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Abstract—Planning a practical three-dimensional (3-D) flight
path for unmanned aerial vehicles (UAVs) is a key challenge for
the follow-up management and decision making in disaster emer-
gency response. The ideal flight path is expected to balance the
total flight path length and the terrain threat, to shorten the flight
time and reduce the possibility of collision. However, in the tra-
ditional methods, the tradeoff between these concerns is difficult
to achieve, and practical constraints are lacking in the optimized
objective functions, which leads to inaccurate modeling. In addi-
tion, the traditional methods based on gradient optimization lack
an accurate optimization capability in the complex multimodal
objective space, resulting in a nonoptimal path. Thus, in this arti-
cle, an accurate UAV 3-D path planning approach in accordance
with an enhanced multiobjective swarm intelligence algorithm
is proposed (APPMS). In the APPMS method, the path plan-
ning mission is converted into a multiobjective optimization task
with multiple constraints, and the objectives based on the total
flight path length and degree of terrain threat are simultane-
ously optimized. In addition, to obtain the optimal UAV 3-D
flight path, an accurate swarm intelligence search approach
based on improved ant colony optimization is introduced, which
can improve the global and local search capabilities by using
the preferred search direction and random neighborhood search
mechanism. The effectiveness of the proposed APPMS method
was demonstrated in three groups of simulated experiments with
different degrees of terrain threat, and a real-data experiment
with 3-D terrain data from an actual emergency situation.

Index Terms—Ant colony optimization (ACO), multiobjective
optimization, swarm intelligence, three-dimensional (3-D) terrain,
unmanned aerial vehicle (UAV) path planning.
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I. INTRODUCTION

OVER the past decades, various natural disasters, such
as floods and earthquakes, have caused great damage to

human life and ecology. In the case of disasters, emergency
response is particularly important. However, it can be difficult
for emergency responders to enter the disaster area directly,
due to the damage and the threat of further emergency events.
As a new type of platform, unmanned aerial vehicles (UAVs)
have been the subject of much attention, benefiting from the
small size, low cost, and low environmental impact [1]–[3].
As a result, UAVs now play an important role in emergency
news aerial photography, emergency rescue, and topographic
mapping of post-disaster reconstruction. However, due to their
unmanned nature, mission planning for UAVs is particularly
important [4], [5]. Moreover, the path planning task is the
most basic and important part of mission planning. A reason-
able path plan helps the UAV to shorten the flight distance and
avoid potential threats. As a result, path planning can improve
the survival rate of UAVs in complex scenarios such as disaster
emergency response [6], [7].

Although the two-dimensional (2-D) path search meth-
ods have achieved useful and practical results [8], [9],
for the emergency response scenarios of natural disas-
ters, such as tailings dam failure or debris flow, which
are often located in remote mountainous areas, UAVs are
faced with complex three-dimensional (3-D) terrain threats.
Despite these challenges, 3-D environment-based path plan-
ning methods have been rapidly developed [10], [11]. Five
categories of methods can be distinguished: 1) sampling-based
approaches [12], such as the traditional Voronoi method [13],
the rapidly exploring random trees (RRTs) method [14], [15],
and RRT-star (RRT*) [16], [17]; 2) node-based methods,
such as the A-star (A*) algorithm [18], harmony search [19],
and the Dijkstra search approach [20]; 3) mathematical
model-based methods, such as the mixed-integer program-
ming (MIP) method [21] and the mixed-integer linear pro-
gramming (MILP) method [22]; 4) evolutionary computa-
tion technology-based approaches, such as the genetic algo-
rithm (GA) [23], [24]; and 5) multifusion methods [25], such
as the geometrical path planning method [26].
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As one of the most important branches of evolution-
ary computation, the particle swarm optimization (PSO)
algorithm [27], [28] and ant colony optimization (ACO) algo-
rithm [29], [30], which come from the swarm intelligence
community, have also been used in 3-D path planning.
Moreover, the planning methods referring to evolutionary com-
putation omit the construction process of the complex path
planning models, and the population-based global search capa-
bility can be employed to improve the global optimization
capability [31], thus achieving the goal of stable convergence.
In fact, because of the inherent NP completeness in the path
planning task [32], this kind of problem can be solved using
the effective heuristic methods, such as GAs [23], the PSO
algorithm-based swarm intelligence methods [27], [28], and
the differential evolution (DE) algorithm [33], [34], which can
be used to effectively plan a path.

For the evolutionary computation technology-based methods
for UAV 3-D path planning, the objective functions need to
be constructed while also considering the actual environmental
constraints as much as possible, so that different optimization
strategies can then be designed. In the existing studies, the
flight distance and the degree of terrain threat have usually
been taken as the objective functions of the optimization,
and the flight speed, acceleration, and fuel consumption have
usually been taken as the constraint conditions [35]. Single-
objective EA-based UAV 3-D path planning methods were
first proposed. For example, Bayrak and Efe [36] proposed a
field-programmable gate array (FPGA)-based offline 3-D UAV
path planning approach through the use of a GA, where the
total flight path length is taken as the objective function, and
the flight mode and track point constraints are also consid-
ered. In addition, the genetic programming algorithm has also
been introduced into UAV 3-D path planning [37]. Moreover,
swarm intelligence methods have also been employed in
UAV 3-D route planning. Blasi et al. [38] designed a hybrid
probabilistic geometric strategy for optimal track recognition,
referring to PSO through optimizing the minimum path length;
and Huang et al. [39] combined ACO and the artificial poten-
tial field algorithm to obtain a dynamic path planning method
by optimizing the cost functions of the dynamically changing
threats.

