Yvonne Joseph

Yvonne Joseph
Technische Universität Bergakademie Freiberg · Institute of Electronics and Sensor Materials

Prof. Dr.

About

169
Publications
23,943
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,992
Citations
Citations since 2017
97 Research Items
1816 Citations
20172018201920202021202220230100200300
20172018201920202021202220230100200300
20172018201920202021202220230100200300
20172018201920202021202220230100200300
Additional affiliations
October 2011 - present
Technische Universität Bergakademie Freiberg
Position
  • Managing Director
October 2005 - September 2011
Universität Stuttgart
Position
  • Lecturer
November 2001 - September 2011
Sony Deutschland GmbH
Position
  • Senior Researcher

Publications

Publications (169)
Article
Full-text available
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of t...
Article
Polymer composites based on graphene/carbon nanotubes (G/CNT) and reduced graphene oxide/carbon nanotubes (rGO/CNT) were synthetized by in‐situ miniemulsion polymerization containing 1 wt% hybrid filler with different ratio of G and CNT (10:1, 1.1, 1:10). From the hybrid aqueous dispersions obtained in that way polymer films were spontaneously form...
Article
Full-text available
Gallic acid (GA) is one of the most important polyphenols, being widely used in the food, cosmetic, and pharmaceutical industries due to its biological effects such as antioxidant, antibacterial, anticancer, antiviral, anti-inflammatory, and cardioprotective properties. Hence, simple, fast, and sensitive determination of GA is of particular importa...
Article
Full-text available
Emerging trends like the Internet of Things require an increasing number of different sensors, actuators and electronic devices. To enable new applications, such as wearables and electronic skins, flexible sensor technologies are required. However, established technologies for the fabrication of sensors and actuators, as well as the related packagi...
Article
Mercury is a highly toxic and potentially bioaccumulative heavy metal ion that can cause severe health problems in humans even at very low concentrations. Thus, the development of a simple, rapid, and sensitive assay for the effective detection of mercury ions at trace levels is of great importance. Here, nitrogen and sulfur co-doped carbon quantum...
Article
Full-text available
Although tremendous progress has been made in treating childhood cancer, it is still one of the leading causes of death in children worldwide. Because cancer symptoms overlap with those of other diseases, it is difficult to predict a tumor early enough, which causes cancers in children to be more aggressive and progress more rapidly than in adults....
Article
Full-text available
The polymer Parylene combines a variety of excellent properties and, hence, is an object of intensive research for packaging applications, such as the direct encapsulation of medical implants. Moreover, in the past years, an increasing interest for establishing new applications for Parylene is observed. These include the usage of Parylene as a flex...
Article
Full-text available
A triboelectric nanogenerator is a promising approach to harvesting electric power from the environment by converting mechanical energy into electrical energy. Various nanocomposites and nanofillers are incorporated to enhance triboelectric surface charge density. Researchers recently attempted to incorporate small molecules into triboelectric nano...
Article
The next generation of power sources for wearable electronics is anticipated to be nanogenerators based on triboelectric and piezoelectric mechanisms, which have proven to be effective at converting biomechanical energy into electrical energy. In this work, the piezoelectric and triboelectric effects of modeling clay were deeply explored. It is int...
Article
Flexible electronics and sensors are a key enabling element for the realization of wearables and geometry adaptive devices needed to follow current trends such as the Internet of things or Industry 4.0. Within this paper, we present a new and flexible packaging platform by the fabrication of an ultra-thin and highly flexible printed circuit board (...
Article
Full-text available
Chemiresistive composites of gold (Au) nanoparticles interlinked with different types of organic molecules were prepared automatically by layer-by-layer self-assembly using a microfluidic cell. For the assembly process, dodecylamine-stabilized Au nanoparticles with an average size of 3.7 nm as well as alkyl dithiols, alkyl diamines, and alkyl bisdi...
Article
Über neue Techniken in der Elementanalytik, neue Isotope für die Spurensuche in der forensischen Umweltanalytik und in der Archäometrie, Miniaturisierung in Chromatographie und Elektroanalytik, Biosensoren für die Point‐of‐Care‐Diagnostik, spektroskopische Methoden in der Prozessanalytik, Digitalisierung und Analyse von Kunststoffen in der chemisch...
Article
Full-text available
Thin films of cellulose ferulate were designed to study the formation of dehydrogenation polymers (DHPs) on anchor groups of the surface. Trimethylsilyl (TMS) cellulose ferulate with degree of substitution values of 0.35 (ferulate) and 2.53 (TMS) was synthesized by sophisticated polysaccharide chemistry applying the Mitsunobu reaction. The biopolym...
Article
Full-text available
