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Abstract
Massive multiple-input multiple-output (MIMO) wireless system is increasingly becoming 
a vital factor in fifth-generation (5G) communication systems. It is attracting considerable 
interest due to improve range, spectral efficiency, and coverage as compared to the con-
ventional MIMO systems. In massive MIMO systems, the maximum likelihood detector 
achieve the optimum performance but it has exponential complexity for realistic antenna 
configurations systems, Moreover, Linear detectors commonly suffer from a matrix inver-
sion which is not hardware-friendly. There is an increase in the computational complexity 
associated with the unique benefits of the massive MIMO systems. The system might be 
classified as an ill-conditioned problem and hence, the signal cannot be detected. To reduce 
the data detection complexity, we investigate a linear detector based on the multiple search 
direction conjugate gradient (MSD-CG) in the massive MIMO uplink systems. Several 
theoretical iterative techniques that can be used to balance complexity and performance 
for massive MIMO detection have been proposed in the literature. These methods whose 
convergence rate for common applications is slow where there is a decrease in the base 
station to user antenna ratio. In this paper, the performance of the CG method has been 
advanced by a projection method that necessitates a search direction in each sub-domain 
instead of making all search directions conjugate to each other. In this regard, our results 
show that the proposed algorithm with realistic antenna configurations is superior to the 
existing methods in terms of computational complexity for large-scale MIMO systems.

Keywords Multiple-input multiple-output (MIMO) · Massive MIMO · Ill-conditioned 
problem · Multiple search direction conjugate gradient (MSD-CG) · Conjugate gradient 
(CG)

1 Introduction

The massive MIMO system has not only been proven to be energy efficient and spectrum 
but also, it is robust and secure. Therefore, due to these positive attributes, the massive 
MIMO system has been forecast to enable the high date rate systems [1]. To achieve the 
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goals of the fifth-generation wireless communication, the large-scale MIMO system is pre-
ferred since it serves multiple users simultaneously due to the hundreds of antennas at the 
BS. The large-scale MIMO system has increased dimensions which help to lower the com-
plexity detection signal algorithm in the uplink which in turn enables the system to achieve 
orders of magnitude increases in energy efficiency and spectrum [1, 2]. Researchers are 
planning to employ the massive MIMO system within the latest industrial standards which 
is more superior as compared to the conventional MIMO systems. This is because the mas-
sive MIMO can serve tens of terminals from one base station (BS) that is equipped with a 
few hundred antennae at the same time-frequency resource [2]. However, researchers have 
agreed that the massive MIMO detection system poses some challenge due to the prohibi-
tive computational complexity that is attributed to the significantly increased number of 
antennae [3].

For assuring attractive level of benefits from the use of large scale MIMO in practice, 
it is imperative to resolve some challenging issues and problems. The foremost issue is 
the detection of practical signal algorithm in the uplink [4]. The complexity of the opti-
mal detector i.e. the maximum likelihood detector increased up to a greater extent with 
the number of transmit antennas increases; eventually it no longer remain practical for the 
large scale MIMO systems. For achieving optimal ML detection performance while keep-
ing the complexities at lower level, it is proposed to choose from several non-linear signal 
detection algorithms. One of such algorithm is fixed complexity sphere detecting algorithm 
(FSD) that is based on the sphere decoding (SD) algorithm. In this type of algorithm, the 
underlying lattice structure of the received signals is used. It is proved to be the most capa-
ble and promising option that helps achieving the ML detection performance with mini-
mum level of complexity. This algorithm is significant for the typical small scale MIMO 
system however, when the dimension of MIMO becomes larger and the modulation is also 
hiked (e.g., 128 antennas at the BS with 64 QAM modulation) then the level of complexi-
ties resulted from this algorithm also became unaffordable.