However, in emergency response scenarios of natural disas-
ters, only considering a single-objective function for the total
flight path is not well suited to a real situation with the poten-
tial for physical collisions. The degree of the terrain threat
posed by the physical obstacles should also be considered
in the optimization model. Thus, multiobjective optimization
evolutionary algorithm-based approaches have been employed.
For example, Phung et al. [40] presented an enhanced swarm
intelligence approach based on a discrete PSO method for
UAV route planning by considering the coverage and obsta-
cle avoidance; Adhikari et al. [41] designed a fuzzy adaptive
swarm intelligence approach based on a DE algorithm for
UAV path planning, where the mission is regarded as a
multiobjective optimization process by minimizing the fuel,
the degree of threat, and the path length; Yu et al. [42]
proposed a constrained multiobjective DE for UAV path
planning in disaster scenarios by considering the flight distance

and risk; and Tong et al. [43] presented a multiobjective
pigeon-inspired optimization method by considering the path
length, path curvature, and path risk.

Furthermore, from the existing research into UAV 3-D
path planning based on the evolutionary computation meth-
ods, it can be inferred that the objective function modeling
and constraint setting are very important for practical 3-D
path planning [40], [41]. However, with more factors consid-
ered in the objective functions, the objective space becomes
more complex and multimodal. Furthermore, due to the diffi-
culty of the complex practical path planning task, the original
evolutionary computation methods lack local search capabili-
ties, which hinders rapid convergence in local areas [44], [45].
Generally speaking, global and local optimization capabilities
are two important factors to be considered in the evaluation
of an algorithm [46]. Thus, the fact that the existing meth-
ods based on the original evolutionary computation methods
lack local search capability can easily result in a nonoptimal
3-D path.

In this study, for the purpose of solving these concerns in the
practical UAV 3-D path planning task for emergency response
scenarios of natural disasters, an enhanced multiobjective
swarm intelligence approach is presented for implementing
accurate UAV 3-D path planning (APPMS). The innovations
and contributions of this research are summarized as follows.

A. Accurate Multiobjective Framework for UAV 3-D Path
Planning

The UAV 3-D route planning mission is transformed into
a multiobjective optimization task with constraints, in which
the objectives of the total flight path length and the degree of
terrain threat based on the various flight constraints are accu-
rately modeled to resolve the concerns of inaccurate flight
path modeling. In addition, accurate optimization through
an enhanced swarm intelligence approach is introduced to
address the problem of the solution easily falling into a local
extremum.

B. Accurate Modeling for UAV 3-D Path Planning

Due to the lack of consideration of the actual emergency
flight constraints, the objective function modeling of the UAV
3-D path planning may be inaccurate, which can lead to a
flight risk in actual emergency tasks. In the APPMS method,
the objectives describing the total flight path length and the
degree of terrain threat are accurately constructed with the cor-
responding constraints. In order to obtain closer to the actual
emergency flight constraints, the function of the terrain threat
degree is first improved, in which the ratio of the safe distance
and the multidirectional distance between the flight path point
and terrain edge is calculated. In addition, the safe flight dis-
tance and the horizontal and vertical turning angles are also
constrained in the objective functions.

C. Global and Local Optimization-Based Search Strategy

As more factors are considered in the objective functions,
the objective space becomes more complex and multimodal,
and the existing methods based on evolutionary computation
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Fig. 1. Illustration of a multiobjective optimization problem, with Pareto
domination and the Pareto front in objective space, and the Pareto set in
decision space.

lead to a nonoptimal search path, due to the lack of local
optimization capability. In the proposed APPMS method, an
accurate swarm intelligence search method based on improved
ACO is introduced, which can improve the global search capa-
bility. In addition, for the purpose of evolving and refining the
solutions, the preferred search direction and random neigh-
borhood search mechanism are utilized to maintain a uniform
distribution and the diversity of the Pareto solution set, and
improve the local search capability, respectively.

The remainder of this article is organized as follows.
Section II presents the related research background, including
multiobjective optimization and ACO. The overall framework
of the APPMS method is presented in Section III. Section IV
describes the experiments and analyses. Finally, in Section V,
we draw our conclusions.

II. RELATED RESEARCH BACKGROUND

The UAV 3-D route planning mission can be considered
as a constrained optimization problem [47]. Constraints, such
as the angle of climb, turning left and right, and terrain con-
straints can be considered as part of the objective functions of
the flight route distance and the degree of terrain threat [48].

The relevant research background is also introduced in
this section, including the basic theory of the multiobjective
optimization used to optimize the UAV 3-D path length and
the degree of threat, and the ACO used to search for solutions.

A. Multiobjective Optimization

When a problem has a tradeoff solution set between
several objectives, the multiple objective functions of the
problem can be simultaneously optimized through the use
of a multiobjective optimization method. An illustration of
a multiobjective optimization problem is given in Fig. 1, and
a basic description of a multiobjective optimization problem
with p objectives is given as follows:

minimize F(Q) = {
f1(Q), f2(Q), . . . , fp(Q)

}

s.t.

