Fast Model Predictive Control
for Reactive Robotic Swimming

Yuval Tassa Tom Erez
Center for Neural Computation
Hebrew University
Jerusalem, Israel

tassa@alice.nc.huji.ac.il

Abstract—Model Predictive Control amounts to re-solving a
trajectory optimization problem at every timestep. Using a fast
multi-threaded simulator and an efficient trajectory optimizer,
we generate complex, reactive and robust swimming behavior in
simulated robots of 12-27 state dimensions, with time-steps in the
range of 10-40ms.

I. INTRODUCTION

Optimal Control promises a simple, principled approach to
controller synthesis: quantify task performance, and a numer-
ical algorithm will automatically generate the optimal global
policy. In practice, the exponential scaling of computational
complexity with the state dimension makes this impossible
for all but the simplest systems.

Online trajectory optimization, also known as Model Pre-
dictive Control, avoids searching over the entire state-space,
instead finding the optimal policy for only one particular state
— the current one. The control is applied to the system, the
clock advances, and the problem is re-solved, typically using
the previous solution to warm-start the solver. Unlike global
algorithms, MPC scales polynomially with the dimension of
the state.

The challenge in applying MPC in robotics is that opti-
mization must happen in real-time, matching the timescale
of the robot. MPC was initially developed in the chemical
process industry, where timescales of 10s or more are typical
[2]. In robotics, a timescale of 10ms is not uncommon, de-
manding careful design of both algorithm and implementation.
Fortunately, computational hardware is constantly becoming
faster and cheaper, and has reached the point where efficient
optimization is possible on these timescales.

As we demonstrate below, the bottleneck for online opti-
mization is in computation of the dynamics (and its deriva-
tives). To that end, we introduce a new general-purpose physics
simulator, written expressly to take advantage of modern
multi-core, multi-threaded environments. Running on standard
hardware, we can perform 10° — 10° evaluation the dynamics
per second for multi-body systems with dozens of state-
dimensions.

Due to the formidable computational challenge, MPC has
been rarely used in robotics. The most impressive example
we are aware of is aerobatic helicopter flight[1]. In that work,

Dep. of Computer Science
Washington University
St. Louis, MO, USA

etom@cse.wustl.edu

Emo Todorov
Dep. of Computer Science and Engineering
Dep. of Applied Mathematics
University of Washington
Seattle, WA, USA

todorov@cs.washington.edu

policies were updated every 50ms, using a linearized 12-
dimensional model, with the control objective of tracking a
pre-specified trajectory.

Below, we demonstrate MPC on systems with 12 — 27 state
dimensions, using quadratized models, updating the policy
every 10 —30ms. We generate complex and robust swimming
behavior on the fly, letting the user interact with the system
and modify various parameters in real-time. Importantly, the
cost which encodes the control objective — to reach target
while avoiding obstacles — is a function only of the 2 cartesian
positions, effectively defining a target manifold (configurations
where the nose is on the target), rather than a single point in
state-space. The freedom to reach this manifold on different
paths manifests as diverse swimming and twisting behaviour.

As described below, optimization can generate rich behav-
iors from very weak assumptions and simple cost functions.
In some ways, this is similar to the classic work of Karl
Sims [10] on optimization-based behavior, yet happens in real
time rather than requiring hours of offline computation on a
supercomputer. In this paper we used swimming as a test-bed,
but the same efficient tools should allow us to tackle more
complex tasks such as walking and hand manipulation.

This paper makes three contributions. First, we demonstrate
for the first time that MPC can be applied to fast nonlinear dy-
namics (dt ~ 10ms) with such high dimensionality (n ~ 20).
Since many interesting robots have comparable dimensionality,
our methodology promises to deliver substantial improvements
in a range of robotic control tasks. Second, on the algorithmic
level, we provide a detailed description of our DDP-based
trajectory optimization algorithm, including improvements to
regularization and line-search, and show that a local quadratic
model of the dynamics significantly outperforms a linear
model. Third, we introduce a fast general-purpose multi-
threaded physics engine that can provide a numerical foun-
dation for future online Optimal Control algorithms.