There are several linear detection approaches that necessitate a better tradeoff between 
the complexity and performance for massive MIMO uplink systems. Some of these meth-
ods include the minimum square error (MMSE) and the zero-forcing (ZF) [4]. It should 
be noted that an increase in the number of antennae results in the subsequence increase 
in the complexity of the involved matrix inversion. Specifically, the complexity of matrix 
inversion is O

(
N3

)
 for a corresponding N × N dimensional channel matrix � for a massive 

MIMO system.
The complexity of the maximum likelihood algorithm which is the optimal signal 

detection algorithm increases exponentially following an increase in the transmit antennas 
which hinders the working of the large-scale MIMO systems [3, 4]. Apparently, several 
algorithms that have reduced complexity, that is, the tabu search [5] and sphere decoding 
[7] algorithms; however, it remains a challenge to avoid the complexity involved when the 
modulation order is high in large-scale MIMO system. In this regard, the low-complexity 
linear detection approaches have been studied [6–8], but the high complexity remains to be 
impossible in massive MIMO system since the algorithms use an unfavorable matrix inver-
sion. In the light of the past literature, the approximation methods can only achieve a mar-
ginal complexity reduction of the matrix inversion as evident from the presented methods 
in the literature [9–15, 19–28].

To this far, we have considered the Neumann series expansion [12], the Richardson [13] 
and the Gauss-Siedel iterative (GS) [14] methods which are the three approaches that are 
free from matrix invasion. It should be noted that the method based on the latter offers 
matrix H higher flexibility as compared to the method based on the former approach which 
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utilized the advantage brought about by the diagonal-property of the matrix in this case. 
Nevertheless, it is essential to note that the CG method advocated by [10–16] is consid-
ered to be superior on large-size matrices from the linear systems of equations. As afore-
mentioned, massive MIMO systems have various problems, but the most prominent is 
attributed to the variations in the BS-user antenna ratio due to the realistic placement of 
the antenna. The rate of convergence of CG method in an antenna configuration involving 
small BS-to-user antenna ratio reduces rapidly due to the steady increase in the value of 
k of the corresponding matrix [10]. However, from a mathematical perspective, when a 
system does not converge fast it implies that a method must perform a lot of iterations to 
get the desired result which introduces the complexity in the system. In this regard, it is 
fundamental to advance the CG method so that it can handle higher convergences with the 
realistic BS-to-user antenna ratio.

Another method is advocated based on the use of Cholesky incomplete factorization 
technique abbreviated as ICCG to act as a pre-conditioner to changing a linear system into 
a simple system that can be solved easily to achieve a better convergence. However, when 
this ICCG approach is used in the massive MIMO system, it results in just like other con-
ventional Cholesky algorithms [16] which are based on decomposition. Recently, a new 
detection algorithm was advocated by authors in [17]. This method was able to detect soft-
output data with low difficulty compared to the other approaches. To perform box-con-
strained equalization and estimate MMSE, the authors exploited the OCD.

To that end, there are two important factors upon which the convergence rate depends 
upon due to its inherent properties. First, the loading factor of the system (�) is the indica-
tion that BS would not be able to serve fast growing number of users simultaneously when 
it is equipped with fixed number of antennas. In literature, the antenna configuration widely 
adopted is 128 × 8 or 16 (BS v.s. users) due to which many-user cases are not considered 
by the corresponding detection methods. Secondly, in correlation channels where there is 
high coefficient of channel correlation (� ) , the iterative linear detectors performance turned 
to be unstable. Thirdly, there is max-log-LLR computation involved in the process that 
is either linked with large scale matric inversion or iterative process causes high level of 
complexity as well as long latency. Hence, it is crucially required to have an iterative linear 
detector for 5G applications that not only assures stable convergence rate but also provides 
low complexity level, even when applied to varied types of scenarios and cases. Complex-
ity level is the most important and attention gaining issue that could be understood from 
two varied aspects. First, in order to get comparable performance level like typical linear 
detectors including MMSE, the pace of convergence is quite slow due to which there are 
more iterations and eventually the graph of complexity and latency touched high levels. 
Secondly, when attempt is made to speed up the convergence, there are some common pre-
conditions adopted that merely reply upon the Cholesky decomposition that is incomplete 
[18]. However, in case of massive MU-MIMO, the threshold has a pre-processing phase, 
that again, causes the problem of excessive complexity which is unaffordable. View the 
problem from both of these aspects, it is unveiled that these situations offset and even com-
pletely eliminates the complexity advantage attached with the iterative linear detector and 
it became quite a difficult and challenging task to maintain a balance point.