⎧
⎨

⎩

Q = (q1, q2, . . . , qn)
T

ri(Q) ≥ 0(i = 1, 2, . . . ,m)
si(Q) = 0(i = 1, 2, . . . , o)

(1)

where Q is the solution variable, and ri(Q) and si(Q) are
the inequality and equality constraints, respectively. Therefore,
when the solutions meet the constraints, they can be called
“feasible solutions,” and the others are “infeasible solutions,”

Fig. 2. ACO: A simulation optimization method that imitates the foraging
behavior of ants from the nest to food. In stage #1, an ant finds the food and
brings the news back to the nest. In stage #2, the ant colony travel from the
nest to the food point along different paths, and release pheromones which
are inversely proportional to the length of the foraging route. The ants can
communicate with each other and learn the length of each path. In stage #3,
after mutual communication, the ants will choose the path with the highest
pheromone concentration, and the optimal route with the highest pheromone
concentration is finally found.

which do not participate in the optimization. In addition, in
terms of the individual comparisons of the solutions, differ-
ing from the single-value comparison of a single-objective
optimization task, multiple objectives values are taken into
consideration, as shown in (2). When the solution individuals
are satisfied, the solution individual Q1 Pareto dominates Q2

∀i = 1, 2, . . . , p, fi
(
Q1
) ≤ fi

(
Q2
)

∧ ∃j = 1, 2, . . . , p, fj
(
Q1
)
< fj

(
Q2
)
. (2)

Therefore, differing from the single-objective optimization
problem in which only one objective function value needs
to be calculated and compared to finally obtain the optimal
single solution, in the multiobjective optimization problem, a
series of mutually nondominated solutions are finally obtained
through the calculation and comparison of multiple objective
function values. As shown in Fig. 1, the Pareto set and Pareto
front are also defined. Multiobjective optimization has been
successfully applied in planning and scheduling applications,
such as job shop scheduling [49]–[52].

B. Ant Colony Optimization Approach

For the multiobjective optimization problem introduced
above, it should be noted that the solutions need to be updated
to converge to a satisfactory solution set. In particular, most
of the practical optimization problems are NP-hard combi-
natorial optimization problems, and the objective space is
extremely complex and multipeaked. As a result, a method
with a strong search capability is urgently needed. Fortunately,
the population-based evolutionary computation methods can
provide an effective global search strategy. The ACO algo-
rithm is briefly introduced here, an improved version of which
is used in the proposed method.

As a representative swarm intelligence optimization
approach, as presented in Fig. 2, the ACO method is a
simulation-optimization algorithm that simulates the foraging
behavior of ants. The ACO approach was first developed by
Colorni et al. [53], and was used to solve the traveling sales-
man problem (TSP) [54]. Taking the TSP as an example, if
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Fig. 3. Overall framework of the APPMS method for UAV path planning in a 3-D environment.

we assume that the quantity of cities is NC and the number
of ants is NA, then at time ϑ , the transfer probability Pi

jk(ϑ)

of the ith ant from city j to k is as shown in the following:

Pi
jk(ϑ) =

⎧
⎨

⎩

τ
ξ
jk(ϑ)×μζjk(ϑ)

∑Vϑ
v=1

(
τ
ξ
jv(ϑ)×μζjv(ϑ)

) , v ∈ Vϑ

0, otherwise
(3)

where j, k = 1, 2, . . . ,NC, i = 1, 2, . . . ,NA, τ ξjk(ϑ) is the

pheromone content between city j and city k, μζjk(ϑ) is the

heuristic information, and μζjk(ϑ) = 1/dist(j, k). dist(j, k) indi-
cates the distance between city j and city k. In addition, ξ and
ζ are the heuristic factors, and Vϑ is the set of cities that have
not been passed by the ith ant up until time ϑ .

Furthermore, it should be noted that the ants leave
pheromones on every path they travel, which is extended
to the ACO approach. For the purpose of preventing the
individual solutions falling into locally optimal values, a
pheromone volatilization mechanism is introduced, as shown
in the following:

τjk(ϑ + 1) = −λ× τjk(ϑ)+�τjk(ϑ) (4)

�τjk(ϑ) =
NA∑

i=1

�τ i
jk(ϑ) (5)

where −λ ∈ [0, 1], which represents the volatilization coeffi-
cient; and �τjk(ϑ) denotes the objective function of the total
crawling distance of the ith ant, and is the pheromones left
by the ith ant on the path. Thus, benefiting from the idea
of population-based global search, the ACO approach can
be utilized to obtain the optimal solution in combinatorial
optimization problems.

Algorithm 1 Pseudo Code of the APPMS Method
1: Input: DEM data converted into raster terrain data
2: /* Multi-objective modeling (6) and (7),

constraints (8) and (9) */
3: /* Individual encoding (Xi−TPj, Yi−TPj, Zi−TPj) */
4: /* population initialization */
5: Ranking for obtaining an external solution set N(0)
6: /* Main Loop */
7: while t < Tmax do
8: if z ≤ c = 0.5 then /* Conduct global search */
9: Calculate pheromone content (10)
10: Calculate transition probability (12)
11: Obtain preferred new ants to enter into new external

solution set N(t)
12: else /* Conduct local search */
13: Neighborhood search by random disturbance

randint(1, 1, [−�,�])
14: end if
15: Calculation of the objective functions (6) and (7)
16: Pareto ranking and density ranking
17: t = t + 1
18: end while
19: Acquisition of the optimal solution by knee point based method
20: Output the final solution of the UAV planning path

III. PROPOSED APPMS METHOD

The framework of the proposed APPMS method is given in
Fig. 3, in which there are three main steps: 1) multiobjective
modeling of the total flight distance and the degree of
terrain threat with constraints; 2) individual encoding, pop-
ulation initialization, and ranking for the initial paths; and
3) evolutionary operations, population updating, and selec-
tion for the searched 3-D paths. The pseudo code of the
proposed APPMS method is given in Algorithm 1, and
detailed descriptions of the main steps are presented in the
following.
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Fig. 4. Graphical illustration of a UAV flight path in 3-D terrain. (a) Track points in the planning path and calculation of the threat degree for flat terrain.
(b) Calculation of the threat degree for single-sided mountainous terrain. (c) Calculation of the threat degree for two-sided mountainous terrain.