II. MODEL PREDICTIVE CONTROL

Online Optimal Control or MPC involves repeatedly mini-
mizing the cost of a finite-horizon trajectory emanating from
the current state of the system. The state x € R™ evolves
according to the discrete-time dynamics

x(i+1) = £(x(i),u(i)), (D

where u € R™ is the control. The cost-to-go at time ¢ is
the sum of running costs ¢(x,u,k) and final cost /;(x),
incurred when starting from state x(7) and applying the control
sequence u; n-1 = {u(i),u(i+1)...,u(N—1)} untl the
horizon is reached:
N-1
J(x(i),wi na,8) = > Ux(k),u(k), k) + Lr(x(N)). (2)
k=i

A trajectory optimizer is an algorithm which solves

min J(x(1),u; n,1)
ui. . N—1

st x(i+1) = £(x(4), u(i)).

A useful distinction is made in [3] between simultaneous and
sequential trajectory optimization algorithms. Simultaneous
algorithms optimize over the entire sequence of states and con-
trols (treating (1) as a constraint), while sequential algorithms
optimize only over the controls, letting the dynamics propagate
the states. Clearly simultaneous algorithms search over a much
larger space, yet historically they have been preferred, perhaps
due to the fact that they easily admit externally imposed state
constraints, which are of prime importance in petrochemical
process control. In the case of robotics, constraints such
as joint limits or contacts are enforced by the plant rather
than externally imposed, so sequential algorithms have an
advantage.

Once the minimizing control sequence is found, u(l) is
applied to the plant, the clock advances by one time-step,
the current state is measured, and the trajectory optimizer
is re-applied. If the optimization is iterative, it makes sense
to warm-start the optimizer with the time-shifted previous
solution, appended with the final control

vt {u(2),u(3)...,u(N-1),u(N-1)}.

The classic sequential trajectory optimizer is Pontryagin’s
Maximum Principle [9], which defines a two-point boundary-
value problem whose solution gives the optimal sequence of
states. The Maximum Principle is a first-order algorithm in the
sense that it requires only first derivatives of the dynamics, but
also in the sense that convergence can be quite slow, even close
to the minimum. Differential Dynamic Programming (DDP)
is a second-order trajectory optimizer introduced in [7] that
requires second derivatives of the dynamics, but also features
quadratic convergence (i.e. like Newton’s Method) near the
minimum. In the MPC context, where each initial state is close
to the previous one, and the previous solution is used to warm-
start the optimization, this feature is indispensable.

ITII. DIFFERENTIAL DYNAMIC PROGRAMMING

We now present the DDP algorithm using the notation first
introduced in [8]. The total cost which we wish to minimize
is (2). Defining the optimal Value function at time ¢ as the the
cost-to-go given the minimizing control sequence

V(x,i) = min J(x(),w; n—-1,17),
;. . N—1

and setting Vi (x) = {f(xn), the Dynamic Programming
Principle reduces the minimization over an entire sequence of
controls to a sequence of minimizations over a single control,
proceeding backwards in time:
V(x,i) = m&n[f(x, u) + V(f(x,u),i+1)] 3)
DDP involves a backward pass of Eq. (3) along the current
(x,u,i) trajectory, recursively constructing a quadratic ap-
proximation to V'(x,%) and a linear approximation to u(x, i),
followed by a forward pass which applies the new control
sequence to form a new trajectory. Define the argument of the
minimum in (3) as a function of perturbations around the i-th
(x,u) pair:

Q(dx,0u) = £(x + dx,u + du,i) — £(x,u,1)
+V(f(x+ ox,u+dou),i+1) — V(f(x,u),i+1) @)

and expand to second order

T

1 0 Qx Qg 1
~ oo |0 Qx Qxx qu x| . (5)
2 611 Qu qu Quu 6u

The expansion coefficients are!

Qx = U +£1V] (6a)
Qu =ty +fIV] (6b)
Qxx = lux HET VL £ 4+ VI - £ (6¢)
Quu = buu IV o + V] - fuu (6d)
Qux = Llux+EI V] Fu + VI - fux (6e)

Note that the last terms in (6¢, 6d, 6e) denote contraction with
a tensor. Minimizing (5) WRT du we have

su*(i) = argmin Q(0%, 0u) = —Qui(Qu + Quxdx), (7)
ou
giving us an open-loop term k = —Q,.Q, and a feedback
gain term K = —Q,lQux. Plugging the result back in (5),
we have a quadratic model of the Value at time ¢:

AV(i)= —3QuQuuQu (8a)
Vx (74) - Qx *QuQ;lllqu (Sb)
Vxx (Z) - Qxx_quQ:nllqu- (8C)

Recursively computing the local quadratic models of V(i)
and the control modifications {k(¢), K(7)}, constitutes the
backward pass. Once it is completed, a forward pass computes
a new trajectory:

%(1) = x(1) (92)
a(i) = u() + k(i) + K@) - (i) ©b)
x(i4+1) = £(x(7),a(7)) (9¢)

I Dropping the index i, primes denoting the next time-step: V' = V' (i+1).

