)
]
.

Finally, we translate the starting point of the PDR trace (Pk)
to Dk, rotate the trace around Dk with an angle of �intra and
scale it with a factor of αintra.

Note that �intra is used to compensate the rotation errors �′
as mentioned in Section II via the gate landmarks. αintra is used
to compensate the step length errors. Each outdoor–indoor
PDR trace is assigned with latitude and longitude according to
the locations of the building gates thanks to the opportunistic
GPS locations.

B. Inner Trace Matching

Intratrace matching can generate parts of the walking paths
in limited subareas which are normally not enough to cover
the entire building. Therefore, we further utilize the indoor
PDR traces to extend the coverage of the walking paths. For
inner trace matching, the target is to compensate the turning
errors θ ′ of the indoor PDR traces mentioned in Section II.

1) Turn Detection and Segmentation: We partition each
indoor PDR trace into several line segments based on the turn
angles larger than 60◦. We define the nth turn as Tn. Each seg-
ment can rotate around its first attached turn. For example, in
Fig. 3, we can partition PDR1 or PDR2 into two segments AB
and BA’ based on the turn at point B, respectively. Segment
BA’ can be rotated around turn B.
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Fig. 7. Force definition.

2) Force Definition: To compensate θ ′, we consider the sce-
nario that the user walks in a closed loop. This means that the
user walks back to the paths defined as “closure parts” which
he already passed. In these closure parts, the points in different
segments but with similar WiFi RSSI lists should be close to
each other in the ground truth paths. However, because of the
inaccurate turn angles estimated by gyroscope, these points
may be far away from each other in the measured PDR trace.
Therefore, to compensate θ ′, we rotate each segment with an
indicator, named force. Force represents a weighted physical
distance between any pair of points belonging to different seg-
ments whose WiFi RSSI lists are with high similarity as shown
in Fig. 7. The force is defined as

Fi,j =
{ Ei,jDi,j



when Ei,j > 0.7 and Di,j > 10

0 otherwise
(9)

where Ei,j is the cosine similarity of WiFi RSSI lists and Di,j

is the physical distance between the ith and jth points in the
PDR trace. 
 is a constant factor. The cosine similarity of
WiFi RSSI lists is calculated by

Ei,j =
∑

k

(
RSSIi,kRSSIj,k

)
√∑

k RSSI2
i,k

√∑
k RSSI2

j,k

(10)

where RSSIi,k is the RSSI of the kth access point at the ith
point. Note that we only consider the forces whose WiFi
similarity are high but the physical distances are large, i.e.,
Ei,j > 0.7 and Di,j > 10. Then, the overall force of the target
PDR trace is calculated by

F =
∑
i,j

Fi,j. (11)

According to its definition, the force between two points
with high WiFi similarity is enhanced when their physical dis-
tance increases. This violates the fact that the locations with
high WiFi similarity should be nearby. Therefore, the inner
trace matching is to minimize the overall force F to obtain

θ ′ = argminθ F. (12)

3) Segment Rotation: To minimize the force, we keep rotat-
ing each segment within [−10◦, 10◦] at a step of 1◦ around its
first turn. The updated location of the nth turn is calculated by

T′
n = S′′(Tn − T′

n−1

) + T′
n−1 (13)

where

S′′ =
[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

where T′
n is the updated location of the nth turn after rotation.

Then, we calculate the points on the (n+1)th segment rotating
around T′

n with θ as

L′
i = S′′(Li − T′

n

) + T′
n (14)

where Li is the location of the ith point on the indoor PDR
trace and L′

i is the updated location. Then, we calculate the
physical distance Di,j(θ) between two points on the updated
trace as

Di,j(θ) =
∥∥∥L′

j − L′
i

∥∥∥
2

(15)

where ‖ · ‖2 is two-norm of the vector. Di,j(θ) is only related
to θ because L′

i and L′
j are determined by θ based on (13)

and (14). Therefore, after each rotation, we calculate the force
by (11) and find θ ′ to minimize the force. Finally, each turn
in the PDR trace is compensated with θ ′ and the coordinates
of each point in the PDR trace is updated.

C. Intertrace Matching

After compensating the turning errors of the indoor PDR
trace, intertrace matching is used to find the absolute heading
direction and location of the indoor PDR trace. At this step, we
leverage the WiFi fingerprints to match the indoor PDR trace
with the outdoor–indoor ones based on a joint absolute heading
direction and location estimation. We first decide the land-
marks on the traces shared by the indoor and outdoor–indoor
traces. For each point on the indoor PDR trace, we search
for the point with highest cosine similarity of WiFi RSSI lists
on the outdoor–indoor PDR traces and form a pair of anchor
points. In those anchor point pairs, we select MWiFi pairs with
the highest similarity and MWiFi is empirically set to 15.

