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Summary
Overweight and obesity are the result of a chronic positive energy balance, and
therefore the only effective therapies are a diet which, on the long term, provides
lower calories than the daily expended energy and exercise. Because nearly every
physiological and biochemical function of the body shows circadian variations it
can be suggested that also different chronobiological aspects of food intake, like
time of day, meal frequency and regularity, and also circadian desynchronizations
like in shift work may affect energy metabolism and weight regulation. The aim of
this review is therefore to summarize and discuss studies that have addressed these
issues in the past and to also provide an overview about circadian variations of
selected aspects of metabolism, gut physiology and also factors that may influence
overall energy regulation. The results show that a chronic desynchronization of the
circadian system like in shift work and also sleep deprivation can favour the
development of obesity. Also, regarding energy balance, a higher meal frequency
and regular eating pattern seem to be more advantageous than taking the meals
irregularly and seldom. Additional studies are required to conclude whether time of
day-dependent food intake significantly influences weight regulation in humans.
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Introduction

Obesity and the metabolic syndrome are a major cause of
morbidity and mortality in industrialized countries (1).
Obesity is associated with a higher mortality and secondary
complications, such as insulin resistance, dyslipidemia,
hypertension and atherosclerosis increasing fundamentally
the risk for myocardial infarction and stroke. Obesity is the
result of a long-term positive energy balance. Therefore, to
efficiently loose weight, it is necessary to maintain a nega-
tive energy balance by a diet, which should provide lower
calories than the total energy expended over the day, e.g. a
low-calorie diet. In German-speaking countries therefore a
general public advice is: ‘Iss die Hälfte’, eat the half, which
indeed bears a high level of truth. In addition to a low-

calorie diet, supportive regular physical activity is impor-
tant especially to help to loose fat mass preserving lean
body mass and also to counteract weight regaining after
reaching the desired or acceptable ‘goal weight’.

In addition to the main factors ‘calories and energy
balance’ and ‘move it? move it!’ different chronobiological
aspects of eating patterns may also be taken into consider-
ation. Chronobiology refers to time-dependent variations
in biological functions. Nearly all of them, if not otherwise
proven, show oscillations over different time spans, espe-
cially 24 h (2). Latter are therefore defined as circadian
variations. Chronobiology is time, and time has different
components. These can be grouped into (i) The clock time,
e.g. the time of day; (ii) The frequence, e.g. events per time
span and (iii) The regularity, events at special times.
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Everything has its time, and everything has a right time, not
only in biological but also in social systems. Several studies
in the past for example showed that food and regular meal
patterns have synchronizing effects on the circadian system
(3–5). Vice versa, the primary control level of the circadian
system, the master clock, which is located in the suprachi-
asmatic nuclei (SCN), regulates food intake by especially
adapting the human body to the light/dark cycle. So a direct
regulatory relationship between food intake and the circa-
dian system is present. This is supported by the fact that a
modulation of the circadian system like in shift work or
insomnia can lead to alterations in metabolism and weight
regulation (6–8). In this context, newer, especially experi-
mental, studies suggest that mutations in clock genes
may adversely affect energy metabolism and can lead to
obesity (9).

The time of day when meals are eaten may have an
influence on weight regulation (see chapter following). A
popular dietetic advice is therefore to reduce energy intake
in the evening. However no scientific explanations are in
general provided. Indeed only few studies have addressed
this issue in the past. Also, a lively discussion between
dietetians is the optimal frequency of meals eaten during
the day. Should the calories divided into five portions or is
better to apply to the ‘classical scheme’ with breakfast,
dinner, lunch?

Twenty years after the landmark paper of Franz Halberg
from Minneapolis (10) this review will summarize the evi-
dence so far about when to eat, but also addresses the
questions: How often to eat?, and Regular vs. irregular
eating – does it make a difference? Furthermore the effects
of disturbed sleep, Ramadan fasting and shift work on
food intake will be summarized. In addition, potential
mechanisms involving adipose and gut physiology will be
discussed.

