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Abstract

Point defect migration is considered as a mechanism for aging in ferroelectrics. Numerical results

are given for the coupled problems of point defect migration and electrostatic energy relaxation

in a 2D domain configuration. The peak values of the clamping pressure at domain walls are in

the range of 106 Pa, which corresponds to macroscopically observed coercive stresses in perovskite

ferroelectrics. The effect is compared to mechanisms involving orientational reordering of defect

dipoles in the bulk of domains. Domain clamping is significantly stronger in the drift mechanism

than in the orientational picture for the same material parameters.
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I. INTRODUCTION

Ferroelectric materials underlie restrictions in technological applications because of sev-

eral degradation phenomena. One of these phenomena is aging which is defined as the

gradual change of material properties with time t under static external boundary conditions

[1, 2, 3, 4, 5, 6, 7, 8]. Experimentally, the dielectric constant decreases and hysteresis loops

alter their shape and amplitude in remanent polarization and coercive field. The dielectric

constant decreases as the logarithm of time in an intermediate time range saturating for

long times [9]. The change of material properties is caused by a decreasing domain wall mo-

bility stabilizing in an aged domain structure [10]. In order to describe the experimentally

observed shifted or deformed ferroelectric hysteresis loops after aging [11] the internal field

Ei has been defined as a quantity describing the strength of domain stabilization [6]. Sev-

eral mechanisms have been considered to partake in the stabilization process, space charge

formation [3, 4], domain splitting [10], ionic drift [11, 12, 13], or the reorientation of defect

dipoles [14]. Except for domain splitting, all mechanisms directly involve some reordering of

point defects. Within a microstructure, three relevant locations can be identified for charge

carrier rearrangement: the domain bulk, grain boundaries, or domain walls. For the bulk

effect, defect dipoles reorient with respect to the direction of the spontaneous polarization

under an electrical field or strain. For the grain boundary effect, charged point defects move

under electrical fields originating from polarization discontinuities at the grain boundaries or

the outer perimeter of the sample in order to compensate the fields. The same process can

occur at charged domain walls and then becomes a domain wall effect [15, 16]. Local space

charge is another electric driving force for ionic currents observed in LiNbO3 type crystals

[17, 18] as well as perovskites [19, 20, 21].

Elastic fields can provide a second driving force for defects inside domains but will not

be treated here. For not too rigid non-charged domain walls, the localization of free charge

carriers at a domain wall is a further possible effect entailing the wrinkling of the initially

planar walls [22, 23, 24, 25]. Even though this is a physically interesting mechanism, it will

not be taken into consideration here.

Oxygen vacancies are a well known and frequent defect in the perovskite structure. They

have been considered to play an important role in aging of ferroelectric materials due to

their low, but finite mobility. In the orientational picture, oxygen vacancies, when adjoint
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to an acceptor center, form electric and elastic defect dipoles in the bulk of a ferroelectric

domain [6]. The defect dipoles align parallel to the spontaneous polarization Ps by diffusion

of the mobile oxygen vacancy in cage motion. Because of the relatively slow oxygen vacancy

motion [26], the polarization directions of the aligned defect dipoles stay constant when the

direction of Ps changes for short times. In this case, the defect dipoles generate an internal

electrical field Ei which stabilizes the domain pattern by increasing the force constant for

the reversible displacement of the domain walls [27]. This relaxation model has been well

developed [28]. It bears two insufficiencies, though, the time dependence of aging is not

reproduced and the absolute values of clamping pressures are low [29]. A second point of

view about the role of oxygen vacancies in aging is the formation of ionic space charges

[30] which was originally proposed to explain space charge effects in BaTiO3 single crystals

[31]. Ionic space charges are well known for highly doped positive temperature coefficient

resistors based on BaTiO3 [32]. For aging the mobile charge carriers move to charged domain

faces or grain boundaries and compensate polarization. This leads to an asymmetric charge

distribution whereby a voltage offset arises yielding the known shift or deformation of the

ferroelectric hysteresis [33]. The clamping pressure on domain walls generated by these space

charges has not been treated mathematically for periodic domain structures.

This paper describes quantitatively the formation of space charges in single domains

of a periodic structure and shows the development of the defect distribution inside the

domain. An estimate of bending and clamping pressures on domain walls and a comparison

to the orientational picture [14] are given. Electrostatic clamping of domain walls through

the formation of space charges is calculated to be two orders of magnitude stronger than

clamping through aligned defect dipoles for the same concentration of charge carriers.

The model is independent of the type of point defect, as long as a diffusion constant can

be assigned and the defect is charged. It can thus be equally well applied to hopping of

electronic carriers. The oxygen vacancy was chosen for the numerical examples in order to

be comparable to previous work, but does not preclude a statement on the physical nature

of the mobile carrier.