We define the force in the ith pair of anchor nodes as

F′
i = EiDi



(16)

where Ei is the cosine similarity of WiFi RSSI lists and Di is
the physical distance between the ith pair of the anchor points.
Then, the overall force is

F′ =
MWiFi∑
i=1

F′
i. (17)

Similar as in Section V-B, our target in intertrace matching
is to minimize F′. Because F′

i in (16) is only decided by the
location L and the direction �inter of the indoor PDR trace
which determine Di, intertrace matching translates and rotates
the indoor PDR trace to minimize F′ to obtain{

L′,�inter’
}

= argmin{L,�inter}F′(L,�inter
)
. (18)

To find the optimize solution of target (18), we need a proper
initialization of the location and heading direction since (18)
is not a global minimization.
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1) Absolute Heading Direction Initialization via Enhanced
Magnetic Interference Detection Algorithm: The PDR traces
generated in Section IV only use gyroscope and accelerom-
eter. Therefore, the absolute heading direction referenced to
the global north is unknown. In this section, we design an
offline procedure to fuse the magnetic field and estimate the
absolute direction of the indoor PDR trace via an enhanced
magnetic interference detection algorithm. The heading direc-
tion estimated by magnetometer is normally unreliable in
indoor environments due to the influence of the iron materials.
The influence can be classified into local and entire magnetic
distortion.

Local magnetic distortion is caused by the surrounding iron
materials such as elevators, computers, or doors in a limited
indoor area and the estimated heading direction by fusing these
magnetic field will be significantly affected. Therefore, we
must detect the distorted areas and eliminate their influence.
To detect the distorted magnetic field, we exploit two empir-
ical observations: the magnitude of the distorted magnetic
field is normally larger; the changes of the attitudes estimated,
respectively, by magnetometer and gyroscope are significantly
different in a short period in the distorted area [19]. Therefore,
we select parts of the indoor PDR trace whose magnetic fields
meet the following conditions:

{
Magk < KM

�Magk < K�
(19)

where Magk is the magnitude of the kth magnetic sample and
KM is an empirical constant threshold. �Magk is defined as
the variance of the difference between the yaw angles esti-
mated by magnetometer with accelerometer and gyroscope
with accelerometer as

�Magk = var
(
�

mag
k − �

gyro
k

)
(20)

where �
mag
k is a moving window containing yaw angles esti-

mated by magnetometer and accelerometer centering at the
kth sample. �

gyro
k is for the yaw angles estimated by gyro-

scope and accelerometer. K� in (19) is an empirical constant
threshold. The selected magnetic field with condition (19) are
processed to estimate the entire magnetic distortion as follows.

Entire magnetic distortion is caused by the biased indoor
magnetic field from the global one due to the iron structure of
building. We make use of the processed outdoor–indoor PDR
traces in Section V-A as the reference to estimate the biased
heading direction using magnetometer and accelerometer. The
biased angle is calculated by

�� =
∑L′

j=1

(
�

mag
j − �oi

j

)
L′ (21)

where �
mag
j is the yaw angle on the jth step estimated by

magnetometer and accelerometer after filtering the local dis-
torted magnetic field. �oi

j is the corresponding yaw angle on
the processed outdoor–indoor PDR trace in Section V-A and
L′ is the length of the angle vector.

After obtaining ��, we compute the average value of the
differences between the yaw angles estimated by gyroscope

and magnetometer (with accelerometer)

��′ =
∑L′

j=1

(
�

gyro
j − �

mag
j

)
L′ . (22)

Then the difference between the heading direction esti-
mated by gyroscope with accelerometer and the global north
is calculated by

��initial = ��′ + ��. (23)

Finally, the indoor PDR trace is rotated with ��initial to
find its absolute direction.

2) Location Initialization: The location of the indoor PDR
trace is initialized based on the difference about the centroids
of the anchor points between the indoor and outdoor–indoor
PDR traces as

L′ = L +
∑MWiFi

i=1

(
Poi

i − Pin
i

)
MWiFi

where Pin
i is the ith anchor point on the indoor PDR trace and

Poi
i is the corresponding anchor point on the outdoor–indoor

PDR traces.
3) Fine Tune Location and Direction: According to the

experimental results, we find that the aforementioned two
initialization methods achieve good performance. Hence, the
location and direction just require fine adjustment. The loca-
tion of the indoor PDR trace is adjusted at a step of 1 m
to west, east, south, and north within 5 m and the heading
direction is adjusted at a step of 1◦ in both clockwise and
anti-clockwise direction within 15◦. We search for the opti-
mized combination of the location and heading direction in
these 600 states (5 m × 4 Directions × 15◦ × 2 Directions) to
minimize F′.

Finally, we rotate and translate the indoor PDR trace based
on �inter’ and L′.

D. Construction of Radio Map

According to the above procedure, we automatically gen-
erate the walking paths to label the radio map. We mark
the location of the ith step point in the generated walk-
ing paths as LWP

i = (xWP
i , yWP

i ). For the ith step point, we
obtain aN RSSI list comprised of all the scanned APs as
RSSIi = (RSSI1

i , RSSI2
i , . . . , RSSIN

i ) where N is the total
number of the scanned APs. The radio map is constructed
by labeling the RSSI lists with the corresponding locations of
their step points in the walking paths as

RadioMap =

⎛
⎜⎜⎝

LWP
1 RSSI1

LWP
2 RSSI2
· · ·

LWP
M RSSIM

⎞
⎟⎟⎠ (24)

where M is the total number of step points in the generated
walking paths.