In this paper, We encompasses substantially extended as well as thoroughly revised ver-
sions of the conference publication in [33]. We avoided the complicated matrix invasion by 
exploiting the MSD-CG method [18] which offers detection signal with low-complexity 
near-optimal signal. This was achieved after enhancing the convergence of the CG method 
by using a search direction in each sub-domain instead of making all search directions 
conjugate to each other that provided an alternative or projection mean of avoiding the 
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matrix invasion. In additional, we use a diagonal-approximate initial solution to the pre-
sented method. The ability of the advocated algorithm to efficiently compute the solution 
of the problem of matrix inversion iteratively to attain the desired accurate results is veri-
fied in the simulation results. It should be noted that the MSD-CG method has never been 
applied for the signal detection. Therefore, this work provides the first attempt to employ 
the approach in the large-scale MIMO uplink systems.

The remaining part of this paper is divided into five sections analyzing various concepts 
of this study. Section 2 briefly describes the introductions of the MMSE and the massive 
MIMO. Section 3 examines the presented algorithm based on the MSD-CG method. On 
the other hand, Sect. 4 presents the complexity analysis and numerical simulation. Finally, 
Sect. 5 concludes the study.

The vectors and matrices are represented by the lowercase and uppercase boldface let-
ters respectively. Besides, for a matrix � , we use ak,l for the entry in the lth column and 
the kth row of the matrix � , the kth entry of a column vector � is defined as ak = [�]k , �H 
denoted the Hermitian transpose and ‖�‖2 =

�∑
k
��ak��

2 defines the l2 − norm . Moreover, 
� represents the expectation operator, Re(a) and Im(a) represents the real and imaginary 
part of a complex number a, respectively.

2  System Model and Data Detection

This section provides a summary of the efficient techniques for the detection of linear 
MMSE and introduces a model that is regarded as the OFDM-based uplink massive MIMO 
system.

2.1  System Model

First, an uplink system of MU-MIMO-OFDM is considered where data is simultaneously 
sent to the BS with N antennae from U single−antenna users over W subcarriers, where 
with N >> U.The individual users, that is, i = 1, ...,U maps their own encoded bit stream 
onto a finite set O of constellation points, with bits per constellation point, and a unite mean 
transmitted power. Therefore, the inverse Discrete Fourier Transform (DFT) is used in the 
transformation of the obtained W frequency-domain symbols to time-domain (TD) [24]. 
Apparently, all the users transmitted their time domain signals at the same time through 
the frequency-selective channel after the prepending the cycle prefix. However, it should 
be noted that the frequency domain (FD) signals that reach the BS antenna are changed or 
transformed from the time signals after removing the cyclic prefixes. For simplicity pur-
poses, we assume the perfect channel-state information (CSI), a perfect synchronization, 
and a sufficiently long prefix has been gotten via pilot-based training. In this regard, we 
model the FD input-output relation concerning to the assumptions mentioned above on the 
wth sub-carrier as [23],

where

• sw ∈ OU has the transmitted symbols by all U users,
• Hw ∈ CN×U represents the complex channel matrix.
• yw ∈ CN represents the received associated vector.

(1)�w = �w�w + �w



Low‑Complexity Near‑Optimal Iterative Signal Detection Based…

1 3

• nw ∈ CN , is the additive, white, and Gaussian with variance of �2.

2.2  Data Detection

Solving the maximum likelihood (ML) problem helps in the minimization of the symbol 
error-rate for optimal data detection as per the model in equation (1) [25].

