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Abstract 
During the development of new aircraft wind tunnel testing of 2D and 3D airfoils or even complete 
aircraft is essential. The structural integrity of the wind tunnel model needs to be assured for the test 
campaign because a failure can cause severe damage on the wind tunnel facility and means the loss of the 
costly model itself. 
To enhance the level of safety, a detection of the flutter stability while testing is necessary. This paper 
addresses a method for fast and reliable identification of eigenfrequencies and damping ratios using 
operational modal analysis methods. The developed procedure has been applied in a wind tunnel test 
campaign by the Institute of Aeroelasticity of the German Aerospace Center (DLR) in the Transonic Wind 
Tunnel in Göttingen, Germany. A 2D airfoil was tested in a so-called flutter test rig with two degrees of 
freedom for pitch and heave motion. 
The main focus of the presented method is the time efficiency of the algorithm which enables the user for 
quasi “real time assessment” of the flutter stability. 

1 Introduction 

The flutter phenomenon involves an aeroelastic structural instability which may be violent in nature 
(explosive flutter), and, it may therefore exhibit a rapid deterioration in modal dampings with speed 
increase. Experiments for aeroelastic stability in wind tunnels are made to define the flutter characteristics 
of models of complete aircraft or their components. Such testing necessarily entails the risk of model 
damage due to the destructive oscillations that can occur at flutter. This risk is reduced if the flutter onset 
can be predicted from the model behavior in the subcritical region below the flutter boundary. It is 
required to identify the vibration modes critical to flutter and to measure the damping and frequencies of 
these modes. They must be tracked as the test conditions are varied until a damping trend can be reliably 
extrapolated to a flutter condition of zero damping. 
The aeroelastic interaction of a typical transport aircraft structure and the transonic flow exhibits two well-
known phenomena: firstly, in the transonic dip the flutter speed shows a noticeable minimum between the 
critical Mach number where local supersonic regions occur in the flowfield and the Mach number where 
massive flow separation limits the operational flight regime [1]; secondly, amplitude-limited oscillations 
of the structure, so-called limitcycle oscillations (LCO), may occur instead of classical flutter where the 
amplitude of the structural oscillations grow exponentially at flight speeds above the critical flutter speed 
[2]. It is assumed in the literature that both phenomena are linked to the inherently nonlinear aerodynamics 
at transonic speeds. Since the relative flow speeds are close to the speed of sound, shock waves occur 
which may interact with the boundary layer eventually leading to flow separation. All of these mutual 
interactions are sources of nonlinearities. As mentioned above the damping and frequency trends of the 
flutter experiments in the Transonic Wind Tunnel in Göttingen (TWG) must be monitored to approach the 
unstable boundary in a safely manner, which requires quasi “real time assessment” of the flutter stability 
during operation. 

3693



In the last years, different system identification methods were developed to perform automatic modal 
analysis based only on the structural response of buildings and vehicles under ambient excitation. This so-
called operational modal analysis methods (OMA) try to approximate directly the time domain response, 
e.g. data-driven stochastic subspace identification (SSI,[5][8]), or the cross power spectral densities CPSD 
in frequency domain using rational polynomials, e.g. least-square complex frequency estimator 
(LSCF,[6]) or poly-reference LSCF (pLSCF,[7]). Several time domain methods use the cross correlation 
functions, which are the inverse Fourier-Transforms of the CPSD, e.g. NExT-LSCE [3], NExT-ERA [4] 
or covariance-driven SSI [8].  
In this study, the modal characteristics of the aeroelastic airfoil model must be obtained during operation 
in the TWG in order to observe its interaction with airflow. For in-flight or wind gallery tests it is 
desirable to monitor the evolution of the system’s eigenfrequencies and damping as operating conditions 
are being modified. In the following the implementation of the well-known LSCF identification method is 
presented, which runs very rapid and without user interaction. 