VI. SEAMLESS OUTDOOR–INDOOR POSITIONING BASED

ON MULTISENSOR FUSION

We consider the problem of tracking a mobile device over
time given a stream of noisy inertial sensor data and the
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location measurements from outdoor GPS and indoor WiFi fin-
gerprinting. We solve this problem by fusing these information
by an enhanced particle filter.

A. Basic Concept of Particle Filter

At time k, we have an unknown system state vector xk

including the target’s location and a discrete sequence of noisy
measurement vectors z1:k taken at times 1, . . . , k, describing
the locations from GPS or WiFi fingerprinting.

To define the tracking problem, we consider the evolution
of the state sequence {xk, k ∈ N} given by

xk = fk(xk−1, vk). (25)

fk is a possibly nonlinear function to define the evolution
process from state xk−1 to state xk, which is called system
model. vk is an independent and identically distributed (i.i.d.)
process noise sequence, and N is the set of natural numbers.
The tracking objective is to recursively estimate xk from the
measurements

zk = hk(xk, uk). (26)

hk is a possibly nonlinear function of the relation between
xk and the corresponding measurements zk, which is called
observation model. uk is an i.i.d. measurement noise sequence.

From the perspective of Bayesian estimation, our goal is
to calculate the posterior probability density function (PDF)
p(xk|z1:k). In particle filter, a sequential importance learning
(SIS) algorithm [42] is adopted to obtain p(xk|z1:k), which
is a Monte Carlo (MC) method. Based on the principle of
importance sampling [42], p(xk|z1:k) can be approximated by

p(xk|z1:k) ≈
Ns∑

i=1

wi
kδ

(
xk − xi

k

)
(27)

where xi
k is the ith particle and wi

k is the associated weight. Ns

is the total number of particles. Assuming that the initial PDF
p(x0|z0) ≡ p(x0) is known, we can obtain p(xk|z1:k) recur-
sively via predicting and updating the particles, respectively.

For the predicting stage, the particles xk−1 are updated
based on the system model in (25) to obtain the current xk.
Afterwards, in the updating stage, the associated weight wi

k
for each particle is updated. For the bootstrap particle fil-
ter (BPF) [42], [43], which is commonly used and efficiently
implementable, the associated weights are updated by

wi
k ∝ wi

k−1p
(
zk|xi

k

)
(28)

where wi
k are only determined by the likelihood function of

p(zk|xi
k) obtained based on the observation model in (26).

Importantly, a particle filter is normally prone to the
sample degeneracy problem, which often results in serious
performance degradation. To deal with this problem, resam-
pling is typically adopted [44]. A suitable measurement of the
degeneracy is the effective sample size Neff = 1/

∑Ns
i=1(w

i
k)

2.
As soon as Neff is smaller than 0.5 × Ns, the degeneracy is
considered to be serious and a suitable resampling method
should be adopted. A systematic resampling method [44] is
adopted in this paper, because of its high accuracy and efficient
implementation.

In this paper, we propose an enhanced particle filter
for seamless indoor and outdoor positioning. We provide
enhanced solutions for both system model and observation
model in the particle filter. For the system model, we design
an enhanced PDR algorithm to model the evolution of the state
sequence. For the observation model, we propose two kinds
of likelihoods for outdoor with GPS and indoor with WiFi fin-
gerprints. An enhanced IO detector is adopted for switching
the likelihoods. In the following sections, we introduce the
enhanced particle filter in the aspects of system model and
observation model.

B. Pedestrian Dead Reckoning-Based System Model

1) System Model: In the system, the state xk is defined as

xk = [
xk, yk

]
(29)

where xk is the latitude and yk is the longitude of the target
user at the kth step. The particles are updated based on the
system model when a step is detected in the PDR algorithm.
The system model relies on the step length l and the head-
ing direction θ estimated in the PDR algorithm to update the
latitude and longitude, i.e.,{

xk = xk−1 + l·sin(θ+��)
110540 + nx

yk = yk−1 + l·cos(θ+��)

111320·cos(xk−1)
+ ny

(30)

where n = [nx, ny] is the Gaussian noise vector on the latitude
and longitude, and �� is the local declination. Note that the
constants 110 540 and 111 320 reflect the earth’s oblateness.

2) Real-Time PDR With Enhanced X-AHRS: For the PDR
algorithm driving the system model, we adopt the same step
detection and step length estimation methods as in Section IV
but for the heading direction estimation we fuse data from
magnetometer to obtain the absolute direction because the
absolute heading direction is required and offline processing
is not available for real-time indoor tracking.

We design an enhanced X-AHRS filter with adaptive β to
fuse data from gyroscope, accelerometer and magnetometer
where β is a tradeoff parameter to tune the impact of magne-
tometer data [16]. First, the biased angle of �� in (21) due to
the entire magnetic distortion is compensated. Then, we utilize
condition (19) to detect the local distorted magnetic filed. In
the distorted area, β is set to 0.01. Otherwise, β is set to 0.05.
Note that in X-AHRS [16] the estimated heading direction will
be more affected by magnetometer with increasing β.

C. GPS and WiFi Fingerprinting-Based Observation Model

After updating the particles, the associated weights are
updated according to the location observations (GPS or WiFi
fingerprinting). Different observation models are designed for
indoor and outdoor environments.