A. Multiobjective Modeling of the Total Flight Path Length
and Degree of Terrain Threat With Constraints

In order to make the 3-D path of the UAV planning take
into account both the total flight path length and the degree
of terrain threat, two accurate objective functions for the 3-D
path planning task are introduced, and the relevant constraints
are given at the same time. As shown in Fig. 4, a graphical
illustration of the UAV flight path in 3-D terrain and the calcu-
lation method for the threat factor is presented. The formulas
are given in the following:

f1 =
n+1∑

i=1

di,i−1 (6)

f2 =
n∑

i=1

n_g∑

j=1

(
dsafe/	i,j

)2 (7)

where f 1 represents the functions of the total flight distance,
f 2 denotes the degree of threat of the surrounding 3-D terrain,
n is the number of the track points, di,i−1 denotes the distance
between the ith and i−1th track points, and n_g is the number
of discrete grid points on the edge of the terrain. As shown in
Fig. 4, there are eight points (t1, t2, . . . , t8) considered in the
calculation. 	i,j denotes the distance between the ith discrete
track point and the jth node on the terrain edge, and dsafe is the
minimum safe distance between the UAV and the terrain edge.

Furthermore, in a real situation, if the turning angle is too
large, it is considered not to be safe, and the UAV will not
be allowed to fly. Thus, there are constraints on the horizontal
and vertical turning angles, which are modeled in (8) and (9).
A graphical illustration of the calculation of the turning angles
is presented in Fig. 5

α = arccos

(
L2

i−1,i + L2
i,i+1 − L2

i−1,i+1

2 × Li−1,i × Li,i+1

)

≤ amax (8)

β = arctan

(
�H

�L′

)
≤ βmax (9)

where α represents the value of the horizontal turning angle,
as shown in Fig. 5(a); Li−1,i denotes the length between the
i − 1th and the ith track points; Li,i+1 and Li−1,i+1 have the
same meanings; and amax is the maximum-allowable value
for the horizontal turning angle (which was set to 75◦ in this

Fig. 5. Graphical illustration of calculation of the flight turning angle of the
UAV. (a) Horizontal turning angle α. (b) Vertical turning angle β.

Fig. 6. Individual encoding and population initialization.

study). β represents the value of the vertical turning angle,
as shown in Fig. 5(b); �H denotes the value of the height
difference between two track points; �L′ represents the value
of the horizontal projection distance between the two track
points; and βmax is the maximum permissible value of the
vertical turning angle (which was set to 60◦ in this study).

B. Evolutionary-Based Multiobjective Search

1) Individual Solution Encoding and Population
Initialization: For the population-based evolutionary com-
putation methods, the solutions representing the 3-D paths
should be encoded into the individuals for the evolutionary
generations. Specifically, for the improved swarm intelligence
algorithm utilized for the UAV 3-D path planning task, the
3-D coordinate values of the track points are encoded into the
individual solution. As presented in Fig. 6, an ant represents
a planning path, where (Xi−TPj, Yi−TPj, Zi−TPj) represents
the 3-D coordinates of the jth track point of the ith ant.
Therefore, the number of trajectory points directly affects
the dimension of individual solution, and too high dimension
greatly affects the efficiency and accuracy of evolutionary
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Fig. 7. Ranking for obtaining an external solution set.

search [55]. In this article, the suitable and same number
of trajectory points are set in the compared multiobjective
evolutionary algorithms.

In addition, m solution individuals are randomly initialized,
simultaneously ranging from the smallest boundary value to
the largest in a population. Those solution individuals in the
population satisfying flight constraints (8) and (9) are con-
sidered as feasible solutions for the next iteration. The new
solutions generated after this point also need to be restricted
to obtain feasible and infeasible solutions.

2) Ranking for Obtaining External Solution Set: During the
search process, in order to distinguish a good path from a bad
path and save the current good individual solution, the cur-
rent Pareto optimal individuals obtained by Pareto domination
sorting are stored in an external solution set.

Therefore, in order to better guide the ants to search the fea-
sible space for obtaining the optimal 3-D UAV flight path, in
the multiobjective optimization problem, the external solution
set N(t) is constructed to store the Pareto optimal solution set
obtained up to generation t. Thus, after the population initial-
ization, the external solution set N(0) is obtained by Pareto
domination ranking, and is compared according to (2). Of
course, before the Pareto ranking, the corresponding objective
function values for all the ants in the population should be first
calculated by (6) and (7). As shown in Fig. 7, six ants have
entered into set N(0), and they do not dominate each other.