3



II. GENERAL MODEL

In order to study the effect of migration of charge carriers on aging, we chose a two-

dimensional periodic array of domains cut by the grain surface, z = 0, perpendicular to

the direction of spontaneous polarization which is along the z axis in Fig. 1. This model

configuration is well-known in the physics of polarized media and was used for the study

of equilibrium and dynamic properties of ferromagnetic [34, 35] and ferroelectric [36, 37]

materials. We assume for simplicity an isotropic material of the grain occupying the area

z > 0 characterized by the relative dielectric constant εf . The dielectric material outside

the grain is assumed isotropic too and is characterized by the relative permittivity εd. As we

previously showed by finite element simulation, the electric fields arising due to spontaneous

polarization in a periodic multi-domain grain of finite dimensions generate a nearly perfect

periodic pattern except for the very edges of the grain [29]. We thus consider the periodic

domain array of Fig. 1 occupying the semi-space −∞ < x < ∞, z > 0 as a representative

model for a multi-domain grain of domain width a much smaller than the typical grain

size. Due to polarization, the domain faces at z = 0 are alternatively charged with the

FIG. 1: Scheme of a 2D-array of 180◦-domain walls crossing the grain boundary at a right angle.

Straight arrows show the direction of the polarization and curved arrows the approximate directions

of the local electric fields.

bound surface charge density σ = |Ps|, the spontaneous polarization value. If the length of

the domains L along the z-axis is much larger than their width a along the x-axis, which is

typically the case in experiment, field lines are effectively closed at the same side of the grain
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(see Fig. 1). As a consequence, both components of the electric field E0(x, z) induced by the

alternating surface charge exponentially decrease towards the interior of the grain along the

z-axis [29]. Migration of the charged defects driven by the field E0(x, z) is then expected to

occur in a volume near the grain surface. The domains may therefore be considered infinitely

long along the z-axis without introducing a substantial error.

Let us now derive the equations of evolution for the charge and field distributions in

the considered system. At any time t, the electric field E(x, z, t) is determined by the

charged faces of the domains and the imbalanced charge density of free carriers ρ(x, z, t) =

qf [c(x, z, t) − c0] through Gauss’ law

∇E =
qf

ε0εf
(c − c0) (1)

where c(x, z, t) is the local concentration of mobile carriers of charge qf , c0 is the back-

ground concentration of the immobile charge carriers of opposite polarity warranting total

electroneutrality, and ε0 is the permittivity of vacuum. In the initial state, the system is

locally neutral assuming c(x, z, 0) ≡ c0, the electric field E(x, z, 0) ≡ E0(x, z) is yet to be

found.

In presence of an electric field and a gradient of concentration, the flow of charge carriers

is given by the sum of drift and diffusion contributions to the particle current density:

s = µcE− D∇c (2)

where µ and D are the mobility and diffusivity of charge carriers, respectively. We assume,

for simplicity, that the latter two quantities are isotropic and connected by the Einstein

relation, D = µkΘ/qf with k the Boltzmann constant and Θ the absolute temperature.

Migration of charge carriers is governed by the continuity equation:

∂tc = −∇(µcE) + D△c. (3)

For boundary conditions to the system of equations (1) and (3) we assume chemical and

electrical isolation of the grain. The first requirement means vanishing particle current

sz = µcEz − D∂zc = 0, (4)

at the grain boundary, z = 0. The second requirement means vanishing total electric current,

qf(µcEz − D∂zc) + ε0εf∂tEz = 0, (5)
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at z = 0 which results in a constant value of the z-component of the electric field at the

grain boundary, ∂tEz(x, 0, t) = 0.

Eqs. (4,5) together with Eqs. (1,3) complete the statement of the problem of charge

segregation in a ferroelectric grain. In the next section we will observe how the system

relaxes according to the equations of evolution (1,3).

III. SOLUTION OF THE EQUATIONS OF EVOLUTION

In this section we first calculate the field E0(x, z) in the virgin state of the system before

the process of charge segregation starts. Then we formally solve equation (1) and find

the total electric field E(x, z, t) for an arbitrary right-hand side. Finally, using the latter

result, we numerically solve equation (3), self-consistently describing drift and diffusion of

the mobile charge defects in the domain arrangement of Fig. 1.

A. Electric field in the virgin state of a multi-domain grain

To use the bilateral symmetry of the problem, the origin is chosen in the center of the

positively charged domain face as shown in Fig. 2.

FIG. 2: Scheme of expected charge redistribution induced by the local electric field within the

central region −a < x < a, z > 0, presenting repeating element of the periodic domain arrangement

of Fig. 1. Thin layers of positive charge carriers piled up at the negatively charged domain faces as

well as a wide (shaded) area depleted of mobile charge carriers near the positively charged domain

face are shown.