1) Indoor and Outdoor Detection: IO detector is used to
switch the observation models based on GPS or WiFi fin-
gerprinting. For IO detector, we first adopt the proximity
sensor and clock in a smartphone to check the availability
of light sensor. If there are not obstacles in front of the smart-
phone detected by the proximity sensor during the daytime
(8:00 A.M. to 5:00 P.M.), light intensity detected by the light
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Fig. 8. Light intensity, SNR, and OSR of GPS changes in indoor and outdoor
(light intensity is obtained by light sensor data divided by 1000 to scale the
data.)

(a) (b)

Fig. 9. OSR regions. (a) Five regions in OSR. (b) Region 1 in OSR.

sensor is used in IO detector. If light intensity is larger than
1000lx, the user is detected outdoor. Otherwise, the user is
indoor. During the night (8:00 P.M. to 5:00 A.M.), we find
that light intensity indoor is typically higher than that outdoor,
especially for shopping malls. If light intensity is larger than
500lx, the user is detected indoor. Otherwise, the user is out-
door. Note that IO detector based on light intensity, namely
light IO detector, is most accurate and with lowest latency
compared with the other signals. Therefore, in this paper, light
intensity is the only parameter used for IO detector as long as
it is available.

If the light sensor is not available, we provide an IO detector
integrating GPS signals and magnetic field. We, respectively,
design three detectors, namely SNR detector, OSR detector,
and MAG detector, in which the first two detectors rely on
GPS signals and the last one relies on the magnetic field.

1) SNR Detector: According to Fig. 8, the mean SNR of
GPS signals indoor is clearly smaller than that outdoor.
Therefore, we calculate the mean SNR of GPS signals
from all the detected satellites. If the mean SNR is
smaller than 26 dBm, the SNR detector outputs indoor.
Otherwise, it outputs outdoor. Note that if the number of
the detected satellites is smaller than 5, the SNR detector
outputs indoor.

2) OSR Detector: We design a novel parameter open sky
ratio (OSR) to indicate the distribution of the detected
satellites in the sky. According to the direction angle and
elevation angle of GPS satellites, we divide the celes-
tial sphere into five regions as shown in Fig. 9(a). The
satellite with elevation angle over 60◦ is in region 1 as
shown in Fig. 9(b). The remaining four regions are deter-
mined by direction angle and each region occupies 90◦.
If there is a satellite with an SNR exceeding 20 dBm

in a certain area, the sky in the area is considered to be
unobstructed. The OSR takes a value of 0–5. As shown
in Fig. 8, the OSR value clearly decreases when a user
walks from outdoor to indoor. In this paper, we set an
OSR threshold of 2 for indoor (equal to or smaller than
2) and outdoor switching (larger than 2).

3) MAG Detector: Similar as the observations of magnetic
field in [37], the variance of magnetic field indoor is
clearly larger than that outdoor. Therefore, we imple-
ment an MAG detector the same as in [37] but with a
moving window of 4 s for calculating the variance of
magnetic field. We refer to [37] for more details about
MAG detector.

Finally, we combine these three detectors based on a voting
approach, namely SNR-OSR-MAG IO detector. If more than
two detectors vote for indoor, the IO detector outputs indoor.
Otherwise, the IO detector outputs outdoor.

2) Outdoor Adaptive Likelihood From GPS: Once a user
is detected outdoor, GPS locations are used to define p(zk|xi

k)

for updating associated weights. Assuming that the latitude
and longitude observations are independent, the likelihood is

p
(
zk|xi

k

) = p
(

xGPS
k |xi

k

)
p
(

yGPS
k |yi

k

)
(31)

where zk = [xGPS
k , yGPS

k ] are the latitude and longitude
observed from GPS. The individual likelihoods on latitude and
longitude are assumed to follow the Gaussian distribution:

{
p
(
xGPS

k |xi
k

) ∼ N
(
0, σ 2

)
p
(
yGPS

k |yi
k

) ∼ N
(
0, σ 2

) (32)

where σ is the standard deviation of the Gaussian noise for
GPS positioning and set based on the GPS accuracy to tune the
contribution of the GPS observation on the estimated location.
The associated weights are only updated when condition (4)
meets (PThre is set to 20 m in this part) and σ is set as

σ = 0.000025 × P (33)

where P is the Android-reported GPS accuracy.
3) WiFi Fingerprinting-Based Indoor Likelihood: Once a

user is detected indoor, the user location estimated by WiFi
fingerprinting is used to define p(zk|xi

k) for updating the asso-
ciated weights. Similar as the GPS likelihood, this likelihood
can be written as

p
(
zk|xi

k

) = p
(

xWiFi
k |xi

k

)
p
(

yWiFi
k |yi

k

)
(34)

where zk = [xWiFi
k , yWiFi

k ] are the latitude and longitude esti-
mated by WiFi fingerprinting with a commonly used weighted
KNN algorithm [4]. The individual likelihoods on latitude and
longitude are assumed to follow the Gaussian distribution as:

{
p
(
xWiFi

k |xk
) ∼ N

(
0, σ ′2)

p
(
yWiFi

k |yk
) ∼ N

(
0, σ ′2) (35)

where σ ′ is the standard deviation of the Gaussian noise for
WiFi fingerprinting.
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Fig. 10. Walking paths and testing paths in scenario 1. (a) Ground truth walking paths. (b) Testing path 1. (c) Testing path 2. (d) Testing path 3. (e) Testing
path 4. (f) Testing path 5.