The circadian system in brief

Circadian rhythms are controlled and generated by the
biological clock located in the SCN. This ‘master clock’ is
synchronized to 24 h by various environmental factors,
primarily the dark/light cycle but also for example tempera-
ture, regular occurring social processes and food. These
synchronizers are called Zeitgebers, a German term,
meaning Zeit = time and gebers = giving. The SCN receives
the information about the dark/light cycle mainly via the
retinohypothalamic tract and then transmits the inputs
from the Zeitgebers to peripheral oscillators, which are
located outside the SCN (11).

For virtually all physiological and biochemical factors
rhythms have been described. Also behavioural processes,
such as the daily activity and feeding patterns, show circa-
dian variations. It is known that the SCN, and potentially
also other regulators (see following), transforms the physical

information into molecular changes by the expression of a
set of clock genes, which do not only exist in brain but also
in peripheral human tissues such as blood, adipose tissue
and heart (12–14). Clock genes cooperate with each other,
constituting auto-regulatory feedback loops. Heterodimers
are formed between bmal1 (brain and muscle-Arnt-like
protein-1) and clock (circadian locomotor output cycles
kaput) (15), which then serve as positive transcription
factors binding to the E-box cis-regulatory enhancer ele-
ments that are found within target gene promoters or
enhancers (16,17). The most important downstream tran-
scriptional targets for clock/bmal1 are those that encode per
(Period) and cry (Cryptochrome). As cellular levels of PER
and CRY proteins increase they accumulate in the nucleus
forming a negative feedback loop by down-regulating the
expression of bmal1/clock complex and therefore their own
expression (18). Additional downstream targets of bmal1/
clock are transcriptional activators, such as albumin double
binding protein and repressors such as Rev-erba.

As mentioned above, in addition to light, food is also a
potent synchronizer of central and peripheral clocks at least
in rodents (4). Regular meal times act as Zeitgebers that can
help to adjust the circadian rhythms (19). In rodents, for
example, food consumption at night is accompanied by
increased locomotor activity. When animals have only
access to food during few hours daytime they become active
in anticipation of meal time (20,21). Also changes in the
phases of circadian gene expression in peripheral tissues
occur, while leaving the phases of the SCN unaffected (22).
Therefore it is assumed that the so-called food-entrainable
oscillator (FEO) is distinct from the light-entrainable ones in
the SCN (23). Food may not only entrain the FEO/SCN but
may also directly affect circadian expression of clock genes
in peripheral tissues. For example, clock gene expression in
liver and peripheral tissues is entrained to periodic meals
(24) and mice, which are set on a high-fat diet, show reduced
diurnal rhythms of clock-controlled genes in adipose tissue
and liver (25). In addition to central FEOs a recent report
showed that stomach gland oxyntic cells are also loci of
FEOs producing timely regulated ghrelin expression (26).
However, although there are clear indications from rodent
studies, the effect of time-of-day dependent feeding on the
circadian clock mechanism in humans is still not clear.

Some chronobiological aspects of metabolism

Meanwhile adipose tissue is not only seen as an energy
store but also as an endocrine organ, secreting adipokines
such as leptin, resistin, visfatin and related serine protease
inhibitors (27). These molecules are involved in food
intake and energy regulation and possible also participate
in for example vascular function. Leptin, which is
secreted in a circadian pattern with high levels in the
night, informs the central nervous system about the quan-
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tity and quality of energy stored in lipid tissue (28).
Leptin is also an important satiety hormone. The hunger
and satiety centres are located in the hypothalamus (29).
They are receiving inputs from peripheral signals, such as
gastric distension, gastrointestinal satiety hormones and
also leptin (30), which passes the blood–brain barrier
and binds to leptin receptors especially in the arcuate
nucleus, a central junction point in the regulation of food
intake. After binding it activates neurons that release the
anorexigenic neuropeptides cocaine- and amphetamine-
regulated transcript (CART) and a-melanocyte-stimulating
hormone (a-MSH) and suppresses the release of the
orexigenic neuropeptides neuropeptide Y (NPY) and
agouti-related protein (AgRP). Some of these neuropep-
tides show circadian variations (31). CART peptide, for
example, peaks in the evening (32). Furthermore alter-
ations in the CART gene are linked to obesity (33) and
the expression of CARTmRNA is decreased in response
to food restriction (34,35). Therefore it is possible that
potential diurnal differences in satiety and satiation may
be caused in part by circadian variations of central neu-
ropeptides involved in food regulation.