3) Global and Local Search Joint Evolutionary Operations
and Population Updating: After the initialization and ranking
for obtaining the initial external solution set N(0), evolutionary
reproduction should be conducted to evolve the individuals in
the population and obtain a better planning path. Moreover, to
avoid the solutions falling into local extrema, an evolutionary
search mechanism with global and local search capabilities is
introduced.

First, for the global search, this aims to maintain the uni-
form distribution and diversity of the Pareto front, as shown
in Fig. 8(a). There is an external nondominated solution set
N(t) in the t-th iteration, and if a new ant k enters this set,
this indicates that this ant is nondominated. Thus, it should
search for the location of the target space around it. However,
when multiple ants enter N(t), in order to achieve the purpose
of this search stage, the minimum distance between the objec-
tive function values of the new ant k and the solution in set
N(t) is considered as the pheromone released by ant k at this
time. The pheromone update process is shown in (10). When

Fig. 8. Evolutionary search mechanism with global and local optimization
and search capabilities. (a) Global optimization search, for the purpose of
maintaining the uniform distribution and diversity of the Pareto optimal
solution set. (b) Local search by introducing the random search strategy.
(c) Calculation method for the local search.

the distance is larger, the pheromone content is higher, which
guides the other ants to search the ant’s location domain with
a higher probability, as shown in (12), which means there are
preferred search directions based on the preferred new ant for
obtaining a superior Pareto front

τi(t + 1) =
{
ρ × τi(t)+ ∇(t), if X ∈ N(t + 1)
ρ × τi(t), otherwise

(10)

∇(t) = min

√√√√
2∑

i=1

(
fi(X)− fi

(
Xq
))

Xq ∈ N(t) (11)

where ∇(t) denotes the minimum distance described above, X
represents a solution, and fi(X) and fi(Xq) are the correspond-
ing objective function values calculated by (6) and (7).

Furthermore, when the UAV is represented by the ant, the
change of pheromone concentration on the flight path will
directly affect the next route selected by the UAV, so the
movement of the k + 1th ant is related to the pheromone and
distance of ant k. The ants with a high pheromone concen-
tration and a close distance should take a higher probability
as the next movement direction. The movement probability
Pk+1_k(t) is shown in (12)

Pk+1_k(t) = τ
ξ
k (t)× μ

ζ
k+1_k(t)

∑m
v=1

(
τ
ξ
v (t)× μ

ζ
k+1_v(t)

) (12)

where μζk+1_k(t) = 1/dk+1_k and dk+1_k represents the actual
distance between the k + 1th and the kth ants.

After the global search, in order to avoid the individual solu-
tions falling into local minima, and accelerate the convergence
to the global optimal solution, local search is conducted. A ran-
dom number mechanism is introduced in this article, where,
given a constant c = 0.5, if z ≤ c, the above global operation
is performed. If z > c, a solution in N(t) is selected as the
next movement direction and its neighborhood is searched, as
presented in Fig. 8(b). Moreover, the implementation method
for the local search is given in Fig. 8(c), where a random
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Fig. 9. Population ranking and updating, and the selection for the final
output solution. (a) Pareto ranking and density ranking for maintaining the
population size. (b) Knee point-based approach for selecting the final output
solution individual from the final Pareto front.

Fig. 10. Calculation method for the knee point-based selection method.

disturbance randint(1, 1, [−�,�]) is conducted on the 3-D
coordinate values for the selected solution individual.

After the evolutionary reproduction, for the purpose of keep-
ing the population size constant, ranking should be conducted.
Pareto ranking and density ranking are both utilized [56],
where the former is used to obtain the fronts with different
serial numbers. However, in general, the first front is less than
or more than the population size, so that density ranking is uti-
lized, and the solution individual with a larger value of density
is selected to enter the next iteration, as shown in Fig. 9(a).

C. Acquisition of the Optimal Path Plan and Selection of the
Solution Individuals

The evolutionary operations and population updating are
repeated until the number of search iterations reaches the max-
imum number Tmax set artificially. The final Pareto front, that
is, the Pareto optimal solution set, is then obtained.

For the Pareto optimal solution set obtained by
multiobjective sorting, it can be found that a small dis-
turbance in one objective can lead to a drastic change in
another objective. Therefore, the inflection point on the Pareto
frontier is often regarded as the optimal solution [57], [58].
A knee point-based method is therefore applied to select
the final output solution individual from the final Pareto
optimal solution set, as presented in Fig. 9(b). The cal-
culation method is given in Fig. 10, where, for the ith
solution in the Pareto optimal solution set, the angle ζi

can be calculated by ζi = max(ζ23, ζ13, ζ24, ζ14) while
considering the four individual neighborhood solutions.
For example, the corresponding objective function values
of the five individuals in the objective space are (x1, y1),
(x2, y2), (xi, yi), (x3, y3), and (x4, y4), respectively. The
distance is calculated by Si2 = √

(xi − x2)2 + (yi − y2)2,
and the distances between the other solutions are calculated

in the same way. Thus, the angle σ23 is then calculated by
σ23 = arccos((S2

i2 + S2
i3 − S2

23)/2 × Si2 × Si3), and the other
angles are calculated in the same way. This calculation is
utilized for each solution individual, to obtain a set ζ , and
the final optimal solution individual for optimal 3-D path
planning can then be selected by max(ζ ).