It should be noted that even with the best-known decoding sphere algorithm, the solution 
of equation (2) quickly leads to prohibitive complexity regarding massive MU-MMO sys-
tem [3, 4]. Therefore, at low computational complexity, an individual can determine the 
approximate solution to the ML problem. Virtually calculating of the s that is near the 
solution of the ML is possible for nonlinear and linear equalization methods that are meant 
to ease the finite-alphabet � ∈ OU in equation (2). The equation below shows how the esti-
mated �̂ near constellation point can be sliced element-wise;

The equation above is referred as the hard-output data detection. On the other hand, the 
soft-output data detection can be employed in the calculation of the reliability data for 
every bit broadcasted inform of LLR value [26].

2.3  Linear MMSE Equalization

The linear MMSE data detection is the most abundant equalization-based data algorithm 
[17, 24, 26]. This approach was proved to necessitate the ASIC and FPGA designs in mas-
sive MU-MIMO system. Furthermore, linear detectors can attain a near-ML error-rate per-
formance [8, 9] for large BS-to-user ration which is represented by p =

N

U
 . Besides, these 

systems should have a ratio of a value equal or greater than two.
The fundamental principle of the MMSE data detection is to incorporate a quadratic 

penalty function and relax the constraints to the U-dimensional complex space � ∈ CU , 
from the � ∈ OU in the ML problem in equation (2). In particular, the least-square problem 
is primarily solved by the MMSE equalization [4, 18]:

The MMSE equalization possesses a closed-form solution because the objective function 
in equation (4) is quadratic in � . If an individual wants to find the explicit solution to equa-
tion (4) then he or she should calculate the regularized Gram matrix as shown below:

where �w = �H
w
�w , N0 = �2 and the equation given below represents the matched filter 

vector,

Then, the estimated MMSE in equation (4) is calculated as;

(2)�̂ML
w

= argmin
�∈OU

‖‖�w −�w�
‖‖
2

2

(3)�̂w = argmin
�∈OU

|||
[
�̂
]
i
− �

|||∀i = 1, 2, ...,U

(4)�̂MMSE
w

= argmin
�∈CU

���w −�w�
��
2

2
+ 𝜎2‖�‖2

2

(5)�w = �w + N0�U

(6)�̂MF
w

= �H
w
�w
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For systems having hundreds of BS antennas such as the massive MU-MIMO, it is a chal-
lenge to solve the regularized Gram inverse �w

−1 and its matrix �w since it leads to prohib-
itive complexity in a closed form approach [3]. However, the closed form approach favors 
the small-scale MIMO system since it has been found to be more efficient when there are 
fewer antennas. In section III, an efficient and iterative technique of solving equation (4) 
is presented. Besides, the equalization algorithm avoids the expansive computations; for 
instance, the problem resented by solving the regularized Gram matrix and its inverse.

3  The Proposed Algorithm Based on the MSD‑CG Method

For large-scale uplink MIMO systems, it is guaranteed that the matrix �w which is referred 
to as MMSE filtering will always positively definite Hermitian, if and only if the chan-
nel matrix �w is column asymptotically and column full-rank orthogonal. In this regard, 
equation 2 is solved iteratively without the inversion of the matrix by exploiting MSD-CG 
method [18]. The MSD-CG is less complex than the traditional method of solving a matrix 
equation. Therefore, the filtering MMSE’s matrix can be decomposed as follows;

where � represents the lower triangular component �w and � represents diagonal compo-
nents of the same matrix. Then we can apply the MSD-CG technique to approximate the 
signal from the transmitted vector. It should be noted that the MSD-CG can solve the sys-
tems of the N-dimensional linear equations �� = � is solved using the MSD-CG method, 
where � and � are N × 1 are measurement and solution vectors, respectively; while � rep-
resents the N × N square Hermitian matrix. Therefore, this method can be used to solve 
equation (4) by solving the equation of the form (7) without the use of matrix inversion as 
follows.