The relationship between chronobiology and adipose
tissue is substantiated by studies showing that bmal1 plays
a role in the differentiation of adipocytes and lipogenesis
(36). In an extensive recent study Loboda et al. (37) inves-
tigated the diurnal variation of the human adipose tran-
scriptome in relation to fasted or fed state and after
ingestion of the centrally acting anti-obesity drug sibutra-
mine. They found that approximately 25% of the genes
showed a significant variation during the course of the day
and some of those correlated with per1 that is highly
expressed in the morning with a nadir in the late after-
noon. However, the authors could not show a correlation
between per1 and genes involved in lipogenesis, such as
fatty acid synthase or glucose transporters. These genes
may be regulated by demand, for example after insulin
secretion. In two other studies clock gene rhythms were
described in human adipose tissue (13,38). It was found
that clock gene expression was associated with some
parameters of the metabolic syndrome, such as an inverse
correlation of per2 expression from visceral depot with
waist circumference in morbid obese men and additionally
also bmal1 in morbid obese women.

Clock genes control several genes that are involved in
metabolic functions (39,40). The bmal1/clock complex
for example regulates the expression of the peroxisome
proliferator-activated receptor a (PPARa) (41). PPARa in
turn controls the expression of a numerous of genes, for
example those that are involved in peroxisomal and mito-
chondrial fatty acid b-oxidation and fatty acid transport
(42,43). PPARa is rhythmically expressed in peripheral
tissues (44) and is able to modify clock and bmal1 activ-
ity. In mice with a high-fat diet-induced obesity PPARa

was up-regulated in the caudal brainstem nucleus of the
solitary tract and clock gene expression in this region was
modified compared with lean mice (45). These data
support the hypotheses of a connection between clock
genes and obesity and highlight on the possible role of
clock genes activated regulators such as PPARa. Homozy-
gous C57BL/6J mice with a loss in clock function for
example develop adiposity and show characteristics of the
metabolic syndrome, such as high cholesterol, triglyceride
and glucose levels (9). On the other hand the amplitude
of the expression of several clock genes was suppressed in
the adipose tissue of obese diabetic mice (46). Finally, epi-
demiological studies showed that genetic polymorphisms
of the human clock gene are associated with obesity
(47–49).

Chronobiology and the gut

Many functions of the gastrointestinal tract show circadian
variations (50,51). The intestinal epithelium for example
renews itself rhythmically every 4–6 days. The gastric acid
secretion shows circadian variations with high levels in the
late evening and low during morning hours (50). Further-
more amylase secretion from the exocrine pancreas shows
circadian variations with a rise in the evening and a decline
in the morning (52). Also the motility of the gastrointesti-
nal tract shows time-dependent activities. Especially in the
fasting state a peristaltic wave, the so-called migrating
motor complex, passes about every 90 min the gastrointes-
tinal tract (53). Finally a couple of studies showed that
transporters, which are involved in the absorption of
macronutrients show time-dependent variations. The
expression of the Na+-glucose-symporter 1, the fructose
transporter GLUT 5 and also PEPT1, a proton-coupled
oligopeptide transporter show diurnal variation (50,54).
The expression of these transporters is up-regulated at meal
times and altered under conditions of food entrainment
suggesting that food has an important regulatory role on
transporter expression (50).