The bound charge density of the domain faces is represented by an alternating function
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[35]

ρb(x, z) = σδ(z)
∞

∑

n=−∞

(−1)nθ
(a

2
− an + x

)

θ
(a

2
+ an − x

)

, (6)

where δ(z) and θ(x) are the Dirac δ-function and the Heaviside unit step function, respec-

tively. The electrostatic potential induced by this bound charge is given by the expression:

ϕb(x, z) = − 1

2πε0(εf + εd)

∫

∞

−∞

dx0

∫

∞

−∞

dz0 ρb(x0, z0) ln

[

(

x − x0

a

)2

+

(

z − z0

a

)2
]

(7)

in both areas z ≥ 0 and z < 0. The formula (7) is simply a superposition of the potentials

generated by straight parallel charged lines located at the grain boundary z = 0 between

the media with dielectric constants εd and εf [35].

The z-component of the electric field created by the bound charge, E0 = −∇ϕb, may be

directly calculated by substitution of ρb, Eq. (6), into Eq. (7) and subsequent summation

[38] which results in the form

E0

z (x, z) =
2σ

πε0(εf + εd)
arctan

[

cos(πx/a)

sinh(πz/a)

]

(8)

valid for both media.

Direct calculation of the other field component, E0

x = −∂xϕb, is more complicated because

of slow convergence of the appropriate series. Instead, E0

x may be calculated for z > 0

from Gauss’ law ∇E0 = 0, taking into account that, from the symmetry of the problem,

E0

x(0, z) = E0

x(±a, z) = 0. Proceeding with integration of the latter Gauss’ equation over

distance along the x-axis and using the mentioned boundary conditions one finds the form

E0

x(x, z) =
σ

πε0(εf + εd)
ln

[

cosh(πz/a) + sin(πx/a)

cosh(πz/a) − sin(πx/a)

]

(9)

valid inside and outside the grain. Both field components exhibit periodic dependence along

the x-axis, as expected from the periodic domain arrangement, and exponentially decrease

at large distance from the charged surface |z| ≫ a, as expected from the previous finite

element simulations [29]. We note here that the short range fields, Eq. (8,9), may be very

large. For example, in BaTiO3 the depolarization field amplitude may be as high as 108V/m

[29]. The presence of high local fields were confirmed at least partly in observations on the

acceptor doped BaTiO3, where internal fields were experimentally found in the range of

105 V/m for up to 1 mol% Ni-doping and temperatures below 80◦C [6].
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B. Electric field due to redistribution of charged defects

At any arbitrary moment, the total electric field in the system may be conveniently

decomposed as E = E0 + Ei, where the field E0 is determined by the charged faces of

the domains, Eqs. (8,9), and the field Ei is generated by the distribution of the charge

density in the area z > 0. Thanks to periodicity and the bilateral symmetry of the initial

conditions, both the charge density and the electrostatic potential remain periodic and

bilaterally symmetric in the course of the charge redistribution, as illustrated in Fig. 2. This

allows us to consider the region −a < x < a as a repetitive basic unit of the system and

confine ourselves to the consideration of processes in this area. To get a full description of

the electric field under these circumstances, it is sufficient to construct the Green’s function

of the symmetrical Neumann problem in the mentioned region, Gs(x, z|x0, z0), so that the

electrostatic potential induced by redistribution of charged defects with z0 > 0 may then be

presented in a form [39]

ϕi(x, z, t) =

∫ a

0

dx0

∫

∞

0

dz0 ρ(x0, z0, t)Gs(x, z|x0, z0), (10)

followed by the field expression Ei = −∇ϕi.

The Green’s function satisfies the equation

△Gs(x, z|x0, z0) = − 1

ε0εf
δ(z − z0) [δ(x − x0) + δ(x + x0)] (11)

with boundary conditions ∂xGs(x = ±a, z|x0, z0) = 0. The latter requirement is a conse-

quence of the constraint Ex(±a, z) = 0 inherent to the chosen domain arrangement. Bound-

ary conditions for the electrostatic potential, Eq. (10), on the interface between the two

media at z = 0 [39] impose two additional boundary conditions on the Green’s function

Gs(x,−0|x0, z0) = Gs(x, +0|x0, z0)

εd∂zGs(x,−0|x0, z0) = εf∂zGs(x, +0|x0, z0) (12)

Using the fundamental solution of the 2D Poisson equation [39] and taking into account

periodicity of the problem the solution of Eq. (11) may be reduced to summation of a series:

Gs(x, z|x0, z0) = − 1

2πε0(εf + εd)

∞
∑

n=−∞

{

ln

[

(

x − x0

a
− 2n

)2

+

(

z − z0

a

)2
]}

+(x0 → −x0)

(13)
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for the area z < 0 and

Gs(x, z|x0, z0) = − 1

4πε0εf

∞
∑

n=−∞

{

ln

[

(

x − x0

a
− 2n

)2

+

(

z − z0

a

)2
]

+
εf − εd

εf + εd
ln

[

(

x − x0

a
− 2n

)2

+

(

z + z0

a

)2
]}

+ (x0 → −x0) (14)

for the area z > 0.