IV. IMPROVEMENTS TO DDP
A. Regularization

It has been shown [6] that the steps taken by DDP are
comparable to or better than a full Newton step for the
entire control sequence. As in Newton’s method, care must
be taken when the Hessian is not positive-definite or when
the minimum is far and the quadratic model inaccurate. The
standard regularization, proposed in [4] and further explored in
[5], is to add a diagonal term to the local control-cost Hessian

Quu = Quu + 41, (10)

where p plays the role of a Levenberg-Marquardt param-
eter. This modification amounts to adding a quadratic cost
around the curren control sequence, making the steps more
conservative. The drawback to this regularization scheme is
that the same control perturbation can have different effects
at different times, depending on the control-transition matrix
fu. We therefore introduce a scheme that penalizes deviations
from the states rather than controls:

Quu = luu + ET (VL + L) Eu + Vi - fuu (11a)
Qux = lux + £T (VL + L))y + V7 - fuxe (11b)
k = —QueQu (11¢)
K = —QpuaQux (11d)

This regularization amounts to placing a quadratic state-
cost around the previous state sequence. Unlike the standard
control-based regularization, the feedback gains K do not
vanish for large ;4 but rather force the new trajectory closer to
the old one, significantly improving robustness.

B. Value Update

Examining (5, 7, 8), it is clear that the standard Value update
equations (8) assume that several cancelations of @y, and
its inverse have taken place. Regardless of whether we use
the classic regularization (10) or the new one (11), Quy is
modified and making those cancelations would induce an error
in the approximation. The correct update is therefore

AV(i) = +3k"Quuk+k'Qu (12a)
V(i) = Qx +KTQuuk +KTQu +Qlk (12b)
Vxx(i) = Qxx+KTQuuK+KTqu+QIXK. (12¢)

C. Line Search

The forward pass of DDP, given by Eqgs. (9) is the key to
the algorithm’s fast convergence. This is because the feedback
gains in (9b) generate a new control sequence that takes
into account the new states as they are being integrated. For
example when applying DDP to a linear-quadratic system,
even a time-varying one, an exact solution is obtained after a
single iteration. The caveat is that for a general non-linear sys-
tem, when the new trajectory strays too far from the model’s
region of validity, the cost may increase and divergence can

occur. The solution is to introduce a backtracking line-search
parameter 0 < o < 1 and integrate using

u(i) = u(id) + ak(i) + K(i)(x(i) — x(7))

For @« = 0 the trajectory would be unchanged, but for
intermediate values the resulting control step is not a simple
scaled version of the full step, due to the presence of feedback.
As advocated in [4], we use the expected total-cost reduction
in the line-search procedure, with two differences. The first is
that we use the improved formula (12a) rather than (8a) for
the expected reduction:

13)

=2

AdJ(a)=a) k(i) Qu(i)+

i

(14)

z
L

042

2

7

(1) T Qua)k (i).

1

By saving the linear and quadratic terms separately, we obtain
a quadratic model of the expected reduction as a function of
a. We then compare the actual and expected reductions

z = [J(ul..Nq) - J(flluNfl)]/AJ(a)y

and accept the iteration only if the actual reduction is bigger
than some minimal threshold.

0<c <z (15)

This is similar to the classic Armijo condition in optimization,
but uses the more accurate quadratic reduction model (14).

D. Algorithm Summary

A single iteration of the optimizer described here is com-
posed of 3 steps:

1. Derivatives: Given a nominal (x, u,¢) sequence, com-
pute the derivatives of ¢ and f in the RHS of Eq. (6). This
can be done in parallel for all i.