2 Aeroelastic system identification 

Real-time automated modal analysis describes a procedure by which time data is continually collected, 
processed and automatically analyzed to identify the modal parameters of a structure.  
Though “real-time” may be a misnomer because a certain data sample must first be collected before it can 
be analyzed, modal analysis forms a prediction of the system’s behavior based on its dynamical 
characteristics, thus allowing to foresee, for example, the onset of an unstable state. Trending of time data 
reveals instabilities when the system already is in an unstable state. 
In experimental modal analysis (EMA) excitation and response of a system are both measured and their 
relationship evaluated in time or frequency domain as the system’s transfer function. Numerical 
identification will find a mathematical model which approximates the transfer function.  
If ambient excitation cannot be measured or eliminated, only vibration responses are acquired. Without 
knowledge of the excitation forces quantitative information about the cause of the vibration is missing, 
therefore the methods of OMA must be employed. Unlike experimental modal analysis, the frequency 
response function (FRF) cannot be estimated and the primary data source for modal identification become 
the CPSD calculated between response sensors and reference sensors. This renders calculation of the 
modal mass impossible and results in a higher stochastic variance and lower data quality, but eigenvalues 
and eigenmodes can still be identified. 
In order to collect enough information about a system, the data sample must have a certain sampling 
frequency and acquisition time. The sampling frequency is set by the maximal frequency of interest for the 
modal analysis, the frequency resolution by the number of data points needed for convenient estimation of 
modal parameters. 
Sampling frequency relates to the maximal practically measurable frequency of a system (fmax = fs/2) and 
acquisition time to frequency resolution (Δf = 1/Ts), delivering Ns = fsTs/2 data points in the frequency 
domain.  
Noise levels must be reduced in order to diminish the bias on the measured parameters because several 
identification algorithms are not efficient and consistent [11][16]. A window function of size N<Ns 
reduces data noise by averaging over many data blocks, but increases frequency resolution linearly by a 
factor Ns/N, thus forcing a longer acquisition time in order to satisfy a minimum Δf requirement. 
The demands of noise reduction and the requirement of identifying a certain frequency range impose the 
time delay between data acquisition and system identification. The available computation speed only 
determines how often data can be analyzed. 
Time data is acquired in blocks of length NB = TA/fs dictated by the available analysis (computation) time 
TA before a new block arrives. Many blocks are then stacked in a dynamic first-in-first-out buffer whose 
size depends on the required frequency resolution.  
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2.1 Theory 

Several algorithms handle large and noisy data sets in frequency domain from modal analysis tests 
containing multiple sensors and multiple exciters. The LSCF estimator is described in this text with some 
insights on computational complexity and comparisons with the poly-reference pLSCF estimator.  
The order of magnitude of computation time is presented for typical practical cases using the authors’ 
mobile computer as reference (i7 Intel, 8GB RAM, SSD, year 2013). 
LSCF identifies the modal characteristics of a dynamic system by estimating polynomial coefficients and 
then directly from them the poles and modal participation factors using a common denominator 
formulation describing the transfer function.  
For a multiple inputs – multiple outputs linear, time invariant system, with No sensors (outputs) and Ni 
exciters (inputs), the transfer function matrix entries can be represented as a rational polynomial of order 
Np as function of the complex frequency s: 

 𝐻𝑜𝑖(𝑠) =
� 𝑏𝑛,𝑜𝑖𝑠𝑛

𝑁𝑝
𝑛=0

∑ 𝑎𝑛𝑠𝑛
𝑁𝑝
𝑛=0

   ∈  ℂ𝑁𝑜×𝑁𝑖  (1) 

The LSCF algorithm estimates the coefficients an and bn,oi, from which then the poles and zeroes of the 
transfer function can be calculated as polynomial roots. There are different implementations of LSCF that 
identify the system each with different asymptotic properties in the least-squares (LS), total least-squares 
(TLS), generalized total least-squares (GTLS) and maximum likelihood (ML) senses [14]. The limited 
time available for identifying the system restrains the applicability of iterative and poly-reference methods 
for the real-time automated modal analysis. 

For a stationary stochastic process, the power spectra S𝑦𝑦(𝑠) ∈  ℂ𝑁𝑜×𝑁𝑜 of the outputs are given by: 

 S𝑦𝑦(𝑠) = 𝐻(𝑠)S𝑓𝑓(𝑠)𝐻(𝑠)𝐻 (2) 

with S𝑓𝑓(𝑠) ∈  ℂ𝑁𝑖×𝑁𝑖 the cross-power spectral densities of the unknown input forces. Assuming white 
noise exciting the system, S𝑓𝑓 is constant with respect to frequencies: 

 S𝑦𝑦(𝑠) = 𝐻(𝑠)𝐻(𝑠)𝐻�S𝑓𝑓�,     �S𝑓𝑓� = 𝑐𝑜𝑛𝑠𝑡. (3) 

The eigenvalues and eigenmodes of the system can be identified, although the missing information about 
exciting forces renders determination of the modal participation factors, i.e. modal scale factors, 
impossible. The cross power spectral density function is estimated using the periodogram approach 
(Welch’s estimator). The double-sided cross-power spectral density of responses y with references x for 
each frequency k and block b are given by: 