Because of slow convergence of this series it is more convenient to perform summation

for the derivatives ∂xGs and ∂zGs and then to restore the function Gs itself by integration

using boundary conditions. This leads after all to the solution of Eq.(11)

Gs(x, z|x0, z0) = − 1

2πε0(εf + εd)
ln

[

cosh
π(z − z0)

a
− cos

π(x − x0)

a

]

+ (x0 → −x0) (15)

for the area z < 0 and

Gs(x, z|x0, z0) = − 1

4πε0εf

{

ln

[

cosh
π(z − z0)

a
− cos

π(x − x0)

a

]

+
εf − εd

εf + εd

ln

[

cosh
π(z + z0)

a
− cos

π(x − x0)

a

]}

+ (x0 → −x0) (16)

for the area z > 0, which are periodic, bilaterally symmetric and satisfy the proper bound-

ary conditions. Now, from the expressions (10,15,16), the components of the electric field

induced by the redistribution of charged defects may be obtained. It is easy to verify that

the total electric field satisfies the boundary condition Ex(x = ±a, z) = 0 for any bilaterally

symmetric charge density ρ(x, z, t).

C. Numerical solution of the evolution equations

Having solved equation (1) explicitly allows for the implementation of a simple direct

Euler scheme for numerical treatment of the problem. Space and time will be discretized. At

every time step, the change in the carrier concentration will be calculated from the previous

values of the concentration and the electric fields using Eq. (3). Then, the updated values

of the field will be calculated directly from the updated values of the concentration using

Eq. (10). The calculation is repeated until convergence. Taking into account the bilateral

symmetry of the problem, it is sufficient to consider the charge redistribution within the

area 0 < x < a.
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We first introduce dimensionless variables which is helpful for the following numerical

analysis and reveals those parameters of the system which are relevant to the relaxation

process. Dimensionless coordinates are naturally introduced as X = x/a and Z = z/a. The

dimensionless field F = E/E∗ is expressed in units of the characteristic value E∗ = σ/2ε0εf .

The system reveals two characteristic time scales: the drift time τµ = a/µE∗ and the diffusion

time τD = a2/D. For the typical parameters involved, τD ≫ τµ therefore we will introduce

dimensionless time as T = t/τµ. The concentration of defects is now reduced to n(X, Z, T ) =

c(x, z, t)/c∗ with the characteristic value c∗ = σ/2aqf . The latter has the physical meaning

of a concentration of defects on an area a2, which completely neutralizes the bound charge

σ at the domain faces. The reduced initial concentration n0 = c0/c
∗ measures whether the

density of defects is high or low with respect to the charge compensation concentration.

The continuity equation (3) now acquires the form

∂tn = −n(n − n0) − F∇n + β△n (17)

where all differentiations are performed with respect to the dimensionless variables. The

parameter β = τµ/τD ≪ 1 characterizes a weak contribution of diffusion to the migration of

defects in ferroelectrics. It is now seen from Eq. (17) that only two composed parameters,

n0 and β, control the relaxation process.

Though the parameter β may be rather small, it cannot be neglected as is clearly seen

from the boundary condition for the particle current, Eq. (4), taken in a dimensionless form

nFy − β∂yn = 0, Z = 0, (18)

otherwise this boundary condition is not compatible with the initial conditions. The finite

value of β means compensation of the drift contribution to the current by the diffusion

contribution at the grain boundary and this way defines the structure of a thin layer of

charged defects piling up at this boundary.

Eq. (17) is supplemented by expressions for the dimensionless field F = F0 + Fi which

can be easily derived from Eqs. (8,9) and (10,15,16), namely,

F 0

x (X, Z) =
1

π

2εf

εf + εd
ln

[

cosh πZ + sin πX

cosh πZ − sin πX

]

F 0

z (X, Z) =
2

π

2εf

εf + εd
arctan

[

cos πX

sinh πZ

]

(19)
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and

F i
x,z(X, Z, T ) =

∫

1

0

dX0

∫

∞

0

dZ0 fx,z(X, Z|X0, Z0) [n(X0, Z0, T ) − n0] (20)

where the kernels in this integral are presented by the functions

fx(X, Z|X0, Z0) =
εf

2(εf + εd)

sin π(X − X0)

cosh π(Z − Z0) − cos π(X − X0)
+ (X0 → −X0),

fz(X, Z|X0, Z0) =
εf

2(εf + εd)

sinh π(Z − Z0)

cosh π(Z − Z0) − cos π(X − X0)
+ (X0 → −X0) (21)

for Z < 0 and by functions

fx(X, Z|X0, Z0) =
1

4

[

εf − εd

εf + εd

sin π(X − X0)

cosh π(Z + Z0) − cos π(X − X0)

+
sin π(X − X0)

cosh π(Z − Z0) − cos π(X − X0)
+ (X0 → −X0)

]

,

fz(X, Z|X0, Z0) =
1

4

[

εf − εd

εf + εd

sinh π(Z + Z0)

cosh π(Z + Z0) − cos π(X − X0)

+
sinh π(Z − Z0)

cosh π(Z − Z0) − cos π(X − X0)
+ (X0 → −X0)

]

(22)

for Z > 0.