VII. EXPERIMENTS AND EVALUATION RESULTS

To evaluate the proposed SoiCP system, we conduct a set of
comprehensive experiments in two shopping malls of 3600 m2

(scenario 1) and 6000 m2 (scenario 2) for crowdsensing indoor
radio map and seamless outdoor–indoor positioning.

A. Experimental Setup

In our experiments, we collect raw sensor data from Huawei
Mate8 and Mate10 smartphones with their accelerometer,
gyroscope, magnetometer, light sensor, WiFi, and GPS. All
these raw sensor data are sent and stored in a cloud server
running in the University of Bern for offline processing includ-
ing trace matching and positioning. All the algorithms are
designed in Python. We first utilize the offline PDR algorithm
to process the inertial sensor data to generate the user traces.
Since all the raw sensor data are timestamped with their col-
lecting time in smartphones, each step on the user traces is
timestamped. Then, each detected step point in the traces is
assigned with only one scanned WiFi list of the nearest times-
tamp. In our experiments, the users continuously walk but
occasional stops during trace collection will not affect the trace
matching algorithm because one step point is only attached
with one WiFi list of the nearest timestamp.

In scenario 1, we collect seven outdoor–indoor PDR traces
where five different users walk through the shopping mall and
one indoor PDR trace where a user walks along the indoor
paths for four rounds. Note that the outdoor–indoor PDR traces
include long outdoor parts. The ground truth walking paths

covered by these PDR traces are shown as the red lines in
Fig. 10(a). These eight PDR traces are used to generate the
walking paths and extract the radio map. Similar as scenario 1,
we collect seven outdoor–indoor PDR traces and one indoor-
outdoor PDR trace from five different users to construct the
walking paths in scenario 2.

After constructing the radio map, we conduct testing exper-
iments in which users, respectively, walk along five different
paths indicated in Fig. 10(b)–(f) to evaluate the accuracy of
the proposed seamless outdoor–indoor positioning algorithm
based on the enhanced particle filter in scenario 1. Note that
the testing paths 1–3 are entirely consistent with the walking
paths in the radio map but parts of the testing paths 4 and 5
are different from the walking paths in the radio map. In total,
the length of testing paths in scenario 1 is about 630 m and
the duration is 449 s. The positioning accuracy of the SoiCP
system is evaluated on 903 testing points along the five paths.
To test the robustness of the system, we further evaluate the
positioning algorithm in scenario 2 with five testing traces in
Fig. 11(b)–(f). WiFi scanning is conducted in every 3 s and a
GPS positioning in every second outdoor. Note that the users
hold phones horizontally in all experiments.

To obtain the ground truth locations for evaluating the posi-
tioning accuracy, the moving paths are predefined, in which
the coordinates of all turning points are measured. Then, the
ground truth coordinates of the other positions along the paths
are obtained by interpolation. To know the time when the user
passes each ground truth position, we record the time passing
each turn and keep the moving speed constant for the whole
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Fig. 11. Walking paths and testing paths in scenario 2. (a) Ground truth walking paths. (b) Testing path 1. (c) Testing path 2. (d) Testing path 3. (e) Testing
path 4. (f) Testing path 5.

moving path. All the WiFi RSSI lists are timestamped and
mapped to each ground truth position based on the time when
the user passes.

B. Experiments

1) Preliminary Analysis of PDR: In SoiCP, we propose
two kinds of PDR algorithms, i.e., offline and real-time
PDR, respectively, in crowdsensing radio map and seam-
less outdoor–indoor positioning. We first evaluate the accu-
racy of the proposed step detection algorithm introduced in
Section IV-B3 based on the testing traces in both Scenarios.
According to Table II, we can detect the steps with an accuracy
higher than 98%.

We further evaluate the heading direction errors of the
proposed offline and real-time PDR algorithms compared with
the traditional X-AHRS. For offline PDR, the heading direc-
tions of five traces are first estimated based on gyroscope and
accelerometer in Section IV-B3. Then, the generated traces are
further rotated offline based on the absolute heading direc-
tion initialization algorithm in Section V-C1. For real-time
PDR, heading direction is calculated based on the enhanced
X-AHRS algorithm with adaptive β in Section VI-B.

According to Tables II and III, the heading direction errors
of the traditional X-AHRS without magnetic interference
detection are up to 34◦ and 36◦, respectively, in scenarios 1
and 2. Moreover, the heading directions are biased due to the
entire magnetic distortion. Our proposed magnetic interference
detection and compensation algorithms in both offline and
real-time PDR can significantly reduce the heading direction
errors as shown in Tables II and III. In scenario 1 the mean
heading direction errors of offline PDR are within 13◦ and
that of real-time PDR are within 14◦. The similar findings can

TABLE II
STEP DETECTION AND MEAN DIRECTION ERRORS IN SCENARIO 1

TABLE III
STEP DETECTION AND MEAN DIRECTION ERRORS IN SCENARIO 2

be found in scenario 2 as in Table III, i.e., the mean heading
direction errors of offline PDR within 12◦ and that of real-time
PDR within 13◦.