 S𝑥𝑦(𝜔𝑘) = 1
𝑁𝑏
∑ Y𝑏,𝑘X𝑏,𝑘

𝐻𝑁𝑏
𝑏=1   ∈  ℂ𝑁𝑦×𝑁𝑥   (4) 

with Y and X the windowed spectra of respectively responses and references. The choice of number and 
length of blocks affects respectively the bias and variance of the estimated power spectra. 
The entire CPSD matrix is calculated at once by taking advantage of symmetry, vectorization and 
indexing. The FFT algorithm has 𝒪(𝑁 log𝑁) time complexity and evaluates all NyNx spectra in parallel; 
overall computation time is inversely proportional to the window size and directly proportional to overlap. 
The 𝑁𝑏  element-wise products of the response and reference spectra require then each 𝑁𝑦𝑁𝑥𝑁 operations. 
This step is economical since the data buffer is always much smaller than during EMA. The double-sided 
cross-power spectral density matrix can be reshaped by stacking its responses and references. Rational 
polynomials in the Laplace-domain can represent the system experimentally determined along the 
imaginary axis in the complete complex domain: 

 S𝑦𝑥(𝜔𝑘) ∈  ℂ𝑁×𝑁𝑦×𝑁𝑥     
𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑
�⎯⎯⎯⎯⎯�     𝑆𝑟(𝑠) =

∑ 𝑏𝑛,𝑟𝑠𝑛
𝑁𝑝−1
𝑛=0

∑ 𝑎𝑛𝑠𝑛
𝑁𝑝−1
𝑛=0

 ∈  ℂ𝑁×𝑁𝑦𝑁𝑥

 
  (5) 

with Np defined for convenience as the highest polynomial order plus one. 
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The unknown coefficients an and bn,r are found by solving the so-called reduced normal equations: 
 𝐽𝐻𝐽θ = 0 (6) 

where JHJ is the system’s reduced Jacobian matrix and the parameters 𝜃 are the stacked polynomial 
coefficients: 

𝜃 = �𝛽1 𝛽2 ⋯ 𝛽𝑁𝑦𝑁𝑥 𝛼�𝑇  with:  𝛽𝑟 = �𝑏𝑟,1 ⋯ 𝑏𝑟,𝑁𝑝�
𝑇 , 𝛼 = {𝑎1 ⋯ 𝑎𝑁𝑝}𝑇 

The vector 𝛼 contains all denominator coefficients and the vector 𝛽𝑟 all numerator coefficients of the 
CPSD’s r-th column, while JHJ can be rewritten as: 

 

⎣
⎢
⎢
⎢
⎡
𝑀1 ⋯ 0 𝑄1
⋮ ⋱ ⋮ ⋮
0 ⋯ 𝑀𝑁𝑦𝑁𝑥 𝑄𝑁𝑦𝑁𝑥
𝑄1𝐻 … 𝑄𝑁𝑦𝑁𝑥

𝐻 ∑ 𝑇𝑟
𝑁𝑦𝑁𝑥
𝑟 ⎦

⎥
⎥
⎥
⎤
�

𝛽1
⋮

𝛽𝑁𝑦𝑁𝑥
𝛼

� = 0  𝑀,𝑄,𝑇 ∈  ℂ𝑁𝑝×𝑁𝑝 (7) 

The entries (p,q) of the 𝑁𝑦𝑁𝑥  reduced matrices M, Q and T can be expressed as: 

 

𝑀𝑟(𝑝,𝑞) ≝ ∑ 𝑊𝑟,𝑘𝑧𝑘
𝑝−𝑞𝑁

𝑘=1   

𝑄𝑟(𝑝,𝑞) ≝ ∑ −𝑊𝑟,𝑘𝑆𝑟,𝑘𝑧𝑘
𝑝−𝑞𝑁

𝑘=1   

𝑇𝑟(𝑝,𝑞) ≝ ∑ 𝑊𝑟,𝑘𝑆𝑟,𝑘𝑆𝑟,𝑘𝑧𝑘
𝑝−𝑞𝑁

𝑘=1   

(8) 

with W a weighting function in the frequency-domain. A poly-reference algorithm like pLSCF calculates 
analogously 𝑁𝑦 reduced matrices of size ℂ𝑁𝑥𝑁𝑝×𝑁𝑥𝑁𝑝. It can be observed that these matrices are Hermitian 
and have a Toeplitz structure, therefore only one row or column need be calculated to reconstruct the 
whole matrix since both S and W are even functions and z is evaluated over the unit circle. Computation 
time is further reduced by calculating in parallel the first Np terms of the discrete Fourier transform. 
Carrying out the matrix multiplication of the above, one obtains: 
 𝛽𝑟 = −𝑀𝑟

−1𝑄𝑟𝛼   and   𝐷𝛼 = 0  (9) 
where D is the so-called reduced Jacobian matrix:  

 𝐷 ≝ ∑ 𝑇𝑟
𝑁𝑦𝑁𝑥
𝑟=1 − 𝑄𝑟𝐻𝑀𝑟

−1𝑄𝑟  ∈  ℂ𝑁𝑝×𝑁𝑝  (10) 