Since the system remains electrically neutral within the domain of integration during the

redistribution of defects, arbitrary constants may be added to the kernels (21,22) without

changing the results of integration in Eqs. (20). This property is used in the numerical

procedure to facilitate the conversion of the integrals in Eqs. (20).

As an example, we now consider the aging process in BaTiO3. For the numerical simu-

lations, the material parameters of BaTiO3 at room temperature are taken from Wernicke

and Jaffe et al. [40, 41], namely, Ps = 2.71 · 10−5 C/cm2, εf = 170, µ = 1.73 · 10−20 m2/Vs,

a = 0.5µm and qf twice the elementary charge, implying positively charged oxygen vacancies

as mobile defects. For the dielectric medium between ferroelectric grains we take the same

but non-polarized material with εd = 170. This yields c∗ = 1.69 · 1018 cm−3, τµ = 1.61 · 105 s,

τD = 1.14 · 109 s. As was shown in one dimensional simulations [29], the parameter β << 1

has no effect on the dynamics of the relaxation. The only physical characteristic depending

on β << 1 is the thickness of the positively charged layer of defects piling up at the negative

face of the domain. To make this layer visible in figures and to avoid numerical problems

invoked by the strong gradients of the defect density we take the value β = 5 · 10−2 instead

of the actual ratio τµ/τD = 1.4 · 10−4 for our simulations.
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FIG. 3: Distribution of oxygen vacancies cVo
(X,Z) over the reference area 0 < X < 1, 0 < Z < 4

at time T = 0.05 for an initial concentration of defects c0 = c∗ = 1.69 · 1018 cm−3.

A snapshot of the development of the defect concentration profile over the reference area

0 < X < 1, 0 < Z < 4 starting with the background defect concentration n0 = 1 is presented

in Fig. 3 for the moment T = 0.05. A wide depleted zone forms near the positively charged

face at 0 < X < 0.5, Z = 0 and a very thin excess charge layer of high concentration near

the negatively charged face at 0.5 < X < 1, Z = 0.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

n0=1

n(
X=

0.
25

,Z
,T
)

Z

FIG. 4: Defect concentration profile along the line X = 0.25 for a succession of times T =

0.1, 1, 2, 3, 4, 5 (from left to right) for the initial concentration of defects c0 = n0 · c∗.
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FIG. 5: Defect concentration profile along the line X = 0.75 for a succession of times T =

0.1, 1, 2, 3, 4, 5 (from left to right) for an initial concentration of defects c0 = n0 · c∗.

The structural difference of these two space charge areas is better seen in Figs. 4 and

5 presenting vertical cross sections of the concentration profile along the lines X = 0.25

and X = 0.75, respectively. A succession of snapshots of the concentrations along the line

X = 0.25 (Fig. 4) exhibits the evolution of the charge defect density near the positive face of

the domain. The profile positions at the moments T = 4 and 5 cannot be discerned any more

which indicates saturation at time T ≃ 5 (corresponding to t ≃ 8 · 105 s). The characteristic

width of this zone in the final relaxed state is of the order of unity. The defects piling up

near the negative face of the domain form a much thinner layer of a characteristic width of

the order of β as is represented by concentration profiles along the line X = 0.75 in Fig. 5.

The final relaxed state is reached also at about T ≃ 5. The corresponding evolution of the

front cross section of the concentration profile along the line Z = 0 shown in Fig. 6 exhibits

saturation at about T ≃ 5, too.

In our model, drift-dominated migration of the charged defects is caused by local electric

fields near the charged faces of a grain. This migration process only stops, if either no mobile

defects remain in the area where fields are present or there is no remaining field in the area

where the defect concentration is not zero. The process of field compensation due to defect

migration is exemplified by the evolution of the electric field component Fz = F 0

z + F i
z at

the line Z = 2 represented in Fig. 7. F i
z saturates at the values opposite to the local values

of the initial electric field F 0

z determined by the bound surface charge. Relaxation leads to

an energy minimum where the system will resist any change of the domain wall positions.
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FIG. 6: Defect concentration profile along the line Z = 0 for a succession of times T =

0.1, 1, 2, 3, 4, 5 (upwards) for the initial concentration of defects c0 = n0 · c∗.
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FIG. 7: The electric field component Fz plotted along the line Z = 2 for a succession of times

T = 0, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 in a system with the initial concentration of defects c0 = c∗.