Clock genes were shown to regulate the expression of
several of these transport proteins. In a recent study by Pan
and Hussain (55) it was shown that clock mutant mice show
a high level of lipid and carbohydrate absorption. Wild-type
mice absorbed significantly more triglyceride and choles-
terol at night whereas mutant mice absorbed similar
amounts of lipids in the day and night. However, the effect
on fat absorption in clock mutant mice seems to be also
strain-specific, showing that an ICR background can lead to
reduced fat absorption (56). To summarize, it is thinkable
that a chronically disturbed circadian profile may also affect
gastrointestinal function and energy absorption. A major
problem of shift work for example lies in the gastrointesti-
nal disturbances, and shift workers bear a higher risk for
obesity. This will be discussed in the next chapter.
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Sleep, shift work and obesity

In the last decades there has not only been a significant rise
in the incidence of obesity but also a considerable decline in
the daily amount of sleep time (7). Some factors that are
responsible for the short sleep duration are: longer working
hours, a rise in night work, less physical activity, more
urbanization with accompanying stress factors like noise
and especially television viewing and ‘surfing’ on the net
‘rund um die Uhr’ meaning all the time.

A reduced sleep time can not only increase the risk for
cardiovascular diseases (57) but also for insulin resistance,
diabetes and obesity. For example, it was shown that 4 h of
sleep restriction for two nights can lead to a higher secre-
tion of ghrelin, an orexigenic hormone, which is produced
mainly in the stomach, and to reduced levels of the satiety
hormone leptin (6). An epidemiological study in more than
1000 individuals came to similar conclusions and found
that the minimum body mass index (BMI) was observed at
an average bedtime of 7.7 h per night, showing a U-shaped
relationship (58,59). Under consideration of self-reported
appetite ratings it was estimated that sleep deprivation can
result in about 350–500 kcal more daily energy intake (7).
And it seems that sleep-curtailed persons especially increase
their calorie intake from snacks (60).

Also experimental studies in rats showed that sleep dep-
rivation can induce up-regulation of orexigenic peptides
and down-regulation of anorexigenic peptides leading to
hyperphagia (61,62). So, one mechanism linking sleep dep-
rivation to weight gain may be a modulated secretion
pattern of peptides that are involved in food intake. The
orexigenic neuropeptides orexin-1 and 2 (also known as
hypocretin-1 and 2) for example do not only centrally
stimulate food intake; they also exert wake-promoting
functions (63). A defect in the orexin-2 receptor as well as
destructing of orexin-containing neurons leads to narco-
lepsy, a chronic neurological disorder with a disturbed
regulation of normal sleep/wake cycles. Narcoleptic
persons will fall asleep during daytime for periods lasting
from a few seconds to several minutes. Interestingly, nar-
colepsy is associated with abdominal obesity (64), but the
reasons are unclear at the moment (65).

It is hypothesized that the postprandial fatigue may also
be associated with a reduced secretion of orexins after
reaching satiety (66).

In addition to these neurophysiological alterations,
people who sleep less have more time to eat (67). Nowa-
days food is available everywhere, especially in the Medi-
terranean region until the late of night. People are less
physical active; sitting, eating and drinking has become
popular predisposing a positive energy balance.

Not only less but also altered sleep times with associated
circadian desynchronization such as in shift work are asso-
ciated with obesity, higher triglyceride and lower high-

density lipoprotein (HDL) levels (68). The duration of shift
work was positively associated with BMI and also waist-
to-hip ratio in a cohort study among 377 shift workers and
non-shift working controls (8). The relationship between
shift work and obesity or metabolic syndrome was also
shown in other studies (69–74). The mechanisms for this
association are not well understood. One mechanism may
be impairment in the circadian clock, which may have
affected various stages after food intake (Fig. 1). Further-
more it was shown that shift workers tend to consume
diets with a high fat amount (75). Additionally, a time-
dependent variation in food availability would also predis-
pose for higher energy intake.

In connection with sleep deprivation and disturbance
also the night eating syndrome (NES) has to be mentioned.
This is defined as an ingestion of more than 25% of daily
calories after dinner (76), nocturnal awakenings with inges-
tions and no appetite in the morning occur at >9% in
obese persons, while the incidence in the general public is
1.5 % (27). Individuals with NES show a phase shift of
1-2.8 hr in the acrophases of their leptin, melatonin and
insulin levels (77).