where � = �H
w
�w + N0�U is a positive definite matrix, representing Gram matrix. The pro-

posed method can be used to approximate the ith iteration signal vector s as shown below;

where �i is an U × t projection matrix and �i is a vector of size t.
Algorithm 1 summarizes our MSD-CG-based approach for soft output data detection 

and the computed flops per iteration. The MMSE estimate has been iteratively realized 
without matrix inversion that has an algorithm with low complexity signal with the help 
of MSD-CG method. Moreover, the proposed MSD-CG-based algorithm is more advanta-
geous as provided by its complexity analysis algorithm. On line 1, we obtain the Gram 
Matrix and the match vector as in (5) and (6), respectively. Besides, on line 2, we first set a 
diagonal approximate initial solution to the method above to reduce complexity and accel-
erate the rate of convergence. Finally, we proceed to compute the noise-plus-interference 
(NPI) variance and the channel gain for the log-likelihood ratio (LLR) computation using 

(7)�̂MMSE
w

= �w
−1�̂MF

w

(8)�w = � + � + �H

(9)�̂ = argmin
�̂∈CU

‖‖‖�
H
w
� − ��̂

‖‖‖
2

2

(10)�̂ = �̂i−1 + �i�i
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an appropriate method that does not need to calculate the exact value of the inverted matrix 
as follows.

LLR Approximation for the proposed method : To figure out the LLR values for the 
proposed method using MSD-CG method, we estimate an approximation based on the 
method proposed in [8, 17] for single-carrier frequency-division multiple access-based 
(SC-FDMA) and orthogonal frequency-division multiplexing-based (OFDM) systems. 
This method approximates the channel gains by

where �−1
w,i

 represents the ith inverse squared column norm of the �w and �w,i indicates the 
entry in the ith main diagonal of the Gram matrix �w . Moreover, the SINR approximation 
�̄�w,i is given

Please refer to [8] for more details.
Computational complexity for the proposed method : The Computational complexity is 

analyzed as shown in Algorithm 1. We compute the required number of multiplications for 
each step in the proposed method. The total number of multiplications at each iteration is 
given by:

where t represents the number of search directions. Note that Itrmaxt should be much 
smaller than U, so that the computational complexity of proposed algorithm is less than 
O(U3) . To that end, we compare the computational complexity of the proposed method 
with other methods in the literature in the next section. 

Algorithm 1: MSD-CG for soft-output MMSE detection Flops

Input: H , the N× U the channel matrixy, the N × 1the received vectorx0,the 
initial guesst, Number of the Subdomains (search directions)Itrmax, the maxi-
mum allowed iterations Output: xitr,the approximate solution

1:Gw = Hw
HHw,A = Gw + N0IU,b = Hw

Hyw

2: r = b− Ax0 , x0 = inv(D− L)b , Itr = 1 4U − 1

3: P1 = T
(
r0
)
 , W1 = AP1

2U + U(t − 1)

4: While 
(
Itr < Itrmax

)
  do

5: � = Pt
itr
r (2U − 1)t

6: xitr = xitr−1 + Pitr� (2t − 1)U + U

7: r = r−WItr� (2t − 1)U + U

8: � = − Wt
itr
r (2U − 1)t

9: Pitr+1 = T(r)+ Pitrdiag(�) 2Ut
10: WItr+1 = AT(r)+WItrdiag(�) 2U − U(t − 1) + 2Ut

11: Compute �̂w,i in (11)
12: Compute�̂w,i in (12)
13: Itr = Itr+ 1 1
14: End While

(11)�̄�w,i = �−1
w,i
�w,i

(12)�̄�w,i =
�̄�w,i

1 − �̄�w,i

(13)O = 12Ut + 6U − 3t
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Algorithm 1: MSD-CG for soft-output MMSE detection Flops

* T(x) represents the method that transforms the U × 1 vector x  in t vectors size  U × 1 that cor-
respond to the projection of x onto the subdomains �i for i = 1, 2, … , t.

