
Yuwen ZengFudan University · Department of Macromolecular Science
Yuwen Zeng
Doctor of Philosophy
Looking for collaborators, Ph.D. students, and research assistants.
About
8
Publications
10,083
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
36
Citations
Citations since 2017
Introduction
Publications
Publications (8)
Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are of significant interest because of their unique photophysical properties, such as single-photon emission at room temperature, and promising applications in quantum computing and communications. The photoemission from hBN defects covers a wide range of emission energies but identi...
The recent interest in microscopic autonomous systems, including microrobots, colloidal state machines and smart dust has created a need for microscale energy storage and harvesting. However, macroscopic materials for energy storage have noted incompatibilities with micro-fabrication techniques, creating significant challenges to realizing microsca...
The recent interest in microscopic autonomous systems, including microrobots, colloidal state machines and smart dust has created a need for microscale energy storage and harvesting. However, macroscopic materials for energy storage have noted incompatibilities with micro-fabrication techniques, creating significant challenges to realizing microsca...
Polymers that extend covalently in two dimensions have attracted recent attention1,2 as a means of combining the mechanical strength and in-plane energy conduction of conventional two-dimensional (2D) materials3,4 with the low densities, synthetic processability and organic composition of their one-dimensional counterparts. Efforts so far have prov...
Two-dimensional (2D) polymers are extended networks of multi-functional repeating units that are covalently linked together but confined to a single plane. The past decade has witnessed a surge in interest and effort toward producing and utilizing 2D polymers. However, facile synthesis schemes suitable for mass production are yet to be realized. In...
Polymers that extend covalently in two dimensions have attracted recent attention as a means of combining the mechanical strength and in-plane energy conduction of conventional two-dimensional (2D) materials with the low densities, synthetic processability, and organic composition of their one-dimensional counterparts. Efforts to date have proven s...
Although the structure and properties of water under conditions of extreme confinement are fundamentally important for a variety of applications, they remain poorly understood, especially for dimensions less than 2 nm. This problem is confounded by the difficulty in controlling surface roughness and dimensionality in fabricated nanochannels, contri...
Nanostructured fibers provide a basis for a unique class of multifunctional textiles, composites and membrane applications, including those capable of chromatic modulating because of their high aspect ratio, surface area, and processing capability. Here-in, we utilize two-dimensional (2D) materials including molybdenum disulfide (MoS2) and hexagona...