Sol–gel derived hydroxyapatite coatings on metallic implants are important to promote their osseointegration and biocompatibility. However, such coatings generally suffer from drawbacks that limit implant longevity. In this study, the sol gel process to prepare hydroxyapatite was optimized and used to deposit a hydroxyapatite layer on Ti6Al4V. Samp...
Article
Full-text available
Azaperone is a very important phenylbutanone-based neurotransmitter used in the treatment of some animal (veterinary) clinics. This compound has various nerve and tendon stabilizing agents on livestock and animals. Muscular injection of azaperone is used to reduce stress in livestock and reduce their acting. In the present work, Fe 3 O 4 @SiO 2 -NH...
Article
The design of sensitive and cost-effective biocomposite materials with high catalytic activity for the effective electrooxidation of glucose plays a key role in developing enzyme-free glucose sensors. The porous three-dimensional (3D) spongin scaffold of marine sponge origin provides an excellent template for the growth of atacamite crystals and im...
Article
Bacterial diseases are serious problems in the world today. The Staphylococcus aureus (S. aureus) bacterium is one of the most invasive and resistant bacteria that infects humans, making it a common cause of hospital infections. Herein, a very sensitive aptasensor for S. aureus was constructed using nitrogen-doped carbon nano-onions, gold nanoparti...
Article
Full-text available
The functionality of products increases when more sensors are used. This trend also affects future automobiles and becomes even more relevant in connected and autonomous applications. Concerning automotive lightweight design, carbon fibre-reinforced polymers (CFRP) are suitable materials. However, their drawbacks include the relatively high manufac...
Article
Full-text available
Primary liver cancer is an aggressive, lethal malignancy that ranks as the fourth leading cause of cancer-related death worldwide. Its 5-year mortality rate is estimated to be more than 95%. This significant low survival rate is due to poor diagnosis, which can be referred to as the lack of sufficient and early-stage detection methods. Many liver c...
Article
Full-text available
Wafer bonding is a crucial process for fabricating microsystems. Within this study, the polymer parylene was used to establish a low-temperature adhesive wafer bonding process for wafers of 150 and 200 mm diameters. The bonding process was investigated for silicon and glass wafers with different additional coatings including silicon dioxide, silico...
Article
Full-text available
The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to ob...
Article
Full-text available
Composites of organic compounds and inorganic nanomaterials provide novel sensing platforms for high-performance sensor applications. The combination of the attractive functionalities of nanomaterials with polymers as an organic matrix offers promising materials with tunable electrical, mechanical, and chemisensitive properties. This review mainly...
Article
Full-text available
Globally, there is growing concern about the health risks of water and air pollution. The U.S. Environmental Protection Agency (EPA) has developed a list of priority pollutants containing 129 different chemical compounds. All of these chemicals are of significant interest due to their serious health and safety issues. Permanent exposure to some con...
Article
The combination of graphene (G) and multi-walled carbon nanotubes (MWCNTs) creates 3-dimensional hybrid structures particularly suitable as next-generation electrical interface materials. Nevertheless, efficient mixing of the nanopowders is challenging, unless previous disaggregation and eventual surface modification of both is reached. To avoid us...
Article
This study reports developing novel smart drug delivery systems (DDS) that have great importance in anticancer therapeutics. The magnetic hydroxypropyl methylcellulose (mHPMC) synthesized via in situ method and introduced in the fabrication of tripolyphosphate (TPP)-cross-linked chitosan core-shell nano-carriers ([email protected]). The TPP-cross-l...
Article
Hydrogen incorporation during crystal growth or other treatment has attracted research interest for a long time, but the diffusion paths and the role of additional defect sites within the lithium metal oxides (LiMO3 with M = Nb, and Ta) are still not fully understood. We investigated the hydrogen diffusion by crystal orientation- and light polariza...
Article
Graphene nanoribbons (GNR) are narrow strips of graphene in one dimensional morphology with extraordinary properties, owing to the large edges that offer numerous interfacial contact area to the polymer phase in the composite materials. Consequently, minor amount of GNR incorporated within polymer matrix, will not only reinforced mechanically and t...
Article
Full-text available
Citation: Zarejousheghani, M.; Jaafar, A.; Wollmerstaedt, H.; Rahimi, P.; Borsdorf, H.; Zimmermann, S.; Joseph, Y. Rational Design of Molecularly Imprinted Polymers Using Quaternary Ammonium Cations for Glyphosate Detection. Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. A...
Article
For the realization of advanced bio-microsystems for medical applications such as implants, fabrication processes require the usage of biocompatible materials only. Especially for the encapsulation and hermetic sealing, e. g. of microfluidic structures, a biocompatible wafer bonding process is necessary. Additionally, the ongoing integration of new...