Time complexity for matrix multiplication and matrix inversion is somewhat lower than 𝒪(𝑛3), thus will 
computation time for LSCF increase as 𝒪(𝑁𝑦𝑁𝑥𝑁𝑝3); pLSCF will similarly calculate 𝐷 ∈  ℂ𝑁𝑥𝑁𝑝×𝑁𝑥𝑁𝑝 by 
summing 𝑁𝑦 terms [16], being thus 𝒪(𝑁𝑥2) slower. The reduced matrices are calculated in linearithmic 
time for both cases. An overview of the computational aspects of the reduced Jacobian matrices is given in 
[15]. 
Assuming conservatively a spectrum of tens of thousands frequency points and hundreds of responses and 
reference channels, the three reduced matrices are calculated in less than one second. 
In order to remove the parameter redundancy and calculate unstable poles, a0 = 1 is imposed [16], 
therefore the least-squares solution of the reduced normal equations for every order n is: 

 𝛼𝑛 = �
1

−𝐷(1:𝑛+1,2:𝑛+1)
−1 𝐷(1:𝑛+1,1)

� ∈  ℂ(𝑛+1)×1      𝑛 = 1:𝑁𝑝 − 1 (11) 

The complexity of this pseudoinverse is about 𝒪(𝑁𝑝3) in the worst case; the pLSCF version computes 
𝛼 ∈  ℂ𝑁𝑥𝑁𝑝×𝑁𝑥 [16]. 
The complex poles of the system can be calculated by finding the roots zm of the denominator polynomial 
in the z-domain using the eigendecomposition of the companion matrix of vector 𝛼𝑛 for a model order n. 

 ∑ 𝑎𝑖𝑠𝑖  𝑛
𝑖=0    

𝑟𝑜𝑜𝑡𝑠
�⎯⎯�     𝑎𝑛 ∏ (𝑠 − 𝑧𝑖)𝑛

𝑖=1    
𝑧=𝑒𝜆Δ𝑡𝑒𝑖𝜑
�⎯⎯⎯⎯⎯⎯�   λ𝑖,𝑛  (12) 
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The eigenvalue decomposition requires 𝒪(𝑁𝑝3) operations in the worst case. LSCF calculates the roots of 
the polynomial with coefficients 𝛼 ∈  ℂ𝑁𝑝×1, pLSCF similarly builds a companion matrix from 𝛼 ∈
 ℂ𝑁𝑥𝑁𝑝×𝑁𝑥 and calculates its eigenvalues [16].  
The stabilization diagram is constructed by repeating the last two steps for many model orders down from 
Np–1. The vast majority of the calculated roots are purely mathematical poles; the physical poles of the 
system are found by imposing: 

 
ℑ(λ) > 0   eigenfrequencies must be positive 
0 < −ℜ(λ) < |λ| the system must be underdamped 

(13) 

At the end of this step, for each model order n, Nm(n)<n physical poles are known, therefore a clean 
stabilization diagram can be plotted. Conservatively calculating all poles up to model order one hundred 
lasts tenths of a second per frequency band. 
The residues of the system are determined using the Least Squares Frequency Domain (LSFD) method 
applied on the physical poles of the system for all (or some) model orders. 
The modal decomposition of the cross-power spectral density is:  

 𝑆(𝑠) = ∑ � 𝑅𝑚,1
𝑠−𝜆𝑚

+ 𝑅�𝑚,1
𝑠−𝜆�𝑚

+ 𝑅𝑚,2
𝑠̅−𝜆𝑚

+ 𝑅�𝑚,2
𝑠̅−𝜆�𝑚

�𝑁𝑚
𝑚=1 − 𝐿𝑅

𝑠4
+ 𝑈𝑅    ∈  ℂ𝑁×𝑁𝑦𝑁𝑥 (14) 

with 

 𝑅𝑚,1 = 𝜓𝑚𝐿𝑚𝑇 ,    𝑅�𝑚,1 = 𝜓�𝑚𝐿𝑚𝑇 ,    𝑅𝑚,2 = 𝐿𝑚𝜓𝑚𝑇 ,    𝑅�𝑚,2 = 𝐿�𝑚𝜓𝑚𝑇   (15) 

where each residue matrix 𝑅𝑚 ∈  ℂ𝑁𝑦×𝑁𝑥 is the product of mode shapes 𝜓𝑚 and operational reference 
vectors 𝐿𝑚𝑇 . The upper and lower residuals 𝑈𝑅 and 𝐿𝑅 account for the effects of the modes outside the 
current frequency band. Since the poles are already known, a linear least-squares problem in the 
parameters 𝑅, 𝑈𝑅 and 𝐿𝑅 must be solved: 