2) Accuracy of Crowdsensing Walking Paths: Fig. 12(a)–(e)
indicates the changes of the PDR traces by utilizing our
proposed three-step trace matching for crowdsensing walking
paths in SoiCP in scenario 1. Note that the O-I trace represents
the outdoor–indoor trace.

Fig. 12(a) shows the original PDR traces. We initialize the
starting points of all outdoor–indoor PDR traces to their first
GPS locations. For the indoor PDR trace, we initialize the
starting point to a random location near the target building.
Note that the outdoor–indoor GPS traces include long outdoor
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Fig. 12. Procedure of crowdsensing walking paths in scenario 1. (a) Original traces. (b) Intratrace matching. (c) Inner trace matching. (d) Intertrace matching
(initialization). (e) Intertrace matching (final). (f) Errors of generated walking paths.

TABLE IV
ACCURACY OF DETECTED GATE LOCATIONS

parts. The raw PDR traces in Fig. 12(a) are noisy, randomly
scattered around the target building, and cannot represent the
ground truth walking paths.

In the three-step trace matching algorithm, the intratrace
matching is to process the outdoor–indoor PDR traces. We
detect the gate points based on the light sensors and adopt
DBSCAN to cluster the gate points based on the Euclidean
distances of WiFi RSSI lists. We successfully detect all
14 gate points on the seven outdoor–indoor PDR traces. Using
DBSCAN, we successfully cluster the 14 gate points into three
clusters with 100% accuracy. Then, we calculate the average
location of each cluster as the location of each gate. Table IV
shows that our proposed matching approach can accurately
cluster and estimate the locations of the gates with accu-
racy in 2–3 m. Based on the gate points, we rotate, translate
and scale the outdoor–indoor PDR traces as introduced in
Section V-A and further remove their outdoor parts. The results
in Fig. 12(b) illustrate that the outdoor–indoor PDR traces are
well merged and parts of walking paths are generated.

Until now, we have not processed the indoor PDR trace. We
can find that the shape of the indoor PDR trace is distorted
compared with the ground truth walking path in Fig. 12(b).
In SoiCP, we take inner trace matching to compensate the

turning errors in the indoor PDR trace by minimizing the
overall force described in Section V-B. Fig. 12(c) shows the
processed indoor PDR trace by inner trace matching, which
shows a more similar shape, i.e., smaller turning error, as the
ground truth path than the raw indoor PDR trace in Fig. 12(b).

Finally, intertrace matching is used to match the processed
indoor PDR trace with the outdoor PDR traces. For inter-
trace matching, the indoor PDR trace is first initialized with
the location and heading direction introduced in Section V-C.
Fig. 12(d) indicates the initialized indoor PDR trace rotated
with an angle error of around 12◦ because of the distorted
indoor magnetic field. After the initialization, the location and
heading direction of the indoor PDR trace are further fine-
tuned by the method introduced in Section V-C3. Fig. 12(e)
shows the final generated walking paths in which the indoor
PDR trace is well translated and rotated by minimizing the
overall force in Section V-C. The crowdsensed walking paths
based on the three-step trace matching in Fig. 12(e) match
with the ground truth paths well as shown in Fig. 10(a).

Because the turning points on the PDR traces and ground
truth walking paths are the most significant landmarks to
obtain their distances, we calculate the errors of turning points
on the generated walking paths referenced to the ones on the
ground truth walking paths. The cumulative distribution func-
tion (CDF) of errors is given in Fig. 12(f). According to this
figure, the median accuracy of the walking paths generated by
our proposed algorithms achieves 2.7 m, the mean accuracy
achieves 2.8 m, and 90% of errors are smaller than 4.1 m.

To evaluate the robustness of the proposed algorithm, we
further crowdsense the walking paths in scenario 2 as shown
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Fig. 13. Procedure of crowdsensing walking paths in scenario 2. (a) Original traces. (b) Intratrace matching. (c) Inner trace matching. (d) Intertrace matching
(initialization). (e) Intertrace matching (final). (f) Errors of generated walking paths.

TABLE V
MEAN ACCURACY OF WALKING PATHS WITH

DIFFERENT NUMBER OF APS

in Fig. 11(a). Fig. 13(a)–(e) indicates the process of our
three-step trace matching for crowdsensing walking paths in
scenario 2 and Fig. 13(f) shows the CDF of the errors for the
generated walking paths in scenario 2. In this scenario, the
median accuracy of walking paths achieves 2.6 m, the mean
accuracy achieves 2.6 m, and 90% of the errors are smaller
than 4.0 m, which demonstrate the robustness of our system
in different scenarios.