2. Backward pass: Iterate Egs. (6, 11, 12) for decreasing
i = N—1,...1. If a non-PD Q,, is encountered, increase
1 and restart the backward pass. If successful and p was not
increased, decrease .

3. Forward pass: Set o = 1. Iterate (13) and (9¢c) to
compute a new nominal sequence. If the integration diverged
or condition (15) was not met, decrease « and restart the
forward pass.

E. Parameter Schedules

The fast and accurate modification of the regularization
parameter j in step 2 turns out to be quite important due
to three conflicting requirements. If we are near the minimum
we would like p to quickly go to zero to enjoy the quadratic
convergence. If the approximation diverges (a non-PD Quy),
we would like it to increase very rapidly, since the minimum
value of p which prevents divergence is often very large
(~ 10%). Finally, if we are in a regime where some ; > 0
is required, we would like to accurately tweak it to be as
close as possible to the minimum value (though not smaller).

Our solution is to use a log-quadratic modification schedule.
Defining some minimal value fipyi, (We use fimin = 107%) and
a minimal modification factor Ay (we use Ag = 2), we adjust
1 as follows:

increase fui:
A+ max(Ag, A - Ag)
o 4= max(fmin, p - A)

decrease
A+ min(AiO, AAO)
A ifp- A > ins
e M 1 M Homi
0 if - A< pmin-

Whenever p increases or decreases consecutively across iter-
ations, the size of the change grows geometrically. If increase
and decrease alternate, the change remains small.

The decrease of the line search parameter « is not as
sensitive, and a simple halving backtrack o + «a/2 was
sufficient. For the minimal relative cost decrease of (15), we
used ¢; = 0.5.

V. COMPUTATIONAL CONSIDERATIONS

In practice, the computational effort for step 1 is the
largest, taking ~%90 of CPU time, never below %80 in our
experiments. Step 2 constituted ~%15 of the time. Step 3 was
smallest, at an order of %1. Specific numbers are given below
in sec. VL.

To understand this distribution of computational load, con-
sider the dynamics. For the mechanical systems considered
here, the Euler-discretized equations of motion are

q(t +h) = q(t) + hq(t)
q(t +h) = q(t) + hM~(r + Bu),

where h is the timestep, q is the configuration, M = M (q)
is the mass-matrix, r = r(q,q) is the vector of total Cori-
olis, centripetal and other intrinsic forces, u is the control,
and B is the n x m matrix determining which degrees of
freedom are actuated (with m < n for underactuation). The
computational effort for the dynamics lies mainly in the con-
struction and factorization of M(q), and the computation of
r(q, q). In order to compute derivatives, we used simple finite-
differences on the entire dynamics computation. This proved
to be adequately accurate for a wide range of finite-difference
parameters. Analytical computation of the derivatives, while
more accurate, would not be cheaper than finite-differencing,
and can be significantly more expensive if the multiplication-
order of chain-rule factors is not chosen judiciously.

Let a single factorization and back-substitution of M be
a rough proxy for the complexity of a single call to the
dynamics engine, at ~O(n?). First derivatives are therefore
O(Nn*), and second derivatives are O(Nn?). In contrast steps
2 and 3 both have a complexity of O(Nn?), step 2 from the
multiplications in (6) (with a high constant factor), step 3 from
N calls to the dynamics.

To see if we can reduce the burden of computing second
derivatives, consider the last terms in the RHS of (6¢, 6d,
6e). Since mechanical systems are control-affine, fy,, = 0
identically. Additionally, f, = hM !B is essentially a by-
product of the computation (having factorized M), so fix is
a by-product of computing fx. This leaves us with fy 5, which
is the largest object (an n?® tensor) and the most expensive
to compute. The iLQG algorithm described in [11] is a DDP
variant that assumed fxx = 0. Here we make the following
observation: if first derivatives fy are computed with central
differences, then the computation of the diagonal of fy, is
free. This reduces the complexity of step 1 to O(Nn?), still
the most expensive, but less so by a significant factor. In the
experiments below we explore the tradeoff of using full versus
diagonal fy.

A significant speedup can be achieved by parallelizing
step 1 across several cores on a modern multi-core processor.
We used a new physics simulator created expressly for this
purpose, as described in the Appendix.