4  Simulation Results

To confirm the working of the signal detection approach proposed in this paper, The simu-
lation results of BER performance are carried out to compare the proposed method with 
the CG method which is the recently proposed algorithm [10]. We also compare it with 
other benchmark algorithms such as Neumann method [12], SOR Method [11], Richardson 
method [13] and GS method [14]. For these methods, the default setting parameters are 
used according to their toolboxes and their publications. Besides, the MMSE algorithm is 
included in the study as a reference point in the comparison due to its BER performance 
although it involves an exact but complicated approach of matrix inversion. In this regard, 
we focus on several massive MIMO systems which have U × N = 8 × 32 , U × N = 8 × 64 , 
U × N = 16 × 64 , U × N = 8 × 128 , U × N = 16 × 128 and U × N = 24 × 128 , respectively.

We also employ the 64 QAM modulation scheme and the rate-1/2 which is a convolu-
tional code [15]. We also adopt flat Rayleigh channel which are always fading. The soft-
information is then extracted after the detection of multi-user signal for channel decod-
ing using the estimated signal vector (by calculating the LLRs which is the log-likelihood 
ratios). The experiments have been carried out using the MATLAB software on an Intel 
Core i7 CPU 2.4-GHz processor and 4G MB RAM.

First, we compare the performance of the proposed method based on MSD-CG method 
with t = 2 and all other methods; when U × N = 8 × 128 . Figures. 1 and 2 shows the simu-
lation results of BER vs. SNR of the presented detectors for number of iterations equals 
two and three, respectively. The parameters are set as: Number of antennae N = 128 and 
Number of users U = 8 with various values of SNR from −10 dB to 20 dB. Figures 1 and 2 
demonstrates that the proposed algorithm, based on MSD-CG method, producing the low-
est BER consistently in comparison to all others, and thus it outperforms the other iterative 
detectors at Itr = 2 and Itr = 3 , respectively. We also observe that the proposed algorithms 
work even in cases which cause difficulties for other methods, as when the iteration number 
is fairly small ( Itr = 2 ). It is obvious that the performance of the Iterative-based methods 
degrade as the number of iterations decreases.

To that end, Table 1 shows the corresponding comparison between the different algo-
rithms in terms of the average computation times for the U × N = 8 × 128 case. Table 1 
shows that the proposed method is comparable to the other algorithms even it improve the 
BER performance for iterative methods. Moreover, Table 1 also shows that the CG method 
and Richardson approaches is less complex than the others algorithm. However, with 

Table 1  U × N = 8 × 128 Case: Average computational times for each method (in sec)

MMSE CG SOR Neurmann Richardson GS MSD-CG

Itr
m
ax = 2 9.04e–05 5.01e–05 1.09e–04 9.63e–05 4.91e–05 1.03e–04 6.75e–05

Itr
m
ax = 3 1.02e–04 8.15e–05 1.31e–04 1.26e–04 5.41e–05 1.31e–04 9.15e–05
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the advent of more powerful computing platforms including Graphics Processing Units 
(GPUs) the performance accuracy holds more merit. Moreover, the proposed algorithm 
requires a 10 dB SNR to obtain the desired BER of 10−3 in Fig. 3. While, the GS-based 
and the Neumann-based methods require SNRs of 12 dB and 13 dB to obtain the same 
desired BER of 10( − 3) , respectively.