Moveover, the aforementioned accuracy of walking paths
are obtained based on all the available WiFi access points
in both scenarios, i.e., 294 APs (scanned) in scenario 1 and
531 APs in scenario 2. Since the density of WiFi APs plays
an important role in both inner and intratrace matching, we
randomly remove certain number of APs in both scenarios to
evaluate its impact on the accuracy of walking paths. Table V
shows the mean accuracy of the generated walking paths in
both scenarios with different number of APs. According to
Table V, the mean accuracy of the generated walking paths
degrades with less number of APs. On the other hand, we find
that in scenario 1 when the number of APs is larger than 150,
the performance of the trace matching algorithm is still robust
and its accuracy is higher than 3 m. When the number of APs
gets too small, both inner and intratrace matching cannot well

merge the traces and hence the accuracy becomes significantly
lower. For example, when the number of APs is 50, the mean
accuracy reduces to 6.1 m. We observes the similar findings
in scenario 2 with larger area. When the number of APs is
larger than 300, the mean accuracy is higher than 3 m, and
the performance is robust. However, when the number of APs
is 50, the mean accuracy reduces to 7.0 m.

3) Accuracy of Seamless Outdoor–Indoor Positioning:
a) IO detector: In this part, we first evaluate the

performance of the proposed IO detector. According to some
preliminary tests, we find that the light IO detector can accu-
rately detect the indoor and outdoor status of users with very
short delay (within 0.8 s). On the other hand, if the light
IO detector is unavailable, SNR-OSR-MAG IO detector can
obtain accurate results (100%) in the sealed-off shopping malls
(indoor) and outdoor environments with clear sky. However,
it encounters larger delay than light IO detector when the user
switches from outdoor to indoor, i.e., at the entrance of the
shopping mall. Tables VI and VII show the delays of SNR-
OSR-MAG IO detector when the users switch from outdoor
to indoor on the testing traces. According to the tables, the
delays range from 2.2 to 3.9 s. Additionally, we compare
our proposed SNR-OSR-MAG IO detector to the Cellular-
MAG detector [37]. Note that the light sensor is not used in
Cellular-MAG detector which is different from [37] because
SNR-OSR-MAG IO detector is only used when the light sen-
sor is not available. Since the received power of cellular
signals depends on the layout of base stations, we find that it
decreases more slowly and is less stable compared with GPS
signals in our testing scenarios, and hence introduces longer
delay. According to the testing results in Tables VI and VII,
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TABLE VI
DELAY OF IO DETECTOR IN SCENARIO 1

TABLE VII
DELAY OF IO DETECTOR IN SCENARIO 2

Fig. 14. Different positioning methods in outdoor environments.

the delays of SNR-OSR-MAG IO detector are clearly shorter
than those of the Cellular-MAG detector. IO detector with
shorter delay will switch the indoor and outdoor positioning
techniques more smoothly.

b) Outdoor positioning accuracy: Then, we evaluate the
accuracy of the proposed positioning algorithm in SoiCP
based on the outdoor parts of the ten traces in the two test-
ing scenarios. Fig. 14 shows the positioning accuracy. Note
that PDR-GPS (SoiCP) is referred to the proposed seam-
less outdoor–indoor positioning algorithm with the enhanced
GPS accuracy detection method in SoiCP. We further imple-
ment particle filters fusing GPS and PDR only relying on the
Android-reported accuracy and horizontal dilution of precision
(HDOP) as in the work of [29] for comparison. According
to the evaluation results, GPS achieves a median accuracy of
3.1 m in our testing environments but the accuracy rapidly
decreases when the users are approaching and leaving the
buildings. We observe a maximum positioning error around
20 m. Based on the particle filters fusing GPS and PDR,
the accuracy improves especially in the areas around the
buildings, because the impact of GPS locations is reduced
in the particle filters based on the detected GPS accuracy.
In these three GPS accuracy detection algorithms, we find
that Android-reported accuracy outperforms HDOP because
the Android-reported accuracy considers more factors besides
HDOP such as SNR and pseudo ranges. Our proposed solution
in SoiCP significantly outperforms both PDR-GPS fusion with
Android-reported accuracy and HDOP because our proposed
enhanced GPS accuracy detection algorithm is more reliable
and can better filter the inaccurate GPS locations in the particle
filter.

c) Indoor positioning accuracy: With the radio map
labeled by the walking paths in Fig. 12(e), we evaluate three
positioning algorithms, PDR-GPS-WiFi fusion introduced in

TABLE VIII
MEAN POSITIONING ACCURACY IN SCENARIO 1

Section VI (under light IO detector), PDR-GPS fusion and
WiFi fingerprinting. Note that the only difference between
PDR-GPS-WiFi fusion and PDR-GPS fusion is that PDR-GPS
fusion does not include WiFi fingerprinting in the observation
model of the particle filter in the indoor environment.

CDFs of the positioning errors are shown in Fig. 15 in which
Fig. 15(a) indicates the positioning errors for the traces 1–3,
Fig. 15(b) for the traces 4 and 5, and Fig. 15(c) for all the
traces in scenario 1. Table VIII illustrates the mean positioning
errors for all five traces with three positioning algorithms.

First, PDR-GPS fusion cannot easily achieve high position-
ing accuracy since it merely relies on PDR in the indoor
environment. Two reasons result in the low positioning accu-
racy: 1) accumulated positioning error of PDR and 2) low
GPS positioning accuracy around the building. Besides the
errors of PDR introduced in Section VII-B1, GPS position-
ing around the tall building is still difficult to achieve high
accuracy, although we filter some inaccurate GPS locations
based on the proposed GPS accuracy detection provided in
Section VI. Therefore, the indoor PDR positioning is ini-
tialized with a GPS location with low accuracy and the
positioning error is continuously accumulated. Because there
is no any other information used to calibrate the indoor
PDR positioning, GPS-PDR fusion can only achieve a mean
positioning accuracy of 6.9 m for the indoor environment.