Article
Full-text available
With the growing demands for bone implant therapy, titanium (Ti) and its alloys are considered as appropriate choices for the load-bearing bone implant substitutes. However, the interaction of bare Ti-based implants with the tissues is critical to the success of the implants for long-term stability. Thus, surface modifications of Ti implants with b...
Article
The ongoing miniaturization and implementation of new functionalities into micro-electro-mechanical systems (MEMS) demand the development and application of new wafer bonding and encapsulation technologies with a high performance. Requirements are low process temperatures, high mechanical strengths of the bonded interface, as well as the applicabil...
Article
Full-text available
The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its...
Article
This paper describes the modification of a modified carbon paste electrode (CPE) using nanoparticles of praseodymium erbium tungstate (Pr:Er). The modified electrode was used for the sensitive voltammetric detection of an anticancer drug (5-fluorouracil (5-FU)) using. The modified-CPE was evaluated using cyclic voltammetry (CV), square wave voltamm...
Article
Diverse fields of modern environmental technology are nowadays focused on the discovery and development of new sources for oil spill removal. An especially interesting type of sorbents is those of natural origin-biosorbents-as ready-to-use constructs with biodegradable, nontoxic, renewable and cost-efficient properties. Moreover, the growing proble...
Article
Full-text available
Three-dimensional (3D) biopolymer-based scaffolds including chitinous matrices have been widely used for tissue engineering , regenerative medicine and other modern interdisciplinary fields including extreme biomimetics. In this study, we introduce a novel, electrochemically assisted method for 3D chitin scaffolds isolation from the cultivated mari...
Article
This study illuminates the applicability of covalent triazine frameworks (CTFs) as a potential cathode material in lithium‐sulfur (Li‐S) batteries. A systematic synthesis protocol is applied to generate a set of model‐CTFs containing covalently bound sulfur with varying porosities and conductivities. An in‐depth structural characterization reconsid...
Article
Full-text available
The new nanocomposite with various molar ratios along with magnetic properties was fabricated via precipitation (assisted by ultrasonic) procedure. The photocatalytic effects of methylene blue (∼90% degradation for optimized sample in 100 min) for finding the optimized sample performed under visible light irradiation. Moreover, the photo-antibacter...
Article
Marine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and an...
Chapter
Chitin is recognized as an evolutionarily ancient and fundamental skeletal construct, commonly found in diverse uni‐ and multicellular (mostly invertebrate) organisms across the globe. This chapter discusses the occurrence and structural peculiarities of chitin from sponges (Porifera), as well as methods for isolating this structural aminopolysacch...
Article
Full-text available
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, f...
Article
Full-text available
Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are ty...
Article
Full-text available
Fabrication of biomimetic materials and scaffolds is usually a micro- or even nanoscale process; however, most testing and all manufacturing require larger-scale synthesis of nanoscale features. Here, we propose the utilization of naturally prefabricated three-dimensional (3D) spongin scaffolds that preserve molecular detail across centimeter-scale...
Article
Diverse fields of modern technology and biomedicine can benefit from the application of ready-to-use chitin-based scaffolds. In this work we show for the first time the applicability of tubular and porous chitin from Caribena versicolor spiders as a scaffold for the development of an effective CuO/Cu(OH)2 catalyst for the reduction of 4-nitrophenol...
Article
Full-text available
Pure copper chromite nanoparticles were prepared through an efficient route using copper nitrate and chromium nitrate. For the first time, various amino acids were employed as capping agents in the presence of propylene glycol and ethylene glycol in order to prepare these nanostructures. A number of experiments were performed to examine the effect...
Article
Investigation of the influence of the nanocrystal (NC) surface chemistry on the (opto)electronic properties of NCs-based thin-films is of paramount importance for their further application in various devices. In this work, macroscopic superlattices of copper selenide (Cu2‒xSe) NCs in the form of thin films were prepared by self-assembly at the liqu...
Article
Full-text available
A glassy carbon electrode (GCE) was modified with a nanocomposite prepared from polymerized β-cyclodextrin (β-CD) and reduced graphene oxide (rGO). The modified GCE is shown to enable the voltammetric determination of traces of levofloxacin (LEV) by various electrochemical techniques. Experimental factors affecting the results including the amount...
Article
Full-text available
Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against hu...
Article
Full-text available
The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse mod...