 [𝑆] = [𝐴][𝑋]    
𝑠𝑜𝑙𝑣𝑒
�⎯⎯�    [𝑋] = [𝐴]+[𝑆] (16) 

where 𝐴 ∈  ℂ𝑁×(𝑁𝑚+2) contains the various known [1 (𝑠 − 𝜆𝑚)⁄ ⋯ −1/𝑠4 1] terms, S the measured 
cross-power spectral density matrix and 𝑋 ∈  ℂ𝑁𝑦(𝑁𝑚+2)×𝑁𝑥 the unknown stacked residue matrices and 
upper and lower residuals. This requires about 𝒪(𝑁(𝑁𝑚 + 2)2 + 2(𝑁𝑚 + 2)3) operations. 
The mode shape 𝜓𝑚 corresponding to the m-th eigenfrequency are obtained using singular value 
decomposition of the m-th residue: 
 𝑅𝑚 = 𝑈𝑚Σ𝑚𝑉𝑚𝑇 (17) 

The first column of the left-singular vectors Um represents the mode shape 𝜓𝑚. At the end of this step, a 
mode shape of the system is known for each pole. The complexity of the two-step singular value 
decomposition algorithm is about 𝒪(𝑁𝑦𝑁𝑚2 +𝑁𝑚3 ) [17]. Calculating the mode shapes is inexpensive: 
conservatively assuming one hundred modes and a thousand sensors requires one tenth of a second, 
though the number of modes per frequency band never exceeds a few dozens. 
At this point of the identification, a mode set is available for different model orders or time instants, 
though relationships between each are not immediately known thus requiring tracking of the modes; as 
poles disappear or reappear due to noise or errors, relating poles with each other by simply monitoring 
frequency change is not practical. Tracking modes between different model orders allows to clean the 
stabilization diagram and to select the optimal eigenvalue and thus mode shape, whereas tracking between 
time instants allows to monitor system parameters changes or arising of instabilities. 
The tracking algorithm evaluates the consistency (degree of linearity) between successive mode shape sets 
using the modal assurance criterion (MAC) matrix and calculating concurrently a number of quality 
parameters: mode indicator function (MIF) [12], mean phase deviation (MPD) and modal phase 
collinearity (MPC) [13]. By application of these indicators crossing, close or disappearing modes can be 
separated correctly from each other. Eigenvalues and eigenmodes identified over different model orders or 
instants belonging to the same physical mode are iteratively recognized as related and sorted together, 
after which stochastic, lone and badly identified modes are spotted and removed. 
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The tracking algorithm works with a variable number of modes and mode sets, and the number of 
operations required varies linearly with model order or time sets. The time complexity of the tracking 
algorithm is that of matrix operations since sorting algorithms have lower linearithmic complexity. The 
difficulty of tracking very much depends on the tracking criteria and how clear mode sets are.In practical 
cases, selecting, sorting and tracking thousands of modes requires less than a tenth of a second.  
Tracking does not per se identify more precisely physical modes of the system, but instead recognizes 
modes as they appear or disappear in a data set and sorts them together. 

2.2 Overview of time complexity  

The conversion of time data into frequency domain (4) is performed rapidly as discussed earlier; this step 
is common for all frequency-domain identification algorithms.  
Overall performance of the identification algorithm is most sensitive to the model order when calculating 
many times the denominator’s coefficients in order to construct a stabilization diagram. 

 

Calculation (performed once) LSCF pLSCF Operation 

Construct reduced Jacobian matrix (10) 𝒪(𝑁𝑦𝑁𝑥𝑁𝑝3) 𝒪(𝑁𝑦𝑁𝑥3𝑁𝑝3) Matrix multiplication and inversion 

Solve normal equations (11) 𝒪(𝑁𝑝3) 𝒪(𝑁𝑥3𝑁𝑝3) Matrix pseudoinverse 

Calculate denominator’s coefficients (12) 𝒪(𝑁𝑝3) 𝒪(𝑁𝑥3𝑁𝑝3) Eigendecomposition of companion matrix 

Table 1: Time complexity of LSCF and pLSCF: comparison of slowest steps 

After poles have been identified, residuals and mode shapes are calculated according to eq. (16) and (17). 
The tracking step employs an iterative searching and sorting algorithm which operates on problems 
without predetermined size or fully predictable characteristics, therefore is inherently slower than other 
steps, with cubic complexity with respect to number of modes and linear with respect to number of mode 
sets, but since the problem size is in any case small, it does not reduce much the overall speed. 

2.3 Overview of MATLAB implementation 

The identification algorithm is almost entirely vectorized and features minimal use of loops and 
conditional statements. The parallel processing toolbox is not used for the sake of portability, though 
MATLAB automatically switches to multiple CPU cores for intensive operations (fft, eig, svd, …), thus 
positively affecting computation time. A number of default functions have been rewritten (repmat, 
unique,…), along the use of undocumented functions (ismembc,…) and compilation of some MEX files. 
The algorithm evaluates user inputs and balances matrix size with number of operations to achieve fast 
computation. The GUI‘s CPU time is negligible compared to mathematical operations. 