Meal frequency and energy balance

In Western societies it is usual to consume three main meals
per day, i.e. breakfast, lunch and dinner. However there are
major differences in the importance of the meals between
different countries. Whereas breakfast is very important in
Great Britain and Germany it is reduced to Coffee and
Croissant or Cornetto in France and Italy, respectively. Also
dinner times can markedly vary between the countries. In
Germany and Austria dinner is typically between 18.00 and
20.00 h whereas in the Mediterranean regions it usually

Figure 1 The Appetite-Energy-Balance-Axis is influenced by various
time-dependent aspects.
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begins after 20.00 h (78). In addition to three main meals,
people in several countries do also take snacks between
the meals. Beside geographically differences one should
also consider religious aspects, especially the Ramadan in
Muslim cultures, which is discussed following.

The first description of the relationship between meal
frequency and energy balance was in the 1960s from Fabry
et al. (79). In their study in Czechoslovakian elderly men an
inverse relationship between body weight and meal fre-
quency was described. About half of the subsequent studies
confirmed these results as reviewed by Bellisle et al. (80)
whereas others did not detected a significant relationship
(81). A review from 1997 by Chiva (78) came to the con-
clusion that meal frequency has not a significant influence
on the rate of weight loss during energy restriction and also
not on 24-h energy expenditure.

The results from meal frequency studies can be disturbed
by the fact that overweight and obese people often under-
report their energy intakes by especially do not counting
snacks into the meals eaten (82). Also the effect of reverse
causality may have an impact on the data (83). That means
that people who are overweight may omit meals in order to
lose weight.

Chapelot et al. showed that omitting a meal for 4 weeks
in people who usually eat four meals per day was followed
by increases in fat mass (84). A gorging eating pattern may
lead to a modulation of storage and mobilization of nutri-
ents potentially favouring lipogenesis and increase in body
weight. On the other hand, eaten more often may poten-
tially prevent metabolic fluctuations. Another study in 14
healthy, normal weight women showed that a decreased
inter-meal interval (3 vs. 2 meals over the day) is associated
with a better satiety during the day and sustains fat oxida-
tion particularly over the night. However, the different
meal pattern had no effect on 24-h energy expenditure or
diet-induced thermogenesis (DIT) (85).

In a further study with a randomized crossover design
subjects consumed all of their daily calories in either three
meals or in one meal. The three-meal diet consisted of a
classical ‘triad’, e.g. breakfast, lunch, dinner whereas the
one-meal diet was eaten within a 4-h period in the early
evening (86). Various metabolic and physiological param-
eters were measured. The results showed that the weight
and the body fat mass after the one-meal diet was signifi-
cantly lowered. Furthermore total cholesterol and low-
density lipoprotein (LDL) but also HDL were higher in the
controlled diet.

An interesting study challenging in part the one
breakfast/only three meals per day hypothesis was per-
formed by Speechly and Buffenstein (87). These investiga-
tors showed that an isocaloric preload spread over the
course of the morning as opposed to a single breakfast
leads to a significant lesser energy intake (about 26%) at a
subsequent ad libitum lunch. The satiety/hunger measures

remained nearly unchanged, around the neutral line, during
the isocaloric more frequent meal intake. On the contrary
they rose constantly from values indicating satiety to a state
of hunger until lunch after the single breakfast. Therefore it
was not surprising that study participants ate more during
the ad libitum lunch. However despite of this expected
finding, this study showed that splitting his breakfast over
the morning may help to better control appetite sensations
and could show advantageous effects in weight loss
regimens.

The effect of pre-meal loads on subsequent in energy
intake is not only dependent on meal frequency but also on
macronutrient composition. Individuals for example con-
sumed more food after a carbohydrate-rich preload com-
pared with a protein-rich preload (88). High and fast
glucose absorption from breakfast meals with a high gly-
caemic index also can lead to a reactive hypoglycaemia
inducing higher appetite and energy intake in the subse-
quent meal. This could be prevented by spreading the
energy on several small meals.

In this context, several studies showed that after larger
meals, e.g. gorging, greater fluctuations of metabolites and
hormones occur than after smaller, more frequent meals
(89–91). For example increasing the number of meals per
day can flatten fluctuations in insulin concentrations and
also plasma glucose (92). Because a considerable drop in
plasma glucose can induce hunger, a more frequent eating
can prevent this. It may also be thinkable that more fre-
quent eating can induce more stable and constant plasma
levels of intestinal satiety hormones, such as glucagon-like
peptide-1, cholecystokinin and peptide YY. In addition to
potential positive effects on energy balance, an increased
meal frequency is also associated with lower fasting total
cholesterol and LDL levels (89,93).