It is also worthwhile to compare the presented algorithm with a relatively large user 
set. Thus, Figs. 3 and 4. Present the performance of the proposed method based on MSD-
CG method with t = 2 and others aforementioned methods; when U × N = 16 × 128 . 
As shown in Figs. 3 and 4, the proposed method again obtains the performance of the 
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MMSE algorithm and outperforms other presented algorithms in the literature. One can 
observe that the proposed method performs more consistently and exhibits improve-
ment in the performance as number of iterations increases. Additionally, the comparison 
between the different approaches in terms of the average computation times presented in 
Table 2. The proposed method is comparable to the other algorithms even it improves 
the BER performance as shown in Table 2. Furthermore, a commonly used measure of 
the computational complexity of an algorithm is in terms of the number of real-valued 
multiplications. To study the performance of the proposed detector and to compare the 
detectors in terms of computational complexity, the number of real-valued multiplica-
tions performance index in [34] is used and averaged over 500 independent realizations 
of the received data. Figure  5 presents the comparison of computational complexity 
among the proposed algorithm, MMSE, Neumann , GS method and Richardson method, 

Fig. 3  BER performance com-
parison between the proposed 
approximated method and other 
methods to compute LLRs
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where the proposed algorithm requires substantially less than the other two algorithms 
when the number of iterations is small. Although the Richardson algorithm requires a 
slightly lower complexity than the proposed algorithm when its number of iterations is 
three, the system BER performance of the MSD-CG method outperforms the Richard-
son algorithm as shown in Figs. 3 and 4.

It is also worthwhile to compare the proposed algorithms with various ( p = N∕U ) 
ratio. Thus, the resulting BER performance is shown in Fig.  6a–d. Figure  6 presents 
comparison between the proposed algorithm with the method of CG, the GS-based 
method, the conventional method based on Neumann and others in the literature at 
different p ratio. We observed that the proposed algorithm performs well with differ-
ent number of antenna and users. It is also shown that the BER performance of the 
MMSE algorithm becomes closer to that of all conventional approaches when there 
is an increased number of iteration. However, when a similar number of iteration is 
employed, then the proposed method becomes more superior as compared to the other 
approaches. Moreover, one can observe that as the value of N increases, there is an 
associated improvement in the performance of the MMSE approach. The performance 
of the all methods becomes better with an increase in the number of iteration although 
it still experiences a performance loss for the conventional ones. This provides a reason 
as to why the other conventional ones in the literature are less superior to the proposed 
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Table 2  U × N = 16 × 128 Case: Average computational times for each method (in sec)

MMSE CG SOR Neurmann Richardson GS MSD-CG

Itr
m
ax = 3 1.42e–05 9.32e–05 2.35e–04 3.25e–04 1.05e–04 2.27e–04 1.12e–04

Itr
m
ax = 4 1.44e–04 1.23e–04 2.84e–04 4.12e–04 1.27e–04 2.83e–04 1.37e–04



 Z. Albataineh 

1 3

algorithm. In additional, The Neumann series method performs well in the case of 
( N × U = 128 × 8 ), that emphasizes the perception in [12] that this method requires a 
large BS to user ratio ( p = N∕U).
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Fig. 6  BER performance comparison in the massive MIMO uplink for a U × N = 8 × 32 , b 
U × N = 8 × 64 , c U × N = 16 × 64 , and d U × N = 24 × 128
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5  Conclusions

In this study, a low complexity signal detection method based on the MSD-CG algorithm is 
proposed. The proposed algorithm based on the MSD-CG method estimates the transmit-
ted signal by iteratively solving the linear equation and avoiding the matrix inverse opera-
tion in the MMSE approach. However, the complexity is substantially reduced from O(U3) 
to O(U2).The method is adapted for massive MIMO uplink system to bypass the high-
dimensional matrix inversion problem demanded by the MMSE criterion. The adapted 
MSD-CG algorithm iteratively estimates the transmitted signal due to eliminating the need 
of matrix inverse operation. Also, the presented method reduces the system complexity and 
enhances overall system performance by employing an initial solution using the diagonal-
approximate. This results in speeding up the rate of convergence of the detection process. 
However, with a small number of iterations, it was proved that the simulation results and 
the convergence of the MSD-CG method can attain the near-optimal achievement of the 
algorithm by the MMSE method. Moreover, the idea behind using the MSD-CG approach 
can also be applied to wireless communication such as precoding or other signal process-
ing problems in massive MIMO system.
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