3 Test setup 

The present wind tunnel investigation was carried out in the Transonic Wind Tunnel Göttingen DNW-
TWG shown in Figure 1, which is operated by the foundation German–Dutch Wind Tunnels. The DNW-
TWG is a continuously operating facility with a 1×1 m adaptive test section. The stagnation temperature 
in this wind tunnel is kept constant by a closed-loop control of a cooler, while Mach number and 
stagnation pressure may be varied independently. A given inflow Mach number is also kept constant by a 
closed-loop control using the measured ratio of the static pressure to the stagnation pressure in the test 
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section. The ratio of the wind tunnel height to the chord of the investigated airfoil model is 3.333. The top 
and bottom walls were adapted to the stationary flow at the mean angle of attack of the airfoil, where the 
static aeroelastic equation must be satisfied. 

   
Figure 1: Test plenum of Transonic Wind Tunnel Göttingen TWG 

3.1 Flutter test setup 

The applied setup allows free heave and pitch motions of the airfoil model for flutter tests. A theoretical 
model representing the structural dynamics of this set-up is described in Figure 2. The mean angle of 
attack of the aeroelastic system under air loads depends on the structural dynamics parameters, the off-
wind angle of attack and the flow parameters. 
The entire flutter test setup can be rotated around the elastic axis of the aeroelastic system in order to tune 
the angle of attack to a given value while the wind tunnel is functioning, thus a target mean angle of attack 
can be achieved while fulfilling the static aeroelastic equilibrium.  
In the flutter test setup, the airfoil is mounted on each side to a piezoelectric balance with high stiffness in 
order to measure the steady and unsteady lift, drag and pitching moment. Two laser triangulators on each 
side of the wind tunnel measure the instantaneous heave and pitch of the model. A digital signal 
processing device derives the heave velocity from the triangulators’ signals such that a proportional 
voltage can be passed to an electrodynamical exciter on each side. Small heave motions of the airfoil can 
then either be amplified or damped, by applying the inverted signal. Tests revealed that in the open-loop 
state this flutter control system is unintrusive.  

    
Figure 2: Model of the structural dynamics and test setup in the wind tunnel   

SELF-EXCITED VIBRATIONS 3699



3.2 Airfoil model 

For the investigation a two dimensional model with the Dornier CAST 10-2 airfoil is used. It has a chord 
length of c = 0.3 m and a span of b = 0.997 m. The model is made of two CFRP half shells, each having a 
constant spanwise laminate lay-up, with a thickness of up to 3 mm; the stiffness of the model is increased 
by a CFRP c-spar at a position of x/c = 0.33. At both ends, aluminium connectors, used to mount the 
model on the test rig, are glued to the half shells and allow oscillations about the quarter chord. Laminar-
turbulent boundary-layer transition was tripped at 7.5% chord on the both sides of the airfoil. The overall 
weight including all movable components is 12.55 kg and the inertia mass with respect to rotation axis 
results to 0.07 kg·m². A flat spring and torsion spring allow heave movement and pitch rotation, 
respectively. There are lever arms outside of the measurement chamber, where electromagnetic shakers 
operate to excite the heave movement or to suppress oscillations by introducing forces with inverted phase 
delay. Additional balance masses can be installed on the lever arms to shift the center of gravity.  
In order to measure the unsteady motion of the laminar-turbulent transition, the model was equipped with 
26 hot-film sensors to determine the condition of the boundary layer. Moreover it contains 60 unsteady 
pressure sensors to measure the pressure distribution in a representative section. The model is equipped 
with six internal accelerometers (PCB 352C22) measuring perpendicular to the wing plane, and installed 
at y/b = 0.15, 0.50, 0.85 in spanwise direction and at x/c = 0.0833, 0.8733 in the direction of the flow. It is 
lightweight and very stiff so that the natural frequencies of the flutter test setup and the flutter frequencies 
are well below the first deformation natural frequency of the airfoil model.  