Chronobiological aspects of
energy expenditure

Circadian changes in energy metabolism in humans have
been primarily described 1915 by Francis G. Benedict (94).
In an extensive study series he analysed several factors
affecting basal energy metabolism in humans. A short para-
graph was dedicated to the ‘diurnal variations in metabo-
lism’. In this ‘one man pilot study’ the time-dependent basal
metabolism was measured in a fasting subject who spent
the day in the laboratory ‘in talking’ and performing
experimental tests with little muscular exercise. Benedict
found that the metabolism in the morning with the subject
awake had increased by 14% while in the afternoon, under
the same conditions, it had increased by 22%, both com-
pared with sleeping values.

About 90 years later, these results were confirmed by
Haugen et al. showing that the resting metabolic rate is
about 6% higher in the afternoon than in the morning
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(95). Also the pioneering chronobiologist Aschoff early in
1970 summarized experimental and human studies so far
and came to the conclusion that the oxygen uptake/
consumption shows circadian variation, which are at least
partly independent of food intake and activity (96).

In addition to the basal/resting and activity-related com-
ponents of energy balance food intake also leads to a stimu-
lation of energy expenditure. This is known as meal-
induced thermogenesis or DIT. DIT is different between
macronutrients with lipids have the lowest value of 0–3%,
carbohydrates about 5–10% and proteins in the range of
20–30% (97). DIT derives from various energy consuming
processes, including digestion and absorption and post-
absorptive metabolic processes, especially synthesis and
storage.

Diet-induced thermogenesis to the same meal was found
to be higher in the morning than in the afternoon or night
(98). This may be related to gastric emptying, which for
example is in the morning significantly more rapid than in
the evening (99). One other mechanism may be a less
insulin effect (less sensitivity and secretion) in the evening.
Glucose tolerance, for example, shows circadian variations,
being higher in the morning than in the afternoon and
evening (100).

This effect of daytime on DIT was not confirmed in an
earlier study (101). However in this study the individuals
had a shorter fasting period in the afternoon tests than in
the investigation by Romon et al. (98). In another study it
was shown that DIT was higher when an isoenergetic load
of nutrients was applied as a single bolus compared with
six small doses (102).

Ramadan fasting and energy balance

One of the five most important rules in Islam is that every
healthy adult Muslim must hold the holy month of
Ramadan. During this time the Muslim must refrain from
eating, drinking, smoking and sexual intercourse from
sunrise to sunset (103). Because the Islamic calendar is
dependent on the moon phases, the timing of Ramadan
changes each year (approximately 10–11 days) and the
duration of restricted food and beverage intake. Food
intake is restricted to the night time, resulting in distur-
bances of sleep and food intake (104). The light/dark cycle
but also regular meals are important Zeitgebers that have a
strong synchronizing effect on the master clock in the SCN,
as it is known that circadian dys-regulations such as in shift
work can have a negative effect on energy regulation.

Regarding energy intake the papers so far published
showed contradictory results. Some found a decrease
(105,106), others an increase (107) or no effect (108–110).
Interpretations are difficult because of especially annual
variations in the beginning of Ramadan but also method-
ological and demographic differences.

A study by Finch et al. (109) for example addressed
appetite scores by questionnaires during Ramadan and
found that rated hunger increased during the daily fast and
was higher for women than for men during the earlier days
of Ramadan. The reason may be especially that women
were in close contact with food during the day, preparing
for example food for not fasting children or preparing food
for the evening. Fasting levels of hunger at the end of
Ramadan were similar for both sexes.

Ramadan fasting shows beneficial effects in patients with
the metabolic syndrome (106). One of the primary goals is
in this ‘Threat of the new Millenium’ to reduce weight and
especially abdominal obesity, which is a risk factor. In
metabolic syndrome hyperinsulinemia plays an important
role in the pathogenesis. The Ramadan study by Shariat-
panahi et al. showed that insulin resistance significantly
improved as assessed by I/Homa-IR and QUICKI. Also
some cardiovascular risk factors, such as blood pressure,
waist circumference and HDL cholesterol showed signifi-
cant improvements (106).