The arrows show the direction of evolution.

The final distribution of free charges then determines the equilibrium domain configuration

of the system. For an effectively low mobility of the free charge carriers the transition above

the Curie point will not readily rearrange the charge carrier configuration due to thermal

excitation. The defect charge density then determines the subsequent domain configuration

after re-cooling the sample to low temperature. Experimentally it is observed that the

original domain configuration is reproduced to a great extent [7, 8, 42].

14



IV. FORCES EXERTED UPON A DOMAIN WALL

From the known development of the charge density and the electric field in our model,

the time dependent forces exerted upon domain walls can be evaluated. Using the general

formula derived by Nechaev et al. [43] and taking into account only electrostatic contribu-

tions to the energy one can obtain the local pressure f exerted upon a wall. For a straight

rigid wall considered here, one finds f = 2PE where P and E are the local values of sponta-

neous polarization and electric field, respectively. This relation is reduced, in the geometry

of Fig. 1, to f = 2PsEz (note that, in the case of the same arrangement of the 90◦-domain

walls, the σ would merely decrease by a factor of
√

2 and the force by a factor of 2, the

configuration and results are otherwise identical).

Although only one end of the domains is present in the mentioned geometry of Fig. 1

it is obvious that similar segregation of the charged defects occurs on the other end of the

domain, too. This results in the antisymmetric force of opposite sign exerted upon the

domain wall on the other end of the domain yielding a total force equal to zero. This force

cannot move the domain wall as a whole or prevent its motion but it may lead to bending of

the wall violating our assumption of rigid straight domains. This is frequently encountered

in real systems. Domains forming needle tips near external interfaces are commonly observed

[44, 45]. In this case, part of the compensation arises within the bulk and not only right at

the grain interface. The final defect distributions will be different from the case calculated

here, but the essential effect of bending will remain the same. Our model of drift of free

charge carriers also supports a coalescence of domains rather than their splitting. Without

any further details included in the model, it contradicts the experimental observations of

Ikegami ad Ueda of domain splitting during aging [10].

The evolution of the bending pressure f(T ) averaged over half the domain wall length,

assumed as long as L = 20a, is shown in Fig. 8 for three different values of the initial

background concentration of defects. It is seen that systems with smaller concentrations

need an inversely longer time to relax. For the system with n0 = 1 it takes about T ≃ 5

while for the system with n0 = 0.5 this time is roughly doubled. All curves can be well fitted

by the exponential form f0 tanh (αn0T/2) where the parameters f0 ≃ 1 MPa and α ≃ 1 and

slowly increase when n0 decreases. A reliable simulation of defect concentrations smaller

than n0 = 0.5 is impossible on the chosen template (0 < X < 1, 0 < Z < 4) since in this
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case migration involves defects from a wider area in order to compensate the bound charge

at the domain faces.

0 5 10 15 20
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f(T
), 

M
Pa

T

FIG. 8: Bending pressure f as a function of time T = t/τµ at room temperature for BaTiO3 is

plotted for three different sample concentrations of oxygen vacancies c0 = n0 · c∗ with n0 = 0.5, 1

and 2 (solid lines). Dashed lines show fitting of the pressure by the function f0 tanh (αn0T/2) with

parameters f0 = 1.095, 0.91, 0.66 MPa and α = 0.91, 0.86, 0.76 for n0 = 0.5, 1 and 2, respectively.

One more general feature of time dependencies of the bending pressure in Fig. 8 is worth

discussion. All the curves exhibit a small region at small times where the value of pressure is

negative. This is not an artefact of the numerical discretization procedure but has a physical

meaning. Indeed at any time, the characteristic width of the positive space charge zone near

the domain face 0.5 < X < 1, Z = 0 is of the order of β which follows from the boundary

condition, Eq. (4). On the other hand, at the very beginning of charge defect migration, the

characteristic width of the negative space charge zone in the area 0 < X < 0.5, Z > 0 is less

than β. This means that a negative value of the field component Fz prevails at the domain

wall at this stage. This is confirmed by the dependence of Fz on position Z for different

times as presented in Fig. 9.