4 Monitoring of flutter experiment 

During the monitoring of the airfoil model, the incoming time signal blocks are continuously analyzed to 
identify the poles and mode shapes of the aeroelastic system as function of the current flow condition.  
Measurements were conducted in the Mach number range between 0.5 ≤ Ma ≤ 0.85 with control accuracy 
ΔMa = 0.001 and at static pressures of 40 kPa ≤ p0 ≤ 90 kPa resulting in Reynolds numbers of 1.0·106 ≤ 
Re ≤ 3.5·106. Since the evacuation of the chamber takes time, the static pressure is held constant during 
one measurement series, while the flow rate is increased in steps from minimum Mach number to 
maximum. Before each measurement point is recorded, the adaptive walls of the test section are adapted to 
the streamlines to minimize the flow effects of the wind tunnel walls. This procedure is automated and 
takes only a few seconds. In addition to the flow conditions the support of the model can be rotated to 
change the angle of attack. In total three parameters can be modified to control the flow conditions: static 
pressure p0, Mach number M∞, mean angle of attack α of the model support. 
This instrumentation allows identification of the rigid body heave and pitch mode, but also several flexible 
bending and torsion modes at higher frequencies. In Table 2 the results of the modal survey without wind 
are summarized with frequencies, dampings and mode shapes. 
In Figure 3 the average pressure distribution for pitch oscillation are plotted for M∞ = 0.5 and M∞ = 0.8 
measured by the internal pressure transducers. The red and blue lines represent the pressure coefficient at 
fixed angle of attack, while the grey shaded region is the envelope for the unsteady pressure enforced by a 
pitch excitation with fixed amplitude. From the characteristics of the curves it is observable that the 
resulting lift force will shift from front to rear dependent on the flow velocity, caused by the rear loading 
effect of pressure distribution at higher Mach numbers. Since the rotation axis and the center of gravity are 
fixed at 1/4 chord, the resulting aerodynamic moment will change sign at a certain Mach number from 
nose-up to nose-down. This aerodynamic behavior is nonlinear and is the reason, why monitoring of the 
flutter experiment with online system identification is required. 
For the current investigation it is assumed that a classical aeroelastic instability with two degrees of 
freedom might occur by coupling of the heave and pitch modes. On the other hand, flutter of the pitch 
mode might arise because of the indifferent equilibrium of the aerodynamic loading with respect to the 
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rotation axis. To eliminate boundary layer effects, the transition of the flow around the airfoil was 
enforced by installation of a turbulator strip at the leading edge.  
It is assumed that the flow’s vorticity and turbulence possess sufficient random characteristics to excite all 
relevant modes of the aeroelastic system. In the following figures, a series of measurements points at 
p0 = 60 kPa in the range of fluid speed of M∞ = 0.5 – 0.82 at zero angle of attack is presented in detail. 
The model is mass-balanced to the rotational axis by two masses installed on the lever arms. 
 

Mode f [Hz] d [%] Shape Mode f [Hz] d [%] Shape 

Heave 28.5 1.2 

 

1st sym. 
bending 92.7 0.7 

 

Pitch 41.2 2.1 

 

1st antisym. 
bending 109.5 0.3 

 

In-plane 
bending 90.3 0.8 

 

Antisym. 
torsion 117.2 1.1 

 

Table 2: Mode shapes of wind tunnel model 

 
Figure 3: Unsteady pressure distribution with free transition at M∞ = 0.5 (left), f = 4.5 Hz, α = 1° ± 1° and 

M∞ = 0.8 (right), f = 7.2 Hz, α = 0.1° ± 0.6° 

4.1 Implementation 

A Dewetron measurement system [18] records all pressure, force, and acceleration signals with a sampling 
frequency of 4000 Hz. The DNW-TWG AMIS III data acquisition system is capable of sampling up to 
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1024 channels simultaneously at up to 204.8 kHz per channel and with 24 bit resolution. The measurement 
system allows direct remote access to networked clients running Dewesoft. The automated identification 
algorithm running on a networked notebook in MATLAB accesses the accelerometers’ signals via a 
DCOM interface with the Dewesoft client application. The basic data flow is presented in Figure 4 while a 
GUI of the developed MATLAB software is shown in Figure 5. 

 

Figure 4: Diagram of automated system identification  

The primary data source for identification are the CPSDs calculated from the last sixteen blocks of 4096 
samples each. The program updates with each new data block (about every second). The user can select 
on-the-fly the identification algorithms (LSCF, pLSCF, SSI time and covariance-based SSI), and 
displayed synthesized spectra. The identified eigenvalues and eigenmodes are used to construct the 
stabilization diagram and display other information, where eigenfrequencies and damping are indicated. A 
number of other parameters and plots are displayed, such as the auto-MAC matrix, mode complexity and 
animated mode shapes. The program tracks with every time step all the identified physical modes and can 
present the time evolution of modal parameters, by showing, for example, automatically the variation of 
damping and frequency over time during a flutter experiment. Almost all signal processing and 
identification parameters can be changed on-the-go by the user. 

 
Figure 5: GUI in MATLAB of the automated system identification software (here with a transport aircraft 
model): animated mode shapes, time data, MAC matrix, spectrum and stabilization diagram, control panel. 