IV. EXPERIMENTS AND ANALYSES

In order to verify the effectiveness of the proposed
APPMS method, the traditional 3-D path planning method
of A* [9], the nondominated sorting GA II (NSGA-II) [5],
the multiobjective evolutionary algorithm based on decom-
position (MOEA/D) [59], and the nondominated sorting GA
III (NSGA-III) [60] were used for the comparison. For
the multiobjective optimization methods, we carried out five
repeated experiments, and compared the results using the mean
and standard deviation. Moreover, three simulated digital ter-
rain datasets and a real digital elevation model (DEM) dataset
were utilized as the experimental datasets.

A. Experimental Datasets and Measures

1) Simulated Experimental Datasets: Three cases were
constructed from simulated digital terrain. The original digital
terrain was constructed using (13), and is shown in Fig. 11(a)

z1(x, y) = sin(y + ω)+ κ sin(x)+ ρ cos

(
ψ

√
y2 + x2

)

+ φ sin

(
φ

√
y2 + x2

)
+� cos(y) (13)

where x and y denote the abscissa and ordinate of a point on
the horizontal plane; z1(x, y) denotes the corresponding terrain
height; and ω, κ , ρ, ψ , φ, and � are the terrain coefficients,
which can simulate different topographic features.

In addition, in the flight process, there are usually vari-
ous threats, such as mountain peaks or enemy defense areas.
To facilitate the flight path planning, the equivalent mountain
terrain was included in the planning model, as shown in (14)

z2(x, y) =
k∑

i=1

H(i)

× exp
(
−(x − Xc(i))

2/Xt(i)− (y − Yc(i))
2/Yt(i)

)

(14)

where z2(x, y) denotes the corresponding mountain height; k is
the number of the mountains; H(i) corresponds to the height of
the ith peak; Xc(i) and Yc(i) denote the horizontal and vertical
coordinates of the center of the ith peak on the horizontal
plane; and Xt(i) and Yt(i) denote the contour parameters of
the ith peak. Thus, we can merge the threat equivalent terrain
and the original digital terrain to form the equivalent digital
terrain, as shown in (15)

z(x, y) = max(z1(x, y), z2(x, y)). (15)

The terrain coefficients were set to ω = 3 × π , κ = 1/10,
ρ = 9/10, ψ = 1/2, φ = 1/2, and � = 3/10. The other cor-
responding parameters in the three simulated cases are given
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Fig. 11. Original digital terrain and the equivalent digital terrain for the simulated datasets. (a) Original digital terrain. (b) Equivalent digital terrain _3 threats.
(c) Equivalent digital terrain _4 threats. (d) Equivalent digital terrain _8 threats.

TABLE I
PARAMETER SETTINGS FOR THE THREE SIMULATED DATASETS

Fig. 12. Illustration of the real-data experimental dataset.

in Table I. The three cases of simulated digital terrain are
presented in Fig. 11(b)–(d).

2) Real-Data Experimental Dataset: For the real data, a
dam break emergency response scenario in a mining area was
considered, for which the DEM data around the mining area
were utilized, the size is 280 × 280, the spatial resolution is
27.4 m, and the elevation range is 1056–2086 m as shown in
Fig. 12.

3) Measures for the Results: In addition to visually judge
the superiority of the path planning for the UAV, for the
multiobjective UAV 3-D path planning methods, a variety of
indicators were used to evaluate the superiority of the searched
Pareto front, that is, the hypervolume (HV) [61], the pure
diversity (PD) [62], and the spacing (S) [63], as shown in
(16)–(18). In addition, it is to be expected that HV and PD

are larger while S is smaller

HV = hypervolume

(|PF|∪
i=1

Gi

)
(16)

PD(G) = max
gi∈G

(PD(G − gi)+ diss(gi,G − gi))

diss(g,G) = max
gi∈G

(dissimilarity(g, gi)) (17)

S = std(min(Distmatrix, [ ], 2))

Distmatrix = pair_dist2(PF,PF) (18)

where Gi represents the solutions in the Pareto optimal solu-
tion set. When calculating the HV, the values of the multiple
objective functions are first normalized, and point [1, 1] is
then selected as the reference point. diss(gi,G − gi) denotes
the dissimilarity between gi to a community G. Distmatrix is the
matrix obtained by calculating the Euclidean distance between
two paired solutions. std(min(Distmatrix, [ ], 2)) represents the
standard deviation after the vector is made up of the minimum
value in each column.

B. Simulated Experimental Results and Analyses

Three groups of simulated digital terrain were considered.
The safe height was set to 200 m, and there were 100 3-D
track points to search. In addition, for the multiobjective
optimization-based methods, the number of iterations was set
to 200, the population size was set to 20, and the muta-
tion probability and crossover probability were set to 0.5 and
0.9, respectively. The experimental results are presented in
Figs. 13–15. First, from the visual perspective, for the results
of the simulated experiment with three threats, as presented in
Fig. 13, it is clear that the path in the region RS3_1 for the tradi-
tional method of A* is worse than the paths in regions RS3_2,
RS3_3, RS3_4, and RS3_5 for NSGA-II, MOEA/D, NSGA-III,
and the proposed APPMS method, and there is an obvious turn
error. In addition, from the comparison of the main regions of
RS3_2, RS3_3, and RS3_4, it is clear that the APPMS method can
obtain a better path than NSGA-II, MOEA/D, and NSGA-III,
with the shortest flight length and the lowest risk.