The above considered bending force does not directly describe the aging phenomenon

as long as rigid straight domain walls are retained. In fact, the total force exerted upon

the walls remains equal to zero during the defect redistribution if both ends of the domains

are taken into account. Nevertheless, the loss of domain wall mobility characteristic of

aging may be captured in this model, too. Indeed, the segregation of charge carriers in the

fixed domain framework of Fig. 1 leads to the relaxation of the energy of the electrostatic
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FIG. 9: Snap-shots of the distribution profile of the field component Fz along the domain wall

for the succession of times T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 (upwards) for BaTiO3 at

room temperature for an oxygen vacancy concentration c0 = n0 · c∗.

depolarization field. The decrease of this energy per unit length of domain wall measures

the clamping pressure preventing the displacement of the wall from the energy minimum:

Pcl(z, t) =
ε0εf

2a

∫ a

0

dx
(

E0(x, z)2 − E(x, z, t)2
)

(23)

The dependence of this pressure along the length of the wall is shown in Fig. 10 for a

succession of times. The magnitude of the pressure saturates as expected at about a time

T ≃ 5 for a defect concentration of c0 = c∗. The corresponding peak value of the pressure

around 1.5 MPa is comparable with the average bending pressure at the wall, Fig. 8. The

magnitude of the saturated pressure increases monotonously with the defect concentration

c0 as is seen from Fig. 11.

The irreversible migration of charged defects entails growing immobilization of the domain

walls and, consequently, enhancement of the coercive field, Ec. To estimate this effect one

should compare the pressure ∼ PsE exerted by the external field, E , upon a domain wall

with the clamping pressure, Eq. (23), averaged over the domain wall length, L. This results

in the following estimate for the coercive field

Ec(t) =
2

PsL

∫ L/2

0

dzPcl(z, t) (24)

where integration over the half-length of the wall accounts for the other end of the domain.

Evaluation of the time-dependent coercive field assuming the typical length of the domain
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FIG. 10: Snap-shots of the clamping pressure distribution along the domain wall for the succession

of times T = 0, 0.1, 1, 2, 3, 4, 5 (upwards) for BaTiO3 at room temperature for an oxygen vacancy

concentration c0 = n0 · c∗.
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FIG. 11: The saturated clamping pressure distribution along the domain wall for BaTiO3 at room

temperature for the oxygen vacancy concentrations c0 = n0 · c∗ with n0 = 0.5, 1, 1.5 and n0 = 2

(upwards).

wall L = 20a obtains a characteristic value of Ec ≃ 1 kV/cm which is of the order of

the coercive field in unaged bulk samples of BaTiO3 [7, 8]. In fact, the magnitude of the

clamping pressure and, consequently, the value of the coercive field may be substantially

larger then it was estimated using Eq. (24). Firstly, the peak value of the pressure has to be

approximately doubled if one takes into account the reduction of the energy of electrostatic

field in the dielectric material outside the grain which is approximately the same as in the

ferroelectric area assuming εd = εf . Secondly, the consideration of the anisotropy of the
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dielectric constant is expected to scale up the pressure together with the energy gain by the

factor of
√

εa/εc which is about 6 for BaTiO3. Finally, values of few MPa are expected

for the average clamping pressure at the domain wall and the values of few kV/mm are

expected for the coercive field due to charge carrier migration which is in agreement with

the characteristic values observed on the aged samples of BaTiO3 [7, 8]. Accordingly, the

coercive field, Eq. (24), multiplied by the factor of 12 is shown in Fig. 12 in physical units

to compare with known experimental data. The dashed line shows that the time behavior

of Ec mimics logarithmic time dependence for durations less then a few τµ.
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FIG. 12: Coercive field due to charged defect migration as a function of time (solid line) for the

oxygen vacancy concentration c0 = n0 · c∗. Dashed line shows fitting with logarithmic dependence

for intermediate times.

One more essential factor which brings about enhancement of the coercive field is that

the minimum energy of the system will further substantially decrease if domain wall bending

is allowed contributing to the increase of the clamping pressure, Eq. (23). This mechanism

is, however, beyond the consideration in our model of rigid walls.

The above obtained values are much larger than typical magnitudes of clamping pressure

arising due to dipole re-orientation [14]. Indeed, for uniformly aligned dipoles in the latter

mechanism, the dipole moments exert upon the domain wall a clamping pressure Por ≃ c0Ezd

where the dipole moment d = qf l/2 with the dipole length of l = 4·10−10m. For the material

parameters assumed in the above estimations and c0 = c∗ this results in the peak value of

the clamping pressure Por = 9.7 kPa which is two orders of magnitude smaller than that in

the drift mechanism.
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A common feature of these two aging mechanisms is that both dipole re-orientation and

defect migration occur in those areas where a depolarization electric field is present. In

respect thereof these mechanisms can be classified neither as volume nor as boundary ones

as was suggested in the recent works by Zhang and Ren [7, 8] but rather as geometry

dependent. Indeed, in the two-dimensional periodic array of domains considered here the

depolarization field is present only near the grain boundaries causing both defect drift and

dipole re-orientation only in this area. On the other hand, in the single domain state of a

Mn-doped BaTiO3 single crystal observed in Ref. [8] a one-dimensional geometry is virtually

realized where the depolarization field is present in the whole sample [29] and invokes both

dipole re-orientation and defect drift in the whole volume.