Then, we evaluate the positioning accuracy of WiFi finger-
printing. Note that the WiFi sampling rate is set one sample per
3 s and all the estimated locations between two WiFi samples
are based on the first WiFi sample. We can find that the posi-
tioning accuracy of WiFi fingerprinting is from 3.4 to 4.9 m
for the five testing traces which are significantly higher than
that of the PDR-GPS fusion algorithm. However, due to the
low sampling rate of WiFi, it cannot accurately track the user
within a WiFi sampling duration (3 s). Additionally, the posi-
tioning accuracy of traces 1–3 is higher than that of traces 4
and 5 because parts of traces 4 and 5 are not consistent with
the radio map. Moreover, due to the low sampling rate, the
users’ location can only update every 3 s, which introduce a
long latency.

Our proposed PDR-GPS-WiFi fusion algorithm achieves a
mean positioning accuracy of 3.0 m as shown in Table VIII
and a median accuracy of 2.8 m as shown in Fig. 15(c). It
obviously outperforms the other two positioning algorithms
as shown in Fig. 15. Compared to WiFi fingerprinting, the
locations of the user within one WiFi sampling interval are
tracked by fusing PDR in PDR-GPS-WiFi. Hence the posi-
tioning accuracy is higher. According to Fig. 15(a) and (b),
the improvement of accuracy for traces 4 and 5 is more sig-
nificant than that of trace 1–3. This means that PDR-GPS-WiFi
can better deal with the case where the user is not throughout
walking on the paths of radio map than WiFi fingerprinting.
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Fig. 15. Positioning errors in scenario 1. Positioning errors for (a) paths 1–3 and (b) paths 4 and 5. (c) Overall positioning errors.

TABLE IX
MEAN POSITIONING ACCURACY IN SCENARIO 2

Compared to PDR-GPS, the positioning accuracy of PDR-
GPS-WiFi is also higher because the WiFi fingerprinting
locations can calibrate the PDR traces. Considering the updat-
ing rate, PDR-GPS-WiFi fusion algorithm can update locations
as soon as the users walk a step (normally in 0.5 s) whose
latency is much shorter than WiFi fingerprinting.

Finally, we evaluate the proposed PDR-GPS-WiFi fusion in
scenario 2 and summarize the mean positioning accuracy in
Table IX. According to Table IX, we observe similar results as
in scenario 1 that our proposed PDR-GPS-WiFi fusion algo-
rithm with a mean accuracy of 2.9 m clearly outperforms
PDR-GPS (7.2 m) and WiFi fingerprinting (3.5 m) in this
scenario. Moreover, the positioning accuracy of traces 1–3
based on both the PDR-GPS-WiFi and WiFi fingerprinting
algorithms is higher than that of traces 4 and 5 because parts
of traces 4 and 5 are not consistent with the radio map.
These findings demonstrate the robustness of the proposed
positioning algorithms.

VIII. CONCLUSION

In this paper, we present a novel system to achieve a SoiCP
without site surveying. SoiCP can crowdsense the indoor walk-
ing paths based on the proposed three-step trace matching
algorithm. The algorithm leverages gate points and WiFi fin-
gerprints to merge noisy traces. According to the real-world
experiments in two large-scale shopping malls, SoiCP can
accurately generate the indoor walking paths with mean accu-
racies of 2.8 and 2.6 m without any priori knowledge of floor
plans. The radio maps for WiFi fingerprinting can be gener-
ated by labeling the WiFi RSSI lists with its locations on the
crowdsensed walking paths. Furthermore, in SoiCP system,
we introduce an enhanced particle filter to fuse PDR, GPS,
and WiFi fingerprinting for seamless outdoor–indoor posi-
tioning. Based on the crowdsensed radio map, we obtain a
mean positioning accuracy of 3.0 m and a median accuracy
of 2.8 m in the indoor environment of scenario 1, which
significantly outperforms WiFi fingerprinting and the algo-
rithm merely fusing GPS and PDR. Furthermore, we evaluate

the proposed SoiCP in another large-scale shopping mall and
obtain the similar conclusion, demonstrating the robustness
of the system. SoiCP facilitates the deployment of seamless
outdoor–indoor positioning and can be used for many LBSs
with large coverage.

In the future work, we plan to reduce the power consump-
tion of the system in both the terminal and server sides.
In the current prototype system, all the sensor samples are
uploaded to a cloud server for data processing and evaluating
our proposed algorithms. We find that the power consumption
of sending these data from both terminal side and working sta-
tion side is high, and we need large storage in the cloud. We
can qualify the power consumption of the system and move
parts of processing to a local edge server to save the power
consumption similar to our previous work [?]. For example,
we plan to move the algorithm of PDR in a local edge server
(e.g., the working station) and hence only the data of user
traces will be sent to the cloud server for trace matching.
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