For the simulated experimental results shown in Fig. 14,
it can be found that there is an obvious collision risk in
region RS4_1 with the A* method. However, from the com-
parison of the main regions of RS4_2, RS4_3, RS4_4, and RS4_5,
it is apparent that the three methods of NSGA-II, MOEA/D,
and NSGA-III are comparable, while the proposed APPMS
method obtains a preferable path. In addition, for the simu-
lated experiment with eight threats, as shown in Fig. 15, it can
be first found that the traditional A* method has an obvious
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Fig. 13. Results of the simulated experiment with three threats. (a1)
A*_three threats. (a2) Top view: A*. (b1) NSGA-II_three threats. (b2) Top
view: NSGA-II. (c1) MOEA/D_three threats. (c2) Top view: MOEA/D.
(d1) NSGA-III_three threats. (d2) Top view: NSGA-III. (e1) APPMS_three
threats. (e2) Top view: APPMS.

turn error in region RS8_1, and from the comparison of the
main regions of RS8_2, RS8_3, RS8_4, and RS8_5, it is appar-
ent that the proposed APPMS method achieves a smoother
path than the other multiobjective optimization methods of
NSGA-II, MOEA/D, and NSGA-III. Thus, it can be concluded
that the traditional A* method may not be suitable in actual
3-D terrain, due to the longer path and the greater risk of colli-
sion. From a visual perspective, the three groups of simulated
experimental results show that the proposed APPMS method
can achieve preferable paths in different scenarios.

For the purpose of allowing a more intuitive comparison
of the multiobjective optimization-based methods, the final
Pareto fronts obtained by the proposed APPMS method and
the NSGA-II, MOEA/D, and NSGA-III methods are presented
in Fig. 17(a)–(c). It can be found that the APPMS method

Fig. 14. Results of the simulated experiment with four threats. (a1) A*_four
threats. (a2) Top view: A*. (b1) NSGA-II_four threats. (b2) Top view:
NSGA-II. (c1) MOEA/D_four threats. (c2) Top view: MOEA/D. (d1) NSGA-
III_four threats. (d2) Top view: NSGA-III. (e1) APPMS_four threats. (e2)
Top view: APPMS.

obtains a higher-quality Pareto front than the other methods.
In addition, a quantitative evaluation of the Pareto fronts was
also conducted, and the multiobjective indicators of HV, PD,
and S were calculated. The quantitative results are presented
in Table II. It is worth noting that the proposed method
shows a superior performance in all the metrics for the eight-
threat scenario. In addition, the proposed APPMS method
also obtains first or second place for the three- and four-
threat scenarios. The proposed method considers more superior
and practical constraints, and makes comprehensive use of
the global and local search capabilities to effectively improve
the optimization ability of the optimization algorithm in the
multidimensional and multimodal objective space. Therefore,
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Fig. 15. Results of the simulated experiment with eight threats. (a1) A*_eight
threats. (a2) Top view: A*. (b1) NSGA-II_eight threats. (b2) Top view:
NSGA-II. (c1) MOEA/D_eight threats. (c2) Top view: MOEA/D. (d1) NSGA-
III_eight threats. (d2) Top view: NSGA-III. (e1) APPMS_eight threats.
(e2) Top view: APPMS.

in the optimization of multiobjective UAV 3-D path planning,
the Pareto front obtained by the proposed method has bet-
ter HV, PD, and S values. Overall, from these qualitative and
quantitative results, the superior optimization ability of the
proposed APPMS method has been proved.

C. Real-Data Experimental Results and Analyses

For the real-data experiment for a UAV 3-D flight mission,
real DEM data for a simulated emergency response task were
utilized, as shown in Fig. 12. The safe height was again set
to 200 m for the multiobjective optimization-based methods,
there were 36 3-D track points to search, the number of iter-
ations was set to 200, the population size was set to 30, and
the mutation probability and crossover probability were set to

TABLE II
MULTIOBJECTIVE INDICATORS FOR THE THREE

SIMULATED EXPERIMENTS

TABLE III
MULTIOBJECTIVE INDICATORS FOR THE REAL-DATA EXPERIMENT

0.5 and 0.9, respectively. The results of this real situation are
given in Fig. 16.

First, for the result of the traditional A* method, due to the
lack of corresponding flight restrictions, and the fact that it
only takes the shortest path as the objective function, there
is a risk from excessive wind and power consumption during
the flight, and there is also a collision risk, due to the lack
of consideration of the turning angle and other factors. Thus,
the A* method obtains poor results in region Rr_1. In addi-
tion, from the comparison of the main regions of Rr_2, Rr_3,
and Rr_4, it can be seen that the three methods of NSGA-
II, MOEA/D, and NSGA-III are comparable, which indicates
that there is little difference between the three methods in
the actual 3-D path planning task. From region Rr_5, it can
be found that the proposed APPMS method obtains a prefer-
able visual result, due to the tortuous paths in the results of
the NSGA-II, MOEA/D, and NSGA-III methods, where the
route length is too long and the risk degree is increased. In
summary, the traditional A* method is not suitable for use
in real 3-D terrain, due to the longer path and greater risk
of collision and, from the visual perspective, the proposed
APPMS method can obtain a preferable flight path, compared
to NSGA-II, MOEA/D, and NSGA-III.