Time of food intake and energy balance

From animal studies it is known that disruptions in the
circadian system (see above) but also reverse feeding of
nocturnal active rodents during the light phase can result in
increased weight gain (111). In humans, there are several
influences on food intake. These can be divided in physi-
ological, genetic, psychological, social and also chronobio-
logical variables (112). Halberg et al. wrote about 20 years
ago the first comprehensive review about ‘When to eat’
(10). He summarized their own data from two abstracts
published in a congress proceeding from 1975 showing that
in the same individuals loss in body weight was higher
when a fixed or free chosen meal was eaten only in the
morning as compared with the evening (Table 1).

John M. de Castro conducted a plenty of well-designed
studies about variables of food intake in humans. In two
studies (Table 1) he investigated the effect of time of day of
food intake to overall energy intake (112,113). By analys-
ing 7-d diet diaries of 867 free living individuals he came to
the conclusions that food intake in the morning is particu-
larly satiating and can reduce the total ingested energy
amount for the day while food intake in the late night has
not satiating properties and can lead to greater overall
energy intake. In addition de Castro showed that up to
150% more food energy is consumed in the evening com-
pared with the morning. It is known that meal sizes
increase during the day and the after-meal interval in turn
decreases (114,115). Because the meal sizes increase during
the day and evening meal is less satiating it would favour
the development of obesity. The time of day effects of meals
on satiety are also macronutrient-specific. In particular car-
bohydrates in the morning are satiating, leading to less
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overall intake during the day (113). The results from the
Third National Health and Nutrition Examination Survey
(NHANES III) also showed that persons who eat break-
fast with a high-carbohydrate content have lower BMI
than those who skip or eat high-protein breakfast (116).
However, also the fibre content and the glycaemic index of
a carbohydrate-rich food should be considered. A breakfast
containing a high amount of high glycaemic carbohydrates
has considerably less satiating effects than a low-glycaemic-
index breakfast (117). Complex carbohydrates may affect
the release/activity of gut hormones that may act as satiety
factors, and the fermentation of fibre (short-chain fatty acid
production) may exert satiety-related effects. Furthermore
low-glycaemic-index breakfast prevent a reactive hypogly-
caemia 1–2 h after the breakfast, which also has a strong
modulating effect of hunger/satiety.

In another intervention study where obese individuals
were set on a very-low-calorie diet no difference between
morning vs. evening ingestion of food on weight reduction
was detected (118). However, evening consumption
enhanced fat oxidation in this study.

In a study in 10 overweight/obese women it was shown
that ingestion of larger morning meals can result in slightly
greater weight loss compared with larger evening meals
(-3.90 kg vs. -3.27 kg per 6 weeks) (119). However, when
looking at the loss and maintenance of fat-free mass the
evening meals did better. After 6-week intervention the
morning group lost 1.28 kg fat-free mass vs. 0.25 kg in the
evening group and the percentage in body fat declined
1.8% in the morning group whereas the ingestion of more
calories in the evening resulted in a loss of 2.5% fat mass.

Nonino-Borges et al. (120) studied the effect of different
meal times on cortisol rhythms and weight loss in 12 highly
obese women with a BMI > 40 kg/m2. A 1000 kcal d-1 diet
was given to study participants in three stages (i) 5
meals d-1; (ii) from 9.00–11.00 h or (iii) from 18.00 to
20.00 h over 14 d each. Salivary cortisol circadian rhythms
were similar in all stages. Furthermore no difference in
weight reduction was observed (stage i: -6 kg, stage ii:
-7 kg and stage iii: -6 kg).

A high energy intake at the evening meal has been asso-
ciated with obesity in children (121). Furthermore many
cross-sectional studies documented an inverse association
between breakfast frequency and relative body weight in
children (122). Skipping breakfast has been associated with
obesity in several studies (123–126). Children and espe-
cially adolescents eat more and more less in the morning
and shift their main intake later in the day to the evening
(127).