VI. EXPERIMENTS
A. Swimmer Models

The models consisted of several elongated masses connected
by joints, in a simulated fluid medium. We had both planar
and 3-dimensional models. The interaction with the fluid was
modeled by positing high linear drag k, in the direction
normal to the long axis of the masses, and a smaller drag
Kt < Ky 1n the tangential direction.

A planar swimmer model with k links has 2 cartesian and &
angular degrees of freedom for a state dimension n = 4 4 2k,
of which m = k—1 are actuated. This is true for any tree-like
topology (we cannot represent topologies with loops).

A 3D k-link model has 3 cartesian and 3k rotational degrees
of freedom. In principle, we could have ignored the rotational
degrees of freedom of the joints in the axial direction, using
two hinges or even one hinge at each joint. However, using
single aligned hinges would essentially embed a planar swim-
mer in 3D space, and multiple unaligned hinges can reach
singular points (gimbal lock). We therefore chose to represent
all joints as normalized quaternions (ball joints), which have
no singular points. This means that each joint is described
by 7 numbers, 4 for the normalized quaternion, and 3 for the
angular velocities, for a total state dimension of n = 6 + 7k
for a 3D k-link model. The actuated states in this case are of
dimension m = 3(k — 1).

B. Cost Function
The cost we used was
£(x,u,1) =c, log(cosh(||x. — x¢]))
+co ZN(XC; x; (),)
J

+Cu||u”2

The first term penalizes the distance between the Cartesian
components of the state x. and the position of the target x;.
The log(cosh()) function looks like a smoothed absolute-value

model:

|5—3wimmer hd

MPC controller

Obstacles

Full Hessian

Draw horizon

Adiust
i

|hnriznn steps v]
Kl I |
5 100 300

horizon steps 100
timestep 30 ms
control cost 0.03
tangential drag 0.3
normal drag 10
joint springs [u]
joint damping [u]
gravity [u]

iLOG iterations 1
obstacle velocity [u]

— Info.

time/MEC 14 ms
time/graphics] m3
horizon time 3 3
evals/iter 18711
evals/sec 623700
state dimension 14

: .:

Fig. 1.

Screen capture of the user interacting with a swimmer. The nose point X, is in blue, the target x; is the green circle, and the pink discs are the

obstacles. The user is pulling on the tail link with a linear spring (red line). A movie of the interaction is available at http://goo.gl/ta3al.

2t y = log(cosh(x)) E

1t i

R T
Fig. 2. The functional form of the state-cost component.

function, and was simply a convenient way of smoothing the
cost at the singular point x, = x;. The second term describes
a set of obstacles, represented by unit gaussians. Note that
the means are time dependent, so the the gaussians can move
along predefined trajectories, and the controller will be able
to react predictively to their motion. Finally, the last term is
the standard quadratic control-cost.

C. Graphical User Interface

One of benefits of MPC is that because there is no offline
component, all the parameters can be changed in real time. To
that end, we designed a rich graphical interface to allow a user
to interact with the controller (Figure 1). The user can apply
forces to the masses and move the target with the mouse (with
the left and right buttons, respectively), and change a variety
of parameters. These are:

o The number of timesteps V.

o The length of each timestep dt.

e The control cost ¢,,.

o The normal and tangential drag ,, and ;.

o Springs and dampers at the joints.

o Gravity.

o The number of optimization iterations at each timestep.
o The velocity of the obstacles.

Additionally, the user can choose to use only the diagonal of
the Hessian, as described in Sec. V. In the lower left part of
the window, the simulation displays the computational time of
every iteration, allowing the user to quantify the performance

http://goo.gl/ta3aL

TABLE I
SIMULATOR SPEED

n_[[Evals / Sec

10 2,580,000
14 1,650,000
16 1,470,000
18 1,140,000
27 530,000
34 380,000

Fig. 3. A snapshot of a 3D swimmer in action while the user is moving the
target in real-time.

implications of different parameter settings.

D. Results

As shown in the movie available in http://goo.gl/ta3al,
the MPC controller generates the complex behavior in real-
time, including: steady-state swimming, coasting, braking, and
various contortional maneuvers.

VII. ACKNOWLEDGMENTS

This work was supported by the US National Science
Foundation.

REFERENCES

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y Ng. An
application of reinforcement learning to aerobatic heli-
copter flight. In Advances in Neural Information Pro-
cessing Systems 19: Proceedings of the 2006 Conference,
page 1, 2007.