As in the simulated experiments with different threats,
an intuitive comparison of the real-data experiment by the
final Pareto fronts and a quantitative evaluation by the
multiobjective indicators of HV, PD, and S are presented in
Fig. 17(d) and Table III, respectively. From these results,
it can be found that the novel APPMS method obtains a
superior path planning performance, compared to NSGA-II,
MOEA/D, and NSGA-III. The proposed APPMS method ben-
efits from the comprehensive utilization of the global and local
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Fig. 16. Results for the real situation. (a) A*_real situation. (b) NSGA-
II_real situation. (c) MOEA/D_real situation. (d) NSGA-III_real situa-
tion. (e) APPMS_real situation.

search capabilities, and effectively improves the optimization
ability of individual solutions in the search population in
the multidimensional and multimodal target space. Therefore,
when optimizing the multiobjective 3-D path planning for a
UAV in an actual environment, the Pareto front composed
of the Pareto optimal solution set obtained by the proposed
method has better values of HV, PD, and S. Thus, the effec-
tiveness of the proposed APPMS path planning method has
been further proved in this real-data experiment for a dam
break emergency response scenario in a mining area. Thus,
we can conclude that the proposed APPMS method has strong

Fig. 17. Comparisons of the final Pareto fronts for the simulated and real-
data experiments. (a) Three threats. (b) Four threats. (c) Eight threats. (d) Real
situation.

practical application value, and could be used to provide effec-
tive decision making for UAV rapid response and flight control
in emergency environments.

D. Analysis of the Computational Complexity and Time Cost

For the computational complexity of the proposed APPMS
method, that is, Algorithm 1, we assume that the planned num-
ber of 3-D track points is n for a specific UAV path planning
mission. Thus, the length of the solution individual is l = 3×n.
The maximum number of iterations is Tmax, and the popula-
tion size is P. The analysis of the computational complexity
of the proposed method can be split into five main steps.

1) Population Initialization: The P solution individuals are
initialized at the same time, for which the computational
complexity is O(P × l).

2) Reproduction: The global and local search strategies are
designed in this step, and assuming that the number of
solution individuals in N(t) is Nt, then the computational
complexity is O(Nt).

3) Calculation of the Objective Functions: The computa-
tional complexities for functions f 1 and f 2 are � =
O(P × l2) and −λ = O(P × l2 × θ2), where θ = 3 × n_g.

4) Sorting and Updating: The computational complexity of
the Pareto ranking and density ranking are O(2 × P)and
O(2 × P × log(P)).

5) Main Loop: There are Tmax iterations for searching the
UAV flight path, so the computational complexity is
O(Tmax × P × l2 × θ2).

For the actual time costs of the different UAV path plan-
ning methods, the comparison results are presented in Fig. 18.
A personal computer equipped with eight central processing
units (CPUs) (Intel Xeon CPU E3-1240 v6 @ 3.70 GHz) was
used to conduct these experiments. It can be found that the
traditional A* algorithm takes the least time, but with a poor
effect. The MOEA/D method takes the most time, while the
proposed APPMS method has a moderate computation time,
while also obtaining the best performance.
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Fig. 18. Actual computation times of the different methods.

TABLE IV
RESULTS OF THE WILCOXON SIGNED-RANK TEST

E. Nonparametric Test

For the results of the multiobjective optimization-based
methods, in order to better understand the performances,
a nonparametric statistical significance test—the Wilcoxon
signed-rank test—was used to evaluate the statistical signif-
icance of the results. The significance level was set to 0.05,
and the test results are shown as (+), (−), or (=), respec-
tively, when the proposed APPMS method is significantly
better than, significantly worse than, or statistically equiva-
lent to its peers. As shown in Table IV, for each comparison
method, there are three columns of comparison results, rep-
resenting HV, PD, and S, respectively. It can be found that
the proposed APPMS method significantly outperforms the
comparison methods in the simulated experiment with eight
threats and the real-data experiment, which indicates that the
proposed method can obtain a superior performance in more
complex terrain environments. In addition, for the simulated
experiments with three and four threats, the proposed method
has more significant advantages, but it has disadvantages in
some indicators, such as the indicator of S in the simu-
lated experiment with four threats. Thus, overall, the proposed
method performs significantly better than the other comparison
methods.

V. CONCLUSION

In this article, in order to address the concerns in the prac-
tical UAV 3-D path planning task, an accurate UAV 3-D path
planning method based on an improved multiobjective swarm
intelligence algorithm has been presented (APPMS). In par-
ticular, an improved model for the objective functions and
constraints has been creatively constructed for describing the
flight distance and the degree of terrain threat. Moreover, a
more effective search strategy has been designed, and in order
to effectively search the 3-D path, a swarm intelligence search
method based on improved ACO has also been designed. This

method can keep the global and local search capabilities and
ensure that the Pareto solution set keeps a uniform distribution
and diversity, so that the final optimal solution can be better
located. Furthermore, the superiority of the proposed method
was confirmed in three sets of simulated digital terrain with
three, four, and eight threats, and real DEM data for a sim-
ulated disaster emergency task, where the proposed APPMS
method was compared with the traditional method of A* and
the NSGA-II, MOEA/D, and NSGA-III-based multiobjective
UAV 3-D path planning methods.

It is particularly important to design an effective UAV path
planning algorithm for actual 3-D terrain scenarios. In future
work, it will first be necessary to develop more effective search
methods. Second, it will be necessary to simulate the con-
straints of actual flight conditions, to make the simulation
closer to reality, such as the flight velocity of UAV. Third,
it will be necessary to use more complex 3-D terrain data
for UAV path planning testing, so as to promote rapid data
collection and the subsequent decision making for emergency
response scenarios in the future.
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