V. CONCLUSIONS

In this work, we have considered migration of charged defects as a possible reason for

aging in ferroelectrics. The model is based on two main assumptions: 1) existence of mobile

carriers of ionic or electronic nature in the bulk material and 2) presence of strong local

depolarization fields due to bound charges at the domain faces. The first assumption is

based on direct measurements of the conductivity in perovskites [26], the second one was

at least partly confirmed in observations of Ref. [6]. Solving self-consistently the drift-

diffusion equation together with the Gauss equation for the fixed two-dimensional domain

array [34, 35, 36, 37] reveals gradual formation of space charge zones compensating the field

generated by charged domain faces. Charged domain walls, which are tip-to-tip or tail-to-

tail configurations of the polarization in adjacent domains, are electrically equivalent to our

model. The biggest difference arises due to the fact that charged domain walls are often

observed as needle tip domains in single crystals [45]. The geometry is thus considerably

different from the model of parallel domain walls presented in our paper, where only periodic

straight domain configurations are captured.

The process of charge defect migration is accompanied by the reduction of the energy of

the electrostatic depolarization field which leads to the energy minimum where the system

will resist any change of the domain pattern. The characteristic time of this relaxation

depends on the doping and is typically about 5 · τµ ≃ 8 · 105 s ≃ 9 days, where τµ is a time

of drift over the distance of domain width. That is why, after aging, a clamping force at
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a domain wall arises if an external electric field attempts to shift the domain wall from its

initial position. This force may be estimated from the calculated energy gain due to the

reduction of the depolarization field. The peak value of the clamping pressure is in the

range of 1÷ 10MPa but the pressure is distributed very inhomogeneously along the domain

wall concentrating near the domain ends. Nevertheless, the total value of the clamping

force at the domain wall results in the characteristic coercive field of few kV/mm which is

comparable with that observed on the aged samples of Mn-doped BaTiO3 [8].

Clamping pressures on domain walls in the presented two-dimensional model are consid-

erably lower than in the uniaxial case [29] and approach macroscopically observable values.

They are two orders of magnitude larger than in the picture of defect dipole re-orientation

[14] and are thus a plausible mechanism for aging in ferroelectrics. In contrast to the one-

dimensional case with only one characteristic value of electric field, Ed = Ps/εfε0, treated

earlier [29] the two-dimensional model exhibits seemingly a wide spectrum of characteristic

times according to the position-dependent values of the electric field E(x, y). This allows

one to expect a time dependence of the clamping pressure in a two-dimensional array of

domains different from the one-dimensional case [29]. Nevertheless, comparing time evolu-

tion of the field and defect concentration in Ref. [29] with Figs. (4,5,6,7) one observes a

striking similarity between them. We are thus concerned with a single characteristic time

constant τr = τµ/n0 characterizing the relaxation of the system. This time is independent

of the width of the domains, a. In fact, τr = εfε0/λ with λ = qfc0µ being the conductivity

of the material is the Maxwell relaxation time which only depends on the mobility and local

concentration of the mobile carriers. This in turn means that a distribution of grain sizes in

the material and accordingly a distribution of domain sizes does not entail a distribution of

characteristic relaxation times. The logarithmic time dependence of the dielectric constant

during aging yet remains to be explained.

A crucial parameter for the plausibility of the time scale in our simulations is the mobility

of charged species in a ferroelectric material. The mobility of oxygen vacancies considered is

still a highly disputable issue. The activation barrier for this ionic defect is usually estimated

in the range of 0.9-1.1 eV in both experimental works and first principle calculations [46, 47,

48, 49] which makes the migration of oxygen vacancies over the distance of the order of the

domain width ≃ 0.5 µm most unlikely. On the other hand, the estimations of the mobility

in the Refs. [26, 30, 50, 51] are similar to or higher than that given in Refs. [40, 41] which
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we used for simulations in our study. We would like to stress here therefore that the nature

of the charge carriers plays no important role for the model presented. These may be also

electronic carriers as was suggested in Refs. [47, 52]. In any case our input parameters agree

with direct measurements of the conductivity of perovskites indifferent to the nature of the

charge carriers [26].

It is evident that any real system will contain more than one mobile charge carrier. In

case their mobilities or concentrations are considerably different, the final distribution of

defects of the more mobile / more frequent carrier will determine the field environment

for the drift of the second carrier as it was discussed in Ref. [47]. The solutions from the

present calculation would have to be taken as starting condition and iteratively the final

solution could be found. In case of equal mobilities and concentrations, a coupled system

of equations has to be solved which is the issue of forthcoming work. Similarly the local

potential wells for the domain wall which determine the dielectric constant will be given in

a future publication.
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