All in all, in the hard scientific competition morning vs.
evening, which does better, no one leaves the ‘ring’ as the
clear winner. Breakfast has highly satiating effects but the
main determinant for weight loss is the 24-h energy
balance, and the few newer intervention studies did not

provided evidence for a better effect of morning vs. evening
ingestion in regard to loss of fat mass. However it should be
mentioned that the small ‘no-effect-studies’ were per-
formed in overweight/obese individuals in contrast to the
‘morning-preference’ studies, which included healthy non-
obese individuals. It is therefore possible that genetic
and/or obesity milieu-associated differences between lean
vs. overweight/obese individuals contribute towards the
lack of consistency between studies.

Interestingly, the study availability to this topic is more
than restricted. The lack of a practical relevant difference
between morning and evening food intake may be
explained by the higher resting energy expenditure in the
afternoon compared with the morning. On the other hand
DIT seems to be higher in the morning than in the evening
so the net effect is possibly virtually null. This may be the
reason for the lack of effect in intervention studies.
However in every day life the lower satiating effect of
evening meals would predispose for ingestion of larger
amounts of energy leading to overweight and obesity. The
studies of the association between breakfast skipping and
obesity and also the association between the night eating
syndrome and obesity support this assumption.

Regularity of food intake and energy balance

In addition to meal frequency it is also important to con-
sider the regularity of meal intake. Many people, especially
the working population became more and more ‘flexible’
regarding the time of food intake. Often meals are eaten
outside the home and ingested not at the regular time but at
the right time, dependent on work schedules and social
factors. Also adolescents and children do more and more
eat infrequently as studies from Nordic countries (128,129)
and Japan showed (130). Especially irregular snacking has
become a great problem and may contribute to the increas-
ing prevalence of childhood obesity.

Farshchi et al. (131) investigated the effect of regular vs.
irregular meal frequency on dietary thermogenesis, insulin
sensitivity and fasting lipid profiles in obese women. In
this randomized crossover study 10 women consumed their
normal daily diet on 6 occasions on accustomed time
schedules or with a variable meal frequency with 3–9 meals
per day. At the beginning and end of each study phase the
effect of a test meal on metabolic parameters and thermo-
genesis was studied. The main results of the study were
that regular eating was associated with a significant greater
postprandial thermogenesis and lower energy intake,
fasting total and LDL cholesterol and insulin response.
Hunger and satiety scores did not differ between the
regular vs. irregular meal intake. In another study from the
same group the energy intake between regular and irregular
feeding schedules was not significantly different in lean
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women. However the postprandial thermic effect of food
was lower after the irregular meal pattern (132).

An impaired thermogenic response was shown to be
associated with insulin resistance in obese persons
(133,134) whereas another study described an independent
effect of obesity and insulin resistance on DIT (135). Fur-
thermore it was shown that obese people have a reduced
thermogenic response after a high-fat load (134). One
potential drawback in such of kind of studies is that with
rising meal frequency there may be an underreporting of
energy intake, especially of snacks.

Conclusions

The aim of this review was to summarize and discuss
chronobiological aspects of food intake affecting energy
metabolism and weight regulation, like desynchroniza-
tions, time of day, meal frequency and regularity. The main
findings were:

• A chronic desynchronization of the circadian system
like in shift work and also sleep deprivation can favour the
development of obesity.

• Spreading the daily calories to more meals seems to be
more advantageous than a low meal frequency.

• Regular eating leads to lower energy intake than
irregular meal intake in obese women.

• The high satiating value of breakfast (especially a
carbohydrate-rich with low glycaemic index) has favour-
able effects on weight regulation. However, the limited
number of small studies in overweight/obese people sug-
gests that the time of day of food intake may not consid-
erably affect energy balance.

For most of these findings the study availability is more
than restricted. So it is difficult to draw definite conclu-
sions, especially in regard of morning–evening differences
but also regularity of food intake. As for many other topics
in biomedical sciences more studies are needed, which
should directly differentiate between normal, overweight
and obese individuals also considering sex-dependent
differences.
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