[2] M. Diehl, H. G Bock, J. P Schloder, R. Findeisen,
Z. Nagy, and F. Allgower. Real-time optimization and
nonlinear model predictive control of processes governed
by differential-algebraic equations. Journal of Process
Control, 12(4):577, 2002.

[3] M. Diehl, H. Ferreau, and N. Haverbeke. Efficient nu-
merical methods for nonlinear mpc and moving horizon
estimation. Nonlinear Model Predictive Control, page
391, 2009.

[4] D. H. Jacobson and D. Q. Mayne. Differential Dynamic
Programming. Elsevier, 1970.

[5] L. Z Liao and C. A Shoemaker. Convergence in uncon-
strained discrete-time differential dynamic programming.
IEEE Transactions on Automatic Control, 36(6):692,
1991.

[6] L. Z. Liao and C. A Shoemaker. Advantages of dif-
ferential dynamic programming over newton’s method
for discrete-time optimal control problems. Cornell
University, Ithaca, NY, 1992.

[7] D. Q. Mayne. A second-order gradient method of opti-
mizing non-linear discrete time systems. Int J Control,
3:85-95, 1966.

[8] J. Morimoto, G. Zeglin, and C. G Atkeson. Mini-
max differential dynamic programming: Application to a
biped walking robot. In Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ Interna-
tional Conference on, volume 2, page 1927-1932, 2003.
ISBN 0780378601.

[9] L. S Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze,

and E. F. Mishchenko. The mathematical theory of

optimal processes. Interscience New York, 1962.

K. Sims. Evolving virtual creatures. In Proceedings of

the 21st annual conference on Computer graphics and

interactive techniques, page 15-22, 1994.

E. Todorov and Weiwei Li. A generalized iterative

LQG method for locally-optimal feedback control of

constrained nonlinear stochastic systems. In Proceedings

of the 2005, American Control Conference, 2005., pages

300-306, Portland, OR, USA, 2005. doi: 10.1109/ACC.

2005.1469949.

(10]

(11]

APPENDIX: THE MUJOCO ENGINE

The simulations described in this paper were carried out
using a new physics engine; the name stands for Multi Joint
dynamics with Contact. This engine will soon be made pub-
licly available and will be free for non-profit research. Table I
shows computation speed for different swimmer topologies. A
full description of this physics engine is given in a companion
paper (submission ID: 50) Below is a brief description taken
from the (current version of) the user’s manual:

MudJoCo is a platform-independent physics simulator tai-
lored to control applications. Multi-joint dynamics are repre-
sented in joint coordinates and computed via recursive algo-
rithms. The computation is O(n?) because the inverse inertia
matrix is needed (to compute contact responses), however
due to tree-induced sparsity, performance is comparable to
O(n) algorithms in typical usage scenarios (e.g. simulating
a humanoid). Geometry is modeled using a small library of
smooth shapes allowing fast and accurate collision detection.
Contact responses are computed by efficient new algorithms
(which we have developed) that appear to be faster and
more accurate than LCP-based methods, and are suitable for
numerical optimization. Models are specified using either a
high-level C++ API or an XML file. A built-in compiler

http://goo.gl/ta3aL

transforms the user model into an optimized data structure
used for runtime computation. This data structure contains
a scratchpad where all routines write their output. In this
way all intermediate results are accessible to the user, making
it easy to add functionality. The user can modify all real-
valued model parameters in runtime without recompiling.
To facilitate optimal control applications, MudJoCo provides
routines for computing the cost of a given trajectory as well
as the gradient and an approximate Hessian, and a built-in
trajectory optimizer. The latter can exploit parallelism via
multi-threading. MuJoCo can be used either as a library linked
to a user program, or via a Matlab interface. A Windows-
specific utility for interactive 3D rendering is also provided.

	INTRODUCTION
	MODEL PREDICTIVE CONTROL
	DIFFERENTIAL DYNAMIC PROGRAMMING
	IMPROVEMENTS TO DDP
	Regularization
	Value Update
	Line Search
	Algorithm Summary
	Parameter Schedules

	COMPUTATIONAL CONSIDERATIONS
	EXPERIMENTS
	Swimmer Models
	Cost Function
	Graphical User Interface
	Results

	ACKNOWLEDGMENTS