  

Master Dewesoft Client Dewesoft MATLAB DCOM  LAN 

data acquisition remote access automated identification 

MEASUREMENT SYSTEM NETWORKED PC 
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4.2 Analysis 

The random-like excitation from the turbulence in the flow is shown in Figure 6, where two examples of 
the online-recorded time response of the internal accelerometers are plotted. From M∞ = 0.5 and 
M∞ = 0.74 the response level is roughly doubled, then again at M∞ = 0.81. Above M∞ = 0.82 the system 
eventually becomes unstable. Figure 6, lower right, shows the diverging oscillations until the automatic 
flutter brake was triggered. 

 

Figure 6: Time response of accelerometers and unstable condition 

Figure 8 and Figure 9 display the frequencies and damping identified on-line for the heave and pitch mode 
over the Mach number. Each point on the graphs represents one identification elaborated from 65536 
measured time data samples (all six accelerometers as references, Hann window, analysis band 5–85 Hz 
~400 frequency lines, model order 60). The lines are average values and the 95% confidence interval in 
gray is calculated assuming a t-distribution of samples. 
The frequency of the heave mode remains constant, but the frequency of the pitch mode is only constant 
till M∞ = 0.77 before rising. This behavior can be explained with the rear loading effect of the airfoil at 
higher Mach numbers (see Figure 3), where the additional lift generated at oscillating angle of attack acts 
as a moment in opposite rotation to the angle. It appears as additional aerodynamic stiffness which results 
in increasing the eigenfrequency of the aeroelastic system. On the right side of Figure 8 the damping 
curves show significant scatter especially for lower Mach numbers, since in this range the excitation level 
of the turbulence is reduced, which results in a higher noise level of the acceleration response. The 
damping trend of the heave mode shows decreasing level up to M∞ = 0.77 and then becomes more stable 
again. The behavior of the pitch mode is the other way around. The damping trend increases up to 
M∞ = 0.77 and then slopes down to zero level, where self-excited flutter of the model occurs until the 
brake is activated triggered by the measured excessive deflection amplitudes. 
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Figure 7: Frequency and damping of heave and pitch modes over Mach number 

 
As an alternative to this very fast online modal identification method, an implementation of the Stochastic 
Subspace Identification is available in the monitoring software, which works in the time domain (see 
[1],[2],[3]). The data-driven version SSI-data uses directly the time blocks to fit a discrete time state space 
model, whereas the covariance-driven version SSI-cov analyses the impulse responses of the CPSDs, 
which are called cross correlation functions. The eigenvalues of the plant of the state space model are 
discrete poles, the corresponding mode shapes result from the output matrix. Finally, the poles must be 
transformed from discrete to continuous domain. 

 
Figure 8: Frequency and damping of heave and pitch mode over Mach number with SSI-data method 

In summary, this example demonstrates that the presented implementation of online automated operational 
modal analysis is suitable to monitor flutter experiments in wind tunnels. 

5 Conclusions 

The presented program for online-monitoring analysis (OMA) is based on a fast implementation of the 
well-known frequency-domain LSCF and pLSCF algorithms. Both are optimized for an almost real-time 
automated analysis of modal test sensor signals. Some insights about the different time complexities of 
both algorithms are given, highlighting parameters to which computation time is sensible. It is shown that 
a MATLAB implementation of the data processing and analysis program can be successfully utilized in 
the real-time monitoring an aeroelastic experiment in a wind-tunnel facility in combination with a 
commercial data acquisition hardware and software. The frequency and damping trends over Mach 
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number measured during a wind tunnel experiment of an instrumented airfoil model in the subsonic to 
transonic regimes are presented, including the onset of aeroelastic instabilities. The identified modal 
parameters are then compared with the results of a Stochastic Subspace Identification algorithm. 

6 Outlook 

For the assessment of the flutter stability the damping trends must be extrapolated towards higher speeds 
based on the identified dampings and frequencies at lower speeds. The method of Zimmerman and 
Weissenburger [19] predicts the critical speed of flutter onset by interpolating the identified poles with 
quadratic polynoms with at least three different speed points. It is assumed, that the unstable couplings is 
caused by contribution of only two mode shapes, one with heave character and the other with pitch 
character. In [20] this method is expanded to multimode unstable couplings, although the underlying 
assumption for the extrapolation is based on a constant aerodynamic lift and moment slope. The 
Zimmerman and Weissenburger method is therefore not applicable with adequate reliability. 
The intended future work in monitoring aeroelastic experiments will include more sophisticated unsteady 
aerodynamic models for flutter prediction. In this framework, some possible developments are the use of 
half-power spectra as the primary data source, a fast maximum-likelihood estimator, delegation of 
intensive calculations to external code, different mode tracking algorithms. 
Finally a future application will not only be monitoring of aeroelastic wind tunnel experiments but also 
flight flutter testing. 
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