Yvan Klaver

Yvan Klaver
University of Twente | UT · Department of Laser Physics and Nonlinear Optics (LPNO)

About

8
Publications
405
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5
Citations

Publications

Publications (8)
Preprint
Full-text available
Fully integrated supercontinuum sources on-chip are critical to enabling applications such as portable and mechanically-stable medical imaging devices, chemical sensing and LiDAR. However, the low-efficiency of current supercontinuum generation schemes prevent full on-chip integration. In this letter, we present a scheme where the input energy requ...
Preprint
Full-text available
Microwave photonics (MWP) has adopted a number of important concepts and technologies over the recent pasts, including photonic integration, versatile programmability, and techniques for enhancing key radio frequency performance metrics such as the noise figure and the dynamic range. However, to date, these aspects have not been achieved simultaneo...
Preprint
Full-text available
Coherent optomechanical interaction between acoustic and optical waves known as stimulated Brillouin scattering (SBS) can enable ultra-high resolution signal processing and narrow linewidth lasers important for next generation wireless communications, precision sensing, and quantum information processing. While SBS has recently been studied extensi...
Article
Integrated mode-locked lasers are useful tools in microwave photonic applications as a local oscillator. In particular, hybrid integrated lasers could easily be integrated with passive processing circuits. In this Letter, we report on the self-mode-locking of a hybrid integrated laser comprising two indium phosphide gain sections and a silicon nitr...
Article
Integrated microwave photonics (MWP) is a fast growing area where high frequency microwave signals are processed in the optical domain, merging key advantages of both microwave photonics and photonic integrated circuits (PICs) technologies including low-loss, reconfigurability, advanced functionality, enhanced stability, and reduced footprint. Plen...

Network

Cited By